lemon/network_simplex.h
author Alpar Juttner <alpar@cs.elte.hu>
Mon, 30 Jan 2012 17:49:50 +0100
changeset 1134 0b9a94956916
parent 1025 140c953ad5d1
parent 1023 e0cef67fe565
child 1136 fcb6ad1e67d0
child 1165 16f55008c863
permissions -rw-r--r--
Use hg templating instead of scripts/chg-len.py (#434)
kpeter@648
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
kpeter@648
     2
 *
kpeter@648
     3
 * This file is a part of LEMON, a generic C++ optimization library.
kpeter@648
     4
 *
alpar@956
     5
 * Copyright (C) 2003-2010
kpeter@648
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
kpeter@648
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
kpeter@648
     8
 *
kpeter@648
     9
 * Permission to use, modify and distribute this software is granted
kpeter@648
    10
 * provided that this copyright notice appears in all copies. For
kpeter@648
    11
 * precise terms see the accompanying LICENSE file.
kpeter@648
    12
 *
kpeter@648
    13
 * This software is provided "AS IS" with no warranty of any kind,
kpeter@648
    14
 * express or implied, and with no claim as to its suitability for any
kpeter@648
    15
 * purpose.
kpeter@648
    16
 *
kpeter@648
    17
 */
kpeter@648
    18
kpeter@648
    19
#ifndef LEMON_NETWORK_SIMPLEX_H
kpeter@648
    20
#define LEMON_NETWORK_SIMPLEX_H
kpeter@648
    21
kpeter@710
    22
/// \ingroup min_cost_flow_algs
kpeter@648
    23
///
kpeter@648
    24
/// \file
kpeter@652
    25
/// \brief Network Simplex algorithm for finding a minimum cost flow.
kpeter@648
    26
kpeter@648
    27
#include <vector>
kpeter@648
    28
#include <limits>
kpeter@648
    29
#include <algorithm>
kpeter@648
    30
kpeter@650
    31
#include <lemon/core.h>
kpeter@648
    32
#include <lemon/math.h>
kpeter@648
    33
kpeter@648
    34
namespace lemon {
kpeter@648
    35
kpeter@710
    36
  /// \addtogroup min_cost_flow_algs
kpeter@648
    37
  /// @{
kpeter@648
    38
kpeter@652
    39
  /// \brief Implementation of the primal Network Simplex algorithm
kpeter@648
    40
  /// for finding a \ref min_cost_flow "minimum cost flow".
kpeter@648
    41
  ///
kpeter@652
    42
  /// \ref NetworkSimplex implements the primal Network Simplex algorithm
kpeter@802
    43
  /// for finding a \ref min_cost_flow "minimum cost flow"
kpeter@802
    44
  /// \ref amo93networkflows, \ref dantzig63linearprog,
kpeter@802
    45
  /// \ref kellyoneill91netsimplex.
kpeter@878
    46
  /// This algorithm is a highly efficient specialized version of the
kpeter@878
    47
  /// linear programming simplex method directly for the minimum cost
kpeter@878
    48
  /// flow problem.
kpeter@653
    49
  ///
kpeter@1023
    50
  /// In general, \ref NetworkSimplex and \ref CostScaling are the fastest
kpeter@1023
    51
  /// implementations available in LEMON for this problem.
kpeter@1023
    52
  /// Furthermore, this class supports both directions of the supply/demand
kpeter@1023
    53
  /// inequality constraints. For more information, see \ref SupplyType.
kpeter@687
    54
  ///
kpeter@687
    55
  /// Most of the parameters of the problem (except for the digraph)
kpeter@687
    56
  /// can be given using separate functions, and the algorithm can be
kpeter@687
    57
  /// executed using the \ref run() function. If some parameters are not
kpeter@687
    58
  /// specified, then default values will be used.
kpeter@648
    59
  ///
kpeter@652
    60
  /// \tparam GR The digraph type the algorithm runs on.
kpeter@878
    61
  /// \tparam V The number type used for flow amounts, capacity bounds
kpeter@833
    62
  /// and supply values in the algorithm. By default, it is \c int.
kpeter@878
    63
  /// \tparam C The number type used for costs and potentials in the
kpeter@833
    64
  /// algorithm. By default, it is the same as \c V.
kpeter@648
    65
  ///
kpeter@1025
    66
  /// \warning Both \c V and \c C must be signed number types.
kpeter@1025
    67
  /// \warning All input data (capacities, supply values, and costs) must
kpeter@655
    68
  /// be integer.
kpeter@648
    69
  ///
kpeter@652
    70
  /// \note %NetworkSimplex provides five different pivot rule
kpeter@656
    71
  /// implementations, from which the most efficient one is used
kpeter@833
    72
  /// by default. For more information, see \ref PivotRule.
kpeter@688
    73
  template <typename GR, typename V = int, typename C = V>
kpeter@648
    74
  class NetworkSimplex
kpeter@648
    75
  {
kpeter@652
    76
  public:
kpeter@648
    77
kpeter@689
    78
    /// The type of the flow amounts, capacity bounds and supply values
kpeter@688
    79
    typedef V Value;
kpeter@689
    80
    /// The type of the arc costs
kpeter@654
    81
    typedef C Cost;
kpeter@652
    82
kpeter@652
    83
  public:
kpeter@652
    84
kpeter@687
    85
    /// \brief Problem type constants for the \c run() function.
kpeter@652
    86
    ///
kpeter@687
    87
    /// Enum type containing the problem type constants that can be
kpeter@687
    88
    /// returned by the \ref run() function of the algorithm.
kpeter@687
    89
    enum ProblemType {
kpeter@687
    90
      /// The problem has no feasible solution (flow).
kpeter@687
    91
      INFEASIBLE,
kpeter@687
    92
      /// The problem has optimal solution (i.e. it is feasible and
kpeter@687
    93
      /// bounded), and the algorithm has found optimal flow and node
kpeter@687
    94
      /// potentials (primal and dual solutions).
kpeter@687
    95
      OPTIMAL,
kpeter@687
    96
      /// The objective function of the problem is unbounded, i.e.
kpeter@687
    97
      /// there is a directed cycle having negative total cost and
kpeter@687
    98
      /// infinite upper bound.
kpeter@687
    99
      UNBOUNDED
kpeter@687
   100
    };
alpar@956
   101
kpeter@687
   102
    /// \brief Constants for selecting the type of the supply constraints.
kpeter@687
   103
    ///
kpeter@687
   104
    /// Enum type containing constants for selecting the supply type,
kpeter@687
   105
    /// i.e. the direction of the inequalities in the supply/demand
kpeter@687
   106
    /// constraints of the \ref min_cost_flow "minimum cost flow problem".
kpeter@687
   107
    ///
kpeter@710
   108
    /// The default supply type is \c GEQ, the \c LEQ type can be
kpeter@710
   109
    /// selected using \ref supplyType().
kpeter@710
   110
    /// The equality form is a special case of both supply types.
kpeter@687
   111
    enum SupplyType {
kpeter@687
   112
      /// This option means that there are <em>"greater or equal"</em>
kpeter@710
   113
      /// supply/demand constraints in the definition of the problem.
kpeter@687
   114
      GEQ,
kpeter@687
   115
      /// This option means that there are <em>"less or equal"</em>
kpeter@710
   116
      /// supply/demand constraints in the definition of the problem.
kpeter@710
   117
      LEQ
kpeter@687
   118
    };
alpar@956
   119
kpeter@687
   120
    /// \brief Constants for selecting the pivot rule.
kpeter@687
   121
    ///
kpeter@687
   122
    /// Enum type containing constants for selecting the pivot rule for
kpeter@687
   123
    /// the \ref run() function.
kpeter@687
   124
    ///
kpeter@652
   125
    /// \ref NetworkSimplex provides five different pivot rule
kpeter@652
   126
    /// implementations that significantly affect the running time
kpeter@652
   127
    /// of the algorithm.
kpeter@833
   128
    /// By default, \ref BLOCK_SEARCH "Block Search" is used, which
kpeter@1023
   129
    /// turend out to be the most efficient and the most robust on various
kpeter@878
   130
    /// test inputs.
kpeter@833
   131
    /// However, another pivot rule can be selected using the \ref run()
kpeter@652
   132
    /// function with the proper parameter.
kpeter@652
   133
    enum PivotRule {
kpeter@652
   134
kpeter@833
   135
      /// The \e First \e Eligible pivot rule.
kpeter@652
   136
      /// The next eligible arc is selected in a wraparound fashion
kpeter@652
   137
      /// in every iteration.
kpeter@652
   138
      FIRST_ELIGIBLE,
kpeter@652
   139
kpeter@833
   140
      /// The \e Best \e Eligible pivot rule.
kpeter@652
   141
      /// The best eligible arc is selected in every iteration.
kpeter@652
   142
      BEST_ELIGIBLE,
kpeter@652
   143
kpeter@833
   144
      /// The \e Block \e Search pivot rule.
kpeter@652
   145
      /// A specified number of arcs are examined in every iteration
kpeter@652
   146
      /// in a wraparound fashion and the best eligible arc is selected
kpeter@652
   147
      /// from this block.
kpeter@652
   148
      BLOCK_SEARCH,
kpeter@652
   149
kpeter@833
   150
      /// The \e Candidate \e List pivot rule.
kpeter@652
   151
      /// In a major iteration a candidate list is built from eligible arcs
kpeter@652
   152
      /// in a wraparound fashion and in the following minor iterations
kpeter@652
   153
      /// the best eligible arc is selected from this list.
kpeter@652
   154
      CANDIDATE_LIST,
kpeter@652
   155
kpeter@833
   156
      /// The \e Altering \e Candidate \e List pivot rule.
kpeter@652
   157
      /// It is a modified version of the Candidate List method.
kpeter@652
   158
      /// It keeps only the several best eligible arcs from the former
kpeter@652
   159
      /// candidate list and extends this list in every iteration.
