1.1 --- a/damecco.tex Wed Nov 30 06:21:19 2016 +0100
1.2 +++ b/damecco.tex Wed Nov 30 06:44:28 2016 +0100
1.3 @@ -296,7 +296,7 @@
1.4 V_{1} \longrightarrow V_{2}$ bijection, for which the
1.5 following is true:
1.6 \begin{center}
1.7 -$\forall u\in{V_{1}} : \mathcal{L}(u)=\mathcal{L}(\mathfrak{m}(u))$ and
1.8 +$\forall u\in{V_{1}} : \mathcal{L}(u)=\mathcal{L}(\mathfrak{m}(u))$ and\\
1.9 $\forall u,v\in{V_{1}} : (u,v)\in{E_{1}} \Leftrightarrow (\mathfrak{m}(u),\mathfrak{m}(v))\in{E_{2}}$
1.10 \end{center}
1.11 \end{definition}
1.12 @@ -306,8 +306,7 @@
1.13 V_{1}\longrightarrow V_{2}$ injection, for which the
1.14 following is true:
1.15 \begin{center}
1.16 -$\forall u\in{V_{1}} : \mathcal{L}(u)=\mathcal{L}(\mathfrak{m}(u))$ and
1.17 -$\mathbb{M}$
1.18 +$\forall u\in{V_{1}} : \mathcal{L}(u)=\mathcal{L}(\mathfrak{m}(u))$ and\\
1.19 $\forall u,v \in{V_{1}} : (u,v)\in{E_{1}} \Rightarrow (\mathfrak{m}(u),\mathfrak{m}(v))\in E_{2}$
1.20 \end{center}
1.21 \end{definition}
1.22 @@ -380,7 +379,7 @@
1.23 \end{definition}
1.24
1.25 \begin{definition}
1.26 -Let \textbf{extend}$(\mathfrak{m},(u,v))$ denote the function $f : \mathfrak{D}(\mathfrak{m})\cup\{u\}\longrightarrow\mathfrak{R}(\mathfrak{m})\cup\{v\}$, for which $\forall w\in \mathfrak{D}(\mathfrak{m}) : \mathfrak{m}(w)=f(w)$ and $f(u)=v$ holds. Where $u\notin\mathfrak{D}(\mathfrak{m})$ and $v\notin\mathfrak{R}(\mathfrak{m})$, otherwise $extend(\mathfrak{m},(u,v))$ is undefined.
1.27 +Let \textbf{extend}$(\mathfrak{m},(u,v))$ denote the function $f : \mathfrak{D}(\mathfrak{m})\cup\{u\}\longrightarrow\mathfrak{R}(\mathfrak{m})\cup\{v\}$, for which $\forall w\in \mathfrak{D}(\mathfrak{m}) : \mathfrak{m}(w)=f(w)$ and $f(u)=v$ holds. Where $u\in V_1\setminus\mathfrak{D}(\mathfrak{m})$ and $v\in V_2\setminus\mathfrak{R}(\mathfrak{m})$, otherwise $extend(\mathfrak{m},(u,v))$ is undefined.
1.28 \end{definition}
1.29
1.30 \begin{notation}
1.31 @@ -816,10 +815,10 @@
1.32 Being aware of Claim~\ref{claim:claimCoverFromLeft}, the
1.33 task is not to maintain the candidate set, but to generate the
1.34 candidate nodes in $G_{2}$ for a given node $u\in V_{1}$. In
1.35 -case of any of the three problem types and a mapping $M$ if a node $v\in
1.36 +case of any of the three problem types and a mapping $\mathfrak{m}$, if a node $v\in
1.37 V_{2}$ is a potential pair of $u\in V_{1}$, then $\forall
1.38 -u'\in V_{1} : (u,u')\in
1.39 -E_{1}\ and\ u'\ is\ covered\ by\ M\ \Rightarrow (v,Pair(M,u'))\in
1.40 +u'\in \mathfrak{D}(\mathfrak{m}) : (u,u')\in
1.41 +E_{1}\Rightarrow (v,\mathfrak{m}(u'))\in
1.42 E_{2}$. That is, each covered neighbour of $u$ has to be mapped to
1.43 a covered neighbour of $v$.
1.44