doc/groups.dox
author Peter Kovacs <kpeter@inf.elte.hu>
Tue, 29 Sep 2009 13:32:01 +0200
changeset 929 65a0521e744e
parent 761 98a30824fe36
parent 757 f1fe0ddad6f7
child 789 8e68671af789
permissions -rw-r--r--
Rename heap structures (#301)

- KaryHeap --> DHeap
- FouraryHeap --> QuadHeap
- BinomHeap --> BinomialHeap
alpar@209
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
alpar@40
     2
 *
alpar@209
     3
 * This file is a part of LEMON, a generic C++ optimization library.
alpar@40
     4
 *
alpar@463
     5
 * Copyright (C) 2003-2009
alpar@40
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@40
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@40
     8
 *
alpar@40
     9
 * Permission to use, modify and distribute this software is granted
alpar@40
    10
 * provided that this copyright notice appears in all copies. For
alpar@40
    11
 * precise terms see the accompanying LICENSE file.
alpar@40
    12
 *
alpar@40
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@40
    14
 * express or implied, and with no claim as to its suitability for any
alpar@40
    15
 * purpose.
alpar@40
    16
 *
alpar@40
    17
 */
alpar@40
    18
kpeter@422
    19
namespace lemon {
kpeter@422
    20
alpar@40
    21
/**
alpar@40
    22
@defgroup datas Data Structures
kpeter@606
    23
This group contains the several data structures implemented in LEMON.
alpar@40
    24
*/
alpar@40
    25
alpar@40
    26
/**
alpar@40
    27
@defgroup graphs Graph Structures
alpar@40
    28
@ingroup datas
alpar@40
    29
\brief Graph structures implemented in LEMON.
alpar@40
    30
alpar@209
    31
The implementation of combinatorial algorithms heavily relies on
alpar@209
    32
efficient graph implementations. LEMON offers data structures which are
alpar@209
    33
planned to be easily used in an experimental phase of implementation studies,
alpar@209
    34
and thereafter the program code can be made efficient by small modifications.
alpar@40
    35
alpar@40
    36
The most efficient implementation of diverse applications require the
alpar@40
    37
usage of different physical graph implementations. These differences
alpar@40
    38
appear in the size of graph we require to handle, memory or time usage
alpar@40
    39
limitations or in the set of operations through which the graph can be
alpar@40
    40
accessed.  LEMON provides several physical graph structures to meet
alpar@40
    41
the diverging requirements of the possible users.  In order to save on
alpar@40
    42
running time or on memory usage, some structures may fail to provide
kpeter@83
    43
some graph features like arc/edge or node deletion.
alpar@40
    44
alpar@209
    45
Alteration of standard containers need a very limited number of
alpar@209
    46
operations, these together satisfy the everyday requirements.
alpar@209
    47
In the case of graph structures, different operations are needed which do
alpar@209
    48
not alter the physical graph, but gives another view. If some nodes or
kpeter@83
    49
arcs have to be hidden or the reverse oriented graph have to be used, then
alpar@209
    50
this is the case. It also may happen that in a flow implementation
alpar@209
    51
the residual graph can be accessed by another algorithm, or a node-set
alpar@209
    52
is to be shrunk for another algorithm.
alpar@209
    53
LEMON also provides a variety of graphs for these requirements called
alpar@209
    54
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only
alpar@209
    55
in conjunction with other graph representations.
alpar@40
    56
alpar@40
    57
You are free to use the graph structure that fit your requirements
alpar@40
    58
the best, most graph algorithms and auxiliary data structures can be used
kpeter@314
    59
with any graph structure.
kpeter@314
    60
kpeter@314
    61
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts".
alpar@40
    62
*/
alpar@40
    63
alpar@40
    64
/**
kpeter@474
    65
@defgroup graph_adaptors Adaptor Classes for Graphs
deba@432
    66
@ingroup graphs
kpeter@474
    67
\brief Adaptor classes for digraphs and graphs
kpeter@474
    68
kpeter@474
    69
This group contains several useful adaptor classes for digraphs and graphs.
deba@432
    70
deba@432
    71
The main parts of LEMON are the different graph structures, generic
kpeter@474
    72
graph algorithms, graph concepts, which couple them, and graph
deba@432
    73
adaptors. While the previous notions are more or less clear, the
deba@432
    74
latter one needs further explanation. Graph adaptors are graph classes
deba@432
    75
which serve for considering graph structures in different ways.
deba@432
    76
deba@432
    77
A short example makes this much clearer.  Suppose that we have an
kpeter@474
    78
instance \c g of a directed graph type, say ListDigraph and an algorithm
deba@432
    79
\code
deba@432
    80
template <typename Digraph>
deba@432
    81
int algorithm(const Digraph&);
deba@432
    82
\endcode
deba@432
    83
is needed to run on the reverse oriented graph.  It may be expensive
deba@432
    84
(in time or in memory usage) to copy \c g with the reversed
deba@432
    85
arcs.  In this case, an adaptor class is used, which (according
kpeter@474
    86
to LEMON \ref concepts::Digraph "digraph concepts") works as a digraph.
