kpeter@1201
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
kpeter@1201
|
2 |
*
|
kpeter@1201
|
3 |
* This file is a part of LEMON, a generic C++ optimization library.
|
kpeter@1201
|
4 |
*
|
alpar@1270
|
5 |
* Copyright (C) 2003-2013
|
kpeter@1201
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
kpeter@1201
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
kpeter@1201
|
8 |
*
|
kpeter@1201
|
9 |
* Permission to use, modify and distribute this software is granted
|
kpeter@1201
|
10 |
* provided that this copyright notice appears in all copies. For
|
kpeter@1201
|
11 |
* precise terms see the accompanying LICENSE file.
|
kpeter@1201
|
12 |
*
|
kpeter@1201
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
kpeter@1201
|
14 |
* express or implied, and with no claim as to its suitability for any
|
kpeter@1201
|
15 |
* purpose.
|
kpeter@1201
|
16 |
*
|
kpeter@1201
|
17 |
*/
|
kpeter@1201
|
18 |
|
f4c3@1199
|
19 |
#ifndef LEMON_CHRISTOFIDES_TSP_H
|
f4c3@1199
|
20 |
#define LEMON_CHRISTOFIDES_TSP_H
|
f4c3@1199
|
21 |
|
kpeter@1201
|
22 |
/// \ingroup tsp
|
kpeter@1201
|
23 |
/// \file
|
kpeter@1201
|
24 |
/// \brief Christofides algorithm for symmetric TSP
|
kpeter@1201
|
25 |
|
f4c3@1199
|
26 |
#include <lemon/full_graph.h>
|
f4c3@1199
|
27 |
#include <lemon/smart_graph.h>
|
f4c3@1199
|
28 |
#include <lemon/kruskal.h>
|
f4c3@1199
|
29 |
#include <lemon/matching.h>
|
f4c3@1199
|
30 |
#include <lemon/euler.h>
|
f4c3@1199
|
31 |
|
f4c3@1199
|
32 |
namespace lemon {
|
alpar@1270
|
33 |
|
kpeter@1202
|
34 |
/// \ingroup tsp
|
kpeter@1202
|
35 |
///
|
kpeter@1201
|
36 |
/// \brief Christofides algorithm for symmetric TSP.
|
kpeter@1201
|
37 |
///
|
kpeter@1201
|
38 |
/// ChristofidesTsp implements Christofides' heuristic for solving
|
kpeter@1201
|
39 |
/// symmetric \ref tsp "TSP".
|
kpeter@1201
|
40 |
///
|
kpeter@1201
|
41 |
/// This a well-known approximation method for the TSP problem with
|
kpeter@1202
|
42 |
/// metric cost function.
|
kpeter@1204
|
43 |
/// It has a guaranteed approximation factor of 3/2 (i.e. it finds a tour
|
kpeter@1204
|
44 |
/// whose total cost is at most 3/2 of the optimum), but it usually
|
kpeter@1204
|
45 |
/// provides better solutions in practice.
|
kpeter@1201
|
46 |
/// This implementation runs in O(n<sup>3</sup>log(n)) time.
|
kpeter@1201
|
47 |
///
|
kpeter@1201
|
48 |
/// The algorithm starts with a \ref spantree "minimum cost spanning tree" and
|
kpeter@1201
|
49 |
/// finds a \ref MaxWeightedPerfectMatching "minimum cost perfect matching"
|
kpeter@1201
|
50 |
/// in the subgraph induced by the nodes that have odd degree in the
|
kpeter@1201
|
51 |
/// spanning tree.
|
kpeter@1201
|
52 |
/// Finally, it constructs the tour from the \ref EulerIt "Euler traversal"
|
kpeter@1201
|
53 |
/// of the union of the spanning tree and the matching.
|
kpeter@1201
|
54 |
/// During this last step, the algorithm simply skips the visited nodes
|
kpeter@1201
|
55 |
/// (i.e. creates shortcuts) assuming that the triangle inequality holds
|
kpeter@1201
|
56 |
/// for the cost function.
|
kpeter@1201
|
57 |
///
|
kpeter@1201
|
58 |
/// \tparam CM Type of the cost map.
|
kpeter@1201
|
59 |
///
|
kpeter@1202
|
60 |
/// \warning CM::Value must be a signed number type.
