1.1 --- a/damecco.tex Fri Nov 25 23:47:31 2016 +0100
1.2 +++ b/damecco.tex Sat Nov 26 00:15:22 2016 +0100
1.3 @@ -832,8 +832,8 @@
1.4
1.5 \subsection{Cutting rules}
1.6 \label{VF2PPCuttingRules}
1.7 -This section presents the cutting rules of VF2++, which are improved
1.8 -by using extra information coming from the node labels.
1.9 +This section presents the cutting rule of VF2++ in the case of IND, which is improved
1.10 +by using extra information coming from the node labels. For other problem types, the rules can be formulated similarly.
1.11 \begin{notation}
1.12 Let $\mathbf{\Gamma_{small}^{l}(u)}:=\{\tilde{u} : lab(\tilde{u})=l
1.13 \wedge \tilde{u}\in \Gamma_{small} (u)\}$ and
1.14 @@ -842,22 +842,10 @@
1.15 V_{large}$ and $l$ is a label.
1.16 \end{notation}
1.17
1.18 -\subsubsection{Induced subgraph isomorphism}
1.19 \begin{claim}
1.20 \[LabCut_{IND}((u,v),M(s))\!:=\!\!\!\!\!\bigvee_{l\ is\ label}\!\!\!\!\!\!\!|\Gamma_{large}^{l} (v) \cap T_{large}(s)|\!<\!|\Gamma_{small}^{l}(u)\cap T_{small}(s)|\ \vee\]\[\bigvee_{l\ is\ label} \newline |\Gamma_{large}^{l}(v)\cap \tilde{T}_{large}(s)| < |\Gamma_{small}^{l}(u)\cap \tilde{T}_{small}(s)|\] is a cutting function by IND.
1.21 \end{claim}
1.22
1.23 -\subsubsection{Graph isomorphism}
1.24 -\begin{claim}
1.25 -\[LabCut_{ISO}((u,v),M(s))\!:=\!\!\!\!\!\bigvee_{l\ is\ label}\!\!\!\!\!\!\!|\Gamma_{large}^{l} (v) \cap T_{large}(s)|\!\neq\!|\Gamma_{small}^{l}(u)\cap T_{small}(s)|\ \vee\]\[\bigvee_{l\ is\ label} \newline |\Gamma_{large}^{l}(v)\cap \tilde{T}_{large}(s)| \neq |\Gamma_{small}^{l}(u)\cap \tilde{T}_{small}(s)|\] is a cutting function by ISO.
1.26 -\end{claim}
1.27 -
1.28 -\subsubsection{Subgraph isomorphism}
1.29 -\begin{claim}
1.30 -\[LabCut_{SUB}((u,v),M(s))\!:=\!\!\!\!\!\bigvee_{l\ is\ label}\!\!\!\!\!\!\!|\Gamma_{large}^{l} (v) \cap T_{large}(s)|\!<\!|\Gamma_{small}^{l}(u)\cap T_{small}(s)|\] is a cutting function by SUB.
1.31 -\end{claim}
1.32 -
1.33 -
1.34
1.35 \subsection{Implementation details}
1.36 This section provides a detailed summary of an efficient