alpar@567
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
alpar@567
|
2 |
*
|
alpar@567
|
3 |
* This file is a part of LEMON, a generic C++ optimization library.
|
alpar@567
|
4 |
*
|
alpar@567
|
5 |
* Copyright (C) 2003-2009
|
alpar@567
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
alpar@567
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
alpar@567
|
8 |
*
|
alpar@567
|
9 |
* Permission to use, modify and distribute this software is granted
|
alpar@567
|
10 |
* provided that this copyright notice appears in all copies. For
|
alpar@567
|
11 |
* precise terms see the accompanying LICENSE file.
|
alpar@567
|
12 |
*
|
alpar@567
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
alpar@567
|
14 |
* express or implied, and with no claim as to its suitability for any
|
alpar@567
|
15 |
* purpose.
|
alpar@567
|
16 |
*
|
alpar@567
|
17 |
*/
|
alpar@567
|
18 |
|
alpar@567
|
19 |
#ifndef LEMON_EULER_H
|
alpar@567
|
20 |
#define LEMON_EULER_H
|
alpar@567
|
21 |
|
alpar@567
|
22 |
#include<lemon/core.h>
|
alpar@567
|
23 |
#include<lemon/adaptors.h>
|
alpar@567
|
24 |
#include<lemon/connectivity.h>
|
alpar@567
|
25 |
#include <list>
|
alpar@567
|
26 |
|
kpeter@633
|
27 |
/// \ingroup graph_properties
|
alpar@567
|
28 |
/// \file
|
alpar@567
|
29 |
/// \brief Euler tour
|
alpar@567
|
30 |
///
|
alpar@567
|
31 |
///This file provides an Euler tour iterator and ways to check
|
alpar@567
|
32 |
///if a digraph is euler.
|
alpar@567
|
33 |
|
alpar@567
|
34 |
|
alpar@567
|
35 |
namespace lemon {
|
alpar@567
|
36 |
|
alpar@567
|
37 |
///Euler iterator for digraphs.
|
alpar@567
|
38 |
|
kpeter@633
|
39 |
/// \ingroup graph_properties
|
alpar@567
|
40 |
///This iterator converts to the \c Arc type of the digraph and using
|
alpar@567
|
41 |
///operator ++, it provides an Euler tour of a \e directed
|
alpar@567
|
42 |
///graph (if there exists).
|
alpar@567
|
43 |
///
|
alpar@567
|
44 |
///For example
|
alpar@567
|
45 |
///if the given digraph is Euler (i.e it has only one nontrivial component
|
alpar@567
|
46 |
///and the in-degree is equal to the out-degree for all nodes),
|
alpar@567
|
47 |
///the following code will put the arcs of \c g
|
alpar@567
|
48 |
///to the vector \c et according to an
|
alpar@567
|
49 |
///Euler tour of \c g.
|
alpar@567
|
50 |
///\code
|
alpar@567
|
51 |
/// std::vector<ListDigraph::Arc> et;
|
alpar@567
|
52 |
/// for(DiEulerIt<ListDigraph> e(g),e!=INVALID;++e)
|
alpar@567
|
53 |
/// et.push_back(e);
|
alpar@567
|
54 |
///\endcode
|
alpar@567
|
55 |
///If \c g is not Euler then the resulted tour will not be full or closed.
|
alpar@567
|
56 |
///\sa EulerIt
|
kpeter@606
|
57 |
template<typename GR>
|
alpar@567
|
58 |
class DiEulerIt
|
alpar@567
|
59 |
{
|
kpeter@606
|
60 |
typedef typename GR::Node Node;
|
kpeter@606
|
61 |
typedef typename GR::NodeIt NodeIt;
|
kpeter@606
|
62 |
typedef typename GR::Arc Arc;
|
kpeter@606
|
63 |
typedef typename GR::ArcIt ArcIt;
|
kpeter@606
|
64 |
typedef typename GR::OutArcIt OutArcIt;
|
kpeter@606
|
65 |
typedef typename GR::InArcIt InArcIt;
|
alpar@567
|
66 |
|
kpeter@606
|
67 |
const GR &g;
|
kpeter@606
|
68 |
typename GR::template NodeMap<OutArcIt> nedge;
|
alpar@567
|
69 |
std::list<Arc> euler;
|
alpar@567
|
70 |
|
alpar@567
|
71 |
public:
|
alpar@567
|
72 |
|
alpar@567
|
73 |
///Constructor
|
alpar@567
|
74 |
|
kpeter@606
|
75 |
///\param gr A digraph.
|
alpar@567
|
76 |
///\param start The starting point of the tour. If it is not given
|
alpar@567
|
77 |
/// the tour will start from the first node.