kpeter@474
    87
The adaptor uses the original digraph structure and digraph operations when
kpeter@474
    88
methods of the reversed oriented graph are called.  This means that the adaptor
kpeter@474
    89
have minor memory usage, and do not perform sophisticated algorithmic
deba@432
    90
actions.  The purpose of it is to give a tool for the cases when a
deba@432
    91
graph have to be used in a specific alteration.  If this alteration is
kpeter@474
    92
obtained by a usual construction like filtering the node or the arc set or
deba@432
    93
considering a new orientation, then an adaptor is worthwhile to use.
deba@432
    94
To come back to the reverse oriented graph, in this situation
deba@432
    95
\code
deba@432
    96
template<typename Digraph> class ReverseDigraph;
deba@432
    97
\endcode
deba@432
    98
template class can be used. The code looks as follows
deba@432
    99
\code
deba@432
   100
ListDigraph g;
kpeter@474
   101
ReverseDigraph<ListDigraph> rg(g);
deba@432
   102
int result = algorithm(rg);
deba@432
   103
\endcode
kpeter@474
   104
During running the algorithm, the original digraph \c g is untouched.
kpeter@474
   105
This techniques give rise to an elegant code, and based on stable
deba@432
   106
graph adaptors, complex algorithms can be implemented easily.
deba@432
   107
kpeter@474
   108
In flow, circulation and matching problems, the residual
deba@432
   109
graph is of particular importance. Combining an adaptor implementing
kpeter@474
   110
this with shortest path algorithms or minimum mean cycle algorithms,
deba@432
   111
a range of weighted and cardinality optimization algorithms can be
deba@432
   112
obtained. For other examples, the interested user is referred to the
deba@432
   113
detailed documentation of particular adaptors.
deba@432
   114
deba@432
   115
The behavior of graph adaptors can be very different. Some of them keep
deba@432
   116
capabilities of the original graph while in other cases this would be
kpeter@474
   117
meaningless. This means that the concepts that they meet depend
kpeter@474
   118
on the graph adaptor, and the wrapped graph.
kpeter@474
   119
For example, if an arc of a reversed digraph is deleted, this is carried
kpeter@474
   120
out by deleting the corresponding arc of the original digraph, thus the
kpeter@474
   121
adaptor modifies the original digraph.
kpeter@474
   122
However in case of a residual digraph, this operation has no sense.
deba@432
   123
deba@432
   124
Let us stand one more example here to simplify your work.
kpeter@474
   125
ReverseDigraph has constructor
deba@432
   126
\code
deba@432
   127
ReverseDigraph(Digraph& digraph);
deba@432
   128
\endcode
kpeter@474
   129
This means that in a situation, when a <tt>const %ListDigraph&</tt>
deba@432
   130
reference to a graph is given, then it have to be instantiated with
kpeter@474
   131
<tt>Digraph=const %ListDigraph</tt>.
deba@432
   132
\code
deba@432
   133
int algorithm1(const ListDigraph& g) {
kpeter@474
   134
  ReverseDigraph<const ListDigraph> rg(g);
deba@432
   135
  return algorithm2(rg);
deba@432
   136
}
deba@432
   137
\endcode
deba@432
   138
*/
deba@432
   139
deba@432
   140
/**
alpar@209
   141
@defgroup maps Maps
alpar@40
   142
@ingroup datas
kpeter@50
   143
\brief Map structures implemented in LEMON.
alpar@40
   144
kpeter@606
   145
This group contains the map structures implemented in LEMON.
kpeter@50
   146
kpeter@314
   147
LEMON provides several special purpose maps and map adaptors that e.g. combine
alpar@40
   148
new maps from existing ones.
kpeter@314
   149
kpeter@314
   150
<b>See also:</b> \ref map_concepts "Map Concepts".
alpar@40
   151
*/
alpar@40
   152
alpar@40
   153
/**
alpar@209
   154
@defgroup graph_maps Graph Maps
alpar@40
   155
@ingroup maps
kpeter@83
   156
\brief Special graph-related maps.
alpar@40
   157
kpeter@606
   158
This group contains maps that are specifically designed to assign
kpeter@422
   159
values to the nodes and arcs/edges of graphs.
kpeter@422
   160
kpeter@422
   161
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap,
kpeter@422
   162
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts".
