deba@433
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
deba@433
|
2 |
*
|
deba@433
|
3 |
* This file is a part of LEMON, a generic C++ optimization library.
|
deba@433
|
4 |
*
|
alpar@463
|
5 |
* Copyright (C) 2003-2009
|
deba@433
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
deba@433
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
deba@433
|
8 |
*
|
deba@433
|
9 |
* Permission to use, modify and distribute this software is granted
|
deba@433
|
10 |
* provided that this copyright notice appears in all copies. For
|
deba@433
|
11 |
* precise terms see the accompanying LICENSE file.
|
deba@433
|
12 |
*
|
deba@433
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
deba@433
|
14 |
* express or implied, and with no claim as to its suitability for any
|
deba@433
|
15 |
* purpose.
|
deba@433
|
16 |
*
|
deba@433
|
17 |
*/
|
deba@433
|
18 |
|
deba@435
|
19 |
#ifndef LEMON_CONNECTIVITY_H
|
deba@435
|
20 |
#define LEMON_CONNECTIVITY_H
|
deba@433
|
21 |
|
deba@433
|
22 |
#include <lemon/dfs.h>
|
deba@433
|
23 |
#include <lemon/bfs.h>
|
deba@433
|
24 |
#include <lemon/core.h>
|
deba@433
|
25 |
#include <lemon/maps.h>
|
deba@433
|
26 |
#include <lemon/adaptors.h>
|
deba@433
|
27 |
|
deba@433
|
28 |
#include <lemon/concepts/digraph.h>
|
deba@433
|
29 |
#include <lemon/concepts/graph.h>
|
deba@433
|
30 |
#include <lemon/concept_check.h>
|
deba@433
|
31 |
|
deba@433
|
32 |
#include <stack>
|
deba@433
|
33 |
#include <functional>
|
deba@433
|
34 |
|
kpeter@633
|
35 |
/// \ingroup graph_properties
|
deba@433
|
36 |
/// \file
|
deba@433
|
37 |
/// \brief Connectivity algorithms
|
deba@433
|
38 |
///
|
deba@433
|
39 |
/// Connectivity algorithms
|
deba@433
|
40 |
|
deba@433
|
41 |
namespace lemon {
|
deba@433
|
42 |
|
kpeter@633
|
43 |
/// \ingroup graph_properties
|
deba@433
|
44 |
///
|
kpeter@695
|
45 |
/// \brief Check whether an undirected graph is connected.
|
deba@433
|
46 |
///
|
kpeter@695
|
47 |
/// This function checks whether the given undirected graph is connected,
|
kpeter@695
|
48 |
/// i.e. there is a path between any two nodes in the graph.
|
kpeter@695
|
49 |
///
|
kpeter@695
|
50 |
/// \return \c true if the graph is connected.
|
deba@433
|
51 |
/// \note By definition, the empty graph is connected.
|
kpeter@695
|
52 |
///
|
kpeter@695
|
53 |
/// \see countConnectedComponents(), connectedComponents()
|
kpeter@695
|
54 |
/// \see stronglyConnected()
|
deba@433
|
55 |
template <typename Graph>
|
deba@433
|
56 |
bool connected(const Graph& graph) {
|
deba@433
|
57 |
checkConcept<concepts::Graph, Graph>();
|
deba@433
|
58 |
typedef typename Graph::NodeIt NodeIt;
|
deba@433
|
59 |
if (NodeIt(graph) == INVALID) return true;
|
deba@433
|
60 |
Dfs<Graph> dfs(graph);
|
deba@433
|
61 |
dfs.run(NodeIt(graph));
|
deba@433
|
62 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@433
|
63 |
if (!dfs.reached(it)) {
|
deba@433
|
64 |
return false;
|
deba@433
|
65 |
}
|
deba@433
|
66 |
}
|
deba@433
|
67 |
return true;
|
deba@433
|
68 |
}
|
deba@433
|
69 |
|
kpeter@633
|
70 |
/// \ingroup graph_properties
|
deba@433
|
71 |
///
|
deba@433
|
72 |
/// \brief Count the number of connected components of an undirected graph
|
deba@433
|
73 |
///
|
kpeter@695
|
74 |
/// This function counts the number of connected components of the given
|
kpeter@695
|
75 |
/// undirected graph.
|
deba@433
|
76 |
///
|
kpeter@695
|
77 |
/// The connected components are the classes of an equivalence relation
|
kpeter@695
|
78 |
/// on the nodes of an undirected graph. Two nodes are in the same class
|
kpeter@695
|
79 |
/// if they are connected with a path.
|
kpeter@695
|
80 |
///
|
kpeter@695
|
81 |
/// \return The number of connected components.
|
deba@433
|
82 |
/// \note By definition, the empty graph consists
|
deba@433
|
83 |
/// of zero connected components.
|
kpeter@695
|
84 |
///
|
kpeter@695
|
85 |
/// \see connected(), connectedComponents()
|
deba@433
|
86 |
template <typename Graph>
|
deba@433
|
87 |
int countConnectedComponents(const Graph &graph) {
|
deba@433
|
88 |
checkConcept<concepts::Graph, Graph>();
|
deba@433
|
89 |
typedef typename Graph::Node Node;
|
deba@433
|
90 |
typedef typename Graph::Arc Arc;
|
deba@433
|
91 |
|
deba@433
|
92 |
typedef NullMap<Node, Arc> PredMap;
|
deba@433
|
93 |
typedef NullMap<Node, int> DistMap;
|
deba@433
|
94 |
|
deba@433
|
95 |
int compNum = 0;
|
deba@433
|
96 |
typename Bfs<Graph>::
|
deba@433
|
97 |
template SetPredMap<PredMap>::
|
deba@433
|
98 |
template SetDistMap<DistMap>::
|
deba@433
|
99 |
Create bfs(graph);
|
deba@433
|
100 |
|
deba@433
|
101 |
PredMap predMap;
|
deba@433
|
102 |
bfs.predMap(predMap);
|
deba@433
|
103 |
|
deba@433
|
104 |
DistMap distMap;
|
deba@433
|
105 |
bfs.distMap(distMap);
|
deba@433
|
106 |
|
deba@433
|
107 |
bfs.init();
|
deba@433
|
108 |
for(typename Graph::NodeIt n(graph); n != INVALID; ++n) {
|
deba@433
|
109 |
if (!bfs.reached(n)) {
|
deba@433
|
110 |
bfs.addSource(n);
|
deba@433
|
111 |
bfs.start();
|
deba@433
|
112 |
++compNum;
|
deba@433
|
113 |
}
|
deba@433
|
114 |
}
|
deba@433
|
115 |
return compNum;
|
deba@433
|
116 |
}
|
deba@433
|
117 |
|
kpeter@633
|
118 |
/// \ingroup graph_properties
|
deba@433
|
119 |
///
|
deba@433
|
120 |
/// \brief Find the connected components of an undirected graph
|
deba@433
|
121 |
///
|
kpeter@695
|
122 |
/// This function finds the connected components of the given undirected
|
kpeter@695
|
123 |
/// graph.
|
kpeter@695
|
124 |
///
|
kpeter@695
|
125 |
/// The connected components are the classes of an equivalence relation
|
kpeter@695
|
126 |
/// on the nodes of an undirected graph. Two nodes are in the same class
|
kpeter@695
|
127 |
/// if they are connected with a path.
|
deba@433
|
128 |
///
|
kpeter@633
|
129 |
/// \image html connected_components.png
|
kpeter@633
|
130 |
/// \image latex connected_components.eps "Connected components" width=\textwidth
|
kpeter@633
|
131 |
///
|
kpeter@695
|
132 |
/// \param graph The undirected graph.
|
deba@433
|
133 |
/// \retval compMap A writable node map. The values will be set from 0 to
|
kpeter@695
|
134 |
/// the number of the connected components minus one. Each value of the map
|
kpeter@695
|
135 |
/// will be set exactly once, and the values of a certain component will be
|
deba@433
|
136 |
/// set continuously.
|
kpeter@695
|
137 |
/// \return The number of connected components.
|
kpeter@695
|
138 |
/// \note By definition, the empty graph consists
|
kpeter@695
|
139 |
/// of zero connected components.
|
kpeter@695
|
140 |
///
|
kpeter@695
|
141 |
/// \see connected(), countConnectedComponents()
|
deba@433
|
142 |
template <class Graph, class NodeMap>
|
deba@433
|
143 |
int connectedComponents(const Graph &graph, NodeMap &compMap) {
|
deba@433
|
144 |
checkConcept<concepts::Graph, Graph>();
|
deba@433
|
145 |
typedef typename Graph::Node Node;
|
deba@433
|
146 |
typedef typename Graph::Arc Arc;
|
deba@433
|
147 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
|
deba@433
|
148 |
|
deba@433
|
149 |
typedef NullMap<Node, Arc> PredMap;
|
deba@433
|
150 |
typedef NullMap<Node, int> DistMap;
|
deba@433
|
151 |
|
deba@433
|
152 |
int compNum = 0;
|
deba@433
|
153 |
typename Bfs<Graph>::
|
deba@433
|
154 |
template SetPredMap<PredMap>::
|
deba@433
|
155 |
template SetDistMap<DistMap>::
|
deba@433
|
156 |
Create bfs(graph);
|
deba@433
|
157 |
|
deba@433
|
158 |
PredMap predMap;
|
deba@433
|
159 |
bfs.predMap(predMap);
|
deba@433
|
160 |
|
deba@433
|
161 |
DistMap distMap;
|
deba@433
|
162 |
bfs.distMap(distMap);
|
deba@433
|
163 |
|
deba@433
|
164 |
bfs.init();
|
deba@433
|
165 |
for(typename Graph::NodeIt n(graph); n != INVALID; ++n) {
|
deba@433
|
166 |
if(!bfs.reached(n)) {
|
deba@433
|
167 |
bfs.addSource(n);
|
deba@433
|
168 |
while (!bfs.emptyQueue()) {
|
deba@433
|
169 |
compMap.set(bfs.nextNode(), compNum);
|
deba@433
|
170 |
bfs.processNextNode();
|
deba@433
|
171 |
}
|
deba@433
|
172 |
++compNum;
|
deba@433
|
173 |
}
|
deba@433
|
174 |
}
|
deba@433
|
175 |
return compNum;
|
deba@433
|
176 |
}
|
deba@433
|
177 |
|
deba@435
|
178 |
namespace _connectivity_bits {
|
deba@433
|
179 |
|
deba@433
|
180 |
template <typename Digraph, typename Iterator >
|
deba@433
|
181 |
struct LeaveOrderVisitor : public DfsVisitor<Digraph> {
|
deba@433
|
182 |
public:
|
deba@433
|
183 |
typedef typename Digraph::Node Node;
|
deba@433
|
184 |
LeaveOrderVisitor(Iterator it) : _it(it) {}
|
deba@433
|
185 |
|
deba@433
|
186 |
void leave(const Node& node) {
|
deba@433
|
187 |
*(_it++) = node;
|
deba@433
|
188 |
}
|
deba@433
|
189 |
|
deba@433
|
190 |
private:
|
deba@433
|
191 |
Iterator _it;
|
deba@433
|
192 |
};
|
deba@433
|
193 |
|
deba@433
|
194 |
template <typename Digraph, typename Map>
|
deba@433
|
195 |
struct FillMapVisitor : public DfsVisitor<Digraph> {
|
deba@433
|
196 |
public:
|
deba@433
|
197 |
typedef typename Digraph::Node Node;
|
deba@433
|
198 |
typedef typename Map::Value Value;
|
deba@433
|
199 |
|
deba@433
|
200 |
FillMapVisitor(Map& map, Value& value)
|
deba@433
|
201 |
: _map(map), _value(value) {}
|
deba@433
|
202 |
|
deba@433
|
203 |
void reach(const Node& node) {
|
deba@433
|
204 |
_map.set(node, _value);
|
deba@433
|
205 |
}
|
deba@433
|
206 |
private:
|
deba@433
|
207 |
Map& _map;
|
deba@433
|
208 |
Value& _value;
|
deba@433
|
209 |
};
|
deba@433
|
210 |
|
deba@433
|
211 |
template <typename Digraph, typename ArcMap>
|
deba@435
|
212 |
struct StronglyConnectedCutArcsVisitor : public DfsVisitor<Digraph> {
|
deba@433
|
213 |
public:
|
deba@433
|
214 |
typedef typename Digraph::Node Node;
|
deba@433
|
215 |
typedef typename Digraph::Arc Arc;
|
deba@433
|
216 |
|
deba@435
|
217 |
StronglyConnectedCutArcsVisitor(const Digraph& digraph,
|
deba@435
|
218 |
ArcMap& cutMap,
|
deba@435
|
219 |
int& cutNum)
|
deba@433
|
220 |
: _digraph(digraph), _cutMap(cutMap), _cutNum(cutNum),
|
deba@435
|
221 |
_compMap(digraph, -1), _num(-1) {
|
deba@433
|
222 |
}
|
deba@433
|
223 |
|
deba@435
|
224 |
void start(const Node&) {
|
deba@433
|
225 |
++_num;
|
deba@433
|
226 |
}
|
deba@433
|
227 |
|
deba@433
|
228 |
void reach(const Node& node) {
|
deba@433
|
229 |
_compMap.set(node, _num);
|
deba@433
|
230 |
}
|
deba@433
|
231 |
|
deba@433
|
232 |
void examine(const Arc& arc) {
|
deba@433
|
233 |
if (_compMap[_digraph.source(arc)] !=
|
deba@433
|
234 |
_compMap[_digraph.target(arc)]) {
|
deba@433
|
235 |
_cutMap.set(arc, true);
|
deba@433
|
236 |
++_cutNum;
|
deba@433
|
237 |
}
|
deba@433
|
238 |
}
|
deba@433
|
239 |
private:
|
deba@433
|
240 |
const Digraph& _digraph;
|
deba@433
|
241 |
ArcMap& _cutMap;
|
deba@433
|
242 |
int& _cutNum;
|
deba@433
|
243 |
|
deba@433
|
244 |
typename Digraph::template NodeMap<int> _compMap;
|
deba@433
|
245 |
int _num;
|
deba@433
|
246 |
};
|
deba@433
|
247 |
|
deba@433
|
248 |
}
|
deba@433
|
249 |
|
deba@433
|
250 |
|
kpeter@633
|
251 |
/// \ingroup graph_properties
|
deba@433
|
252 |
///
|
kpeter@695
|
253 |
/// \brief Check whether a directed graph is strongly connected.