|
f4c3@1199
|
61 |
template <typename CM>
|
kpeter@1201
|
62 |
class ChristofidesTsp
|
kpeter@1201
|
63 |
{
|
kpeter@1201
|
64 |
public:
|
kpeter@1201
|
65 |
|
kpeter@1201
|
66 |
/// Type of the cost map
|
kpeter@1201
|
67 |
typedef CM CostMap;
|
kpeter@1201
|
68 |
/// Type of the edge costs
|
kpeter@1201
|
69 |
typedef typename CM::Value Cost;
|
kpeter@1201
|
70 |
|
f4c3@1199
|
71 |
private:
|
kpeter@1201
|
72 |
|
kpeter@1201
|
73 |
GRAPH_TYPEDEFS(FullGraph);
|
kpeter@1201
|
74 |
|
kpeter@1201
|
75 |
const FullGraph &_gr;
|
kpeter@1201
|
76 |
const CostMap &_cost;
|
kpeter@1201
|
77 |
std::vector<Node> _path;
|
kpeter@1201
|
78 |
Cost _sum;
|
f4c3@1199
|
79 |
|
f4c3@1199
|
80 |
public:
|
f4c3@1199
|
81 |
|
kpeter@1201
|
82 |
/// \brief Constructor
|
kpeter@1201
|
83 |
///
|
kpeter@1201
|
84 |
/// Constructor.
|
kpeter@1201
|
85 |
/// \param gr The \ref FullGraph "full graph" the algorithm runs on.
|
kpeter@1201
|
86 |
/// \param cost The cost map.
|
kpeter@1201
|
87 |
ChristofidesTsp(const FullGraph &gr, const CostMap &cost)
|
kpeter@1201
|
88 |
: _gr(gr), _cost(cost) {}
|
kpeter@1201
|
89 |
|
kpeter@1201
|
90 |
/// \name Execution Control
|
kpeter@1201
|
91 |
/// @{
|
kpeter@1201
|
92 |
|
kpeter@1201
|
93 |
/// \brief Runs the algorithm.
|
kpeter@1201
|
94 |
///
|
kpeter@1201
|
95 |
/// This function runs the algorithm.
|
kpeter@1201
|
96 |
///
|
kpeter@1201
|
97 |
/// \return The total cost of the found tour.
|
f4c3@1199
|
98 |
Cost run() {
|
f4c3@1199
|
99 |
_path.clear();
|
kpeter@1201
|
100 |
|
kpeter@1201
|
101 |
if (_gr.nodeNum() == 0) return _sum = 0;
|
kpeter@1201
|
102 |
else if (_gr.nodeNum() == 1) {
|
kpeter@1201
|
103 |
_path.push_back(_gr(0));
|
kpeter@1201
|
104 |
return _sum = 0;
|
kpeter@1201
|
105 |
}
|
kpeter@1201
|
106 |
else if (_gr.nodeNum() == 2) {
|
kpeter@1201
|
107 |
_path.push_back(_gr(0));
|
kpeter@1201
|
108 |
_path.push_back(_gr(1));
|
kpeter@1201
|
109 |
return _sum = 2 * _cost[_gr.edge(_gr(0), _gr(1))];
|
kpeter@1201
|
110 |
}
|
alpar@1270
|
111 |
|
kpeter@1201
|
112 |
// Compute min. cost spanning tree
|
kpeter@1201
|
113 |
std::vector<Edge> tree;
|
kpeter@1201
|
114 |
kruskal(_gr, _cost, std::back_inserter(tree));
|
alpar@1270
|
115 |
|
kpeter@1201
|
116 |
FullGraph::NodeMap<int> deg(_gr, 0);
|
kpeter@1201
|
117 |
for (int i = 0; i != int(tree.size()); ++i) {
|
kpeter@1201
|
118 |
Edge e = tree[i];
|
kpeter@1201
|
119 |
++deg[_gr.u(e)];
|
kpeter@1201
|
120 |
++deg[_gr.v(e)];
|
kpeter@1201
|
121 |
}
|
kpeter@1201
|
122 |
|
kpeter@1201
|
123 |
// Copy the induced subgraph of odd nodes
|
kpeter@1201
|
124 |
std::vector<Node> odd_nodes;
|
kpeter@1201
|
125 |
for (NodeIt u(_gr); u != INVALID; ++u) {
|
kpeter@1201
|
126 |
if (deg[u] % 2 == 1) odd_nodes.push_back(u);
|
kpeter@1201
|
127 |
}
|
alpar@1270
|