alpar@40
   163
*/
alpar@40
   164
alpar@40
   165
/**
alpar@40
   166
\defgroup map_adaptors Map Adaptors
alpar@40
   167
\ingroup maps
alpar@40
   168
\brief Tools to create new maps from existing ones
alpar@40
   169
kpeter@606
   170
This group contains map adaptors that are used to create "implicit"
kpeter@50
   171
maps from other maps.
alpar@40
   172
kpeter@422
   173
Most of them are \ref concepts::ReadMap "read-only maps".
kpeter@83
   174
They can make arithmetic and logical operations between one or two maps
kpeter@83
   175
(negation, shifting, addition, multiplication, logical 'and', 'or',
kpeter@83
   176
'not' etc.) or e.g. convert a map to another one of different Value type.
alpar@40
   177
kpeter@50
   178
The typical usage of this classes is passing implicit maps to
alpar@40
   179
algorithms.  If a function type algorithm is called then the function
alpar@40
   180
type map adaptors can be used comfortable. For example let's see the
kpeter@314
   181
usage of map adaptors with the \c graphToEps() function.
alpar@40
   182
\code
alpar@40
   183
  Color nodeColor(int deg) {
alpar@40
   184
    if (deg >= 2) {
alpar@40
   185
      return Color(0.5, 0.0, 0.5);
alpar@40
   186
    } else if (deg == 1) {
alpar@40
   187
      return Color(1.0, 0.5, 1.0);
alpar@40
   188
    } else {
alpar@40
   189
      return Color(0.0, 0.0, 0.0);
alpar@40
   190
    }
alpar@40
   191
  }
alpar@209
   192
kpeter@83
   193
  Digraph::NodeMap<int> degree_map(graph);
alpar@209
   194
kpeter@314
   195
  graphToEps(graph, "graph.eps")
alpar@40
   196
    .coords(coords).scaleToA4().undirected()
kpeter@83
   197
    .nodeColors(composeMap(functorToMap(nodeColor), degree_map))
alpar@40
   198
    .run();
alpar@209
   199
\endcode
kpeter@83
   200
The \c functorToMap() function makes an \c int to \c Color map from the
kpeter@314
   201
\c nodeColor() function. The \c composeMap() compose the \c degree_map
kpeter@83
   202
and the previously created map. The composed map is a proper function to
kpeter@83
   203
get the color of each node.
alpar@40
   204
alpar@40
   205
The usage with class type algorithms is little bit harder. In this
alpar@40
   206
case the function type map adaptors can not be used, because the
kpeter@50
   207
function map adaptors give back temporary objects.
alpar@40
   208
\code
kpeter@83
   209
  Digraph graph;
kpeter@83
   210
kpeter@83
   211
  typedef Digraph::ArcMap<double> DoubleArcMap;
kpeter@83
   212
  DoubleArcMap length(graph);
kpeter@83
   213
  DoubleArcMap speed(graph);
kpeter@83
   214
kpeter@83
   215
  typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap;
alpar@40
   216
  TimeMap time(length, speed);
alpar@209
   217
kpeter@83
   218
  Dijkstra<Digraph, TimeMap> dijkstra(graph, time);
alpar@40
   219
  dijkstra.run(source, target);
alpar@40
   220
\endcode
kpeter@83
   221
We have a length map and a maximum speed map on the arcs of a digraph.
kpeter@83
   222
The minimum time to pass the arc can be calculated as the division of
kpeter@83
   223
the two maps which can be done implicitly with the \c DivMap template
alpar@40
   224
class. We use the implicit minimum time map as the length map of the
alpar@40
   225
\c Dijkstra algorithm.
alpar@40
   226
*/
alpar@40
   227
alpar@40
   228
/**
alpar@40
   229
@defgroup paths Path Structures
alpar@40
   230
@ingroup datas
kpeter@318
   231
\brief %Path structures implemented in LEMON.
alpar@40
   232
kpeter@606
   233
This group contains the path structures implemented in LEMON.
alpar@40
   234
kpeter@50
   235
LEMON provides flexible data structures to work with paths.
kpeter@50
   236
All of them have similar interfaces and they can be copied easily with
kpeter@50
   237
assignment operators and copy constructors. This makes it easy and
alpar@40
   238
efficient to have e.g. the Dijkstra algorithm to store its result in
alpar@40
   239
any kind of path structure.
alpar@40
   240
kpeter@757
   241
\sa \ref concepts::Path "Path concept"
kpeter@757
   242
*/
kpeter@757
   243
kpeter@757
   244
/**
kpeter@757
   245
@defgroup heaps Heap Structures
kpeter@757
   246
@ingroup datas
kpeter@757
   247
\brief %Heap structures implemented in LEMON.
kpeter@757
   248
kpeter@757
   249
This group contains the heap structures implemented in LEMON.