|
deba@433
|
254 |
///
|
kpeter@695
|
255 |
/// This function checks whether the given directed graph is strongly
|
kpeter@695
|
256 |
/// connected, i.e. any two nodes of the digraph are
|
deba@433
|
257 |
/// connected with directed paths in both direction.
|
deba@433
|
258 |
///
|
kpeter@695
|
259 |
/// \return \c true if the digraph is strongly connected.
|
kpeter@695
|
260 |
/// \note By definition, the empty digraph is strongly connected.
|
kpeter@695
|
261 |
///
|
kpeter@695
|
262 |
/// \see countStronglyConnectedComponents(), stronglyConnectedComponents()
|
kpeter@695
|
263 |
/// \see connected()
|
deba@433
|
264 |
template <typename Digraph>
|
deba@433
|
265 |
bool stronglyConnected(const Digraph& digraph) {
|
deba@433
|
266 |
checkConcept<concepts::Digraph, Digraph>();
|
deba@433
|
267 |
|
deba@433
|
268 |
typedef typename Digraph::Node Node;
|
deba@433
|
269 |
typedef typename Digraph::NodeIt NodeIt;
|
deba@433
|
270 |
|
deba@433
|
271 |
typename Digraph::Node source = NodeIt(digraph);
|
deba@433
|
272 |
if (source == INVALID) return true;
|
deba@433
|
273 |
|
deba@435
|
274 |
using namespace _connectivity_bits;
|
deba@433
|
275 |
|
deba@433
|
276 |
typedef DfsVisitor<Digraph> Visitor;
|
deba@433
|
277 |
Visitor visitor;
|
deba@433
|
278 |
|
deba@433
|
279 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
|
deba@433
|
280 |
dfs.init();
|
deba@433
|
281 |
dfs.addSource(source);
|
deba@433
|
282 |
dfs.start();
|
deba@433
|
283 |
|
deba@433
|
284 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
deba@433
|
285 |
if (!dfs.reached(it)) {
|
deba@433
|
286 |
return false;
|
deba@433
|
287 |
}
|
deba@433
|
288 |
}
|
deba@433
|
289 |
|
deba@433
|
290 |
typedef ReverseDigraph<const Digraph> RDigraph;
|
deba@435
|
291 |
typedef typename RDigraph::NodeIt RNodeIt;
|
deba@433
|
292 |
RDigraph rdigraph(digraph);
|
deba@433
|
293 |
|
kpeter@695
|
294 |
typedef DfsVisitor<RDigraph> RVisitor;
|
deba@433
|
295 |
RVisitor rvisitor;
|
deba@433
|
296 |
|
deba@433
|
297 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
|
deba@433
|
298 |
rdfs.init();
|
deba@433
|
299 |
rdfs.addSource(source);
|
deba@433
|
300 |
rdfs.start();
|
deba@433
|
301 |
|
deba@435
|
302 |
for (RNodeIt it(rdigraph); it != INVALID; ++it) {
|
deba@433
|
303 |
if (!rdfs.reached(it)) {
|
deba@433
|
304 |
return false;
|
deba@433
|
305 |
}
|
deba@433
|
306 |
}
|
deba@433
|
307 |
|
deba@433
|
308 |
return true;
|
deba@433
|
309 |
}
|
deba@433
|
310 |
|
kpeter@633
|
311 |
/// \ingroup graph_properties
|
deba@433
|
312 |
///
|
kpeter@695
|
313 |
/// \brief Count the number of strongly connected components of a
|
kpeter@695
|
314 |
/// directed graph
|
deba@433
|
315 |
///
|
kpeter@695
|
316 |
/// This function counts the number of strongly connected components of
|
kpeter@695
|
317 |
/// the given directed graph.
|
kpeter@695
|
318 |
///
|
deba@433
|
319 |
/// The strongly connected components are the classes of an
|
kpeter@695
|
320 |
/// equivalence relation on the nodes of a digraph. Two nodes are in
|
deba@433
|
321 |
/// the same class if they are connected with directed paths in both
|
deba@433
|
322 |
/// direction.
|
deba@433
|
323 |
///
|
kpeter@695
|
324 |
/// \return The number of strongly connected components.
|
kpeter@695
|
325 |
/// \note By definition, the empty digraph has zero
|
deba@433
|
326 |
/// strongly connected components.
|
kpeter@695
|
327 |
///
|
kpeter@695
|
328 |
/// \see stronglyConnected(), stronglyConnectedComponents()
|
deba@433
|
329 |
template <typename Digraph>
|
deba@433
|
330 |
int countStronglyConnectedComponents(const Digraph& digraph) {
|
deba@433
|
331 |
checkConcept<concepts::Digraph, Digraph>();
|
deba@433
|
332 |
|
deba@435
|
333 |
using namespace _connectivity_bits;
|
deba@433
|
334 |
|
deba@433
|
335 |
typedef typename Digraph::Node Node;
|
deba@433
|
336 |
typedef typename Digraph::Arc Arc;
|
deba@433
|
337 |
typedef typename Digraph::NodeIt NodeIt;
|
deba@433
|
338 |
typedef typename Digraph::ArcIt ArcIt;
|
deba@433
|
339 |
|
deba@433
|
340 |
typedef std::vector<Node> Container;
|
deba@433
|
341 |
typedef typename Container::iterator Iterator;
|
deba@433
|
342 |
|
deba@433
|
343 |
Container nodes(countNodes(digraph));
|
deba@433
|
344 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
|
deba@433
|
345 |
Visitor visitor(nodes.begin());
|
deba@433
|
346 |
|
deba@433
|
347 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
|
deba@433
|
348 |
dfs.init();
|
deba@433
|
349 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
deba@433
|
350 |
if (!dfs.reached(it)) {
|
deba@433
|
351 |
dfs.addSource(it);
|
deba@433
|
352 |
dfs.start();
|
deba@433
|
353 |
}
|
deba@433
|
354 |
}
|
deba@433
|
355 |
|
deba@433
|
356 |
typedef typename Container::reverse_iterator RIterator;
|
deba@433
|
357 |
typedef ReverseDigraph<const Digraph> RDigraph;
|
deba@433
|
358 |
|
deba@433
|
359 |
RDigraph rdigraph(digraph);
|
deba@433
|
360 |
|
deba@433
|
361 |
typedef DfsVisitor<Digraph> RVisitor;
|
deba@433
|
362 |
RVisitor rvisitor;
|
deba@433
|
363 |
|
deba@433
|
364 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
|
deba@433
|
365 |
|
deba@433
|
366 |
int compNum = 0;
|
deba@433
|
367 |
|
deba@433
|
368 |
rdfs.init();
|
deba@433
|
369 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
|
deba@433
|
370 |
if (!rdfs.reached(*it)) {
|
deba@433
|
371 |
rdfs.addSource(*it);
|
deba@433
|
372 |
rdfs.start();
|
deba@433
|
373 |
++compNum;
|
deba@433
|
374 |
}
|
deba@433
|
375 |
}
|
deba@433
|
376 |
return compNum;
|
deba@433
|
377 |
}
|
deba@433
|
378 |
|
kpeter@633
|
379 |
/// \ingroup graph_properties
|
deba@433
|
380 |
///
|
deba@433
|
381 |
/// \brief Find the strongly connected components of a directed graph
|
deba@433
|
382 |
///
|
kpeter@695
|
383 |
/// This function finds the strongly connected components of the given
|
kpeter@695
|
384 |
/// directed graph. In addition, the numbering of the components will
|
kpeter@695
|
385 |
/// satisfy that there is no arc going from a higher numbered component
|
kpeter@695
|
386 |
/// to a lower one (i.e. it provides a topological order of the components).
|
kpeter@695
|
387 |
///
|
kpeter@695
|
388 |
/// The strongly connected components are the classes of an
|
kpeter@695
|
389 |
/// equivalence relation on the nodes of a digraph. Two nodes are in
|
kpeter@695
|
390 |
/// the same class if they are connected with directed paths in both
|
kpeter@695
|
391 |
/// direction.
|
deba@433
|
392 |
///
|
kpeter@633
|
393 |
/// \image html strongly_connected_components.png
|
kpeter@633
|
394 |
/// \image latex strongly_connected_components.eps "Strongly connected components" width=\textwidth
|
kpeter@633
|
395 |
///
|
deba@433
|
396 |
/// \param digraph The digraph.
|
deba@433
|
397 |
/// \retval compMap A writable node map. The values will be set from 0 to
|
deba@433
|
398 |
/// the number of the strongly connected components minus one. Each value
|
kpeter@695
|
399 |
/// of the map will be set exactly once, and the values of a certain
|
kpeter@695
|
400 |
/// component will be set continuously.
|
kpeter@695
|
401 |
/// \return The number of strongly connected components.
|
kpeter@695
|
402 |
/// \note By definition, the empty digraph has zero
|
kpeter@695
|
403 |
/// strongly connected components.
|
kpeter@695
|
404 |
///
|
kpeter@695
|
405 |
/// \see stronglyConnected(), countStronglyConnectedComponents()
|
deba@433
|
406 |
template <typename Digraph, typename NodeMap>
|
deba@433
|
407 |
int stronglyConnectedComponents(const Digraph& digraph, NodeMap& compMap) {
|
deba@433
|
408 |
checkConcept<concepts::Digraph, Digraph>();
|
deba@433
|
409 |
typedef typename Digraph::Node Node;
|
deba@433
|
410 |
typedef typename Digraph::NodeIt NodeIt;
|
deba@433
|
411 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
|
deba@433
|
412 |
|
deba@435
|
413 |
using namespace _connectivity_bits;
|
deba@433
|
414 |
|
deba@433
|
415 |
typedef std::vector<Node> Container;
|
deba@433
|
416 |
typedef typename Container::iterator Iterator;
|
deba@433
|
417 |
|
deba@433
|
418 |
Container nodes(countNodes(digraph));
|
deba@433
|
419 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
|
deba@433
|
420 |
Visitor visitor(nodes.begin());
|
deba@433
|
421 |
|
deba@433
|
422 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
|
deba@433
|
423 |
dfs.init();
|
deba@433
|
424 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
deba@433
|
425 |
if (!dfs.reached(it)) {
|
deba@433
|
426 |
dfs.addSource(it);
|
deba@433
|
427 |
dfs.start();
|
deba@433
|
428 |
}
|
deba@433
|
429 |
}
|
deba@433
|
430 |
|
deba@433
|
431 |
typedef typename Container::reverse_iterator RIterator;
|
deba@433
|
432 |
typedef ReverseDigraph<const Digraph> RDigraph;
|
deba@433
|
433 |
|
deba@433
|
434 |
RDigraph rdigraph(digraph);
|
deba@433
|
435 |
|
deba@433
|
436 |
int compNum = 0;
|
deba@433
|
437 |
|
deba@433
|
438 |
typedef FillMapVisitor<RDigraph, NodeMap> RVisitor;
|
deba@433
|
439 |
RVisitor rvisitor(compMap, compNum);
|
deba@433
|
440 |
|
deba@433
|
441 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
|
deba@433
|
442 |
|
deba@433
|
443 |
rdfs.init();
|
deba@433
|
444 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
|
deba@433
|
445 |
if (!rdfs.reached(*it)) {
|
deba@433
|
446 |
rdfs.addSource(*it);
|
deba@433
|
447 |
rdfs.start();
|
deba@433
|
448 |
++compNum;
|
deba@433
|
449 |
}
|
deba@433
|
450 |
}
|
deba@433
|
451 |
return compNum;
|
deba@433
|
452 |
}
|
deba@433
|
453 |
|
kpeter@633
|
454 |
/// \ingroup graph_properties
|
deba@433
|
455 |
///
|
deba@433
|
456 |
/// \brief Find the cut arcs of the strongly connected components.