kpeter@652
   160
      ALTERING_LIST
kpeter@652
   161
    };
alpar@956
   162
kpeter@652
   163
  private:
kpeter@652
   164
kpeter@652
   165
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
kpeter@652
   166
kpeter@648
   167
    typedef std::vector<int> IntVector;
kpeter@689
   168
    typedef std::vector<Value> ValueVector;
kpeter@654
   169
    typedef std::vector<Cost> CostVector;
kpeter@990
   170
    typedef std::vector<signed char> CharVector;
kpeter@1023
   171
    // Note: vector<signed char> is used instead of vector<ArcState> and
kpeter@990
   172
    // vector<ArcDirection> for efficiency reasons
kpeter@648
   173
kpeter@648
   174
    // State constants for arcs
kpeter@936
   175
    enum ArcState {
kpeter@648
   176
      STATE_UPPER = -1,
kpeter@648
   177
      STATE_TREE  =  0,
kpeter@648
   178
      STATE_LOWER =  1
kpeter@648
   179
    };
kpeter@648
   180
kpeter@990
   181
    // Direction constants for tree arcs
kpeter@990
   182
    enum ArcDirection {
kpeter@990
   183
      DIR_DOWN = -1,
kpeter@990
   184
      DIR_UP   =  1
kpeter@990
   185
    };
kpeter@936
   186
kpeter@648
   187
  private:
kpeter@648
   188
kpeter@652
   189
    // Data related to the underlying digraph
kpeter@652
   190
    const GR &_graph;
kpeter@652
   191
    int _node_num;
kpeter@652
   192
    int _arc_num;
kpeter@710
   193
    int _all_arc_num;
kpeter@710
   194
    int _search_arc_num;
kpeter@652
   195
kpeter@652
   196
    // Parameters of the problem
kpeter@689
   197
    bool _have_lower;
kpeter@687
   198
    SupplyType _stype;
kpeter@688
   199
    Value _sum_supply;
kpeter@648
   200
kpeter@652
   201
    // Data structures for storing the digraph
kpeter@650
   202
    IntNodeMap _node_id;
kpeter@689
   203
    IntArcMap _arc_id;
kpeter@650
   204
    IntVector _source;
kpeter@650
   205
    IntVector _target;
kpeter@898
   206
    bool _arc_mixing;
kpeter@650
   207
kpeter@652
   208
    // Node and arc data
kpeter@689
   209
    ValueVector _lower;
kpeter@689
   210
    ValueVector _upper;
kpeter@689
   211
    ValueVector _cap;
kpeter@654
   212
    CostVector _cost;
kpeter@689
   213
    ValueVector _supply;
kpeter@689
   214
    ValueVector _flow;
kpeter@654
   215
    CostVector _pi;
kpeter@648
   216
kpeter@650
   217
    // Data for storing the spanning tree structure
kpeter@648
   218
    IntVector _parent;
kpeter@648
   219
    IntVector _pred;
kpeter@648
   220
    IntVector _thread;
kpeter@651
   221
    IntVector _rev_thread;
kpeter@651
   222
    IntVector _succ_num;
kpeter@651
   223
    IntVector _last_succ;
kpeter@990
   224
    CharVector _pred_dir;
kpeter@990
   225
    CharVector _state;
kpeter@651
   226
    IntVector _dirty_revs;
kpeter@648
   227
    int _root;
kpeter@648
   228
kpeter@648
   229
    // Temporary data used in the current pivot iteration
kpeter@650
   230
    int in_arc, join, u_in, v_in, u_out, v_out;
kpeter@688
   231
    Value delta;
kpeter@648
   232
kpeter@877
   233
    const Value MAX;
kpeter@710
   234
kpeter@687
   235
  public:
alpar@956
   236
kpeter@687
   237
    /// \brief Constant for infinite upper bounds (capacities).
kpeter@687
   238
    ///
kpeter@687
   239
    /// Constant for infinite upper bounds (capacities).
kpeter@688
   240
    /// It is \c std::numeric_limits<Value>::infinity() if available,
kpeter@688
   241
    /// \c std::numeric_limits<Value>::max() otherwise.
kpeter@688
   242
    const Value INF;
kpeter@687
   243
kpeter@648
   244
  private:
kpeter@648
   245
kpeter@652
   246
    // Implementation of the First Eligible pivot rule
kpeter@648
   247
    class FirstEligiblePivotRule
kpeter@648
   248
    {
kpeter@648
   249
    private:
kpeter@648
   250
kpeter@648
   251
      // References to the NetworkSimplex class
kpeter@648
   252
      const IntVector  &_source;
kpeter@648
   253
      const IntVector  &_target;
kpeter@654
   254
      const CostVector &_cost;
kpeter@990
   255
      const CharVector &_state;
kpeter@654
   256
      const CostVector &_pi;
kpeter@648
   257
      int &_in_arc;
kpeter@710
   258
      int _search_arc_num;
kpeter@648
   259
kpeter@648
   260
      // Pivot rule data
kpeter@648
   261
      int _next_arc;
kpeter@648
   262
kpeter@648
   263
    public:
kpeter@648
   264
kpeter@652
   265
      // Constructor
kpeter@648
   266
      FirstEligiblePivotRule(NetworkSimplex &ns) :
kpeter@650
   267
        _source(ns._source), _target(ns._target),
kpeter@648
   268
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
kpeter@710
   269
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
kpeter@710
   270
        _next_arc(0)
kpeter@648
   271
      {}
kpeter@648
   272
kpeter@652
   273
      // Find next entering arc
kpeter@648
   274
      bool findEnteringArc() {
kpeter@654
   275
        Cost c;
kpeter@910
   276
        for (int e = _next_arc; e != _search_arc_num; ++e) {
kpeter@648
   277
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@648
   278
          if (c < 0) {
kpeter@648
   279
            _in_arc = e;
kpeter@648
   280
            _next_arc = e + 1;
kpeter@648
   281
            return true;
kpeter@648
   282
          }
kpeter@648
   283
        }
kpeter@910
   284
        for (int e = 0; e != _next_arc; ++e) {
kpeter@648
   285
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@648
   286
          if (c < 0) {
kpeter@648
   287
            _in_arc = e;
kpeter@648
   288
            _next_arc = e + 1;
kpeter@648
   289
            return true;
kpeter@648
   290
          }
kpeter@648
   291
        }
kpeter@648
   292
        return false;
kpeter@648
   293
      }
kpeter@648
   294
kpeter@648
   295
    }; //class FirstEligiblePivotRule
kpeter@648
   296
kpeter@648
   297
kpeter@652
   298
    // Implementation of the Best Eligible pivot rule
kpeter@648
   299
    class BestEligiblePivotRule
kpeter@648
   300
    {
kpeter@648
   301
    private:
kpeter@648
   302
kpeter@648
   303
      // References to the NetworkSimplex class
kpeter@648
   304
      const IntVector  &_source;
kpeter@648
   305
      const IntVector  &_target;
kpeter@654
   306
      const CostVector &_cost;
kpeter@990
   307
      const CharVector &_state;
kpeter@654
   308
      const CostVector &_pi;
kpeter@648
   309
      int &_in_arc;
kpeter@710
   310
      int _search_arc_num;
kpeter@648
   311
kpeter@648
   312
    public:
kpeter@648
   313
kpeter@652
   314
      // Constructor
kpeter@648
   315
      BestEligiblePivotRule(NetworkSimplex &ns) :
kpeter@650
   316
        _source(ns._source), _target(ns._target),
kpeter@648
   317
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
kpeter@710
   318
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num)
kpeter@648
   319
      {}
kpeter@648
   320
kpeter@652
   321
      // Find next entering arc
kpeter@648
   322
      bool findEnteringArc() {
kpeter@654
   323
        Cost c, min = 0;
kpeter@910
   324
        for (int e = 0; e != _search_arc_num; ++e) {
kpeter@648
   325
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@648
   326
          if (c < min) {
kpeter@648
   327
            min = c;
kpeter@648
   328
            _in_arc = e;
kpeter@648
   329
          }
kpeter@648
   330
        }
kpeter@648
   331
        return min < 0;
kpeter@648
   332
      }
kpeter@648
   333
kpeter@648
   334
    }; //class BestEligiblePivotRule
kpeter@648
   335
kpeter@648
   336
kpeter@652
   337
    // Implementation of the Block Search pivot rule
kpeter@648
   338
    class BlockSearchPivotRule
kpeter@648
   339
    {
kpeter@648
   340
    private:
kpeter@648
   341
kpeter@648
   342
      // References to the NetworkSimplex class
kpeter@648
   343
      const IntVector  &_source;
kpeter@648
   344
      const IntVector  &_target;
kpeter@654
   345
      const CostVector &_cost;
kpeter@990
   346
      const CharVector &_state;
kpeter@654
   347
      const CostVector &_pi;
kpeter@648
   348
      int &_in_arc;
kpeter@710
   349
      int _search_arc_num;
kpeter@648
   350
kpeter@648
   351
      // Pivot rule data
kpeter@648
   352
      int _block_size;
kpeter@648
   353
      int _next_arc;
kpeter@648
   354
kpeter@648
   355
    public:
kpeter@648
   356
kpeter@652
   357
      // Constructor
kpeter@648
   358
      BlockSearchPivotRule(NetworkSimplex &ns) :
kpeter@650
   359
        _source(ns._source), _target(ns._target),
kpeter@648
   360
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
kpeter@710
   361
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
kpeter@710
   362
        _next_arc(0)
kpeter@648
   363
      {
kpeter@648
   364
        // The main parameters of the pivot rule
kpeter@910
   365
        const double BLOCK_SIZE_FACTOR = 1.0;
kpeter@648
   366
        const int MIN_BLOCK_SIZE = 10;
kpeter@648
   367
alpar@659
   368
        _block_size = std::max( int(BLOCK_SIZE_FACTOR *
kpeter@710
   369
                                    std::sqrt(double(_search_arc_num))),
kpeter@648
   370
                                MIN_BLOCK_SIZE );
kpeter@648
   371
      }
kpeter@648
   372
kpeter@652
   373
      // Find next entering arc
kpeter@648
   374
      bool findEnteringArc() {
kpeter@654
   375
        Cost c, min = 0;
kpeter@648
   376
        int cnt = _block_size;
kpeter@774
   377
        int e;
kpeter@910
   378
        for (e = _next_arc; e != _search_arc_num; ++e) {
kpeter@648
   379
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@648
   380
          if (c < min) {
kpeter@648
   381
            min = c;
kpeter@774
   382
            _in_arc = e;
kpeter@648
   383
          }
kpeter@648
   384
          if (--cnt == 0) {
kpeter@774
   385
            if (min < 0) goto search_end;
kpeter@648
   386
            cnt = _block_size;
kpeter@648
   387
          }
kpeter@648
   388
        }
kpeter@910
   389
        for (e = 0; e != _next_arc; ++e) {
kpeter@774
   390
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@774
   391
          if (c < min) {
kpeter@774
   392
            min = c;
kpeter@774
   393
            _in_arc = e;
kpeter@774
   394
          }
kpeter@774
   395
          if (--cnt == 0) {
kpeter@774
   396
            if (min < 0) goto search_end;
kpeter@774
   397
            cnt = _block_size;
kpeter@648
   398
          }
kpeter@648
   399
        }
kpeter@648
   400
        if (min >= 0) return false;
kpeter@774
   401
kpeter@774
   402
      search_end:
kpeter@648
   403
        _next_arc = e;
kpeter@648
   404
        return true;
kpeter@648
   405
      }
kpeter@648
   406
kpeter@648
   407
    }; //class BlockSearchPivotRule
kpeter@648
   408
kpeter@648
   409
kpeter@652
   410
    // Implementation of the Candidate List pivot rule
kpeter@648
   411
    class CandidateListPivotRule
kpeter@648
   412
    {
kpeter@648
   413
    private:
kpeter@648
   414
kpeter@648
   415
      // References to the NetworkSimplex class
kpeter@648
   416
      const IntVector  &_source;
kpeter@648
   417
      const IntVector  &_target;
kpeter@654
   418
      const CostVector &_cost;
kpeter@990
   419
      const CharVector &_state;
kpeter@654
   420
      const CostVector &_pi;
kpeter@648
   421
      int &_in_arc;
kpeter@710
   422
      int _search_arc_num;