kpeter@757
   250
kpeter@757
   251
LEMON provides several heap classes. They are efficient implementations
kpeter@757
   252
of the abstract data type \e priority \e queue. They store items with
kpeter@757
   253
specified values called \e priorities in such a way that finding and
kpeter@757
   254
removing the item with minimum priority are efficient.
kpeter@757
   255
The basic operations are adding and erasing items, changing the priority
kpeter@757
   256
of an item, etc.
kpeter@757
   257
kpeter@757
   258
Heaps are crucial in several algorithms, such as Dijkstra and Prim.
kpeter@757
   259
The heap implementations have the same interface, thus any of them can be
kpeter@757
   260
used easily in such algorithms.
kpeter@757
   261
kpeter@757
   262
\sa \ref concepts::Heap "Heap concept"
kpeter@757
   263
*/
kpeter@757
   264
kpeter@757
   265
/**
kpeter@757
   266
@defgroup matrices Matrices
kpeter@757
   267
@ingroup datas
kpeter@757
   268
\brief Two dimensional data storages implemented in LEMON.
kpeter@757
   269
kpeter@757
   270
This group contains two dimensional data storages implemented in LEMON.
alpar@40
   271
*/
alpar@40
   272
alpar@40
   273
/**
alpar@40
   274
@defgroup auxdat Auxiliary Data Structures
alpar@40
   275
@ingroup datas
kpeter@50
   276
\brief Auxiliary data structures implemented in LEMON.
alpar@40
   277
kpeter@606
   278
This group contains some data structures implemented in LEMON in
alpar@40
   279
order to make it easier to implement combinatorial algorithms.
alpar@40
   280
*/
alpar@40
   281
alpar@40
   282
/**
kpeter@761
   283
@defgroup geomdat Geometric Data Structures
kpeter@761
   284
@ingroup auxdat
kpeter@761
   285
\brief Geometric data structures implemented in LEMON.
kpeter@761
   286
kpeter@761
   287
This group contains geometric data structures implemented in LEMON.
kpeter@761
   288
kpeter@761
   289
 - \ref lemon::dim2::Point "dim2::Point" implements a two dimensional
kpeter@761
   290
   vector with the usual operations.
kpeter@761
   291
 - \ref lemon::dim2::Box "dim2::Box" can be used to determine the
kpeter@761
   292
   rectangular bounding box of a set of \ref lemon::dim2::Point
kpeter@761
   293
   "dim2::Point"'s.
kpeter@761
   294
*/
kpeter@761
   295
kpeter@761
   296
/**
kpeter@761
   297
@defgroup matrices Matrices
kpeter@761
   298
@ingroup auxdat
kpeter@761
   299
\brief Two dimensional data storages implemented in LEMON.
kpeter@761
   300
kpeter@761
   301
This group contains two dimensional data storages implemented in LEMON.
kpeter@761
   302
*/
kpeter@761
   303
kpeter@761
   304
/**
alpar@40
   305
@defgroup algs Algorithms
kpeter@606
   306
\brief This group contains the several algorithms
alpar@40
   307
implemented in LEMON.
alpar@40
   308
kpeter@606
   309
This group contains the several algorithms
alpar@40
   310
implemented in LEMON.
alpar@40
   311
*/
alpar@40
   312
alpar@40
   313
/**
alpar@40
   314
@defgroup search Graph Search
alpar@40
   315
@ingroup algs
kpeter@50
   316
\brief Common graph search algorithms.
alpar@40
   317
kpeter@606
   318
This group contains the common graph search algorithms, namely
kpeter@422
   319
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS).
alpar@40
   320
*/
alpar@40
   321
alpar@40
   322
/**
kpeter@314
   323
@defgroup shortest_path Shortest Path Algorithms
alpar@40
   324
@ingroup algs
kpeter@50
   325
\brief Algorithms for finding shortest paths.
alpar@40
   326
kpeter@606
   327
This group contains the algorithms for finding shortest paths in digraphs.
kpeter@422
   328
kpeter@422
   329
 - \ref Dijkstra algorithm for finding shortest paths from a source node
kpeter@422
   330
   when all arc lengths are non-negative.
kpeter@422
   331
 - \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths
kpeter@422
   332
   from a source node when arc lenghts can be either positive or negative,
kpeter@422
   333
   but the digraph should not contain directed cycles with negative total
kpeter@422
   334
   length.
kpeter@422
   335
 - \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms
kpeter@422
   336
   for solving the \e all-pairs \e shortest \e paths \e problem when arc
kpeter@422
   337
   lenghts can be either positive or negative, but the digraph should
kpeter@422
   338
   not contain directed cycles with negative total length.
kpeter@422
   339
 - \ref Suurballe A successive shortest path algorithm for finding
kpeter@422
   340
   arc-disjoint paths between two nodes having minimum total length.