|
deba@433
|
457 |
///
|
kpeter@695
|
458 |
/// This function finds the cut arcs of the strongly connected components
|
kpeter@695
|
459 |
/// of the given digraph.
|
kpeter@695
|
460 |
///
|
kpeter@695
|
461 |
/// The strongly connected components are the classes of an
|
kpeter@695
|
462 |
/// equivalence relation on the nodes of a digraph. Two nodes are in
|
kpeter@695
|
463 |
/// the same class if they are connected with directed paths in both
|
kpeter@695
|
464 |
/// direction.
|
deba@433
|
465 |
/// The strongly connected components are separated by the cut arcs.
|
deba@433
|
466 |
///
|
kpeter@695
|
467 |
/// \param digraph The digraph.
|
kpeter@695
|
468 |
/// \retval cutMap A writable arc map. The values will be set to \c true
|
kpeter@695
|
469 |
/// for the cut arcs (exactly once for each cut arc), and will not be
|
kpeter@695
|
470 |
/// changed for other arcs.
|
kpeter@695
|
471 |
/// \return The number of cut arcs.
|
deba@433
|
472 |
///
|
kpeter@695
|
473 |
/// \see stronglyConnected(), stronglyConnectedComponents()
|
deba@433
|
474 |
template <typename Digraph, typename ArcMap>
|
kpeter@695
|
475 |
int stronglyConnectedCutArcs(const Digraph& digraph, ArcMap& cutMap) {
|
deba@433
|
476 |
checkConcept<concepts::Digraph, Digraph>();
|
deba@433
|
477 |
typedef typename Digraph::Node Node;
|
deba@433
|
478 |
typedef typename Digraph::Arc Arc;
|
deba@433
|
479 |
typedef typename Digraph::NodeIt NodeIt;
|
deba@433
|
480 |
checkConcept<concepts::WriteMap<Arc, bool>, ArcMap>();
|
deba@433
|
481 |
|
deba@435
|
482 |
using namespace _connectivity_bits;
|
deba@433
|
483 |
|
deba@433
|
484 |
typedef std::vector<Node> Container;
|
deba@433
|
485 |
typedef typename Container::iterator Iterator;
|
deba@433
|
486 |
|
kpeter@695
|
487 |
Container nodes(countNodes(digraph));
|
deba@433
|
488 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
|
deba@433
|
489 |
Visitor visitor(nodes.begin());
|
deba@433
|
490 |
|
kpeter@695
|
491 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
|
deba@433
|
492 |
dfs.init();
|
kpeter@695
|
493 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
deba@433
|
494 |
if (!dfs.reached(it)) {
|
deba@433
|
495 |
dfs.addSource(it);
|
deba@433
|
496 |
dfs.start();
|
deba@433
|
497 |
}
|
deba@433
|
498 |
}
|
deba@433
|
499 |
|
deba@433
|
500 |
typedef typename Container::reverse_iterator RIterator;
|
deba@433
|
501 |
typedef ReverseDigraph<const Digraph> RDigraph;
|
deba@433
|
502 |
|
kpeter@695
|
503 |
RDigraph rdigraph(digraph);
|
deba@433
|
504 |
|
deba@433
|
505 |
int cutNum = 0;
|
deba@433
|
506 |
|
deba@435
|
507 |
typedef StronglyConnectedCutArcsVisitor<RDigraph, ArcMap> RVisitor;
|
kpeter@695
|
508 |
RVisitor rvisitor(rdigraph, cutMap, cutNum);
|
deba@433
|
509 |
|
kpeter@695
|
510 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
|
deba@433
|
511 |
|
deba@433
|
512 |
rdfs.init();
|
deba@433
|
513 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
|
deba@433
|
514 |
if (!rdfs.reached(*it)) {
|
deba@433
|
515 |
rdfs.addSource(*it);
|
deba@433
|
516 |
rdfs.start();
|
deba@433
|
517 |
}
|
deba@433
|
518 |
}
|
deba@433
|
519 |
return cutNum;
|
deba@433
|
520 |
}
|
deba@433
|
521 |
|
deba@435
|
522 |
namespace _connectivity_bits {
|
deba@433
|
523 |
|
deba@433
|
524 |
template <typename Digraph>
|
deba@433
|
525 |
class CountBiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
|
deba@433
|
526 |
public:
|
deba@433
|
527 |
typedef typename Digraph::Node Node;
|
deba@433
|
528 |
typedef typename Digraph::Arc Arc;
|
deba@433
|
529 |
typedef typename Digraph::Edge Edge;
|
deba@433
|
530 |
|
deba@433
|
531 |
CountBiNodeConnectedComponentsVisitor(const Digraph& graph, int &compNum)
|
deba@433
|
532 |
: _graph(graph), _compNum(compNum),
|
deba@433
|
533 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
deba@433
|
534 |
|
deba@433
|
535 |
void start(const Node& node) {
|
deba@433
|
536 |
_predMap.set(node, INVALID);
|
deba@433
|
537 |
}
|
deba@433
|
538 |
|
deba@433
|
539 |
void reach(const Node& node) {
|
deba@433
|
540 |
_numMap.set(node, _num);
|
deba@433
|
541 |
_retMap.set(node, _num);
|
deba@433
|
542 |
++_num;
|
deba@433
|
543 |
}
|
deba@433
|
544 |
|
deba@433
|
545 |
void discover(const Arc& edge) {
|
deba@433
|
546 |
_predMap.set(_graph.target(edge), _graph.source(edge));
|
deba@433
|
547 |
}
|
deba@433
|
548 |
|
deba@433
|
549 |
void examine(const Arc& edge) {
|
deba@433
|
550 |
if (_graph.source(edge) == _graph.target(edge) &&
|
deba@433
|
551 |
_graph.direction(edge)) {
|
deba@433
|
552 |
++_compNum;
|
deba@433
|
553 |
return;
|
deba@433
|
554 |
}
|
deba@433
|
555 |
if (_predMap[_graph.source(edge)] == _graph.target(edge)) {
|
deba@433
|
556 |
return;
|
deba@433
|
557 |
}
|
deba@433
|
558 |
if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
|
deba@433
|
559 |
_retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]);
|
deba@433
|
560 |
}
|
deba@433
|
561 |
}
|
deba@433
|
562 |
|
deba@433
|
563 |
void backtrack(const Arc& edge) {
|
deba@433
|
564 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
deba@433
|
565 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
|
deba@433
|
566 |
}
|
deba@433
|
567 |
if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
|
deba@433
|
568 |
++_compNum;
|
deba@433
|
569 |
}
|
deba@433
|
570 |
}
|
deba@433
|
571 |
|
deba@433
|
572 |
private:
|
deba@433
|
573 |
const Digraph& _graph;
|
deba@433
|
574 |
int& _compNum;
|
deba@433
|
575 |
|
deba@433
|
576 |
typename Digraph::template NodeMap<int> _numMap;
|
deba@433
|
577 |
typename Digraph::template NodeMap<int> _retMap;
|
deba@433
|
578 |
typename Digraph::template NodeMap<Node> _predMap;
|
deba@433
|
579 |
int _num;
|
deba@433
|
580 |
};
|
deba@433
|
581 |
|
deba@433
|
582 |
template <typename Digraph, typename ArcMap>
|
deba@433
|
583 |
class BiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
|
deba@433
|
584 |
public:
|
deba@433
|
585 |
typedef typename Digraph::Node Node;
|
deba@433
|
586 |
typedef typename Digraph::Arc Arc;
|
deba@433
|
587 |
typedef typename Digraph::Edge Edge;
|
deba@433
|
588 |
|
deba@433
|
589 |
BiNodeConnectedComponentsVisitor(const Digraph& graph,
|
deba@433
|
590 |
ArcMap& compMap, int &compNum)
|
deba@433
|
591 |
: _graph(graph), _compMap(compMap), _compNum(compNum),
|
deba@433
|
592 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
deba@433
|
593 |
|
deba@433
|
594 |
void start(const Node& node) {
|
deba@433
|
595 |
_predMap.set(node, INVALID);
|
deba@433
|
596 |
}
|
deba@433
|
597 |
|
deba@433
|
598 |
void reach(const Node& node) {
|
deba@433
|
599 |
_numMap.set(node, _num);
|
deba@433
|
600 |
_retMap.set(node, _num);
|
deba@433
|
601 |
++_num;
|
deba@433
|
602 |
}
|
deba@433
|
603 |
|
deba@433
|
604 |
void discover(const Arc& edge) {
|
deba@433
|
605 |
Node target = _graph.target(edge);
|
deba@433
|
606 |
_predMap.set(target, edge);
|
deba@433
|
607 |
_edgeStack.push(edge);
|
deba@433
|
608 |
}
|
deba@433
|
609 |
|
deba@433
|
610 |
void examine(const Arc& edge) {
|
deba@433
|
611 |
Node source = _graph.source(edge);
|
deba@433
|
612 |
Node target = _graph.target(edge);
|
deba@433
|
613 |
if (source == target && _graph.direction(edge)) {
|
deba@433
|
614 |
_compMap.set(edge, _compNum);
|
deba@433
|
615 |
++_compNum;
|
deba@433
|
616 |
return;
|
deba@433
|
617 |
}
|
deba@433
|
618 |
if (_numMap[target] < _numMap[source]) {
|
deba@433
|
619 |
if (_predMap[source] != _graph.oppositeArc(edge)) {
|
deba@433
|
620 |
_edgeStack.push(edge);
|
deba@433
|
621 |
}
|
deba@433
|
622 |
}
|
deba@433
|
623 |
if (_predMap[source] != INVALID &&
|
deba@433
|
624 |
target == _graph.source(_predMap[source])) {
|
deba@433
|
625 |
return;
|
deba@433
|
626 |
}
|
deba@433
|
627 |
if (_retMap[source] > _numMap[target]) {
|
deba@433
|
628 |
_retMap.set(source, _numMap[target]);
|
deba@433
|
629 |
}
|
deba@433
|
630 |
}
|
deba@433
|
631 |
|
deba@433
|
632 |
void backtrack(const Arc& edge) {
|
deba@433
|
633 |
Node source = _graph.source(edge);
|
deba@433
|
634 |
Node target = _graph.target(edge);
|
deba@433
|
635 |
if (_retMap[source] > _retMap[target]) {
|
deba@433
|
636 |
_retMap.set(source, _retMap[target]);
|
deba@433
|
637 |
}
|
deba@433
|
638 |
if (_numMap[source] <= _retMap[target]) {
|
deba@433
|
639 |
while (_edgeStack.top() != edge) {
|
deba@433
|
640 |
_compMap.set(_edgeStack.top(), _compNum);
|
deba@433
|
641 |
_edgeStack.pop();
|
deba@433
|
642 |
}
|
deba@433
|
643 |
_compMap.set(edge, _compNum);
|
deba@433
|
644 |
_edgeStack.pop();
|
deba@433
|
645 |
++_compNum;
|
deba@433
|
646 |
}
|
deba@433
|
647 |
}
|
deba@433
|
648 |
|
deba@433
|
649 |
private:
|
deba@433
|
650 |
const Digraph& _graph;
|
deba@433
|
651 |
ArcMap& _compMap;
|
deba@433
|
652 |
int& _compNum;
|
deba@433
|
653 |
|
deba@433
|
654 |
typename Digraph::template NodeMap<int> _numMap;
|
deba@433
|
655 |
typename Digraph::template NodeMap<int> _retMap;
|
deba@433
|
656 |
typename Digraph::template NodeMap<Arc> _predMap;
|
deba@433
|
657 |
std::stack<Edge> _edgeStack;
|
deba@433
|
658 |
int _num;
|
deba@433
|
659 |
};
|
deba@433
|
660 |
|
deba@433
|
661 |
|
deba@433
|
662 |
template <typename Digraph, typename NodeMap>
|
deba@433
|
663 |