kpeter@648
   423
kpeter@648
   424
      // Pivot rule data
kpeter@648
   425
      IntVector _candidates;
kpeter@648
   426
      int _list_length, _minor_limit;
kpeter@648
   427
      int _curr_length, _minor_count;
kpeter@648
   428
      int _next_arc;
kpeter@648
   429
kpeter@648
   430
    public:
kpeter@648
   431
kpeter@648
   432
      /// Constructor
kpeter@648
   433
      CandidateListPivotRule(NetworkSimplex &ns) :
kpeter@650
   434
        _source(ns._source), _target(ns._target),
kpeter@648
   435
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
kpeter@710
   436
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
kpeter@710
   437
        _next_arc(0)
kpeter@648
   438
      {
kpeter@648
   439
        // The main parameters of the pivot rule
kpeter@774
   440
        const double LIST_LENGTH_FACTOR = 0.25;
kpeter@648
   441
        const int MIN_LIST_LENGTH = 10;
kpeter@648
   442
        const double MINOR_LIMIT_FACTOR = 0.1;
kpeter@648
   443
        const int MIN_MINOR_LIMIT = 3;
kpeter@648
   444
alpar@659
   445
        _list_length = std::max( int(LIST_LENGTH_FACTOR *
kpeter@710
   446
                                     std::sqrt(double(_search_arc_num))),
kpeter@648
   447
                                 MIN_LIST_LENGTH );
kpeter@648
   448
        _minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length),
kpeter@648
   449
                                 MIN_MINOR_LIMIT );
kpeter@648
   450
        _curr_length = _minor_count = 0;
kpeter@648
   451
        _candidates.resize(_list_length);
kpeter@648
   452
      }
kpeter@648
   453
kpeter@648
   454
      /// Find next entering arc
kpeter@648
   455
      bool findEnteringArc() {
kpeter@654
   456
        Cost min, c;
kpeter@774
   457
        int e;
kpeter@648
   458
        if (_curr_length > 0 && _minor_count < _minor_limit) {
kpeter@648
   459
          // Minor iteration: select the best eligible arc from the
kpeter@648
   460
          // current candidate list
kpeter@648
   461
          ++_minor_count;
kpeter@648
   462
          min = 0;
kpeter@648
   463
          for (int i = 0; i < _curr_length; ++i) {
kpeter@648
   464
            e = _candidates[i];
kpeter@648
   465
            c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@648
   466
            if (c < min) {
kpeter@648
   467
              min = c;
kpeter@774
   468
              _in_arc = e;
kpeter@648
   469
            }
kpeter@774
   470
            else if (c >= 0) {
kpeter@648
   471
              _candidates[i--] = _candidates[--_curr_length];
kpeter@648
   472
            }
kpeter@648
   473
          }
kpeter@774
   474
          if (min < 0) return true;
kpeter@648
   475
        }
kpeter@648
   476
kpeter@648
   477
        // Major iteration: build a new candidate list
kpeter@648
   478
        min = 0;
kpeter@648
   479
        _curr_length = 0;
kpeter@910
   480
        for (e = _next_arc; e != _search_arc_num; ++e) {
kpeter@648
   481
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@648
   482
          if (c < 0) {
kpeter@648
   483
            _candidates[_curr_length++] = e;
kpeter@648
   484
            if (c < min) {
kpeter@648
   485
              min = c;
kpeter@774
   486
              _in_arc = e;
kpeter@648
   487
            }
kpeter@774
   488
            if (_curr_length == _list_length) goto search_end;
kpeter@648
   489
          }
kpeter@648
   490
        }
kpeter@910
   491
        for (e = 0; e != _next_arc; ++e) {
kpeter@774
   492
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@774
   493
          if (c < 0) {
kpeter@774
   494
            _candidates[_curr_length++] = e;
kpeter@774
   495
            if (c < min) {
kpeter@774
   496
              min = c;
kpeter@774
   497
              _in_arc = e;
kpeter@648
   498
            }
kpeter@774
   499
            if (_curr_length == _list_length) goto search_end;
kpeter@648
   500
          }
kpeter@648
   501
        }
kpeter@648
   502
        if (_curr_length == 0) return false;
alpar@956
   503
alpar@956
   504
      search_end:
kpeter@648
   505
        _minor_count = 1;
kpeter@648
   506
        _next_arc = e;
kpeter@648
   507
        return true;
kpeter@648
   508
      }
kpeter@648
   509
kpeter@648
   510
    }; //class CandidateListPivotRule
kpeter@648
   511
kpeter@648
   512
kpeter@652
   513
    // Implementation of the Altering Candidate List pivot rule
kpeter@648
   514
    class AlteringListPivotRule
kpeter@648
   515
    {
kpeter@648
   516
    private:
kpeter@648
   517
kpeter@648
   518
      // References to the NetworkSimplex class
kpeter@648
   519
      const IntVector  &_source;
kpeter@648
   520
      const IntVector  &_target;
kpeter@654
   521
      const CostVector &_cost;
kpeter@990
   522
      const CharVector &_state;
kpeter@654
   523
      const CostVector &_pi;
kpeter@648
   524
      int &_in_arc;
kpeter@710
   525
      int _search_arc_num;
kpeter@648
   526
kpeter@648
   527
      // Pivot rule data
kpeter@648
   528
      int _block_size, _head_length, _curr_length;
kpeter@648
   529
      int _next_arc;
kpeter@648
   530
      IntVector _candidates;
kpeter@654
   531
      CostVector _cand_cost;
kpeter@648
   532
kpeter@648
   533
      // Functor class to compare arcs during sort of the candidate list
kpeter@648
   534
      class SortFunc
kpeter@648
   535
      {
kpeter@648
   536
      private:
kpeter@654
   537
        const CostVector &_map;
kpeter@648
   538
      public:
kpeter@654
   539
        SortFunc(const CostVector &map) : _map(map) {}
kpeter@648
   540
        bool operator()(int left, int right) {
kpeter@648
   541
          return _map[left] > _map[right];
kpeter@648
   542
        }
kpeter@648
   543
      };
kpeter@648
   544
kpeter@648
   545
      SortFunc _sort_func;
kpeter@648
   546
kpeter@648
   547
    public:
kpeter@648
   548
kpeter@652
   549
      // Constructor
kpeter@648
   550
      AlteringListPivotRule(NetworkSimplex &ns) :
kpeter@650
   551
        _source(ns._source), _target(ns._target),
kpeter@648
   552
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
kpeter@710
   553
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
kpeter@710
   554
        _next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost)
kpeter@648
   555
      {
kpeter@648
   556
        // The main parameters of the pivot rule
kpeter@774
   557
        const double BLOCK_SIZE_FACTOR = 1.0;
kpeter@648
   558
        const int MIN_BLOCK_SIZE = 10;
kpeter@648
   559
        const double HEAD_LENGTH_FACTOR = 0.1;
kpeter@648
   560
        const int MIN_HEAD_LENGTH = 3;
kpeter@648
   561
alpar@659
   562
        _block_size = std::max( int(BLOCK_SIZE_FACTOR *
kpeter@710
   563
                                    std::sqrt(double(_search_arc_num))),
kpeter@648
   564
                                MIN_BLOCK_SIZE );
kpeter@648
   565
        _head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size),
kpeter@648
   566
                                 MIN_HEAD_LENGTH );
kpeter@648
   567
        _candidates.resize(_head_length + _block_size);
kpeter@648
   568
        _curr_length = 0;
kpeter@648
   569
      }
kpeter@648
   570
kpeter@652
   571
      // Find next entering arc
kpeter@648
   572
      bool findEnteringArc() {
kpeter@648
   573
        // Check the current candidate list
kpeter@648
   574
        int e;
kpeter@990
   575
        Cost c;
kpeter@910
   576
        for (int i = 0; i != _curr_length; ++i) {
kpeter@648
   577
          e = _candidates[i];
kpeter@990
   578
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@990
   579
          if (c < 0) {
kpeter@990
   580
            _cand_cost[e] = c;
kpeter@990
   581
          } else {
kpeter@648
   582
            _candidates[i--] = _candidates[--_curr_length];
kpeter@648
   583
          }
kpeter@648
   584
        }
kpeter@648
   585
kpeter@648
   586
        // Extend the list
kpeter@648
   587
        int cnt = _block_size;
kpeter@648
   588
        int limit = _head_length;
kpeter@648
   589
kpeter@910
   590
        for (e = _next_arc; e != _search_arc_num; ++e) {
kpeter@990
   591
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@990
   592
          if (c < 0) {
kpeter@990
   593
            _cand_cost[e] = c;
kpeter@648
   594
            _candidates[_curr_length++] = e;
kpeter@648
   595
          }
kpeter@648
   596
          if (--cnt == 0) {
kpeter@774
   597
            if (_curr_length > limit) goto search_end;
kpeter@648
   598
            limit = 0;
kpeter@648
   599
            cnt = _block_size;
kpeter@648
   600
          }
kpeter@648
   601
        }
kpeter@910
   602
        for (e = 0; e != _next_arc; ++e) {
kpeter@774
   603
          _cand_cost[e] = _state[e] *
kpeter@774
   604
            (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@774
   605
          if (_cand_cost[e] < 0) {
kpeter@774
   606
            _candidates[_curr_length++] = e;
kpeter@774
   607
          }
kpeter@774
   608
          if (--cnt == 0) {
kpeter@774
   609
            if (_curr_length > limit) goto search_end;
kpeter@774
   610
            limit = 0;
kpeter@774
   611
            cnt = _block_size;
kpeter@648
   612
          }
kpeter@648
   613
        }
kpeter@648
   614
        if (_curr_length == 0) return false;
alpar@956
   615
kpeter@774
   616
      search_end:
kpeter@648
   617
kpeter@648
   618
        // Make heap of the candidate list (approximating a partial sort)
kpeter@648
   619
        make_heap( _candidates.begin(), _candidates.begin() + _curr_length,
kpeter@648
   620
                   _sort_func );
kpeter@648
   621
kpeter@648
   622
        // Pop the first element of the heap
kpeter@648
   623
        _in_arc = _candidates[0];
kpeter@774
   624
        _next_arc = e;
kpeter@648
   625
        pop_heap( _candidates.begin(), _candidates.begin() + _curr_length,
kpeter@648
   626
                  _sort_func );
kpeter@648
   627
        _curr_length = std::min(_head_length, _curr_length - 1);
kpeter@648
   628
        return true;
kpeter@648
   629
      }
kpeter@648
   630
kpeter@648
   631
    }; //class AlteringListPivotRule
kpeter@648
   632
kpeter@648
   633
  public:
kpeter@648
   634
kpeter@652
   635
    /// \brief Constructor.
kpeter@648
   636
    ///
kpeter@656
   637
    /// The constructor of the class.
kpeter@648
   638
    ///
kpeter@650
   639
    /// \param graph The digraph the algorithm runs on.
kpeter@991
   640
    /// \param arc_mixing Indicate if the arcs will be stored in a
alpar@956
   641
    /// mixed order in the internal data structure.
kpeter@991
   642
    /// In general, it leads to similar performance as using the original
kpeter@991
   643
    /// arc order, but it makes the algorithm more robust and in special
kpeter@991
   644
    /// cases, even significantly faster. Therefore, it is enabled by default.
kpeter@991
   645
    NetworkSimplex(const GR& graph, bool arc_mixing = true) :
kpeter@689
   646
      _graph(graph), _node_id(graph), _arc_id(graph),
kpeter@898
   647
      _arc_mixing(arc_mixing),
kpeter@877
   648
      MAX(std::numeric_limits<Value>::max()),
kpeter@688
   649
      INF(std::numeric_limits<Value>::has_infinity ?