128 |
|
kpeter@1201
|
129 |
SmartGraph sgr;
|
kpeter@1201
|
130 |
SmartGraph::EdgeMap<Cost> scost(sgr);
|
kpeter@1201
|
131 |
for (int i = 0; i != int(odd_nodes.size()); ++i) {
|
kpeter@1201
|
132 |
sgr.addNode();
|
kpeter@1201
|
133 |
}
|
kpeter@1201
|
134 |
for (int i = 0; i != int(odd_nodes.size()); ++i) {
|
kpeter@1201
|
135 |
for (int j = 0; j != int(odd_nodes.size()); ++j) {
|
kpeter@1201
|
136 |
if (j == i) continue;
|
kpeter@1201
|
137 |
SmartGraph::Edge e =
|
kpeter@1201
|
138 |
sgr.addEdge(sgr.nodeFromId(i), sgr.nodeFromId(j));
|
kpeter@1201
|
139 |
scost[e] = -_cost[_gr.edge(odd_nodes[i], odd_nodes[j])];
|
f4c3@1199
|
140 |
}
|
f4c3@1199
|
141 |
}
|
alpar@1270
|
142 |
|
kpeter@1201
|
143 |
// Compute min. cost perfect matching
|
kpeter@1201
|
144 |
MaxWeightedPerfectMatching<SmartGraph, SmartGraph::EdgeMap<Cost> >
|
kpeter@1201
|
145 |
mwpm(sgr, scost);
|
kpeter@1201
|
146 |
mwpm.run();
|
alpar@1270
|
147 |
|
kpeter@1201
|
148 |
for (SmartGraph::EdgeIt e(sgr); e != INVALID; ++e) {
|
kpeter@1201
|
149 |
if (mwpm.matching(e)) {
|
kpeter@1201
|
150 |
tree.push_back( _gr.edge(odd_nodes[sgr.id(sgr.u(e))],
|
kpeter@1201
|
151 |
odd_nodes[sgr.id(sgr.v(e))]) );
|
f4c3@1199
|
152 |
}
|
f4c3@1199
|
153 |
}
|
alpar@1270
|
154 |
|
alpar@1270
|
155 |
// Join the spanning tree and the matching
|
kpeter@1201
|
156 |
sgr.clear();
|
kpeter@1201
|
157 |
for (int i = 0; i != _gr.nodeNum(); ++i) {
|
kpeter@1201
|
158 |
sgr.addNode();
|
kpeter@1201
|
159 |
}
|
kpeter@1201
|
160 |
for (int i = 0; i != int(tree.size()); ++i) {
|
kpeter@1201
|
161 |
int ui = _gr.id(_gr.u(tree[i])),
|
kpeter@1201
|
162 |
vi = _gr.id(_gr.v(tree[i]));
|
kpeter@1201
|
163 |
sgr.addEdge(sgr.nodeFromId(ui), sgr.nodeFromId(vi));
|
kpeter@1201
|
164 |
}
|
kpeter@1201
|
165 |
|
kpeter@1201
|
166 |
// Compute the tour from the Euler traversal
|
kpeter@1201
|
167 |
SmartGraph::NodeMap<bool> visited(sgr, false);
|
kpeter@1201
|
168 |
for (EulerIt<SmartGraph> e(sgr); e != INVALID; ++e) {
|
kpeter@1201
|
169 |
SmartGraph::Node n = sgr.target(e);
|
kpeter@1201
|
170 |
if (!visited[n]) {
|
kpeter@1201
|
171 |
_path.push_back(_gr(sgr.id(n)));
|
kpeter@1201
|
172 |
visited[n] = true;
|
f4c3@1199
|
173 |
}
|
f4c3@1199
|
174 |
}
|
f4c3@1199
|
175 |
|
kpeter@1201
|
176 |
_sum = _cost[_gr.edge(_path.back(), _path.front())];
|
kpeter@1201
|
177 |
for (int i = 0; i < int(_path.size())-1; ++i) {
|
kpeter@1201
|
178 |
_sum += _cost[_gr.edge(_path[i], _path[i+1])];
|
kpeter@1201
|
179 |
}
|
f4c3@1199
|
180 |
|
f4c3@1199
|
181 |
return _sum;
|
f4c3@1199
|
182 |
}
|
f4c3@1199
|
183 |
|
kpeter@1201
|
184 |
/// @}
|
alpar@1270
|
185 |
|
kpeter@1201
|
186 |
/// \name Query Functions
|
kpeter@1201
|
187 |
/// @{
|
alpar@1270
|
188 |
|
kpeter@1201
|
189 |
/// \brief The total cost of the found tour.