alpar@40
   341
*/
alpar@40
   342
alpar@209
   343
/**
kpeter@761
   344
@defgroup spantree Minimum Spanning Tree Algorithms
kpeter@761
   345
@ingroup algs
kpeter@761
   346
\brief Algorithms for finding minimum cost spanning trees and arborescences.
kpeter@761
   347
kpeter@761
   348
This group contains the algorithms for finding minimum cost spanning
kpeter@761
   349
trees and arborescences.
kpeter@761
   350
*/
kpeter@761
   351
kpeter@761
   352
/**
kpeter@314
   353
@defgroup max_flow Maximum Flow Algorithms
alpar@209
   354
@ingroup algs
kpeter@50
   355
\brief Algorithms for finding maximum flows.
alpar@40
   356
kpeter@606
   357
This group contains the algorithms for finding maximum flows and
alpar@40
   358
feasible circulations.
alpar@40
   359
kpeter@422
   360
The \e maximum \e flow \e problem is to find a flow of maximum value between
kpeter@422
   361
a single source and a single target. Formally, there is a \f$G=(V,A)\f$
kpeter@656
   362
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and
kpeter@422
   363
\f$s, t \in V\f$ source and target nodes.
kpeter@656
   364
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the
kpeter@422
   365
following optimization problem.
alpar@40
   366
kpeter@656
   367
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f]
kpeter@656
   368
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu)
kpeter@656
   369
    \quad \forall u\in V\setminus\{s,t\} \f]
kpeter@656
   370
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f]
alpar@40
   371
kpeter@50
   372
LEMON contains several algorithms for solving maximum flow problems:
kpeter@422
   373
- \ref EdmondsKarp Edmonds-Karp algorithm.
kpeter@422
   374
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm.
kpeter@422
   375
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees.
kpeter@422
   376
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees.
alpar@40
   377
kpeter@422
   378
In most cases the \ref Preflow "Preflow" algorithm provides the
kpeter@422
   379
fastest method for computing a maximum flow. All implementations
kpeter@698
   380
also provide functions to query the minimum cut, which is the dual
kpeter@698
   381
problem of maximum flow.
kpeter@698
   382
kpeter@698
   383
\ref Circulation is a preflow push-relabel algorithm implemented directly 
kpeter@698
   384
for finding feasible circulations, which is a somewhat different problem,
kpeter@698
   385
but it is strongly related to maximum flow.
kpeter@698
   386
For more information, see \ref Circulation.
alpar@40
   387
*/
alpar@40
   388
alpar@40
   389
/**
kpeter@710
   390
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms
alpar@40
   391
@ingroup algs
alpar@40
   392
kpeter@50
   393
\brief Algorithms for finding minimum cost flows and circulations.
alpar@40
   394
kpeter@656
   395
This group contains the algorithms for finding minimum cost flows and
kpeter@710
   396
circulations. For more information about this problem and its dual
kpeter@710
   397
solution see \ref min_cost_flow "Minimum Cost Flow Problem".
kpeter@422
   398
kpeter@710
   399
LEMON contains several algorithms for this problem.
kpeter@656
   400
 - \ref NetworkSimplex Primal Network Simplex algorithm with various
kpeter@656
   401
   pivot strategies.
kpeter@656
   402
 - \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on
kpeter@656
   403
   cost scaling.
kpeter@656
   404
 - \ref CapacityScaling Successive Shortest %Path algorithm with optional
kpeter@422
   405
   capacity scaling.
kpeter@656
   406
 - \ref CancelAndTighten The Cancel and Tighten algorithm.
kpeter@656
   407
 - \ref CycleCanceling Cycle-Canceling algorithms.
kpeter@656
   408
kpeter@656
   409
In general NetworkSimplex is the most efficient implementation,
kpeter@656
   410
but in special cases other algorithms could be faster.
kpeter@656
   411
For example, if the total supply and/or capacities are rather small,
kpeter@656
   412
CapacityScaling is usually the fastest algorithm (without effective scaling).
alpar@40
   413
*/
alpar@40
   414
alpar@40
   415
/**
kpeter@314
   416
@defgroup min_cut Minimum Cut Algorithms
alpar@209
   417
@ingroup algs
alpar@40
   418
kpeter@50
   419
\brief Algorithms for finding minimum cut in graphs.
alpar@40
   420
kpeter@606
   421
This group contains the algorithms for finding minimum cut in graphs.
alpar@40
   422
kpeter@422
   423
The \e minimum \e cut \e problem is to find a non-empty and non-complete
kpeter@422
   424
\f$X\f$ subset of the nodes with minimum overall capacity on
kpeter@422
   425
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a
kpeter@422
   426
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
kpeter@50
   427
cut is the \f$X\f$ solution of the next optimization problem:
alpar@40
   428
alpar@210
   429
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
kpeter@760
   430
    \sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f]
alpar@40
   431
kpeter@50
   432
LEMON contains several algorithms related to minimum cut problems:
alpar@40
   433
kpeter@422
   434
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut
kpeter@422
   435
  in directed graphs.