class BiNodeConnectedCutNodesVisitor : public DfsVisitor<Digraph> {
|
deba@433
|
664 |
public:
|
deba@433
|
665 |
typedef typename Digraph::Node Node;
|
deba@433
|
666 |
typedef typename Digraph::Arc Arc;
|
deba@433
|
667 |
typedef typename Digraph::Edge Edge;
|
deba@433
|
668 |
|
deba@433
|
669 |
BiNodeConnectedCutNodesVisitor(const Digraph& graph, NodeMap& cutMap,
|
deba@433
|
670 |
int& cutNum)
|
deba@433
|
671 |
: _graph(graph), _cutMap(cutMap), _cutNum(cutNum),
|
deba@433
|
672 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
deba@433
|
673 |
|
deba@433
|
674 |
void start(const Node& node) {
|
deba@433
|
675 |
_predMap.set(node, INVALID);
|
deba@433
|
676 |
rootCut = false;
|
deba@433
|
677 |
}
|
deba@433
|
678 |
|
deba@433
|
679 |
void reach(const Node& node) {
|
deba@433
|
680 |
_numMap.set(node, _num);
|
deba@433
|
681 |
_retMap.set(node, _num);
|
deba@433
|
682 |
++_num;
|
deba@433
|
683 |
}
|
deba@433
|
684 |
|
deba@433
|
685 |
void discover(const Arc& edge) {
|
deba@433
|
686 |
_predMap.set(_graph.target(edge), _graph.source(edge));
|
deba@433
|
687 |
}
|
deba@433
|
688 |
|
deba@433
|
689 |
void examine(const Arc& edge) {
|
deba@433
|
690 |
if (_graph.source(edge) == _graph.target(edge) &&
|
deba@433
|
691 |
_graph.direction(edge)) {
|
deba@433
|
692 |
if (!_cutMap[_graph.source(edge)]) {
|
deba@433
|
693 |
_cutMap.set(_graph.source(edge), true);
|
deba@433
|
694 |
++_cutNum;
|
deba@433
|
695 |
}
|
deba@433
|
696 |
return;
|
deba@433
|
697 |
}
|
deba@433
|
698 |
if (_predMap[_graph.source(edge)] == _graph.target(edge)) return;
|
deba@433
|
699 |
if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
|
deba@433
|
700 |
_retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]);
|
deba@433
|
701 |
}
|
deba@433
|
702 |
}
|
deba@433
|
703 |
|
deba@433
|
704 |
void backtrack(const Arc& edge) {
|
deba@433
|
705 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
deba@433
|
706 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
|
deba@433
|
707 |
}
|
deba@433
|
708 |
if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
|
deba@433
|
709 |
if (_predMap[_graph.source(edge)] != INVALID) {
|
deba@433
|
710 |
if (!_cutMap[_graph.source(edge)]) {
|
deba@433
|
711 |
_cutMap.set(_graph.source(edge), true);
|
deba@433
|
712 |
++_cutNum;
|
deba@433
|
713 |
}
|
deba@433
|
714 |
} else if (rootCut) {
|
deba@433
|
715 |
if (!_cutMap[_graph.source(edge)]) {
|
deba@433
|
716 |
_cutMap.set(_graph.source(edge), true);
|
deba@433
|
717 |
++_cutNum;
|
deba@433
|
718 |
}
|
deba@433
|
719 |
} else {
|
deba@433
|
720 |
rootCut = true;
|
deba@433
|
721 |
}
|
deba@433
|
722 |
}
|
deba@433
|
723 |
}
|
deba@433
|
724 |
|
deba@433
|
725 |
private:
|
deba@433
|
726 |
const Digraph& _graph;
|
deba@433
|
727 |
NodeMap& _cutMap;
|
deba@433
|
728 |
int& _cutNum;
|
deba@433
|
729 |
|
deba@433
|
730 |
typename Digraph::template NodeMap<int> _numMap;
|
deba@433
|
731 |
typename Digraph::template NodeMap<int> _retMap;
|
deba@433
|
732 |
typename Digraph::template NodeMap<Node> _predMap;
|
deba@433
|
733 |
std::stack<Edge> _edgeStack;
|
deba@433
|
734 |
int _num;
|
deba@433
|
735 |
bool rootCut;
|
deba@433
|
736 |
};
|
deba@433
|
737 |
|
deba@433
|
738 |
}
|
deba@433
|
739 |
|
deba@433
|
740 |
template <typename Graph>
|
deba@433
|
741 |
int countBiNodeConnectedComponents(const Graph& graph);
|
deba@433
|
742 |
|
kpeter@633
|
743 |
/// \ingroup graph_properties
|
deba@433
|
744 |
///
|
kpeter@695
|
745 |
/// \brief Check whether an undirected graph is bi-node-connected.
|
deba@433
|
746 |
///
|
kpeter@695
|
747 |
/// This function checks whether the given undirected graph is
|
kpeter@695
|
748 |
/// bi-node-connected, i.e. any two edges are on same circle.
|
deba@433
|
749 |
///
|
kpeter@695
|
750 |
/// \return \c true if the graph bi-node-connected.
|
kpeter@695
|
751 |
/// \note By definition, the empty graph is bi-node-connected.
|
kpeter@695
|
752 |
///
|
kpeter@695
|
753 |
/// \see countBiNodeConnectedComponents(), biNodeConnectedComponents()
|
deba@433
|
754 |
template <typename Graph>
|
deba@433
|
755 |
bool biNodeConnected(const Graph& graph) {
|
deba@433
|
756 |
return countBiNodeConnectedComponents(graph) <= 1;
|
deba@433
|
757 |
}
|
deba@433
|
758 |
|
kpeter@633
|
759 |
/// \ingroup graph_properties
|
deba@433
|
760 |
///
|
kpeter@695
|
761 |
/// \brief Count the number of bi-node-connected components of an
|
kpeter@695
|
762 |
/// undirected graph.
|
deba@433
|
763 |
///
|
kpeter@695
|
764 |
/// This function counts the number of bi-node-connected components of
|
kpeter@695
|
765 |
/// the given undirected graph.
|
deba@433
|
766 |
///
|
kpeter@695
|
767 |
/// The bi-node-connected components are the classes of an equivalence
|
kpeter@695
|
768 |
/// relation on the edges of a undirected graph. Two edges are in the
|
kpeter@695
|
769 |
/// same class if they are on same circle.
|
kpeter@695
|
770 |
///
|
kpeter@695
|
771 |
/// \return The number of bi-node-connected components.
|
kpeter@695
|
772 |
///
|
kpeter@695
|
773 |
/// \see biNodeConnected(), biNodeConnectedComponents()
|
deba@433
|
774 |
template <typename Graph>
|
deba@433
|
775 |
int countBiNodeConnectedComponents(const Graph& graph) {
|
deba@433
|
776 |
checkConcept<concepts::Graph, Graph>();
|
deba@433
|
777 |
typedef typename Graph::NodeIt NodeIt;
|
deba@433
|
778 |
|
deba@435
|
779 |
using namespace _connectivity_bits;
|
deba@433
|
780 |
|
deba@433
|
781 |
typedef CountBiNodeConnectedComponentsVisitor<Graph> Visitor;
|
deba@433
|
782 |
|
deba@433
|
783 |
int compNum = 0;
|
deba@433
|
784 |
Visitor visitor(graph, compNum);
|
deba@433
|
785 |
|
deba@433
|
786 |
DfsVisit<Graph, Visitor> dfs(graph, visitor);
|
deba@433
|
787 |
dfs.init();
|
deba@433
|
788 |
|
deba@433
|
789 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@433
|
790 |
if (!dfs.reached(it)) {
|
deba@433
|
791 |
dfs.addSource(it);
|
deba@433
|
792 |
dfs.start();
|
deba@433
|
793 |
}
|
deba@433
|
794 |
}
|
deba@433
|
795 |
return compNum;
|
deba@433
|
796 |
}
|
deba@433
|
797 |
|
kpeter@633
|
798 |
/// \ingroup graph_properties
|
deba@433
|
799 |
///
|
kpeter@695
|
800 |
/// \brief Find the bi-node-connected components of an undirected graph.
|
deba@433
|
801 |
///
|
kpeter@695
|
802 |
/// This function finds the bi-node-connected components of the given
|
kpeter@695
|
803 |
/// undirected graph.
|
kpeter@695
|
804 |
///
|
kpeter@695
|
805 |
/// The bi-node-connected components are the classes of an equivalence
|
kpeter@695
|
806 |
/// relation on the edges of a undirected graph. Two edges are in the
|
kpeter@695
|
807 |
/// same class if they are on same circle.
|
deba@433
|
808 |
///
|
kpeter@633
|
809 |
/// \image html node_biconnected_components.png
|
kpeter@633
|
810 |
/// \image latex node_biconnected_components.eps "bi-node-connected components" width=\textwidth
|
kpeter@633
|
811 |
///
|
kpeter@695
|
812 |
/// \param graph The undirected graph.
|
kpeter@695
|
813 |
/// \retval compMap A writable edge map. The values will be set from 0
|
kpeter@695
|
814 |
/// to the number of the bi-node-connected components minus one. Each
|
kpeter@695
|
815 |
/// value of the map will be set exactly once, and the values of a
|
kpeter@695
|
816 |
/// certain component will be set continuously.
|
kpeter@695
|
817 |
/// \return The number of bi-node-connected components.
|
kpeter@695
|
818 |
///
|
kpeter@695
|
819 |
/// \see biNodeConnected(), countBiNodeConnectedComponents()
|
deba@433
|
820 |
template <typename Graph, typename EdgeMap>
|
deba@433
|
821 |
int biNodeConnectedComponents(const Graph& graph,
|
deba@433
|
822 |
EdgeMap& compMap) {
|
deba@433
|
823 |
checkConcept<concepts::Graph, Graph>();
|
deba@433
|
824 |
typedef typename Graph::NodeIt NodeIt;
|
deba@433
|
825 |
typedef typename Graph::Edge Edge;
|
deba@433
|
826 |
checkConcept<concepts::WriteMap<Edge, int>, EdgeMap>();
|
deba@433
|
827 |
|
deba@435
|
828 |
using namespace _connectivity_bits;
|
deba@433
|
829 |
|
deba@433
|
830 |
typedef BiNodeConnectedComponentsVisitor<Graph, EdgeMap> Visitor;
|
deba@433
|
831 |
|
deba@433
|
832 |
int compNum = 0;
|
deba@433
|
833 |
Visitor visitor(graph, compMap, compNum);
|
deba@433
|
834 |
|
deba@433
|
835 |
DfsVisit<Graph, Visitor> dfs(graph, visitor);
|
deba@433
|
836 |
dfs.init();
|
deba@433
|
837 |
|
deba@433
|
838 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@433
|
839 |
if (!dfs.reached(it)) {
|
deba@433
|
840 |
dfs.addSource(it);
|
deba@433
|
841 |
dfs.start();
|
deba@433
|
842 |
}
|
deba@433
|
843 |
}
|
deba@433
|
844 |
return compNum;
|
deba@433
|
845 |
}
|
deba@433
|
846 |
|
kpeter@633
|
847 |
/// \ingroup graph_properties
|
deba@433
|
848 |
///
|
kpeter@695
|
849 |
/// \brief Find the bi-node-connected cut nodes in an undirected graph.
|
deba@433
|
850 |
///
|
kpeter@695
|
851 |
/// This function finds the bi-node-connected cut nodes in the given
|
kpeter@695
|
852 |
/// undirected graph.
|
deba@433
|
853 |
///
|
kpeter@695
|
854 |
/// The bi-node-connected components are the classes of an equivalence
|
kpeter@695
|
855 |
/// relation on the edges of a undirected graph. Two edges are in the
|
kpeter@695
|
856 |
/// same class if they are on same circle.
