1.1 --- a/damecco.tex Wed Nov 23 20:59:40 2016 +0100
1.2 +++ b/damecco.tex Wed Nov 23 21:15:26 2016 +0100
1.3 @@ -730,25 +730,6 @@
1.4 view of the matching procedure, this means, that always the same node
1.5 of $G_{small}$ will be covered on the d-th level.
1.6 \end{claim}
1.7 -\begin{proof}
1.8 -In order to make the search space a tree, the pairs in $\{(u,v)\in
1.9 -P(s) : \exists \hat{u} : \hat{u}\prec u\}$ are excluded from $P(s)$.
1.10 -\newline
1.11 -Let $\tilde{P}(s):=P(s)\backslash \{(u,v)\in P(s) : \exists \hat{u} :
1.12 -\hat{u}\prec u\}$
1.13 -\newline
1.14 -The relation $\prec$ is a total ordering, so $\exists!\ \tilde{u} :
1.15 -\forall\ (u,v)\in \tilde{P}(s): u=\tilde u$. Since a pair form
1.16 -$\tilde{P}(s)$ is chosen for including into $M(s)$, it is obvious,
1.17 -that only $\tilde{u}$ can be covered in $V_{small}$. Actually,
1.18 -$\tilde{u}$ is the smallest element in $T_{small}(s)$ (or in
1.19 -$V_{small}\backslash M_{small}(s)$, if $T_{small}(s)$ were empty), and
1.20 -$T_{small}(s)$ depends only on the covered nodes of $G_{small}$.
1.21 -\newline
1.22 -Simple induction on $d$ shows that the set of covered nodes of
1.23 -$G_{small}$ is unique, if $d$ is given, so $\tilde{u}$ is unique if
1.24 -$d$ is given.
1.25 -\end{proof}
1.26
1.27 \begin{definition}
1.28 An order $(u_{\sigma(1)},u_{\sigma(2)},..,u_{\sigma(|V_{small}|)})$ of
1.29 @@ -772,29 +753,6 @@
1.30 (u_{\sigma{(k)}},u_{\sigma{(i)}})\in E'_{small}$, where $i,j,k,l\in
1.31 \{1,..,|V_{small}|\}$\newline
1.32 \end{claim}
1.33 -\begin{proof}
1.34 -Suppose a matching order is given. It has to be shown that the node
1.35 -sequence has a structure described above.\\ Let
1.36 -$G'_{small}=(V'_{small},E'_{small})$ be an arbitrary component and $i$
1.37 -an arbitrary index.
1.38 -\newline
1.39 -$(\exists j : j<i\wedge u_{\sigma(j)},u_{\sigma(i)}\in
1.40 -V'_{small})\Rightarrow u_{\sigma(i)}$ is not the first covered node in
1.41 -$G_{small}\ \Rightarrow u_{\sigma(i)}$ is connected to a covered node
1.42 -$u_{\sigma(k)}$ where $k<i$, since $u_{\sigma(i)}\in T_{small}(s)$ for
1.43 -some $s$ and $T_{small}(s)\subseteq{V'_{small}}$ contains only nodes
1.44 -connected to at least one covered node. It's easy to see, that
1.45 -$\forall l: k\leq l\leq i \Rightarrow u_{l}\in V'_{small}$, since
1.46 -$T_{small}(s)$ contains only nodes connected to some covered ones,
1.47 -while it is not empty, but if it were empty, then $u_{\sigma(k)}$ and
1.48 -$u_{\sigma(i)}$ were not in the same component.
1.49 -
1.50 -Now, let us show that if a node sequence has the special structure
1.51 -described above, it has to be matching
1.52 -order.\\ $(u_{\sigma(1)},u_{\sigma(2)},..,u_{\sigma(|V_{small}|)})$ is
1.53 -a total ordering, which determines the matching order
1.54 -$(u_{\sigma(1)},u_{\sigma(2)},..,u_{\sigma(|V_{small}|)})$.