kpeter@422
   436
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for
kpeter@422
   437
  calculating minimum cut in undirected graphs.
kpeter@606
   438
- \ref GomoryHu "Gomory-Hu tree computation" for calculating
kpeter@422
   439
  all-pairs minimum cut in undirected graphs.
alpar@40
   440
alpar@40
   441
If you want to find minimum cut just between two distinict nodes,
kpeter@422
   442
see the \ref max_flow "maximum flow problem".
alpar@40
   443
*/
alpar@40
   444
alpar@40
   445
/**
kpeter@314
   446
@defgroup matching Matching Algorithms
alpar@40
   447
@ingroup algs
kpeter@50
   448
\brief Algorithms for finding matchings in graphs and bipartite graphs.
alpar@40
   449
kpeter@637
   450
This group contains the algorithms for calculating
alpar@40
   451
matchings in graphs and bipartite graphs. The general matching problem is
kpeter@637
   452
finding a subset of the edges for which each node has at most one incident
kpeter@637
   453
edge.
alpar@209
   454
alpar@40
   455
There are several different algorithms for calculate matchings in
alpar@40
   456
graphs.  The matching problems in bipartite graphs are generally
alpar@40
   457
easier than in general graphs. The goal of the matching optimization
kpeter@422
   458
can be finding maximum cardinality, maximum weight or minimum cost
alpar@40
   459
matching. The search can be constrained to find perfect or
alpar@40
   460
maximum cardinality matching.
alpar@40
   461
kpeter@422
   462
The matching algorithms implemented in LEMON:
kpeter@422
   463
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm
kpeter@422
   464
  for calculating maximum cardinality matching in bipartite graphs.
kpeter@422
   465
- \ref PrBipartiteMatching Push-relabel algorithm
kpeter@422
   466
  for calculating maximum cardinality matching in bipartite graphs.
kpeter@422
   467
- \ref MaxWeightedBipartiteMatching
kpeter@422
   468
  Successive shortest path algorithm for calculating maximum weighted
kpeter@422
   469
  matching and maximum weighted bipartite matching in bipartite graphs.
kpeter@422
   470
- \ref MinCostMaxBipartiteMatching
kpeter@422
   471
  Successive shortest path algorithm for calculating minimum cost maximum
kpeter@422
   472
  matching in bipartite graphs.
kpeter@422
   473
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating
kpeter@422
   474
  maximum cardinality matching in general graphs.
kpeter@422
   475
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating
kpeter@422
   476
  maximum weighted matching in general graphs.
kpeter@422
   477
- \ref MaxWeightedPerfectMatching
kpeter@422
   478
  Edmond's blossom shrinking algorithm for calculating maximum weighted
kpeter@422
   479
  perfect matching in general graphs.
alpar@40
   480
alpar@40
   481
\image html bipartite_matching.png
alpar@40
   482
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth
alpar@40
   483
*/
alpar@40
   484
alpar@40
   485
/**
kpeter@761
   486
@defgroup graph_properties Connectivity and Other Graph Properties
alpar@40
   487
@ingroup algs
kpeter@761
   488
\brief Algorithms for discovering the graph properties
alpar@40
   489
kpeter@761
   490
This group contains the algorithms for discovering the graph properties
kpeter@761
   491
like connectivity, bipartiteness, euler property, simplicity etc.
kpeter@761
   492
kpeter@761
   493
\image html connected_components.png
kpeter@761
   494
\image latex connected_components.eps "Connected components" width=\textwidth
kpeter@761
   495
*/
kpeter@761
   496
kpeter@761
   497
/**
kpeter@761
   498
@defgroup planar Planarity Embedding and Drawing
kpeter@761
   499
@ingroup algs
kpeter@761
   500
\brief Algorithms for planarity checking, embedding and drawing
kpeter@761
   501
kpeter@761
   502
This group contains the algorithms for planarity checking,
kpeter@761
   503
embedding and drawing.
kpeter@761
   504
kpeter@761
   505
\image html planar.png
kpeter@761
   506
\image latex planar.eps "Plane graph" width=\textwidth
kpeter@761
   507
*/
kpeter@761
   508
kpeter@761
   509
/**
kpeter@761
   510
@defgroup approx Approximation Algorithms
kpeter@761
   511
@ingroup algs
kpeter@761
   512
\brief Approximation algorithms.
kpeter@761
   513
kpeter@761
   514
This group contains the approximation and heuristic algorithms
kpeter@761
   515
implemented in LEMON.