|
kpeter@695
|
857 |
/// The bi-node-connected components are separted by the cut nodes of
|
kpeter@695
|
858 |
/// the components.
|
kpeter@695
|
859 |
///
|
kpeter@695
|
860 |
/// \param graph The undirected graph.
|
kpeter@695
|
861 |
/// \retval cutMap A writable node map. The values will be set to
|
kpeter@695
|
862 |
/// \c true for the nodes that separate two or more components
|
kpeter@695
|
863 |
/// (exactly once for each cut node), and will not be changed for
|
kpeter@695
|
864 |
/// other nodes.
|
deba@433
|
865 |
/// \return The number of the cut nodes.
|
kpeter@695
|
866 |
///
|
kpeter@695
|
867 |
/// \see biNodeConnected(), biNodeConnectedComponents()
|
deba@433
|
868 |
template <typename Graph, typename NodeMap>
|
deba@433
|
869 |
int biNodeConnectedCutNodes(const Graph& graph, NodeMap& cutMap) {
|
deba@433
|
870 |
checkConcept<concepts::Graph, Graph>();
|
deba@433
|
871 |
typedef typename Graph::Node Node;
|
deba@433
|
872 |
typedef typename Graph::NodeIt NodeIt;
|
deba@433
|
873 |
checkConcept<concepts::WriteMap<Node, bool>, NodeMap>();
|
deba@433
|
874 |
|
deba@435
|
875 |
using namespace _connectivity_bits;
|
deba@433
|
876 |
|
deba@433
|
877 |
typedef BiNodeConnectedCutNodesVisitor<Graph, NodeMap> Visitor;
|
deba@433
|
878 |
|
deba@433
|
879 |
int cutNum = 0;
|
deba@433
|
880 |
Visitor visitor(graph, cutMap, cutNum);
|
deba@433
|
881 |
|
deba@433
|
882 |
DfsVisit<Graph, Visitor> dfs(graph, visitor);
|
deba@433
|
883 |
dfs.init();
|
deba@433
|
884 |
|
deba@433
|
885 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@433
|
886 |
if (!dfs.reached(it)) {
|
deba@433
|
887 |
dfs.addSource(it);
|
deba@433
|
888 |
dfs.start();
|
deba@433
|
889 |
}
|
deba@433
|
890 |
}
|
deba@433
|
891 |
return cutNum;
|
deba@433
|
892 |
}
|
deba@433
|
893 |
|
deba@435
|
894 |
namespace _connectivity_bits {
|
deba@433
|
895 |
|
deba@433
|
896 |
template <typename Digraph>
|
deba@433
|
897 |
class CountBiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
|
deba@433
|
898 |
public:
|
deba@433
|
899 |
typedef typename Digraph::Node Node;
|
deba@433
|
900 |
typedef typename Digraph::Arc Arc;
|
deba@433
|
901 |
typedef typename Digraph::Edge Edge;
|
deba@433
|
902 |
|
deba@433
|
903 |
CountBiEdgeConnectedComponentsVisitor(const Digraph& graph, int &compNum)
|
deba@433
|
904 |
: _graph(graph), _compNum(compNum),
|
deba@433
|
905 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
deba@433
|
906 |
|
deba@433
|
907 |
void start(const Node& node) {
|
deba@433
|
908 |
_predMap.set(node, INVALID);
|
deba@433
|
909 |
}
|
deba@433
|
910 |
|
deba@433
|
911 |
void reach(const Node& node) {
|
deba@433
|
912 |
_numMap.set(node, _num);
|
deba@433
|
913 |
_retMap.set(node, _num);
|
deba@433
|
914 |
++_num;
|
deba@433
|
915 |
}
|
deba@433
|
916 |
|
deba@433
|
917 |
void leave(const Node& node) {
|
deba@433
|
918 |
if (_numMap[node] <= _retMap[node]) {
|
deba@433
|
919 |
++_compNum;
|
deba@433
|
920 |
}
|
deba@433
|
921 |
}
|
deba@433
|
922 |
|
deba@433
|
923 |
void discover(const Arc& edge) {
|
deba@433
|
924 |
_predMap.set(_graph.target(edge), edge);
|
deba@433
|
925 |
}
|
deba@433
|
926 |
|
deba@433
|
927 |
void examine(const Arc& edge) {
|
deba@433
|
928 |
if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
|
deba@433
|
929 |
return;
|
deba@433
|
930 |
}
|
deba@433
|
931 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
deba@433
|
932 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
|
deba@433
|
933 |
}
|
deba@433
|
934 |
}
|
deba@433
|
935 |
|
deba@433
|
936 |
void backtrack(const Arc& edge) {
|
deba@433
|
937 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
deba@433
|
938 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
|
deba@433
|
939 |
}
|
deba@433
|
940 |
}
|
deba@433
|
941 |
|
deba@433
|
942 |
private:
|
deba@433
|
943 |
const Digraph& _graph;
|
deba@433
|
944 |
int& _compNum;
|
deba@433
|
945 |
|
deba@433
|
946 |
typename Digraph::template NodeMap<int> _numMap;
|
deba@433
|
947 |
typename Digraph::template NodeMap<int> _retMap;
|
deba@433
|
948 |
typename Digraph::template NodeMap<Arc> _predMap;
|
deba@433
|
949 |
int _num;
|
deba@433
|
950 |
};
|
deba@433
|
951 |
|
deba@433
|
952 |
template <typename Digraph, typename NodeMap>
|
deba@433
|
953 |
class BiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
|
deba@433
|
954 |
public:
|
deba@433
|
955 |
typedef typename Digraph::Node Node;
|
deba@433
|
956 |
typedef typename Digraph::Arc Arc;
|
deba@433
|
957 |
typedef typename Digraph::Edge Edge;
|
deba@433
|
958 |
|
deba@433
|
959 |
BiEdgeConnectedComponentsVisitor(const Digraph& graph,
|
deba@433
|
960 |
NodeMap& compMap, int &compNum)
|
deba@433
|
961 |
: _graph(graph), _compMap(compMap), _compNum(compNum),
|
deba@433
|
962 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
deba@433
|
963 |
|
deba@433
|
964 |
void start(const Node& node) {
|
deba@433
|
965 |
_predMap.set(node, INVALID);
|
deba@433
|
966 |
}
|
deba@433
|
967 |
|
deba@433
|
968 |
void reach(const Node& node) {
|
deba@433
|
969 |
_numMap.set(node, _num);
|
deba@433
|
970 |
_retMap.set(node, _num);
|
deba@433
|
971 |
_nodeStack.push(node);
|
deba@433
|
972 |
++_num;
|
deba@433
|
973 |
}
|
deba@433
|
974 |
|
deba@433
|
975 |
void leave(const Node& node) {
|
deba@433
|
976 |
if (_numMap[node] <= _retMap[node]) {
|
deba@433
|
977 |
while (_nodeStack.top() != node) {
|
deba@433
|
978 |
_compMap.set(_nodeStack.top(), _compNum);
|
deba@433
|
979 |
_nodeStack.pop();
|
deba@433
|
980 |
}
|
deba@433
|
981 |
_compMap.set(node, _compNum);
|
deba@433
|
982 |
_nodeStack.pop();
|
deba@433
|
983 |
++_compNum;
|
deba@433
|
984 |
}
|
deba@433
|
985 |
}
|
deba@433
|
986 |
|
deba@433
|
987 |
void discover(const Arc& edge) {
|
deba@433
|
988 |
_predMap.set(_graph.target(edge), edge);
|
deba@433
|
989 |
}
|
deba@433
|
990 |
|
deba@433
|
991 |
void examine(const Arc& edge) {
|
deba@433
|
992 |
if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
|
deba@433
|
993 |
return;
|
deba@433
|
994 |
}
|
deba@433
|
995 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
deba@433
|
996 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
|
deba@433
|
997 |
}
|
deba@433
|
998 |
}
|
deba@433
|
999 |
|
deba@433
|
1000 |
void backtrack(const Arc& edge) {
|
deba@433
|
1001 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
deba@433
|
1002 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
|
deba@433
|
1003 |
}
|
deba@433
|
1004 |
}
|
deba@433
|
1005 |
|
deba@433
|
1006 |
private:
|
deba@433
|
1007 |
const Digraph& _graph;
|
deba@433
|
1008 |
NodeMap& _compMap;
|
deba@433
|
1009 |
int& _compNum;
|
deba@433
|
1010 |
|
deba@433
|
1011 |
typename Digraph::template NodeMap<int> _numMap;
|
deba@433
|
1012 |
typename Digraph::template NodeMap<int> _retMap;
|
deba@433
|
1013 |
typename Digraph::template NodeMap<Arc> _predMap;
|
deba@433
|
1014 |
std::stack<Node> _nodeStack;
|
deba@433
|
1015 |
int _num;
|
deba@433
|
1016 |
};
|
deba@433
|
1017 |
|
deba@433
|
1018 |
|
deba@433
|
1019 |
template <typename Digraph, typename ArcMap>
|
deba@433
|
1020 |
class BiEdgeConnectedCutEdgesVisitor : public DfsVisitor<Digraph> {
|
deba@433
|
1021 |
public:
|
deba@433
|
1022 |
typedef typename Digraph::Node Node;
|
deba@433
|
1023 |
typedef typename Digraph::Arc Arc;
|
deba@433
|
1024 |
typedef typename Digraph::Edge Edge;
|
deba@433
|
1025 |
|
deba@433
|
1026 |
BiEdgeConnectedCutEdgesVisitor(const Digraph& graph,
|
deba@433
|
1027 |
ArcMap& cutMap, int &cutNum)
|
deba@433
|
1028 |
: _graph(graph), _cutMap(cutMap), _cutNum(cutNum),
|
deba@433
|
1029 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
deba@433
|
1030 |
|
deba@433
|
1031 |
void start(const Node& node) {
|
deba@433
|
1032 |
_predMap[node] = INVALID;
|
deba@433
|
1033 |
}
|
deba@433
|
1034 |
|
deba@433
|
1035 |
void reach(const Node& node) {
|
deba@433
|
1036 |
_numMap.set(node, _num);
|
deba@433
|
1037 |
_retMap.set(node, _num);
|
deba@433
|
1038 |
++_num;
|
deba@433
|
1039 |
}
|
deba@433
|
1040 |
|
deba@433
|
1041 |
void leave(const Node& node) {
|
deba@433
|
1042 |
if (_numMap[node] <= _retMap[node]) {
|
deba@433
|
1043 |
if (_predMap[node] != INVALID) {
|
deba@433
|
1044 |
_cutMap.set(_predMap[node], true);
|
deba@433
|
1045 |
++_cutNum;
|
deba@433
|
1046 |
}
|
deba@433
|
1047 |
}
|
deba@433
|
1048 |
}
|
deba@433
|
1049 |
|
deba@433
|
1050 |
void discover(const Arc& edge) {
|
deba@433
|
1051 |
_predMap.set(_graph.target(edge), edge);
|
deba@433
|
1052 |
}
|
deba@433
|
1053 |
|
deba@433
|
1054 |
void examine(const Arc& edge) {
|
deba@433
|
1055 |
if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
|
deba@433
|
1056 |
return;
|
deba@433
|
1057 |
}
|
deba@433
|
1058 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
deba@433
|
1059 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
|
deba@433
|
1060 |
}
|
deba@433
|
1061 |
}
|
deba@433
|
1062 |
|
deba@433
|
1063 |
void backtrack(const Arc& edge) {
|
deba@433
|
1064 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
deba@433
|
1065 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
|
deba@433
|
1066 |
}
|
deba@433
|
1067 |
}
|
deba@433
|
1068 |
|
deba@433
|
1069 |
private:
|
deba@433
|
1070 |
const Digraph& _graph;
|
deba@433
|
1071 |
ArcMap& _cutMap;
|
deba@433
|
1072 |
int& _cutNum;
|
deba@433
|
1073 |
|
deba@433
|
1074 |
typename Digraph::template NodeMap<int> _numMap;
|
deba@433
|
1075 |
typename Digraph::template NodeMap<int> _retMap;
|
deba@433
|
1076 |
typename Digraph::template NodeMap<Arc> _predMap;
|
deba@433
|
1077 |
int _num;
|
deba@433
|
1078 |
};
|
deba@433
|
1079 |
}
|
deba@433
|
1080 |
|
deba@433
|
1081 |
template <typename Graph>
|
deba@433
|
1082 |
int countBiEdgeConnectedComponents(const Graph& graph);
|
deba@433
|
1083 |
|
kpeter@633
|
1084 |
/// \ingroup graph_properties
|
deba@433
|
1085 |
///
|
kpeter@695
|
1086 |
/// \brief Check whether an undirected graph is bi-edge-connected.