1.55 -\end{proof}
1.56
1.57 To summing up, a total ordering always uniquely determines a matching
1.58 order, and every matching order can be determined by a total ordering,
1.59 @@ -964,32 +922,6 @@
1.60 \begin{claim}
1.61 \[LabCut_{IND}((u,v),M(s))\!:=\!\!\!\!\!\bigvee_{l\ is\ label}\!\!\!\!\!\!\!|\Gamma_{large}^{l} (v) \cap T_{large}(s)|\!<\!|\Gamma_{small}^{l}(u)\cap T_{small}(s)|\ \vee\]\[\bigvee_{l\ is\ label} \newline |\Gamma_{large}^{l}(v)\cap \tilde{T}_{large}(s)| < |\Gamma_{small}^{l}(u)\cap \tilde{T}_{small}(s)|\] is a cutting function by IND.
1.62 \end{claim}
1.63 -\begin{proof}
1.64 -It has to be shown, that $LabCut_{IND}((u,v),M(s))=true\Rightarrow$
1.65 -the mapping can not be extended to a whole
1.66 -mapping.\\ $LabCut_{IND}((u,v),M(s))=true,$ iff the following
1.67 -holds. $\\\exists l: |\Gamma_{large}^{l} (v)\ \cap\ T_{large}(s)| <
1.68 -|\Gamma_{small}^{l} (u)\ \cap\ T_{small}(s)| \vee
1.69 -|\Gamma_{large}^{l}(v)\cap \tilde{T}_{large}(s)| <
1.70 -|\Gamma_{small}^{l}(u)\cap \tilde{T}_{small}(s)|$.
1.71 -
1.72 -Suppose that $|\Gamma_{large}^{l} (v)\ \cap\ T_{large}(s)| <
1.73 -|\Gamma_{small}^{l} (u)\ \cap\ T_{small}(s)|$. Each node of
1.74 -$\Gamma_{small}^{l} (u)\ \cap\ T_{small}(s)$ has to be matched to a
1.75 -node in $\Gamma_{large}^{l} (v)\ \cap\ T_{large}(s)$, so
1.76 -$\Gamma_{large}^{l} (v)\ \cap\ T_{large}(s)$ can not be smaller than
1.77 -$\Gamma_{small}^{l} (u)\ \cap\ T_{small}(s)$. That is why $M(s)$ can
1.78 -not be extended to a whole mapping.
1.79 -
1.80 -Otherwise $|\Gamma_{large}^{l}(v)\cap \tilde{T}_{large}(s)| <
1.81 -|\Gamma_{small}^{l}(u)\cap \tilde{T}_{small}(s)|$ has to be
1.82 -true. Similarly, each node of $\Gamma_{large}^{l}(v)\cap
1.83 -\tilde{T}_{large}(s)$ has to be matched to a node in
1.84 -$\Gamma_{small}^{l}(u)\cap \tilde{T}_{small}(s)$,
1.85 -i.e. $\Gamma_{large}^{l}(v)\cap \tilde{T}_{large}(s)$ can not be
1.86 -smaller than $\Gamma_{small}^{l}(u)\cap \tilde{T}_{small}(s)$, if
1.87 -$M(s)$ is extendible.
1.88 -\end{proof}
1.89 The following claims can be proven similarly.
1.90 \subsubsection{Graph isomorphism}
1.91 \begin{claim}
1.92 @@ -1338,7 +1270,7 @@
1.93
1.94
1.95
1.96 -\begin{figure}[H]
1.97 +\begin{figure}
1.98 \vspace*{-1.5cm}
1.99 \hspace*{-1.5cm}
1.100 \begin{subfigure}[b]{0.55\textwidth}
1.101 @@ -1472,7 +1404,7 @@
1.102
1.103
1.104
1.105 -\begin{figure}[H]
1.106 +\begin{figure}
1.107 \vspace*{-1.5cm}
1.108 \hspace*{-1.5cm}
1.109 \begin{subfigure}[b]{0.55\textwidth}