alpar@40
   516
*/
alpar@40
   517
alpar@40
   518
/**
kpeter@314
   519
@defgroup auxalg Auxiliary Algorithms
alpar@40
   520
@ingroup algs
kpeter@50
   521
\brief Auxiliary algorithms implemented in LEMON.
alpar@40
   522
kpeter@606
   523
This group contains some algorithms implemented in LEMON
kpeter@50
   524
in order to make it easier to implement complex algorithms.
alpar@40
   525
*/
alpar@40
   526
alpar@40
   527
/**
alpar@40
   528
@defgroup gen_opt_group General Optimization Tools
kpeter@606
   529
\brief This group contains some general optimization frameworks
alpar@40
   530
implemented in LEMON.
alpar@40
   531
kpeter@606
   532
This group contains some general optimization frameworks
alpar@40
   533
implemented in LEMON.
alpar@40
   534
*/
alpar@40
   535
alpar@40
   536
/**
kpeter@314
   537
@defgroup lp_group Lp and Mip Solvers
alpar@40
   538
@ingroup gen_opt_group
alpar@40
   539
\brief Lp and Mip solver interfaces for LEMON.
alpar@40
   540
kpeter@606
   541
This group contains Lp and Mip solver interfaces for LEMON. The
alpar@40
   542
various LP solvers could be used in the same manner with this
alpar@40
   543
interface.
alpar@40
   544
*/
alpar@40
   545
alpar@209
   546
/**
kpeter@314
   547
@defgroup lp_utils Tools for Lp and Mip Solvers
alpar@40
   548
@ingroup lp_group
kpeter@50
   549
\brief Helper tools to the Lp and Mip solvers.
alpar@40
   550
alpar@40
   551
This group adds some helper tools to general optimization framework
alpar@40
   552
implemented in LEMON.
alpar@40
   553
*/
alpar@40
   554
alpar@40
   555
/**
alpar@40
   556
@defgroup metah Metaheuristics
alpar@40
   557
@ingroup gen_opt_group
alpar@40
   558
\brief Metaheuristics for LEMON library.
alpar@40
   559
kpeter@606
   560
This group contains some metaheuristic optimization tools.
alpar@40
   561
*/
alpar@40
   562
alpar@40
   563
/**
alpar@209
   564
@defgroup utils Tools and Utilities
kpeter@50
   565
\brief Tools and utilities for programming in LEMON
alpar@40
   566
kpeter@50
   567
Tools and utilities for programming in LEMON.
alpar@40
   568
*/
alpar@40
   569
alpar@40
   570
/**
alpar@40
   571
@defgroup gutils Basic Graph Utilities
alpar@40
   572
@ingroup utils
kpeter@50
   573
\brief Simple basic graph utilities.
alpar@40
   574
kpeter@606
   575
This group contains some simple basic graph utilities.
alpar@40
   576
*/
alpar@40
   577
alpar@40
   578
/**
alpar@40
   579
@defgroup misc Miscellaneous Tools
alpar@40
   580
@ingroup utils
kpeter@50
   581
\brief Tools for development, debugging and testing.
kpeter@50
   582
kpeter@606
   583
This group contains several useful tools for development,
alpar@40
   584
debugging and testing.
alpar@40
   585
*/
alpar@40
   586
alpar@40
   587
/**
kpeter@314
   588
@defgroup timecount Time Measuring and Counting
alpar@40
   589
@ingroup misc
kpeter@50
   590
\brief Simple tools for measuring the performance of algorithms.
kpeter@50
   591
kpeter@606
   592
This group contains simple tools for measuring the performance
alpar@40
   593
of algorithms.
alpar@40
   594
*/
alpar@40
   595
alpar@40
   596
/**
alpar@40
   597
@defgroup exceptions Exceptions
alpar@40
   598
@ingroup utils
kpeter@50
   599
\brief Exceptions defined in LEMON.
kpeter@50
   600
kpeter@606
   601
This group contains the exceptions defined in LEMON.
alpar@40
   602
*/
alpar@40
   603
alpar@40
   604
/**
alpar@40
   605
@defgroup io_group Input-Output
kpeter@50
   606
\brief Graph Input-Output methods
alpar@40
   607
kpeter@606
   608
This group contains the tools for importing and exporting graphs
kpeter@314
   609
and graph related data. Now it supports the \ref lgf-format
kpeter@314
   610
"LEMON Graph Format", the \c DIMACS format and the encapsulated
kpeter@314
   611
postscript (EPS) format.
alpar@40
   612
*/
alpar@40
   613
alpar@40
   614
/**
kpeter@363
   615
@defgroup lemon_io LEMON Graph Format
alpar@40
   616
@ingroup io_group
kpeter@314
   617
\brief Reading and writing LEMON Graph Format.