kpeter@877
   650
          std::numeric_limits<Value>::infinity() : MAX)
kpeter@652
   651
    {
kpeter@878
   652
      // Check the number types
kpeter@688
   653
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
kpeter@687
   654
        "The flow type of NetworkSimplex must be signed");
kpeter@687
   655
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
kpeter@687
   656
        "The cost type of NetworkSimplex must be signed");
kpeter@648
   657
kpeter@898
   658
      // Reset data structures
kpeter@776
   659
      reset();
kpeter@648
   660
    }
kpeter@648
   661
kpeter@656
   662
    /// \name Parameters
kpeter@656
   663
    /// The parameters of the algorithm can be specified using these
kpeter@656
   664
    /// functions.
kpeter@656
   665
kpeter@656
   666
    /// @{
kpeter@656
   667
kpeter@652
   668
    /// \brief Set the lower bounds on the arcs.
kpeter@652
   669
    ///
kpeter@652
   670
    /// This function sets the lower bounds on the arcs.
kpeter@687
   671
    /// If it is not used before calling \ref run(), the lower bounds
kpeter@687
   672
    /// will be set to zero on all arcs.
kpeter@652
   673
    ///
kpeter@652
   674
    /// \param map An arc map storing the lower bounds.
kpeter@688
   675
    /// Its \c Value type must be convertible to the \c Value type
kpeter@652
   676
    /// of the algorithm.
kpeter@652
   677
    ///
kpeter@652
   678
    /// \return <tt>(*this)</tt>
kpeter@687
   679
    template <typename LowerMap>
kpeter@687
   680
    NetworkSimplex& lowerMap(const LowerMap& map) {
kpeter@689
   681
      _have_lower = true;
kpeter@652
   682
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@689
   683
        _lower[_arc_id[a]] = map[a];
kpeter@652
   684
      }
kpeter@652
   685
      return *this;
kpeter@652
   686
    }
kpeter@652
   687
kpeter@652
   688
    /// \brief Set the upper bounds (capacities) on the arcs.
kpeter@652
   689
    ///
kpeter@652
   690
    /// This function sets the upper bounds (capacities) on the arcs.
kpeter@687
   691
    /// If it is not used before calling \ref run(), the upper bounds
kpeter@687
   692
    /// will be set to \ref INF on all arcs (i.e. the flow value will be
kpeter@878
   693
    /// unbounded from above).
kpeter@652
   694
    ///
kpeter@652
   695
    /// \param map An arc map storing the upper bounds.
kpeter@688
   696
    /// Its \c Value type must be convertible to the \c Value type
kpeter@652
   697
    /// of the algorithm.
kpeter@652
   698
    ///
kpeter@652
   699
    /// \return <tt>(*this)</tt>
kpeter@687
   700
    template<typename UpperMap>
kpeter@687
   701
    NetworkSimplex& upperMap(const UpperMap& map) {
kpeter@652
   702
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@689
   703
        _upper[_arc_id[a]] = map[a];
kpeter@652
   704
      }
kpeter@652
   705
      return *this;
kpeter@652
   706
    }
kpeter@652
   707
kpeter@652
   708
    /// \brief Set the costs of the arcs.
kpeter@652
   709
    ///
kpeter@652
   710
    /// This function sets the costs of the arcs.
kpeter@652
   711
    /// If it is not used before calling \ref run(), the costs
kpeter@652
   712
    /// will be set to \c 1 on all arcs.
kpeter@652
   713
    ///
kpeter@652
   714
    /// \param map An arc map storing the costs.
kpeter@654
   715
    /// Its \c Value type must be convertible to the \c Cost type
kpeter@652
   716
    /// of the algorithm.
kpeter@652
   717
    ///
kpeter@652
   718
    /// \return <tt>(*this)</tt>
kpeter@687
   719
    template<typename CostMap>
kpeter@687
   720
    NetworkSimplex& costMap(const CostMap& map) {
kpeter@652
   721
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@689
   722
        _cost[_arc_id[a]] = map[a];
kpeter@652
   723
      }
kpeter@652
   724
      return *this;
kpeter@652
   725
    }
kpeter@652
   726
kpeter@652
   727
    /// \brief Set the supply values of the nodes.
kpeter@652
   728
    ///
kpeter@652
   729
    /// This function sets the supply values of the nodes.
kpeter@652
   730
    /// If neither this function nor \ref stSupply() is used before
kpeter@652
   731
    /// calling \ref run(), the supply of each node will be set to zero.
kpeter@652
   732
    ///
kpeter@652
   733
    /// \param map A node map storing the supply values.
kpeter@688
   734
    /// Its \c Value type must be convertible to the \c Value type
kpeter@652
   735
    /// of the algorithm.
kpeter@652
   736
    ///
kpeter@652
   737
    /// \return <tt>(*this)</tt>
kpeter@1023
   738
    ///
kpeter@1023
   739
    /// \sa supplyType()
kpeter@687
   740
    template<typename SupplyMap>
kpeter@687
   741
    NetworkSimplex& supplyMap(const SupplyMap& map) {
kpeter@652
   742
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@689
   743
        _supply[_node_id[n]] = map[n];
kpeter@652
   744
      }
kpeter@652
   745
      return *this;
kpeter@652
   746
    }
kpeter@652
   747
kpeter@652
   748
    /// \brief Set single source and target nodes and a supply value.
kpeter@652
   749
    ///
kpeter@652
   750
    /// This function sets a single source node and a single target node
kpeter@652
   751
    /// and the required flow value.
kpeter@652
   752
    /// If neither this function nor \ref supplyMap() is used before
kpeter@652
   753
    /// calling \ref run(), the supply of each node will be set to zero.
kpeter@652
   754
    ///
kpeter@687
   755
    /// Using this function has the same effect as using \ref supplyMap()
kpeter@1023
   756
    /// with a map in which \c k is assigned to \c s, \c -k is
kpeter@687
   757
    /// assigned to \c t and all other nodes have zero supply value.
kpeter@687
   758
    ///
kpeter@652
   759
    /// \param s The source node.
kpeter@652
   760
    /// \param t The target node.
kpeter@652
   761
    /// \param k The required amount of flow from node \c s to node \c t
kpeter@652
   762
    /// (i.e. the supply of \c s and the demand of \c t).
kpeter@652
   763
    ///
kpeter@652
   764
    /// \return <tt>(*this)</tt>
kpeter@688
   765
    NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) {
kpeter@689
   766
      for (int i = 0; i != _node_num; ++i) {
kpeter@689
   767
        _supply[i] = 0;
kpeter@689
   768
      }
kpeter@689
   769
      _supply[_node_id[s]] =  k;
kpeter@689
   770
      _supply[_node_id[t]] = -k;
kpeter@652
   771
      return *this;
kpeter@652
   772
    }
alpar@956
   773
kpeter@687
   774
    /// \brief Set the type of the supply constraints.
kpeter@656
   775
    ///
kpeter@687
   776
    /// This function sets the type of the supply/demand constraints.
kpeter@687
   777
    /// If it is not used before calling \ref run(), the \ref GEQ supply
kpeter@656
   778
    /// type will be used.
kpeter@656
   779
    ///
kpeter@833
   780
    /// For more information, see \ref SupplyType.
kpeter@656
   781
    ///
kpeter@656
   782
    /// \return <tt>(*this)</tt>
kpeter@687
   783
    NetworkSimplex& supplyType(SupplyType supply_type) {
kpeter@687
   784
      _stype = supply_type;
kpeter@656
   785
      return *this;
kpeter@656
   786
    }
kpeter@652
   787
kpeter@656
   788
    /// @}
kpeter@648
   789
kpeter@652
   790
    /// \name Execution Control
kpeter@652
   791
    /// The algorithm can be executed using \ref run().
kpeter@652
   792
kpeter@648
   793
    /// @{
kpeter@648
   794
kpeter@648
   795
    /// \brief Run the algorithm.
kpeter@648
   796
    ///
kpeter@648
   797
    /// This function runs the algorithm.
kpeter@656
   798
    /// The paramters can be specified using functions \ref lowerMap(),
alpar@956
   799
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(),
kpeter@689
   800
    /// \ref supplyType().
kpeter@656
   801
    /// For example,
kpeter@652
   802
    /// \code
kpeter@652
   803
    ///   NetworkSimplex<ListDigraph> ns(graph);
kpeter@687
   804
    ///   ns.lowerMap(lower).upperMap(upper).costMap(cost)
kpeter@652
   805
    ///     .supplyMap(sup).run();
kpeter@652
   806
    /// \endcode
kpeter@648
   807
    ///
kpeter@898
   808
    /// This function can be called more than once. All the given parameters
kpeter@898
   809
    /// are kept for the next call, unless \ref resetParams() or \ref reset()
kpeter@898
   810
    /// is used, thus only the modified parameters have to be set again.
kpeter@898
   811
    /// If the underlying digraph was also modified after the construction
kpeter@898
   812
    /// of the class (or the last \ref reset() call), then the \ref reset()
kpeter@898
   813
    /// function must be called.
kpeter@653
   814
    ///
kpeter@652
   815
    /// \param pivot_rule The pivot rule that will be used during the
kpeter@833
   816
    /// algorithm. For more information, see \ref PivotRule.
kpeter@648
   817
    ///
kpeter@687
   818
    /// \return \c INFEASIBLE if no feasible flow exists,
kpeter@687
   819
    /// \n \c OPTIMAL if the problem has optimal solution
kpeter@687
   820
    /// (i.e. it is feasible and bounded), and the algorithm has found
kpeter@687
   821
    /// optimal flow and node potentials (primal and dual solutions),
kpeter@687
   822
    /// \n \c UNBOUNDED if the objective function of the problem is
kpeter@687
   823
    /// unbounded, i.e. there is a directed cycle having negative total
kpeter@687
   824
    /// cost and infinite upper bound.
kpeter@687
   825
    ///
kpeter@687
   826
    /// \see ProblemType, PivotRule
kpeter@898
   827
    /// \see resetParams(), reset()
kpeter@687
   828
    ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) {
kpeter@687
   829
      if (!init()) return INFEASIBLE;
kpeter@687
   830
      return start(pivot_rule);
kpeter@648
   831
    }
kpeter@648
   832
kpeter@653
   833
    /// \brief Reset all the parameters that have been given before.
kpeter@653
   834
    ///
kpeter@653
   835
    /// This function resets all the paramaters that have been given
kpeter@656
   836
    /// before using functions \ref lowerMap(), \ref upperMap(),
kpeter@689
   837
    /// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType().
kpeter@653
   838
    ///
kpeter@898
   839
    /// It is useful for multiple \ref run() calls. Basically, all the given
kpeter@898
   840
    /// parameters are kept for the next \ref run() call, unless
kpeter@898
   841
    /// \ref resetParams() or \ref reset() is used.
kpeter@898
   842
    /// If the underlying digraph was also modified after the construction
kpeter@898
   843
    /// of the class or the last \ref reset() call, then the \ref reset()
kpeter@898
   844
    /// function must be used, otherwise \ref resetParams() is sufficient.