|
deba@433
|
1087 |
///
|
kpeter@695
|
1088 |
/// This function checks whether the given undirected graph is
|
kpeter@695
|
1089 |
/// bi-edge-connected, i.e. any two nodes are connected with at least
|
kpeter@695
|
1090 |
/// two edge-disjoint paths.
|
deba@433
|
1091 |
///
|
kpeter@695
|
1092 |
/// \return \c true if the graph is bi-edge-connected.
|
kpeter@695
|
1093 |
/// \note By definition, the empty graph is bi-edge-connected.
|
kpeter@695
|
1094 |
///
|
kpeter@695
|
1095 |
/// \see countBiEdgeConnectedComponents(), biEdgeConnectedComponents()
|
deba@433
|
1096 |
template <typename Graph>
|
deba@433
|
1097 |
bool biEdgeConnected(const Graph& graph) {
|
deba@433
|
1098 |
return countBiEdgeConnectedComponents(graph) <= 1;
|
deba@433
|
1099 |
}
|
deba@433
|
1100 |
|
kpeter@633
|
1101 |
/// \ingroup graph_properties
|
deba@433
|
1102 |
///
|
kpeter@695
|
1103 |
/// \brief Count the number of bi-edge-connected components of an
|
kpeter@695
|
1104 |
/// undirected graph.
|
deba@433
|
1105 |
///
|
kpeter@695
|
1106 |
/// This function counts the number of bi-edge-connected components of
|
kpeter@695
|
1107 |
/// the given undirected graph.
|
deba@433
|
1108 |
///
|
kpeter@695
|
1109 |
/// The bi-edge-connected components are the classes of an equivalence
|
kpeter@695
|
1110 |
/// relation on the nodes of an undirected graph. Two nodes are in the
|
kpeter@695
|
1111 |
/// same class if they are connected with at least two edge-disjoint
|
kpeter@695
|
1112 |
/// paths.
|
kpeter@695
|
1113 |
///
|
kpeter@695
|
1114 |
/// \return The number of bi-edge-connected components.
|
kpeter@695
|
1115 |
///
|
kpeter@695
|
1116 |
/// \see biEdgeConnected(), biEdgeConnectedComponents()
|
deba@433
|
1117 |
template <typename Graph>
|
deba@433
|
1118 |
int countBiEdgeConnectedComponents(const Graph& graph) {
|
deba@433
|
1119 |
checkConcept<concepts::Graph, Graph>();
|
deba@433
|
1120 |
typedef typename Graph::NodeIt NodeIt;
|
deba@433
|
1121 |
|
deba@435
|
1122 |
using namespace _connectivity_bits;
|
deba@433
|
1123 |
|
deba@433
|
1124 |
typedef CountBiEdgeConnectedComponentsVisitor<Graph> Visitor;
|
deba@433
|
1125 |
|
deba@433
|
1126 |
int compNum = 0;
|
deba@433
|
1127 |
Visitor visitor(graph, compNum);
|
deba@433
|
1128 |
|
deba@433
|
1129 |
DfsVisit<Graph, Visitor> dfs(graph, visitor);
|
deba@433
|
1130 |
dfs.init();
|
deba@433
|
1131 |
|
deba@433
|
1132 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@433
|
1133 |
if (!dfs.reached(it)) {
|
deba@433
|
1134 |
dfs.addSource(it);
|
deba@433
|
1135 |
dfs.start();
|
deba@433
|
1136 |
}
|
deba@433
|
1137 |
}
|
deba@433
|
1138 |
return compNum;
|
deba@433
|
1139 |
}
|
deba@433
|
1140 |
|
kpeter@633
|
1141 |
/// \ingroup graph_properties
|
deba@433
|
1142 |
///
|
kpeter@695
|
1143 |
/// \brief Find the bi-edge-connected components of an undirected graph.
|
deba@433
|
1144 |
///
|
kpeter@695
|
1145 |
/// This function finds the bi-edge-connected components of the given
|
kpeter@695
|
1146 |
/// undirected graph.
|
kpeter@695
|
1147 |
///
|
kpeter@695
|
1148 |
/// The bi-edge-connected components are the classes of an equivalence
|
kpeter@695
|
1149 |
/// relation on the nodes of an undirected graph. Two nodes are in the
|
kpeter@695
|
1150 |
/// same class if they are connected with at least two edge-disjoint
|
kpeter@695
|
1151 |
/// paths.
|
deba@433
|
1152 |
///
|
kpeter@633
|
1153 |
/// \image html edge_biconnected_components.png
|
kpeter@633
|
1154 |
/// \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
|
kpeter@633
|
1155 |
///
|
kpeter@695
|
1156 |
/// \param graph The undirected graph.
|
deba@433
|
1157 |
/// \retval compMap A writable node map. The values will be set from 0 to
|
kpeter@695
|
1158 |
/// the number of the bi-edge-connected components minus one. Each value
|
kpeter@695
|
1159 |
/// of the map will be set exactly once, and the values of a certain
|
kpeter@695
|
1160 |
/// component will be set continuously.
|
kpeter@695
|
1161 |
/// \return The number of bi-edge-connected components.
|
kpeter@695
|
1162 |
///
|
kpeter@695
|
1163 |
/// \see biEdgeConnected(), countBiEdgeConnectedComponents()
|
deba@433
|
1164 |
template <typename Graph, typename NodeMap>
|
deba@433
|
1165 |
int biEdgeConnectedComponents(const Graph& graph, NodeMap& compMap) {
|
deba@433
|
1166 |
checkConcept<concepts::Graph, Graph>();
|
deba@433
|
1167 |
typedef typename Graph::NodeIt NodeIt;
|
deba@433
|
1168 |
typedef typename Graph::Node Node;
|
deba@433
|
1169 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
|
deba@433
|
1170 |
|
deba@435
|
1171 |
using namespace _connectivity_bits;
|
deba@433
|
1172 |
|
deba@433
|
1173 |
typedef BiEdgeConnectedComponentsVisitor<Graph, NodeMap> Visitor;
|
deba@433
|
1174 |
|
deba@433
|
1175 |
int compNum = 0;
|
deba@433
|
1176 |
Visitor visitor(graph, compMap, compNum);
|
deba@433
|
1177 |
|
deba@433
|
1178 |
DfsVisit<Graph, Visitor> dfs(graph, visitor);
|
deba@433
|
1179 |
dfs.init();
|
deba@433
|
1180 |
|
deba@433
|
1181 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@433
|
1182 |
if (!dfs.reached(it)) {
|
deba@433
|
1183 |
dfs.addSource(it);
|
deba@433
|
1184 |
dfs.start();
|
deba@433
|
1185 |
}
|
deba@433
|
1186 |
}
|
deba@433
|
1187 |
return compNum;
|
deba@433
|
1188 |
}
|
deba@433
|
1189 |
|
kpeter@633
|
1190 |
/// \ingroup graph_properties
|
deba@433
|
1191 |
///
|
kpeter@695
|
1192 |
/// \brief Find the bi-edge-connected cut edges in an undirected graph.
|
deba@433
|
1193 |
///
|
kpeter@695
|
1194 |
/// This function finds the bi-edge-connected cut edges in the given
|
kpeter@695
|
1195 |
/// undirected graph.
|
deba@433
|
1196 |
///
|
kpeter@695
|
1197 |
/// The bi-edge-connected components are the classes of an equivalence
|
kpeter@695
|
1198 |
/// relation on the nodes of an undirected graph. Two nodes are in the
|
kpeter@695
|
1199 |
/// same class if they are connected with at least two edge-disjoint
|
kpeter@695
|
1200 |
/// paths.
|
kpeter@695
|
1201 |
/// The bi-edge-connected components are separted by the cut edges of
|
kpeter@695
|
1202 |
/// the components.
|
kpeter@695
|
1203 |
///
|
kpeter@695
|
1204 |
/// \param graph The undirected graph.
|
kpeter@695
|
1205 |
/// \retval cutMap A writable edge map. The values will be set to \c true
|
kpeter@695
|
1206 |
/// for the cut edges (exactly once for each cut edge), and will not be
|
kpeter@695
|
1207 |
/// changed for other edges.
|
deba@433
|
1208 |
/// \return The number of cut edges.
|
kpeter@695
|
1209 |
///
|
kpeter@695
|
1210 |
/// \see biEdgeConnected(), biEdgeConnectedComponents()
|
deba@433
|
1211 |
template <typename Graph, typename EdgeMap>
|
deba@433
|
1212 |
int biEdgeConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) {
|
deba@433
|
1213 |
checkConcept<concepts::Graph, Graph>();
|
deba@433
|
1214 |
typedef typename Graph::NodeIt NodeIt;
|
deba@433
|
1215 |
typedef typename Graph::Edge Edge;
|
deba@433
|
1216 |
checkConcept<concepts::WriteMap<Edge, bool>, EdgeMap>();
|
deba@433
|
1217 |
|
deba@435
|
1218 |
using namespace _connectivity_bits;
|
deba@433
|
1219 |
|
deba@433
|
1220 |
typedef BiEdgeConnectedCutEdgesVisitor<Graph, EdgeMap> Visitor;
|
deba@433
|
1221 |
|
deba@433
|
1222 |
int cutNum = 0;
|
deba@433
|
1223 |
Visitor visitor(graph, cutMap, cutNum);
|
deba@433
|
1224 |
|
deba@433
|
1225 |
DfsVisit<Graph, Visitor> dfs(graph, visitor);
|
deba@433
|
1226 |
dfs.init();
|
deba@433
|
1227 |
|
deba@433
|
1228 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@433
|
1229 |
if (!dfs.reached(it)) {
|
deba@433
|
1230 |
dfs.addSource(it);
|
deba@433
|
1231 |
dfs.start();
|
deba@433
|
1232 |
}
|
deba@433
|
1233 |
}
|
deba@433
|
1234 |
return cutNum;
|
deba@433
|
1235 |
}
|
deba@433
|
1236 |
|
deba@433
|
1237 |
|
deba@435
|
1238 |
namespace _connectivity_bits {
|
deba@433
|
1239 |
|
deba@433
|
1240 |
template <typename Digraph, typename IntNodeMap>
|
deba@433
|
1241 |
class TopologicalSortVisitor : public DfsVisitor<Digraph> {
|
deba@433
|
1242 |
public:
|
deba@433
|
1243 |
typedef typename Digraph::Node Node;
|
deba@433
|
1244 |
typedef typename Digraph::Arc edge;
|
deba@433
|
1245 |
|
deba@433
|
1246 |
TopologicalSortVisitor(IntNodeMap& order, int num)
|
deba@433
|
1247 |
: _order(order), _num(num) {}
|
deba@433
|
1248 |
|
deba@433
|
1249 |
void leave(const Node& node) {
|
deba@433
|
1250 |
_order.set(node, --_num);
|
deba@433
|
1251 |
}
|
deba@433
|
1252 |
|
deba@433
|
1253 |
private:
|
deba@433
|
1254 |
IntNodeMap& _order;
|
deba@433
|
1255 |
int _num;
|
deba@433
|
1256 |
};
|
deba@433
|
1257 |
|
deba@433
|
1258 |
}
|
deba@433
|
1259 |
|
kpeter@633
|
1260 |
/// \ingroup graph_properties
|
deba@433
|
1261 |
///
|
kpeter@695
|
1262 |
/// \brief Check whether a digraph is DAG.
|
kpeter@695
|
1263 |
///
|
kpeter@695
|
1264 |
/// This function checks whether the given digraph is DAG, i.e.
|
kpeter@695
|
1265 |
/// \e Directed \e Acyclic \e Graph.
|
kpeter@695
|
1266 |
/// \return \c true if there is no directed cycle in the digraph.