|
kpeter@1201
|
190 |
///
|
kpeter@1201
|
191 |
/// This function returns the total cost of the found tour.
|
kpeter@1201
|
192 |
///
|
kpeter@1201
|
193 |
/// \pre run() must be called before using this function.
|
kpeter@1201
|
194 |
Cost tourCost() const {
|
f4c3@1199
|
195 |
return _sum;
|
f4c3@1199
|
196 |
}
|
alpar@1270
|
197 |
|
kpeter@1201
|
198 |
/// \brief Returns a const reference to the node sequence of the
|
kpeter@1201
|
199 |
/// found tour.
|
kpeter@1201
|
200 |
///
|
kpeter@1202
|
201 |
/// This function returns a const reference to a vector
|
kpeter@1201
|
202 |
/// that stores the node sequence of the found tour.
|
kpeter@1201
|
203 |
///
|
kpeter@1201
|
204 |
/// \pre run() must be called before using this function.
|
kpeter@1201
|
205 |
const std::vector<Node>& tourNodes() const {
|
kpeter@1201
|
206 |
return _path;
|
kpeter@1201
|
207 |
}
|
f4c3@1199
|
208 |
|
kpeter@1201
|
209 |
/// \brief Gives back the node sequence of the found tour.
|
kpeter@1201
|
210 |
///
|
kpeter@1201
|
211 |
/// This function copies the node sequence of the found tour into
|
kpeter@1205
|
212 |
/// an STL container through the given output iterator. The
|
kpeter@1205
|
213 |
/// <tt>value_type</tt> of the container must be <tt>FullGraph::Node</tt>.
|
kpeter@1205
|
214 |
/// For example,
|
kpeter@1205
|
215 |
/// \code
|
kpeter@1205
|
216 |
/// std::vector<FullGraph::Node> nodes(countNodes(graph));
|
kpeter@1205
|
217 |
/// tsp.tourNodes(nodes.begin());
|
kpeter@1205
|
218 |
/// \endcode
|
kpeter@1205
|
219 |
/// or
|
kpeter@1205
|
220 |
/// \code
|
kpeter@1205
|
221 |
/// std::list<FullGraph::Node> nodes;
|
kpeter@1205
|
222 |
/// tsp.tourNodes(std::back_inserter(nodes));
|
kpeter@1205
|
223 |
/// \endcode
|
kpeter@1201
|
224 |
///
|
kpeter@1201
|
225 |
/// \pre run() must be called before using this function.
|
kpeter@1205
|
226 |
template <typename Iterator>
|
kpeter@1205
|
227 |
void tourNodes(Iterator out) const {
|
kpeter@1205
|
228 |
std::copy(_path.begin(), _path.end(), out);
|
kpeter@1201
|
229 |
}
|
alpar@1270
|
230 |
|
kpeter@1201
|
231 |
/// \brief Gives back the found tour as a path.
|
kpeter@1201
|
232 |
///
|
kpeter@1201
|
233 |
/// This function copies the found tour as a list of arcs/edges into
|
alpar@1250
|
234 |
/// the given \ref lemon::concepts::Path "path structure".
|
kpeter@1201
|
235 |
///
|
kpeter@1201
|
236 |
/// \pre run() must be called before using this function.
|
kpeter@1201
|
237 |
template <typename Path>
|
kpeter@1201
|
238 |
void tour(Path &path) const {
|
kpeter@1201
|
239 |
path.clear();
|
kpeter@1201
|
240 |
for (int i = 0; i < int(_path.size()) - 1; ++i) {
|
kpeter@1201
|
241 |
path.addBack(_gr.arc(_path[i], _path[i+1]));
|
kpeter@1201
|
242 |
}
|
kpeter@1201
|
243 |
if (int(_path.size()) >= 2) {
|
kpeter@1201
|
244 |
path.addBack(_gr.arc(_path.back(), _path.front()));
|
kpeter@1201
|
245 |
}
|
kpeter@1201
|
246 |
}
|
alpar@1270
|
247 |
|
kpeter@1201
|
248 |
/// @}
|
alpar@1270
|
249 |
|
f4c3@1199
|
250 |
};
|
f4c3@1199
|
251 |
|
f4c3@1199
|
252 |
}; // namespace lemon
|
f4c3@1199
|
253 |
|
f4c3@1199
|
254 |
#endif
|