kpeter@653
   845
    ///
kpeter@653
   846
    /// For example,
kpeter@653
   847
    /// \code
kpeter@653
   848
    ///   NetworkSimplex<ListDigraph> ns(graph);
kpeter@653
   849
    ///
kpeter@653
   850
    ///   // First run
kpeter@687
   851
    ///   ns.lowerMap(lower).upperMap(upper).costMap(cost)
kpeter@653
   852
    ///     .supplyMap(sup).run();
kpeter@653
   853
    ///
kpeter@898
   854
    ///   // Run again with modified cost map (resetParams() is not called,
kpeter@653
   855
    ///   // so only the cost map have to be set again)
kpeter@653
   856
    ///   cost[e] += 100;
kpeter@653
   857
    ///   ns.costMap(cost).run();
kpeter@653
   858
    ///
kpeter@898
   859
    ///   // Run again from scratch using resetParams()
kpeter@653
   860
    ///   // (the lower bounds will be set to zero on all arcs)
kpeter@898
   861
    ///   ns.resetParams();
kpeter@687
   862
    ///   ns.upperMap(capacity).costMap(cost)
kpeter@653
   863
    ///     .supplyMap(sup).run();
kpeter@653
   864
    /// \endcode
kpeter@653
   865
    ///
kpeter@653
   866
    /// \return <tt>(*this)</tt>
kpeter@898
   867
    ///
kpeter@898
   868
    /// \see reset(), run()
kpeter@898
   869
    NetworkSimplex& resetParams() {
kpeter@689
   870
      for (int i = 0; i != _node_num; ++i) {
kpeter@689
   871
        _supply[i] = 0;
kpeter@689
   872
      }
kpeter@689
   873
      for (int i = 0; i != _arc_num; ++i) {
kpeter@689
   874
        _lower[i] = 0;
kpeter@689
   875
        _upper[i] = INF;
kpeter@689
   876
        _cost[i] = 1;
kpeter@689
   877
      }
kpeter@689
   878
      _have_lower = false;
kpeter@687
   879
      _stype = GEQ;
kpeter@653
   880
      return *this;
kpeter@653
   881
    }
kpeter@653
   882
kpeter@898
   883
    /// \brief Reset the internal data structures and all the parameters
kpeter@898
   884
    /// that have been given before.
kpeter@898
   885
    ///
kpeter@898
   886
    /// This function resets the internal data structures and all the
kpeter@898
   887
    /// paramaters that have been given before using functions \ref lowerMap(),
kpeter@898
   888
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(),
kpeter@898
   889
    /// \ref supplyType().
kpeter@898
   890
    ///
kpeter@898
   891
    /// It is useful for multiple \ref run() calls. Basically, all the given
kpeter@898
   892
    /// parameters are kept for the next \ref run() call, unless
kpeter@898
   893
    /// \ref resetParams() or \ref reset() is used.
kpeter@898
   894
    /// If the underlying digraph was also modified after the construction
kpeter@898
   895
    /// of the class or the last \ref reset() call, then the \ref reset()
kpeter@898
   896
    /// function must be used, otherwise \ref resetParams() is sufficient.
kpeter@898
   897
    ///
kpeter@898
   898
    /// See \ref resetParams() for examples.
kpeter@898
   899
    ///
kpeter@898
   900
    /// \return <tt>(*this)</tt>
kpeter@898
   901
    ///
kpeter@898
   902
    /// \see resetParams(), run()
kpeter@898
   903
    NetworkSimplex& reset() {
kpeter@898
   904
      // Resize vectors
kpeter@898
   905
      _node_num = countNodes(_graph);
kpeter@898
   906
      _arc_num = countArcs(_graph);
kpeter@898
   907
      int all_node_num = _node_num + 1;
kpeter@898
   908
      int max_arc_num = _arc_num + 2 * _node_num;
kpeter@898
   909
kpeter@898
   910
      _source.resize(max_arc_num);
kpeter@898
   911
      _target.resize(max_arc_num);
kpeter@898
   912
kpeter@898
   913
      _lower.resize(_arc_num);
kpeter@898
   914
      _upper.resize(_arc_num);
kpeter@898
   915
      _cap.resize(max_arc_num);
kpeter@898
   916
      _cost.resize(max_arc_num);
kpeter@898
   917
      _supply.resize(all_node_num);
kpeter@898
   918
      _flow.resize(max_arc_num);
kpeter@898
   919
      _pi.resize(all_node_num);
kpeter@898
   920
kpeter@898
   921
      _parent.resize(all_node_num);
kpeter@898
   922
      _pred.resize(all_node_num);
kpeter@990
   923
      _pred_dir.resize(all_node_num);
kpeter@898
   924
      _thread.resize(all_node_num);
kpeter@898
   925
      _rev_thread.resize(all_node_num);
kpeter@898
   926
      _succ_num.resize(all_node_num);
kpeter@898
   927
      _last_succ.resize(all_node_num);
kpeter@898
   928
      _state.resize(max_arc_num);
kpeter@898
   929
kpeter@898
   930
      // Copy the graph
kpeter@898
   931
      int i = 0;
kpeter@898
   932
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
kpeter@898
   933
        _node_id[n] = i;
kpeter@898
   934
      }
kpeter@898
   935
      if (_arc_mixing) {
kpeter@898
   936
        // Store the arcs in a mixed order
kpeter@991
   937
        const int skip = std::max(_arc_num / _node_num, 3);
kpeter@898
   938
        int i = 0, j = 0;
kpeter@898
   939
        for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@898
   940
          _arc_id[a] = i;
kpeter@898
   941
          _source[i] = _node_id[_graph.source(a)];
kpeter@898
   942
          _target[i] = _node_id[_graph.target(a)];
kpeter@991
   943
          if ((i += skip) >= _arc_num) i = ++j;
kpeter@898
   944
        }
kpeter@898
   945
      } else {
kpeter@898
   946
        // Store the arcs in the original order
kpeter@898
   947
        int i = 0;
kpeter@898
   948
        for (ArcIt a(_graph); a != INVALID; ++a, ++i) {
kpeter@898
   949
          _arc_id[a] = i;
kpeter@898
   950
          _source[i] = _node_id[_graph.source(a)];
kpeter@898
   951
          _target[i] = _node_id[_graph.target(a)];
kpeter@898
   952
        }
kpeter@898
   953
      }
alpar@956
   954
kpeter@898
   955
      // Reset parameters
kpeter@898
   956
      resetParams();
kpeter@898
   957
      return *this;
kpeter@898
   958
    }
alpar@956
   959
kpeter@648
   960
    /// @}
kpeter@648
   961
kpeter@648
   962
    /// \name Query Functions
kpeter@648
   963
    /// The results of the algorithm can be obtained using these
kpeter@648
   964
    /// functions.\n
kpeter@652
   965
    /// The \ref run() function must be called before using them.
kpeter@652
   966
kpeter@648
   967
    /// @{
kpeter@648
   968
kpeter@652
   969
    /// \brief Return the total cost of the found flow.
kpeter@652
   970
    ///
kpeter@652
   971
    /// This function returns the total cost of the found flow.
kpeter@687
   972
    /// Its complexity is O(e).
kpeter@652
   973
    ///
kpeter@652
   974
    /// \note The return type of the function can be specified as a
kpeter@652
   975
    /// template parameter. For example,
kpeter@652
   976
    /// \code
kpeter@652
   977
    ///   ns.totalCost<double>();
kpeter@652
   978
    /// \endcode
kpeter@654
   979
    /// It is useful if the total cost cannot be stored in the \c Cost
kpeter@652
   980
    /// type of the algorithm, which is the default return type of the
kpeter@652
   981
    /// function.
kpeter@652
   982
    ///
kpeter@652
   983
    /// \pre \ref run() must be called before using this function.
kpeter@689
   984
    template <typename Number>
kpeter@689
   985
    Number totalCost() const {
kpeter@689
   986
      Number c = 0;
kpeter@689
   987
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@689
   988
        int i = _arc_id[a];
kpeter@689
   989
        c += Number(_flow[i]) * Number(_cost[i]);
kpeter@652
   990
      }
kpeter@652
   991
      return c;
kpeter@652
   992
    }
kpeter@652
   993
kpeter@652
   994
#ifndef DOXYGEN
kpeter@654
   995
    Cost totalCost() const {
kpeter@654
   996
      return totalCost<Cost>();
kpeter@652
   997
    }
kpeter@652
   998
#endif
kpeter@652
   999
kpeter@652
  1000
    /// \brief Return the flow on the given arc.
kpeter@652
  1001
    ///
kpeter@652
  1002
    /// This function returns the flow on the given arc.
kpeter@652
  1003
    ///
kpeter@652
  1004
    /// \pre \ref run() must be called before using this function.
kpeter@688
  1005
    Value flow(const Arc& a) const {
kpeter@689
  1006
      return _flow[_arc_id[a]];
kpeter@652
  1007
    }
kpeter@652
  1008
kpeter@689
  1009
    /// \brief Return the flow map (the primal solution).
kpeter@648
  1010
    ///
kpeter@689
  1011
    /// This function copies the flow value on each arc into the given
kpeter@689
  1012
    /// map. The \c Value type of the algorithm must be convertible to
kpeter@689
  1013
    /// the \c Value type of the map.
kpeter@648
  1014
    ///
kpeter@648
  1015
    /// \pre \ref run() must be called before using this function.
kpeter@689
  1016
    template <typename FlowMap>
kpeter@689
  1017
    void flowMap(FlowMap &map) const {
kpeter@689
  1018
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@689
  1019
        map.set(a, _flow[_arc_id[a]]);
kpeter@689
  1020
      }
kpeter@648
  1021
    }
kpeter@648
  1022
kpeter@652
  1023
    /// \brief Return the potential (dual value) of the given node.
kpeter@652
  1024
    ///
kpeter@652
  1025
    /// This function returns the potential (dual value) of the
kpeter@652
  1026
    /// given node.
kpeter@652
  1027
    ///
kpeter@652
  1028
    /// \pre \ref run() must be called before using this function.
kpeter@654
  1029
    Cost potential(const Node& n) const {
kpeter@689
  1030
      return _pi[_node_id[n]];
kpeter@652
  1031
    }
kpeter@652
  1032
kpeter@689
  1033
    /// \brief Return the potential map (the dual solution).
kpeter@648
  1034
    ///
kpeter@689
  1035
    /// This function copies the potential (dual value) of each node
kpeter@689
  1036
    /// into the given map.
kpeter@689
  1037
    /// The \c Cost type of the algorithm must be convertible to the
kpeter@689
  1038
    /// \c Value type of the map.
kpeter@648
  1039
    ///
kpeter@648
  1040
    /// \pre \ref run() must be called before using this function.