|
kpeter@695
|
1267 |
/// \see acyclic()
|
kpeter@695
|
1268 |
template <typename Digraph>
|
kpeter@695
|
1269 |
bool dag(const Digraph& digraph) {
|
kpeter@695
|
1270 |
|
kpeter@695
|
1271 |
checkConcept<concepts::Digraph, Digraph>();
|
kpeter@695
|
1272 |
|
kpeter@695
|
1273 |
typedef typename Digraph::Node Node;
|
kpeter@695
|
1274 |
typedef typename Digraph::NodeIt NodeIt;
|
kpeter@695
|
1275 |
typedef typename Digraph::Arc Arc;
|
kpeter@695
|
1276 |
|
kpeter@695
|
1277 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap;
|
kpeter@695
|
1278 |
|
kpeter@695
|
1279 |
typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>::
|
kpeter@695
|
1280 |
Create dfs(digraph);
|
kpeter@695
|
1281 |
|
kpeter@695
|
1282 |
ProcessedMap processed(digraph);
|
kpeter@695
|
1283 |
dfs.processedMap(processed);
|
kpeter@695
|
1284 |
|
kpeter@695
|
1285 |
dfs.init();
|
kpeter@695
|
1286 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
kpeter@695
|
1287 |
if (!dfs.reached(it)) {
|
kpeter@695
|
1288 |
dfs.addSource(it);
|
kpeter@695
|
1289 |
while (!dfs.emptyQueue()) {
|
kpeter@695
|
1290 |
Arc arc = dfs.nextArc();
|
kpeter@695
|
1291 |
Node target = digraph.target(arc);
|
kpeter@695
|
1292 |
if (dfs.reached(target) && !processed[target]) {
|
kpeter@695
|
1293 |
return false;
|
kpeter@695
|
1294 |
}
|
kpeter@695
|
1295 |
dfs.processNextArc();
|
kpeter@695
|
1296 |
}
|
kpeter@695
|
1297 |
}
|
kpeter@695
|
1298 |
}
|
kpeter@695
|
1299 |
return true;
|
kpeter@695
|
1300 |
}
|
kpeter@695
|
1301 |
|
kpeter@695
|
1302 |
/// \ingroup graph_properties
|
kpeter@695
|
1303 |
///
|
deba@433
|
1304 |
/// \brief Sort the nodes of a DAG into topolgical order.
|
deba@433
|
1305 |
///
|
kpeter@695
|
1306 |
/// This function sorts the nodes of the given acyclic digraph (DAG)
|
kpeter@695
|
1307 |
/// into topolgical order.
|
deba@433
|
1308 |
///
|
kpeter@695
|
1309 |
/// \param digraph The digraph, which must be DAG.
|
deba@433
|
1310 |
/// \retval order A writable node map. The values will be set from 0 to
|
kpeter@695
|
1311 |
/// the number of the nodes in the digraph minus one. Each value of the
|
kpeter@695
|
1312 |
/// map will be set exactly once, and the values will be set descending
|
kpeter@695
|
1313 |
/// order.
|
deba@433
|
1314 |
///
|
kpeter@695
|
1315 |
/// \see dag(), checkedTopologicalSort()
|
deba@433
|
1316 |
template <typename Digraph, typename NodeMap>
|
kpeter@695
|
1317 |
void topologicalSort(const Digraph& digraph, NodeMap& order) {
|
deba@435
|
1318 |
using namespace _connectivity_bits;
|
deba@433
|
1319 |
|
deba@433
|
1320 |
checkConcept<concepts::Digraph, Digraph>();
|
deba@433
|
1321 |
checkConcept<concepts::WriteMap<typename Digraph::Node, int>, NodeMap>();
|
deba@433
|
1322 |
|
deba@433
|
1323 |
typedef typename Digraph::Node Node;
|
deba@433
|
1324 |
typedef typename Digraph::NodeIt NodeIt;
|
deba@433
|
1325 |
typedef typename Digraph::Arc Arc;
|
deba@433
|
1326 |
|
deba@433
|
1327 |
TopologicalSortVisitor<Digraph, NodeMap>
|
kpeter@695
|
1328 |
visitor(order, countNodes(digraph));
|
deba@433
|
1329 |
|
deba@433
|
1330 |
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> >
|
kpeter@695
|
1331 |
dfs(digraph, visitor);
|
deba@433
|
1332 |
|
deba@433
|
1333 |
dfs.init();
|
kpeter@695
|
1334 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
deba@433
|
1335 |
if (!dfs.reached(it)) {
|
deba@433
|
1336 |
dfs.addSource(it);
|
deba@433
|
1337 |
dfs.start();
|
deba@433
|
1338 |
}
|
deba@433
|
1339 |
}
|
deba@433
|
1340 |
}
|
deba@433
|
1341 |
|
kpeter@633
|
1342 |
/// \ingroup graph_properties
|
deba@433
|
1343 |
///
|
deba@433
|
1344 |
/// \brief Sort the nodes of a DAG into topolgical order.
|
deba@433
|
1345 |
///
|
kpeter@695
|
1346 |
/// This function sorts the nodes of the given acyclic digraph (DAG)
|
kpeter@695
|
1347 |
/// into topolgical order and also checks whether the given digraph
|
kpeter@695
|
1348 |
/// is DAG.
|
deba@433
|
1349 |
///
|
kpeter@695
|
1350 |
/// \param digraph The digraph.
|
kpeter@695
|
1351 |
/// \retval order A readable and writable node map. The values will be
|
kpeter@695
|
1352 |
/// set from 0 to the number of the nodes in the digraph minus one.
|
kpeter@695
|
1353 |
/// Each value of the map will be set exactly once, and the values will
|
kpeter@695
|
1354 |
/// be set descending order.
|
kpeter@695
|
1355 |
/// \return \c false if the digraph is not DAG.
|
deba@433
|
1356 |
///
|
kpeter@695
|
1357 |
/// \see dag(), topologicalSort()
|
deba@433
|
1358 |
template <typename Digraph, typename NodeMap>
|
deba@435
|
1359 |
bool checkedTopologicalSort(const Digraph& digraph, NodeMap& order) {
|
deba@435
|
1360 |
using namespace _connectivity_bits;
|
deba@433
|
1361 |
|
deba@433
|
1362 |
checkConcept<concepts::Digraph, Digraph>();
|
deba@433
|
1363 |
checkConcept<concepts::ReadWriteMap<typename Digraph::Node, int>,
|
deba@433
|
1364 |
NodeMap>();
|
deba@433
|
1365 |
|
deba@433
|
1366 |
typedef typename Digraph::Node Node;
|
deba@433
|
1367 |
typedef typename Digraph::NodeIt NodeIt;
|
deba@433
|
1368 |
typedef typename Digraph::Arc Arc;
|
deba@433
|
1369 |
|
deba@435
|
1370 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
deba@435
|
1371 |
order.set(it, -1);
|
deba@435
|
1372 |
}
|
deba@433
|
1373 |
|
deba@433
|
1374 |
TopologicalSortVisitor<Digraph, NodeMap>
|
deba@435
|
1375 |
visitor(order, countNodes(digraph));
|
deba@433
|
1376 |
|
deba@433
|
1377 |
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> >
|
deba@435
|
1378 |
dfs(digraph, visitor);
|
deba@433
|
1379 |
|
deba@433
|
1380 |
dfs.init();
|
deba@435
|
1381 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
deba@433
|
1382 |
if (!dfs.reached(it)) {
|
deba@433
|
1383 |
dfs.addSource(it);
|
deba@433
|
1384 |
while (!dfs.emptyQueue()) {
|
deba@435
|
1385 |
Arc arc = dfs.nextArc();
|
deba@435
|
1386 |
Node target = digraph.target(arc);
|
deba@433
|
1387 |
if (dfs.reached(target) && order[target] == -1) {
|
deba@433
|
1388 |
return false;
|
deba@433
|
1389 |
}
|
deba@433
|
1390 |
dfs.processNextArc();
|
deba@433
|
1391 |
}
|
deba@433
|
1392 |
}
|
deba@433
|
1393 |
}
|
deba@433
|
1394 |
return true;
|
deba@433
|
1395 |
}
|
deba@433
|
1396 |
|
kpeter@633
|
1397 |
/// \ingroup graph_properties
|
deba@433
|
1398 |
///
|
kpeter@695
|
1399 |
/// \brief Check whether an undirected graph is acyclic.
|
deba@433
|
1400 |
///
|
kpeter@695
|
1401 |
/// This function checks whether the given undirected graph is acyclic.
|
kpeter@695
|
1402 |
/// \return \c true if there is no cycle in the graph.
|
kpeter@695
|
1403 |
/// \see dag()
|
deba@433
|
1404 |
template <typename Graph>
|
deba@433
|
1405 |
bool acyclic(const Graph& graph) {
|
deba@433
|
1406 |
checkConcept<concepts::Graph, Graph>();
|
deba@433
|
1407 |
typedef typename Graph::Node Node;
|
deba@433
|
1408 |
typedef typename Graph::NodeIt NodeIt;
|
deba@433
|
1409 |
typedef typename Graph::Arc Arc;
|
deba@433
|
1410 |
Dfs<Graph> dfs(graph);
|
deba@433
|
1411 |
dfs.init();
|
deba@433
|
1412 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@433
|
1413 |
if (!dfs.reached(it)) {
|
deba@433
|
1414 |
dfs.addSource(it);
|
deba@433
|
1415 |
while (!dfs.emptyQueue()) {
|
kpeter@695
|
1416 |
Arc arc = dfs.nextArc();
|
kpeter@695
|
1417 |
Node source = graph.source(arc);
|
kpeter@695
|
1418 |
Node target = graph.target(arc);
|
deba@433
|
1419 |
if (dfs.reached(target) &&
|
kpeter@695
|
1420 |
dfs.predArc(source) != graph.oppositeArc(arc)) {
|
deba@433
|
1421 |
return false;
|
deba@433
|
1422 |
}
|
deba@433
|
1423 |
dfs.processNextArc();
|
deba@433
|
1424 |
}
|
deba@433
|
1425 |
}
|
deba@433
|
1426 |
}
|
deba@433
|
1427 |
return true;
|
deba@433
|
1428 |
}
|
deba@433
|
1429 |
|
kpeter@633
|
1430 |
/// \ingroup graph_properties
|
deba@433
|
1431 |
///
|
kpeter@695
|
1432 |
/// \brief Check whether an undirected graph is tree.
|
deba@433
|
1433 |
///
|
kpeter@695
|
1434 |
/// This function checks whether the given undirected graph is tree.
|
kpeter@695
|
1435 |
/// \return \c true if the graph is acyclic and connected.