alpar@40
   618
kpeter@606
   619
This group contains methods for reading and writing
ladanyi@236
   620
\ref lgf-format "LEMON Graph Format".
alpar@40
   621
*/
alpar@40
   622
alpar@40
   623
/**
kpeter@314
   624
@defgroup eps_io Postscript Exporting
alpar@40
   625
@ingroup io_group
alpar@40
   626
\brief General \c EPS drawer and graph exporter
alpar@40
   627
kpeter@606
   628
This group contains general \c EPS drawing methods and special
alpar@209
   629
graph exporting tools.
alpar@40
   630
*/
alpar@40
   631
alpar@40
   632
/**
kpeter@761
   633
@defgroup dimacs_group DIMACS Format
kpeter@403
   634
@ingroup io_group
kpeter@403
   635
\brief Read and write files in DIMACS format
kpeter@403
   636
kpeter@403
   637
Tools to read a digraph from or write it to a file in DIMACS format data.
kpeter@403
   638
*/
kpeter@403
   639
kpeter@403
   640
/**
kpeter@363
   641
@defgroup nauty_group NAUTY Format
kpeter@363
   642
@ingroup io_group
kpeter@363
   643
\brief Read \e Nauty format
kpeter@403
   644
kpeter@363
   645
Tool to read graphs from \e Nauty format data.
kpeter@363
   646
*/
kpeter@363
   647
kpeter@363
   648
/**
alpar@40
   649
@defgroup concept Concepts
alpar@40
   650
\brief Skeleton classes and concept checking classes
alpar@40
   651
kpeter@606
   652
This group contains the data/algorithm skeletons and concept checking
alpar@40
   653
classes implemented in LEMON.
alpar@40
   654
alpar@40
   655
The purpose of the classes in this group is fourfold.
alpar@209
   656
kpeter@318
   657
- These classes contain the documentations of the %concepts. In order
alpar@40
   658
  to avoid document multiplications, an implementation of a concept
alpar@40
   659
  simply refers to the corresponding concept class.
alpar@40
   660
alpar@40
   661
- These classes declare every functions, <tt>typedef</tt>s etc. an
kpeter@318
   662
  implementation of the %concepts should provide, however completely
alpar@40
   663
  without implementations and real data structures behind the
alpar@40
   664
  interface. On the other hand they should provide nothing else. All
alpar@40
   665
  the algorithms working on a data structure meeting a certain concept
alpar@40
   666
  should compile with these classes. (Though it will not run properly,
alpar@40
   667
  of course.) In this way it is easily to check if an algorithm
alpar@40
   668
  doesn't use any extra feature of a certain implementation.
alpar@40
   669
alpar@40
   670
- The concept descriptor classes also provide a <em>checker class</em>
kpeter@50
   671
  that makes it possible to check whether a certain implementation of a
alpar@40
   672
  concept indeed provides all the required features.
alpar@40
   673
alpar@40
   674
- Finally, They can serve as a skeleton of a new implementation of a concept.
alpar@40
   675
*/
alpar@40
   676
alpar@40
   677
/**
alpar@40
   678
@defgroup graph_concepts Graph Structure Concepts
alpar@40
   679
@ingroup concept
alpar@40
   680
\brief Skeleton and concept checking classes for graph structures
alpar@40
   681
kpeter@606
   682
This group contains the skeletons and concept checking classes of LEMON's
alpar@40
   683
graph structures and helper classes used to implement these.
alpar@40
   684
*/
alpar@40
   685
kpeter@314
   686
/**
kpeter@314
   687
@defgroup map_concepts Map Concepts
kpeter@314
   688
@ingroup concept
kpeter@314
   689
\brief Skeleton and concept checking classes for maps
kpeter@314
   690
kpeter@606
   691
This group contains the skeletons and concept checking classes of maps.
alpar@40
   692
*/
alpar@40
   693
alpar@40
   694
/**
kpeter@761
   695
@defgroup tools Standalone Utility Applications
kpeter@761
   696
kpeter@761
   697
Some utility applications are listed here.
kpeter@761
   698
kpeter@761
   699
The standard compilation procedure (<tt>./configure;make</tt>) will compile
kpeter@761
   700
them, as well.
kpeter@761
   701
*/
kpeter@761
   702
kpeter@761
   703
/**
alpar@40
   704
\anchor demoprograms
alpar@40
   705
kpeter@422
   706
@defgroup demos Demo Programs
alpar@40
   707
alpar@40
   708
Some demo programs are listed here. Their full source codes can be found in
alpar@40
   709
the \c demo subdirectory of the source tree.
alpar@40
   710
ladanyi@611
   711
In order to compile them, use the <tt>make demo</tt> or the
ladanyi@611
   712
<tt>make check</tt> commands.
alpar@40
   713
*/
alpar@40
   714
kpeter@422
   715
}