kpeter@689
  1041
    template <typename PotentialMap>
kpeter@689
  1042
    void potentialMap(PotentialMap &map) const {
kpeter@689
  1043
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@689
  1044
        map.set(n, _pi[_node_id[n]]);
kpeter@689
  1045
      }
kpeter@648
  1046
    }
kpeter@648
  1047
kpeter@648
  1048
    /// @}
kpeter@648
  1049
kpeter@648
  1050
  private:
kpeter@648
  1051
kpeter@648
  1052
    // Initialize internal data structures
kpeter@648
  1053
    bool init() {
kpeter@652
  1054
      if (_node_num == 0) return false;
kpeter@648
  1055
kpeter@689
  1056
      // Check the sum of supply values
kpeter@689
  1057
      _sum_supply = 0;
kpeter@689
  1058
      for (int i = 0; i != _node_num; ++i) {
kpeter@689
  1059
        _sum_supply += _supply[i];
kpeter@689
  1060
      }
alpar@690
  1061
      if ( !((_stype == GEQ && _sum_supply <= 0) ||
alpar@690
  1062
             (_stype == LEQ && _sum_supply >= 0)) ) return false;
kpeter@648
  1063
kpeter@689
  1064
      // Remove non-zero lower bounds
kpeter@689
  1065
      if (_have_lower) {
kpeter@689
  1066
        for (int i = 0; i != _arc_num; ++i) {
kpeter@689
  1067
          Value c = _lower[i];
kpeter@689
  1068
          if (c >= 0) {
kpeter@877
  1069
            _cap[i] = _upper[i] < MAX ? _upper[i] - c : INF;
kpeter@689
  1070
          } else {
kpeter@877
  1071
            _cap[i] = _upper[i] < MAX + c ? _upper[i] - c : INF;
kpeter@689
  1072
          }
kpeter@689
  1073
          _supply[_source[i]] -= c;
kpeter@689
  1074
          _supply[_target[i]] += c;
kpeter@689
  1075
        }
kpeter@689
  1076
      } else {
kpeter@689
  1077
        for (int i = 0; i != _arc_num; ++i) {
kpeter@689
  1078
          _cap[i] = _upper[i];
kpeter@689
  1079
        }
kpeter@652
  1080
      }
kpeter@648
  1081
kpeter@656
  1082
      // Initialize artifical cost
kpeter@687
  1083
      Cost ART_COST;
kpeter@656
  1084
      if (std::numeric_limits<Cost>::is_exact) {
kpeter@710
  1085
        ART_COST = std::numeric_limits<Cost>::max() / 2 + 1;
kpeter@656
  1086
      } else {
kpeter@976
  1087
        ART_COST = 0;
kpeter@656
  1088
        for (int i = 0; i != _arc_num; ++i) {
kpeter@687
  1089
          if (_cost[i] > ART_COST) ART_COST = _cost[i];
kpeter@656
  1090
        }
kpeter@687
  1091
        ART_COST = (ART_COST + 1) * _node_num;
kpeter@656
  1092
      }
kpeter@656
  1093
kpeter@689
  1094
      // Initialize arc maps
kpeter@689
  1095
      for (int i = 0; i != _arc_num; ++i) {
kpeter@689
  1096
        _flow[i] = 0;
kpeter@689
  1097
        _state[i] = STATE_LOWER;
kpeter@689
  1098
      }
alpar@956
  1099
kpeter@648
  1100
      // Set data for the artificial root node
kpeter@648
  1101
      _root = _node_num;
kpeter@648
  1102
      _parent[_root] = -1;
kpeter@648
  1103
      _pred[_root] = -1;
kpeter@648
  1104
      _thread[_root] = 0;
kpeter@651
  1105
      _rev_thread[0] = _root;
kpeter@689
  1106
      _succ_num[_root] = _node_num + 1;
kpeter@651
  1107
      _last_succ[_root] = _root - 1;
kpeter@687
  1108
      _supply[_root] = -_sum_supply;
kpeter@710
  1109
      _pi[_root] = 0;
kpeter@648
  1110
kpeter@648
  1111
      // Add artificial arcs and initialize the spanning tree data structure
kpeter@710
  1112
      if (_sum_supply == 0) {
kpeter@710
  1113
        // EQ supply constraints
kpeter@710
  1114
        _search_arc_num = _arc_num;
kpeter@710
  1115
        _all_arc_num = _arc_num + _node_num;
kpeter@710
  1116
        for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
kpeter@710
  1117
          _parent[u] = _root;
kpeter@710
  1118
          _pred[u] = e;
kpeter@710
  1119
          _thread[u] = u + 1;
kpeter@710
  1120
          _rev_thread[u + 1] = u;
kpeter@710
  1121
          _succ_num[u] = 1;
kpeter@710
  1122
          _last_succ[u] = u;
kpeter@710
  1123
          _cap[e] = INF;
kpeter@710
  1124
          _state[e] = STATE_TREE;
kpeter@710
  1125
          if (_supply[u] >= 0) {
kpeter@990
  1126
            _pred_dir[u] = DIR_UP;
kpeter@710
  1127
            _pi[u] = 0;
kpeter@710
  1128
            _source[e] = u;
kpeter@710
  1129
            _target[e] = _root;
kpeter@710
  1130
            _flow[e] = _supply[u];
kpeter@710
  1131
            _cost[e] = 0;
kpeter@710
  1132
          } else {
kpeter@990
  1133
            _pred_dir[u] = DIR_DOWN;
kpeter@710
  1134
            _pi[u] = ART_COST;
kpeter@710
  1135
            _source[e] = _root;
kpeter@710
  1136
            _target[e] = u;
kpeter@710
  1137
            _flow[e] = -_supply[u];
kpeter@710
  1138
            _cost[e] = ART_COST;
kpeter@710
  1139
          }
kpeter@648
  1140
        }
kpeter@648
  1141
      }
kpeter@710
  1142
      else if (_sum_supply > 0) {
kpeter@710
  1143
        // LEQ supply constraints
kpeter@710
  1144
        _search_arc_num = _arc_num + _node_num;
kpeter@710
  1145
        int f = _arc_num + _node_num;
kpeter@710
  1146
        for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
kpeter@710
  1147
          _parent[u] = _root;
kpeter@710
  1148
          _thread[u] = u + 1;
kpeter@710
  1149
          _rev_thread[u + 1] = u;
kpeter@710
  1150
          _succ_num[u] = 1;
kpeter@710
  1151
          _last_succ[u] = u;
kpeter@710
  1152
          if (_supply[u] >= 0) {
kpeter@990
  1153
            _pred_dir[u] = DIR_UP;
kpeter@710
  1154
            _pi[u] = 0;
kpeter@710
  1155
            _pred[u] = e;
kpeter@710
  1156
            _source[e] = u;
kpeter@710
  1157
            _target[e] = _root;
kpeter@710
  1158
            _cap[e] = INF;
kpeter@710
  1159
            _flow[e] = _supply[u];
kpeter@710
  1160
            _cost[e] = 0;
kpeter@710
  1161
            _state[e] = STATE_TREE;
kpeter@710
  1162
          } else {
kpeter@990
  1163
            _pred_dir[u] = DIR_DOWN;
kpeter@710
  1164
            _pi[u] = ART_COST;
kpeter@710
  1165
            _pred[u] = f;
kpeter@710
  1166
            _source[f] = _root;
kpeter@710
  1167
            _target[f] = u;
kpeter@710
  1168
            _cap[f] = INF;
kpeter@710
  1169
            _flow[f] = -_supply[u];
kpeter@710
  1170
            _cost[f] = ART_COST;
kpeter@710
  1171
            _state[f] = STATE_TREE;
kpeter@710
  1172
            _source[e] = u;
kpeter@710
  1173
            _target[e] = _root;
kpeter@710
  1174
            _cap[e] = INF;
kpeter@710
  1175
            _flow[e] = 0;
kpeter@710
  1176
            _cost[e] = 0;
kpeter@710
  1177
            _state[e] = STATE_LOWER;
kpeter@710
  1178
            ++f;
kpeter@710
  1179
          }
kpeter@710
  1180
        }
kpeter@710
  1181
        _all_arc_num = f;
kpeter@710
  1182
      }
kpeter@710
  1183
      else {
kpeter@710
  1184
        // GEQ supply constraints
kpeter@710
  1185
        _search_arc_num = _arc_num + _node_num;
kpeter@710
  1186
        int f = _arc_num + _node_num;
kpeter@710
  1187
        for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
kpeter@710
  1188
          _parent[u] = _root;
kpeter@710
  1189
          _thread[u] = u + 1;
kpeter@710
  1190
          _rev_thread[u + 1] = u;
kpeter@710
  1191
          _succ_num[u] = 1;
kpeter@710
  1192
          _last_succ[u] = u;
kpeter@710
  1193
          if (_supply[u] <= 0) {
kpeter@990
  1194
            _pred_dir[u] = DIR_DOWN;
kpeter@710
  1195
            _pi[u] = 0;
kpeter@710
  1196
            _pred[u] = e;
kpeter@710
  1197
            _source[e] = _root;
kpeter@710
  1198
            _target[e] = u;
kpeter@710
  1199
            _cap[e] = INF;
kpeter@710
  1200
            _flow[e] = -_supply[u];
kpeter@710
  1201
            _cost[e] = 0;
kpeter@710
  1202
            _state[e] = STATE_TREE;
kpeter@710
  1203
          } else {
kpeter@990
  1204
            _pred_dir[u] = DIR_UP;
kpeter@710
  1205
            _pi[u] = -ART_COST;
kpeter@710
  1206
            _pred[u] = f;
kpeter@710
  1207
            _source[f] = u;
kpeter@710
  1208
            _target[f] = _root;
kpeter@710
  1209
            _cap[f] = INF;
kpeter@710
  1210
            _flow[f] = _supply[u];
kpeter@710
  1211
            _state[f] = STATE_TREE;
kpeter@710
  1212
            _cost[f] = ART_COST;
kpeter@710
  1213
            _source[e] = _root;
kpeter@710
  1214
            _target[e] = u;
kpeter@710
  1215
            _cap[e] = INF;
kpeter@710
  1216
            _flow[e] = 0;
kpeter@710
  1217
            _cost[e] = 0;
kpeter@710
  1218
            _state[e] = STATE_LOWER;
kpeter@710
  1219
            ++f;
kpeter@710
  1220
          }
kpeter@710
  1221
        }
kpeter@710
  1222
        _all_arc_num = f;
kpeter@710
  1223
      }
kpeter@648
  1224
kpeter@648
  1225
      return true;
kpeter@648
  1226
    }
kpeter@648
  1227
kpeter@648
  1228
    // Find the join node
kpeter@648
  1229
    void findJoinNode() {
kpeter@650
  1230
      int u = _source[in_arc];
kpeter@650
  1231
      int v = _target[in_arc];
kpeter@648
  1232
      while (u != v) {
kpeter@651
  1233
        if (_succ_num[u] < _succ_num[v]) {
kpeter@651
  1234
          u = _parent[u];
kpeter@651
  1235
        } else {
kpeter@651
  1236
          v = _parent[v];
kpeter@651
  1237
        }
kpeter@648
  1238
      }
kpeter@648
  1239
      join = u;
kpeter@648
  1240
    }
kpeter@648
  1241
kpeter@648
  1242
    // Find the leaving arc of the cycle and returns true if the
kpeter@648
  1243
    // leaving arc is not the same as the entering arc
kpeter@648
  1244
    bool findLeavingArc() {
kpeter@648
  1245
      // Initialize first and second nodes according to the direction
kpeter@648
  1246
      // of the cycle
kpeter@990
  1247
      int first, second;
kpeter@650
  1248
      if (_state[in_arc] == STATE_LOWER) {
kpeter@650
  1249
        first  = _source[in_arc];
kpeter@650
  1250