|
kpeter@695
|
1436 |
/// \see acyclic(), connected()
|
deba@433
|
1437 |
template <typename Graph>
|
deba@433
|
1438 |
bool tree(const Graph& graph) {
|
deba@433
|
1439 |
checkConcept<concepts::Graph, Graph>();
|
deba@433
|
1440 |
typedef typename Graph::Node Node;
|
deba@433
|
1441 |
typedef typename Graph::NodeIt NodeIt;
|
deba@433
|
1442 |
typedef typename Graph::Arc Arc;
|
kpeter@694
|
1443 |
if (NodeIt(graph) == INVALID) return true;
|
deba@433
|
1444 |
Dfs<Graph> dfs(graph);
|
deba@433
|
1445 |
dfs.init();
|
deba@433
|
1446 |
dfs.addSource(NodeIt(graph));
|
deba@433
|
1447 |
while (!dfs.emptyQueue()) {
|
kpeter@695
|
1448 |
Arc arc = dfs.nextArc();
|
kpeter@695
|
1449 |
Node source = graph.source(arc);
|
kpeter@695
|
1450 |
Node target = graph.target(arc);
|
deba@433
|
1451 |
if (dfs.reached(target) &&
|
kpeter@695
|
1452 |
dfs.predArc(source) != graph.oppositeArc(arc)) {
|
deba@433
|
1453 |
return false;
|
deba@433
|
1454 |
}
|
deba@433
|
1455 |
dfs.processNextArc();
|
deba@433
|
1456 |
}
|
deba@433
|
1457 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@433
|
1458 |
if (!dfs.reached(it)) {
|
deba@433
|
1459 |
return false;
|
deba@433
|
1460 |
}
|
deba@433
|
1461 |
}
|
deba@433
|
1462 |
return true;
|
deba@433
|
1463 |
}
|
deba@433
|
1464 |
|
deba@435
|
1465 |
namespace _connectivity_bits {
|
deba@433
|
1466 |
|
deba@433
|
1467 |
template <typename Digraph>
|
deba@433
|
1468 |
class BipartiteVisitor : public BfsVisitor<Digraph> {
|
deba@433
|
1469 |
public:
|
deba@433
|
1470 |
typedef typename Digraph::Arc Arc;
|
deba@433
|
1471 |
typedef typename Digraph::Node Node;
|
deba@433
|
1472 |
|
deba@433
|
1473 |
BipartiteVisitor(const Digraph& graph, bool& bipartite)
|
deba@433
|
1474 |
: _graph(graph), _part(graph), _bipartite(bipartite) {}
|
deba@433
|
1475 |
|
deba@433
|
1476 |
void start(const Node& node) {
|
deba@433
|
1477 |
_part[node] = true;
|
deba@433
|
1478 |
}
|
deba@433
|
1479 |
void discover(const Arc& edge) {
|
deba@433
|
1480 |
_part.set(_graph.target(edge), !_part[_graph.source(edge)]);
|
deba@433
|
1481 |
}
|
deba@433
|
1482 |
void examine(const Arc& edge) {
|
deba@433
|
1483 |
_bipartite = _bipartite &&
|
deba@433
|
1484 |
_part[_graph.target(edge)] != _part[_graph.source(edge)];
|
deba@433
|
1485 |
}
|
deba@433
|
1486 |
|
deba@433
|
1487 |
private:
|
deba@433
|
1488 |
|
deba@433
|
1489 |
const Digraph& _graph;
|
deba@433
|
1490 |
typename Digraph::template NodeMap<bool> _part;
|
deba@433
|
1491 |
bool& _bipartite;
|
deba@433
|
1492 |
};
|
deba@433
|
1493 |
|
deba@433
|
1494 |
template <typename Digraph, typename PartMap>
|
deba@433
|
1495 |
class BipartitePartitionsVisitor : public BfsVisitor<Digraph> {
|
deba@433
|
1496 |
public:
|
deba@433
|
1497 |
typedef typename Digraph::Arc Arc;
|
deba@433
|
1498 |
typedef typename Digraph::Node Node;
|
deba@433
|
1499 |
|
deba@433
|
1500 |
BipartitePartitionsVisitor(const Digraph& graph,
|
deba@433
|
1501 |
PartMap& part, bool& bipartite)
|
deba@433
|
1502 |
: _graph(graph), _part(part), _bipartite(bipartite) {}
|
deba@433
|
1503 |
|
deba@433
|
1504 |
void start(const Node& node) {
|
deba@433
|
1505 |
_part.set(node, true);
|
deba@433
|
1506 |
}
|
deba@433
|
1507 |
void discover(const Arc& edge) {
|
deba@433
|
1508 |
_part.set(_graph.target(edge), !_part[_graph.source(edge)]);
|
deba@433
|
1509 |
}
|
deba@433
|
1510 |
void examine(const Arc& edge) {
|
deba@433
|
1511 |
_bipartite = _bipartite &&
|
deba@433
|
1512 |
_part[_graph.target(edge)] != _part[_graph.source(edge)];
|
deba@433
|
1513 |
}
|
deba@433
|
1514 |
|
deba@433
|
1515 |
private:
|
deba@433
|
1516 |
|
deba@433
|
1517 |
const Digraph& _graph;
|
deba@433
|
1518 |
PartMap& _part;
|
deba@433
|
1519 |
bool& _bipartite;
|
deba@433
|
1520 |
};
|
deba@433
|
1521 |
}
|
deba@433
|
1522 |
|
kpeter@633
|
1523 |
/// \ingroup graph_properties
|
deba@433
|
1524 |
///
|
kpeter@695
|
1525 |
/// \brief Check whether an undirected graph is bipartite.
|
deba@433
|
1526 |
///
|
kpeter@695
|
1527 |
/// The function checks whether the given undirected graph is bipartite.
|
kpeter@695
|
1528 |
/// \return \c true if the graph is bipartite.
|
kpeter@695
|
1529 |
///
|
kpeter@695
|
1530 |
/// \see bipartitePartitions()
|
deba@433
|
1531 |
template<typename Graph>
|
kpeter@695
|
1532 |
bool bipartite(const Graph &graph){
|
deba@435
|
1533 |
using namespace _connectivity_bits;
|
deba@433
|
1534 |
|
deba@433
|
1535 |
checkConcept<concepts::Graph, Graph>();
|
deba@433
|
1536 |
|
deba@433
|
1537 |
typedef typename Graph::NodeIt NodeIt;
|
deba@433
|
1538 |
typedef typename Graph::ArcIt ArcIt;
|
deba@433
|
1539 |
|
deba@433
|
1540 |
bool bipartite = true;
|
deba@433
|
1541 |
|
deba@433
|
1542 |
BipartiteVisitor<Graph>
|
deba@433
|
1543 |
visitor(graph, bipartite);
|
deba@433
|
1544 |
BfsVisit<Graph, BipartiteVisitor<Graph> >
|
deba@433
|
1545 |
bfs(graph, visitor);
|
deba@433
|
1546 |
bfs.init();
|
deba@433
|
1547 |
for(NodeIt it(graph); it != INVALID; ++it) {
|
deba@433
|
1548 |
if(!bfs.reached(it)){
|
deba@433
|
1549 |
bfs.addSource(it);
|
deba@433
|
1550 |
while (!bfs.emptyQueue()) {
|
deba@433
|
1551 |
bfs.processNextNode();
|
deba@433
|
1552 |
if (!bipartite) return false;
|
deba@433
|
1553 |
}
|
deba@433
|
1554 |
}
|
deba@433
|
1555 |
}
|
deba@433
|
1556 |
return true;
|
deba@433
|
1557 |
}
|
deba@433
|
1558 |
|
kpeter@633
|
1559 |
/// \ingroup graph_properties
|
deba@433
|
1560 |
///
|
kpeter@695
|
1561 |
/// \brief Find the bipartite partitions of an undirected graph.
|
deba@433
|
1562 |
///
|
kpeter@695
|
1563 |
/// This function checks whether the given undirected graph is bipartite
|
kpeter@695
|
1564 |
/// and gives back the bipartite partitions.
|
kpeter@633
|
1565 |
///
|
kpeter@633
|
1566 |
/// \image html bipartite_partitions.png
|
kpeter@633
|
1567 |
/// \image latex bipartite_partitions.eps "Bipartite partititions" width=\textwidth
|
kpeter@633
|
1568 |
///
|
deba@433
|
1569 |
/// \param graph The undirected graph.
|
kpeter@695
|
1570 |
/// \retval partMap A writable node map of \c bool (or convertible) value
|
kpeter@695
|
1571 |
/// type. The values will be set to \c true for one component and
|
kpeter@695
|
1572 |
/// \c false for the other one.
|
kpeter@695
|
1573 |
/// \return \c true if the graph is bipartite, \c false otherwise.
|
kpeter@695
|
1574 |
///
|
kpeter@695
|
1575 |
/// \see bipartite()
|
deba@433
|
1576 |
template<typename Graph, typename NodeMap>
|
kpeter@695
|
1577 |
bool bipartitePartitions(const Graph &graph, NodeMap &partMap){
|
deba@435
|
1578 |
using namespace _connectivity_bits;
|
deba@433
|
1579 |
|
deba@433
|
1580 |
checkConcept<concepts::Graph, Graph>();
|
kpeter@695
|
1581 |
checkConcept<concepts::WriteMap<typename Graph::Node, bool>, NodeMap>();
|
deba@433
|
1582 |
|
deba@433
|
1583 |
typedef typename Graph::Node Node;
|
deba@433
|
1584 |
typedef typename Graph::NodeIt NodeIt;
|
deba@433
|
1585 |
typedef typename Graph::ArcIt ArcIt;
|
deba@433
|
1586 |
|
deba@433
|
1587 |
bool bipartite = true;
|
deba@433
|
1588 |
|
deba@433
|
1589 |
BipartitePartitionsVisitor<Graph, NodeMap>
|
deba@433
|
1590 |
visitor(graph, partMap, bipartite);
|
deba@433
|
1591 |
BfsVisit<Graph, BipartitePartitionsVisitor<Graph, NodeMap> >
|
deba@433
|
1592 |
bfs(graph, visitor);
|
deba@433
|
1593 |
bfs.init();
|
deba@433
|
1594 |
for(NodeIt it(graph); it != INVALID; ++it) {
|
deba@433
|
1595 |
if(!bfs.reached(it)){
|
deba@433
|
1596 |
bfs.addSource(it);
|
deba@433
|
1597 |
while (!bfs.emptyQueue()) {
|
deba@433
|
1598 |
bfs.processNextNode();
|
deba@433
|
1599 |
if (!bipartite) return false;
|
deba@433
|
1600 |
}
|
deba@433
|
1601 |
}
|
deba@433
|
1602 |
}
|
deba@433
|
1603 |
return true;
|
deba@433
|
1604 |
}
|
deba@433
|
1605 |
|
kpeter@695
|
1606 |
/// \ingroup graph_properties
|
deba@433
|
1607 |
///
|
kpeter@695
|
1608 |
/// \brief Check whether the given graph contains no loop arcs/edges.
|
kpeter@695
|
1609 |
///
|
kpeter@695
|
1610 |
/// This function returns \c true if there are no loop arcs/edges in
|
kpeter@695
|
1611 |
/// the given graph. It works for both directed and undirected graphs.
|
kpeter@695
|
1612 |
template <typename Graph>
|
kpeter@695
|
1613 |
bool loopFree(const Graph& graph) {
|
kpeter@695
|
1614 |
for (typename Graph::ArcIt it(graph); it != INVALID; ++it) {
|
kpeter@695
|
1615 |
if (graph.source(it) == graph.target(it)) return false;
|
deba@433
|
1616 |
}
|
deba@433
|
1617 |
return true;
|
deba@433
|
1618 |
}
|
deba@433
|
1619 |
|
kpeter@695
|
1620 |
/// \ingroup graph_properties
|
deba@433
|
1621 |
///
|
kpeter@695
|
1622 |
/// \brief Check whether the given graph contains no parallel arcs/edges.
|
kpeter@695
|
1623 |
///
|
kpeter@695
|
1624 |
/// This function returns \c true if there are no parallel arcs/edges in
|
kpeter@695
|
1625 |
/// the given graph. It works for both directed and undirected graphs.
|
kpeter@694
|
1626 |
template <typename Graph>
|
kpeter@694
|
1627 |
bool parallelFree(const Graph& graph) {
|
kpeter@694
|
1628 |
typename Graph::template NodeMap<int> reached(graph, 0);
|
kpeter@694
|
1629 |
int cnt = 1;
|
kpeter@694
|
1630 |
for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
|
kpeter@694
|
1631 |
for (typename Graph::OutArcIt a(graph, n); a != INVALID; ++a) {
|
kpeter@694
|
1632 |
if (reached[graph.target(a)] == cnt) return false;
|
kpeter@694
|
1633 |
reached[graph.target(a)] = cnt;
|
deba@433
|
1634 |
}
|
kpeter@694
|
1635 |
++cnt;
|
deba@433
|
1636 |
}
|
deba@433
|
1637 |
return true;
|
deba@433
|
1638 |
}
|
deba@433
|
1639 |
|
kpeter@695
|
1640 |
/// \ingroup graph_properties
|
deba@433
|
1641 |
///
|
kpeter@695
|
1642 |
/// \brief Check whether the given graph is simple.
|
kpeter@695
|
1643 |
///
|
kpeter@695
|
1644 |
/// This function returns \c true if the given graph is simple, i.e.
|
kpeter@695
|
1645 |
/// it contains no loop arcs/edges and no parallel arcs/edges.
|
kpeter@695
|
1646 |
/// The function works for both directed and undirected graphs.
|
kpeter@695
|
1647 |
/// \see loopFree(), parallelFree()
|
kpeter@694
|
1648 |
template <typename Graph>
|
kpeter@694
|
1649 |
bool simpleGraph(const Graph& graph) {
|
kpeter@694
|
1650 |
typename Graph::template NodeMap<int> reached(graph, 0);
|
kpeter@694
|
1651 |
int cnt = 1;
|
kpeter@694
|
1652 |
for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
|
kpeter@694
|
1653 |
reached[n] = cnt;
|
kpeter@694
|
1654 |
for (typename Graph::OutArcIt a(graph, n); a != INVALID; ++a) {
|
kpeter@694
|
1655 |
if (reached[graph.target(a)] == cnt) return false;
|
kpeter@694
|
1656 |
reached[graph.target(a)] = cnt;
|
deba@433
|
1657 |
}
|
kpeter@694
|
1658 |
++cnt;
|
deba@433
|
1659 |
}
|
deba@433
|
1660 |
return true;
|
deba@433
|
1661 |
}
|
deba@433
|
1662 |
|
deba@433
|
1663 |
} //namespace lemon
|
deba@433
|
1664 |
|
deba@435
|
1665 |
#endif //LEMON_CONNECTIVITY_H
|