        second = _target[in_arc];
kpeter@648
  1251
      } else {
kpeter@650
  1252
        first  = _target[in_arc];
kpeter@650
  1253
        second = _source[in_arc];
kpeter@648
  1254
      }
kpeter@650
  1255
      delta = _cap[in_arc];
kpeter@648
  1256
      int result = 0;
kpeter@990
  1257
      Value c, d;
kpeter@648
  1258
      int e;
kpeter@648
  1259
kpeter@990
  1260
      // Search the cycle form the first node to the join node
kpeter@648
  1261
      for (int u = first; u != join; u = _parent[u]) {
kpeter@648
  1262
        e = _pred[u];
kpeter@990
  1263
        d = _flow[e];
kpeter@990
  1264
        if (_pred_dir[u] == DIR_DOWN) {
kpeter@990
  1265
          c = _cap[e];
kpeter@990
  1266
          d = c >= MAX ? INF : c - d;
kpeter@990
  1267
        }
kpeter@648
  1268
        if (d < delta) {
kpeter@648
  1269
          delta = d;
kpeter@648
  1270
          u_out = u;
kpeter@648
  1271
          result = 1;
kpeter@648
  1272
        }
kpeter@648
  1273
      }
kpeter@990
  1274
kpeter@990
  1275
      // Search the cycle form the second node to the join node
kpeter@648
  1276
      for (int u = second; u != join; u = _parent[u]) {
kpeter@648
  1277
        e = _pred[u];
kpeter@990
  1278
        d = _flow[e];
kpeter@990
  1279
        if (_pred_dir[u] == DIR_UP) {
kpeter@990
  1280
          c = _cap[e];
kpeter@990
  1281
          d = c >= MAX ? INF : c - d;
kpeter@990
  1282
        }
kpeter@648
  1283
        if (d <= delta) {
kpeter@648
  1284
          delta = d;
kpeter@648
  1285
          u_out = u;
kpeter@648
  1286
          result = 2;
kpeter@648
  1287
        }
kpeter@648
  1288
      }
kpeter@648
  1289
kpeter@648
  1290
      if (result == 1) {
kpeter@648
  1291
        u_in = first;
kpeter@648
  1292
        v_in = second;
kpeter@648
  1293
      } else {
kpeter@648
  1294
        u_in = second;
kpeter@648
  1295
        v_in = first;
kpeter@648
  1296
      }
kpeter@648
  1297
      return result != 0;
kpeter@648
  1298
    }
kpeter@648
  1299
kpeter@648
  1300
    // Change _flow and _state vectors
kpeter@648
  1301
    void changeFlow(bool change) {
kpeter@648
  1302
      // Augment along the cycle
kpeter@648
  1303
      if (delta > 0) {
kpeter@688
  1304
        Value val = _state[in_arc] * delta;
kpeter@650
  1305
        _flow[in_arc] += val;
kpeter@650
  1306
        for (int u = _source[in_arc]; u != join; u = _parent[u]) {
kpeter@990
  1307
          _flow[_pred[u]] -= _pred_dir[u] * val;
kpeter@648
  1308
        }
kpeter@650
  1309
        for (int u = _target[in_arc]; u != join; u = _parent[u]) {
kpeter@990
  1310
          _flow[_pred[u]] += _pred_dir[u] * val;
kpeter@648
  1311
        }
kpeter@648
  1312
      }
kpeter@648
  1313
      // Update the state of the entering and leaving arcs
kpeter@648
  1314
      if (change) {
kpeter@650
  1315
        _state[in_arc] = STATE_TREE;
kpeter@648
  1316
        _state[_pred[u_out]] =
kpeter@648
  1317
          (_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER;
kpeter@648
  1318
      } else {
kpeter@650
  1319
        _state[in_arc] = -_state[in_arc];
kpeter@648
  1320
      }
kpeter@648
  1321
    }
kpeter@648
  1322
kpeter@651
  1323
    // Update the tree structure
kpeter@651
  1324
    void updateTreeStructure() {
kpeter@651
  1325
      int old_rev_thread = _rev_thread[u_out];
kpeter@651
  1326
      int old_succ_num = _succ_num[u_out];
kpeter@651
  1327
      int old_last_succ = _last_succ[u_out];
kpeter@648
  1328
      v_out = _parent[u_out];
kpeter@648
  1329
kpeter@990
  1330
      // Check if u_in and u_out coincide
kpeter@990
  1331
      if (u_in == u_out) {
kpeter@990
  1332
        // Update _parent, _pred, _pred_dir
kpeter@990
  1333
        _parent[u_in] = v_in;
kpeter@990
  1334
        _pred[u_in] = in_arc;
kpeter@990
  1335
        _pred_dir[u_in] = u_in == _source[in_arc] ? DIR_UP : DIR_DOWN;
kpeter@651
  1336
kpeter@990
  1337
        // Update _thread and _rev_thread
kpeter@990
  1338
        if (_thread[v_in] != u_out) {
kpeter@990
  1339
          int after = _thread[old_last_succ];
kpeter@990
  1340
          _thread[old_rev_thread] = after;
kpeter@990
  1341
          _rev_thread[after] = old_rev_thread;
kpeter@990
  1342
          after = _thread[v_in];
kpeter@990
  1343
          _thread[v_in] = u_out;
kpeter@990
  1344
          _rev_thread[u_out] = v_in;
kpeter@990
  1345
          _thread[old_last_succ] = after;
kpeter@990
  1346
          _rev_thread[after] = old_last_succ;
kpeter@990
  1347
        }
kpeter@651
  1348
      } else {
kpeter@990
  1349
        // Handle the case when old_rev_thread equals to v_in
kpeter@990
  1350
        // (it also means that join and v_out coincide)
kpeter@990
  1351
        int thread_continue = old_rev_thread == v_in ?
kpeter@990
  1352
          _thread[old_last_succ] : _thread[v_in];
kpeter@648
  1353
kpeter@990
  1354
        // Update _thread and _parent along the stem nodes (i.e. the nodes
kpeter@990
  1355
        // between u_in and u_out, whose parent have to be changed)
kpeter@990
  1356
        int stem = u_in;              // the current stem node
kpeter@990
  1357
        int par_stem = v_in;          // the new parent of stem
kpeter@990
  1358
        int next_stem;                // the next stem node
kpeter@990
  1359
        int last = _last_succ[u_in];  // the last successor of stem
kpeter@990
  1360
        int before, after = _thread[last];
kpeter@990
  1361
        _thread[v_in] = u_in;
kpeter@990
  1362
        _dirty_revs.clear();
kpeter@990
  1363
        _dirty_revs.push_back(v_in);
kpeter@990
  1364
        while (stem != u_out) {
kpeter@990
  1365
          // Insert the next stem node into the thread list
kpeter@990
  1366
          next_stem = _parent[stem];
kpeter@990
  1367
          _thread[last] = next_stem;
kpeter@990
  1368
          _dirty_revs.push_back(last);
kpeter@648
  1369
kpeter@990
  1370
          // Remove the subtree of stem from the thread list
kpeter@990
  1371
          before = _rev_thread[stem];
kpeter@990
  1372
          _thread[before] = after;
kpeter@990
  1373
          _rev_thread[after] = before;
kpeter@648
  1374
kpeter@990
  1375
          // Change the parent node and shift stem nodes
kpeter@990
  1376
          _parent[stem] = par_stem;
kpeter@990
  1377
          par_stem = stem;
kpeter@990
  1378
          stem = next_stem;
kpeter@648
  1379
kpeter@990
  1380
          // Update last and after
kpeter@990
  1381
          last = _last_succ[stem] == _last_succ[par_stem] ?
kpeter@990
  1382
            _rev_thread[par_stem] : _last_succ[stem];
kpeter@990
  1383
          after = _thread[last];
kpeter@990
  1384
        }
kpeter@990
  1385
        _parent[u_out] = par_stem;
kpeter@990
  1386
        _thread[last] = thread_continue;
kpeter@990
  1387
        _rev_thread[thread_continue] = last;
kpeter@990
  1388
        _last_succ[u_out] = last;
kpeter@648
  1389
kpeter@990
  1390
        // Remove the subtree of u_out from the thread list except for
kpeter@990
  1391
        // the case when old_rev_thread equals to v_in
kpeter@990
  1392
        if (old_rev_thread != v_in) {
kpeter@990
  1393
          _thread[old_rev_thread] = after;
kpeter@990
  1394
          _rev_thread[after] = old_rev_thread;
kpeter@990
  1395
        }
kpeter@651
  1396
kpeter@990
  1397
        // Update _rev_thread using the new _thread values
kpeter@990
  1398
        for (int i = 0; i != int(_dirty_revs.size()); ++i) {
kpeter@990
  1399
          int u = _dirty_revs[i];
kpeter@990
  1400
          _rev_thread[_thread[u]] = u;
kpeter@990
  1401
        }
kpeter@651
  1402
kpeter@990
  1403
        // Update _pred, _pred_dir, _last_succ and _succ_num for the
kpeter@990
  1404
        // stem nodes from u_out to u_in
kpeter@990
  1405
        int tmp_sc = 0, tmp_ls = _last_succ[u_out];
kpeter@990
  1406
        for (int u = u_out, p = _parent[u]; u != u_in; u = p, p = _parent[u]) {
kpeter@990
  1407
          _pred[u] = _pred[p];
kpeter@990
  1408
          _pred_dir[u] = -_pred_dir[p];
kpeter@990
  1409
          tmp_sc += _succ_num[u] - _succ_num[p];
kpeter@990
  1410
          _succ_num[u] = tmp_sc;
kpeter@990
  1411
          _last_succ[p] = tmp_ls;
kpeter@990
  1412
        }
kpeter@990
  1413
        _pred[u_in] = in_arc;
kpeter@990
  1414
        _pred_dir[u_in] = u_in == _source[in_arc] ? DIR_UP : DIR_DOWN;
kpeter@990
  1415
        _succ_num[u_in] = old_succ_num;
kpeter@651
  1416
      }
kpeter@651
  1417
kpeter@651
  1418
      // Update _last_succ from v_in towards the root
kpeter@990
  1419
      int up_limit_out = _last_succ[join] == v_in ? join : -1;
kpeter@990
  1420
      int last_succ_out = _last_succ[u_out];
kpeter@990
  1421
      for (int u = v_in; u != -1 && _last_succ[u] == v_in; u = _parent[u]) {
kpeter@990
  1422
        _last_succ[u] = last_succ_out;
kpeter@651
  1423
      }
kpeter@990
  1424
kpeter@651
  1425
      // Update _last_succ from v_out towards the root
kpeter@651
  1426
      if (join != old_rev_thread && v_in != old_rev_thread) {
kpeter@990
  1427
        for (int u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
kpeter@651
  1428
             u = _parent[u]) {
kpeter@651
  1429
          _last_succ[u] = old_rev_thread;
kpeter@651
  1430
        }
kpeter@990
  1431
      }
kpeter@990
  1432
      else if (last_succ_out != old_last_succ) {
kpeter@990
  1433
        for (int u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
kpeter@651
  1434
             u = _parent[u]) {
kpeter@990
  1435
          _last_succ[u] = last_succ_out;
kpeter@651
  1436
        }
kpeter@651
  1437
      }
kpeter@651
  1438
kpeter@651
  1439
      // Update _succ_num from v_in to join
kpeter@990
  1440
      for (int u = v_in; u != join; u = _parent[u]) {
kpeter@651
  1441
        _succ_num[u] += old_succ_num;
kpeter@651
  1442
      }
kpeter@651
  1443
      // Update _succ_num from v_out to join
kpeter@990
  1444
      for (int u = v_out; u != join; u = _parent[u]) {
kpeter@651
  1445
        _succ_num[u] -= old_succ_num;
kpeter@648
  1446
      }
kpeter@648
  1447
    }
kpeter@648
  1448
kpeter@990
  1449
    // Update potentials in the subtree that has been moved
kpeter@651
  1450
    void updatePotential() {
kpeter@990
  1451
      Cost sigma = _pi[v_in] - _pi[u_in] -
kpeter@990
  1452
                   _pred_dir[u_in] * _cost[in_arc];
kpeter@655
  1453
      int end = _thread[_last_succ[u_in]];
kpeter@655
  1454
      for (int u = u_in; u != end; u = _thread[u]) {
kpeter@655
  1455
        _pi[u] += sigma;
kpeter@648
  1456
      }
kpeter@648
  1457
    }
kpeter@648
  1458
kpeter@910
  1459
    // Heuristic initial pivots
kpeter@910
  1460
    bool initialPivots() {
kpeter@910
  1461
      Value curr, total = 0;
kpeter@910
  1462
      std::vector<Node> supply_nodes, demand_nodes;
kpeter@910
  1463
      for (NodeIt u(_graph); u != INVALID; ++u) {
kpeter@910
  1464
        curr = _supply[_node_id[u]];
kpeter@910
  1465
        if (curr > 0) {
kpeter@910
  1466
          total += curr;
kpeter@910
  1467
          supply_nodes.push_back(u);
kpeter@910
  1468
        }
kpeter@910
  1469
        else if (curr < 0) {
kpeter@910
  1470
          demand_nodes.push_back(u);
kpeter@910
  1471
        }
kpeter@910
  1472
      }
kpeter@910
  1473
      if (_sum_supply > 0) total -= _sum_supply;
kpeter@910
  1474
      if (total <= 0) return true;
kpeter@910
  1475
kpeter@910
  1476
      IntVector arc_vector;
kpeter@910
  1477
      if (_sum_supply >= 0) {
kpeter@910
  1478
        if (supply_nodes.size() == 1 && demand_nodes.size() == 1) {
kpeter@910
  1479
          // Perform a reverse graph search from the sink to the source
kpeter@910
  1480
          typename GR::template NodeMap<bool> reached(_graph, false);
kpeter@910
  1481
          Node s = supply_nodes[0], t = demand_nodes[0];
kpeter@910
  1482
          std::vector<Node> stack;
kpeter@910
  1483
          reached[t] = true;
kpeter@910
  1484
          stack.push_back(t);
kpeter@910
  1485
          while (!stack.empty()) {
kpeter@910
  1486
            Node u, v = stack.back();
kpeter@910
  1487
            stack.pop_back();
kpeter@910
  1488
            if (v == s) break;
kpeter@910
  1489
            for (InArcIt a(_graph, v); a != INVALID; ++a) {
kpeter@910
  1490
              if (reached[u = _graph.source(a)]) continue;
kpeter@910
  1491
              int j = _arc_id[a];
kpeter@910
  1492
              if (_cap[j] >= total) {
kpeter@910
  1493
                arc_vector.push_back(j);
kpeter@910
  1494
                reached[u] = true;
kpeter@910
  1495
                stack.push_back(u);
kpeter@910
  1496
              }
kpeter@910
  1497
            }
kpeter@910
  1498
          }
kpeter@910
  1499
        } else {
kpeter@910
  1500
          // Find the min. cost incomming arc for each demand node
kpeter@910
  1501
          for (int i = 0; i != int(demand_nodes.size()); ++i) {
kpeter@910
  1502
            Node v = demand_nodes[i];
kpeter@910
  1503
            Cost c, min_cost = std::numeric_limits<Cost>::max();
kpeter@910
  1504
            Arc min_arc = INVALID;
kpeter@910
  1505
            for (InArcIt a(_graph, v); a != INVALID; ++a) {
kpeter@910
  1506
              c = _cost[_arc_id[a]];
kpeter@910
  1507
              if (c < min_cost) {
kpeter@910
  1508
                min_cost = c;
kpeter@910
  1509
                min_arc = a;
kpeter@910
  1510
              }
kpeter@910
  1511
            }
kpeter@910
  1512
            if (min_arc != INVALID) {
kpeter@910
  1513
              arc_vector.push_back(_arc_id[min_arc]);
kpeter@910
  1514
            }
kpeter@910
  1515
          }
kpeter@910
  1516
        }
kpeter@910
  1517
      } else {
kpeter@910
  1518
        // Find the min. cost outgoing arc for each supply node
kpeter@910
  1519
        for (int i = 0; i != int(supply_nodes.size()); ++i) {
kpeter@910
  1520
          Node u = supply_nodes[i];
kpeter@910
  1521
          Cost c, min_cost = std::numeric_limits<Cost>::max();
kpeter@910
  1522
          Arc min_arc = INVALID;
kpeter@910
  1523
          for (OutArcIt a(_graph, u); a != INVALID; ++a) {
kpeter@910
  1524
            c = _cost[_arc_id[a]];
kpeter@910
  1525
            if (c < min_cost) {
kpeter@910
  1526
              min_cost = c;
kpeter@910
  1527
              min_arc = a;
kpeter@910
  1528
            }
kpeter@910
  1529
          }
kpeter@910
  1530
          if (min_arc != INVALID) {
kpeter@910
  1531
            arc_vector.push_back(_arc_id[min_arc]);
kpeter@910
  1532
          }
kpeter@910
  1533
        }
kpeter@910
  1534
      }
kpeter@910
  1535
kpeter@910
  1536
      // Perform heuristic initial pivots
kpeter@910
  1537
      for (int i = 0; i != int(arc_vector.size()); ++i) {
kpeter@910
  1538
        in_arc = arc_vector[i];
kpeter@910
  1539
        if (_state[in_arc] * (_cost[in_arc] + _pi[_source[in_arc]] -
kpeter@910
  1540
            _pi[_target[in_arc]]) >= 0) continue;
kpeter@910
  1541
        findJoinNode();
kpeter@910
  1542
        bool change = findLeavingArc();
kpeter@910
  1543
        if (delta >= MAX) return false;
kpeter@910
  1544
        changeFlow(change);
kpeter@910
  1545
        if (change) {
kpeter@910
  1546
          updateTreeStructure();
kpeter@910
  1547
          updatePotential();
kpeter@910
  1548
        }
kpeter@910
  1549
      }
kpeter@910
  1550
      return true;
kpeter@910
  1551
    }
kpeter@910
  1552
kpeter@648
  1553
    // Execute the algorithm
kpeter@687
  1554
    ProblemType start(PivotRule pivot_rule) {
kpeter@648
  1555
      // Select the pivot rule implementation
kpeter@648
  1556
      switch (pivot_rule) {
kpeter@652
  1557
        case FIRST_ELIGIBLE:
kpeter@648
  1558
          return start<FirstEligiblePivotRule>();
kpeter@652
  1559
        case BEST_ELIGIBLE:
kpeter@648
  1560
          return start<BestEligiblePivotRule>();
kpeter@652
  1561
        case BLOCK_SEARCH:
kpeter@648
  1562
          return start<BlockSearchPivotRule>();
kpeter@652
  1563
        case CANDIDATE_LIST:
kpeter@648
  1564
          return start<CandidateListPivotRule>();
kpeter@652
  1565
        case ALTERING_LIST:
kpeter@648
  1566
          return start<AlteringListPivotRule>();
kpeter@648
  1567
      }
kpeter@687
  1568
      return INFEASIBLE; // avoid warning
kpeter@648
  1569
    }
kpeter@648
  1570
kpeter@652
  1571
    template <typename PivotRuleImpl>
kpeter@687
  1572
    ProblemType start() {
kpeter@652
  1573
      PivotRuleImpl pivot(*this);
kpeter@648
  1574
kpeter@910
  1575
      // Perform heuristic initial pivots
kpeter@910
  1576
      if (!initialPivots()) return UNBOUNDED;
kpeter@910
  1577
kpeter@652
  1578
      // Execute the Network Simplex algorithm
kpeter@648
  1579
      while (pivot.findEnteringArc()) {
kpeter@648
  1580
        findJoinNode();
kpeter@648
  1581
        bool change = findLeavingArc();
kpeter@877
  1582
        if (delta >= MAX) return UNBOUNDED;
kpeter@648
  1583
        changeFlow(change);
kpeter@648
  1584
        if (change) {
kpeter@651
  1585
          updateTreeStructure();
kpeter@651
  1586
          updatePotential();
kpeter@648
  1587
        }
kpeter@648
  1588
      }
alpar@956
  1589
kpeter@687
  1590
      // Check feasibility
kpeter@710
  1591
      for (int e = _search_arc_num; e != _all_arc_num; ++e) {
kpeter@710
  1592
        if (_flow[e] != 0) return INFEASIBLE;
kpeter@687
  1593
      }
kpeter@648
  1594
kpeter@689
  1595
      // Transform the solution and the supply map to the original form
kpeter@689
  1596
      if (_have_lower) {
kpeter@648
  1597
        for (int i = 0; i != _arc_num; ++i) {
kpeter@689
  1598
          Value c = _lower[i];
kpeter@689
  1599
          if (c != 0) {
kpeter@689
  1600
            _flow[i] += c;
kpeter@689
  1601
            _supply[_source[i]] += c;
kpeter@689
  1602
            _supply[_target[i]] -= c;
kpeter@689
  1603
          }
kpeter@648
  1604
        }
kpeter@648
  1605
      }
alpar@956
  1606
kpeter@710
  1607
      // Shift potentials to meet the requirements of the GEQ/LEQ type
kpeter@710
  1608
      // optimality conditions
kpeter@710
  1609
      if (_sum_supply == 0) {
kpeter@710
  1610
        if (_stype == GEQ) {
kpeter@976
  1611
          Cost max_pot = -std::numeric_limits<Cost>::max();
kpeter@710
  1612
          for (int i = 0; i != _node_num; ++i) {
kpeter@710
  1613
            if (_pi[i] > max_pot) max_pot = _pi[i];
kpeter@710
  1614
          }
kpeter@710
  1615
          if (max_pot > 0) {
kpeter@710
  1616
            for (int i = 0; i != _node_num; ++i)
kpeter@710
  1617
              _pi[i] -= max_pot;
kpeter@710
  1618
          }
kpeter@710
  1619
        } else {
kpeter@710
  1620
          Cost min_pot = std::numeric_limits<Cost>::max();
kpeter@710
  1621
          for (int i = 0; i != _node_num; ++i) {
kpeter@710
  1622
            if (_pi[i] < min_pot) min_pot = _pi[i];
kpeter@710
  1623
          }
kpeter@710
  1624
          if (min_pot < 0) {
kpeter@710
  1625
            for (int i = 0; i != _node_num; ++i)
kpeter@710
  1626
              _pi[i] -= min_pot;
kpeter@710
  1627
          }
kpeter@710
  1628
        }
kpeter@710
  1629
      }
kpeter@648
  1630
kpeter@687
  1631
      return OPTIMAL;
kpeter@648
  1632
    }
kpeter@648
  1633
kpeter@648
  1634
  }; //class NetworkSimplex
kpeter@648
  1635
kpeter@648
  1636
  ///@}
kpeter@648
  1637
kpeter@648
  1638
} //namespace lemon
kpeter@648
  1639
kpeter@648
  1640
#endif //LEMON_NETWORK_SIMPLEX_H