|
kpeter@606
|
78 |
DiEulerIt(const GR &gr, typename GR::Node start = INVALID)
|
kpeter@606
|
79 |
: g(gr), nedge(g)
|
alpar@567
|
80 |
{
|
alpar@567
|
81 |
if(start==INVALID) start=NodeIt(g);
|
alpar@567
|
82 |
for(NodeIt n(g);n!=INVALID;++n) nedge[n]=OutArcIt(g,n);
|
alpar@567
|
83 |
while(nedge[start]!=INVALID) {
|
alpar@567
|
84 |
euler.push_back(nedge[start]);
|
alpar@567
|
85 |
Node next=g.target(nedge[start]);
|
alpar@567
|
86 |
++nedge[start];
|
alpar@567
|
87 |
start=next;
|
alpar@567
|
88 |
}
|
alpar@567
|
89 |
}
|
alpar@567
|
90 |
|
alpar@567
|
91 |
///Arc Conversion
|
alpar@567
|
92 |
operator Arc() { return euler.empty()?INVALID:euler.front(); }
|
alpar@567
|
93 |
bool operator==(Invalid) { return euler.empty(); }
|
alpar@567
|
94 |
bool operator!=(Invalid) { return !euler.empty(); }
|
alpar@567
|
95 |
|
alpar@567
|
96 |
///Next arc of the tour
|
alpar@567
|
97 |
DiEulerIt &operator++() {
|
alpar@567
|
98 |
Node s=g.target(euler.front());
|
alpar@567
|
99 |
euler.pop_front();
|
alpar@567
|
100 |
//This produces a warning.Strange.
|
alpar@567
|
101 |
//std::list<Arc>::iterator next=euler.begin();
|
alpar@567
|
102 |
typename std::list<Arc>::iterator next=euler.begin();
|
alpar@567
|
103 |
while(nedge[s]!=INVALID) {
|
alpar@567
|
104 |
euler.insert(next,nedge[s]);
|
alpar@567
|
105 |
Node n=g.target(nedge[s]);
|
alpar@567
|
106 |
++nedge[s];
|
alpar@567
|
107 |
s=n;
|
alpar@567
|
108 |
}
|
alpar@567
|
109 |
return *this;
|
alpar@567
|
110 |
}
|
alpar@567
|
111 |
///Postfix incrementation
|
alpar@567
|
112 |
|
alpar@567
|
113 |
///\warning This incrementation
|
alpar@567
|
114 |
///returns an \c Arc, not an \ref DiEulerIt, as one may
|
alpar@567
|
115 |
///expect.
|
alpar@567
|
116 |
Arc operator++(int)
|
alpar@567
|
117 |
{
|
alpar@567
|
118 |
Arc e=*this;
|
alpar@567
|
119 |
++(*this);
|
alpar@567
|
120 |
return e;
|
alpar@567
|
121 |
}
|
alpar@567
|
122 |
};
|
alpar@567
|
123 |
|
alpar@567
|
124 |
///Euler iterator for graphs.
|
alpar@567
|
125 |
|
kpeter@633
|
126 |
/// \ingroup graph_properties
|
alpar@567
|
127 |
///This iterator converts to the \c Arc (or \c Edge)
|
alpar@567
|
128 |
///type of the digraph and using
|
alpar@567
|
129 |
///operator ++, it provides an Euler tour of an undirected
|
alpar@567
|
130 |
///digraph (if there exists).
|
alpar@567
|
131 |
///
|
alpar@567
|
132 |
///For example
|
alpar@567
|
133 |
///if the given digraph if Euler (i.e it has only one nontrivial component
|
alpar@567
|
134 |
///and the degree of each node is even),
|
alpar@567
|
135 |
///the following code will print the arc IDs according to an
|
alpar@567
|
136 |
///Euler tour of \c g.
|
alpar@567
|
137 |
///\code
|
alpar@567
|
138 |
/// for(EulerIt<ListGraph> e(g),e!=INVALID;++e) {
|
alpar@567
|
139 |
/// std::cout << g.id(Edge(e)) << std::eol;
|
alpar@567
|
140 |
/// }
|
alpar@567
|
141 |
///\endcode
|
alpar@567
|
142 |
///Although the iterator provides an Euler tour of an graph,
|
alpar@567
|
143 |
///it still returns Arcs in order to indicate the direction of the tour.
|
alpar@567
|
144 |
///(But Arc will convert to Edges, of course).
|
alpar@567
|
145 |
///
|
alpar@567
|
146 |
///If \c g is not Euler then the resulted tour will not be full or closed.
|
alpar@567
|
147 |
///\sa EulerIt
|
kpeter@606
|
148 |
template<typename GR>
|
alpar@567
|
149 |
class EulerIt
|
alpar@567
|
150 |
{
|
kpeter@606
|
151 |
typedef typename GR::Node Node;
|
kpeter@606
|
152 |
typedef typename GR::NodeIt NodeIt;
|
kpeter@606
|
153 |
typedef typename GR::Arc Arc;
|
kpeter@606
|
154 |
typedef typename GR::Edge Edge;
|
kpeter@606
|
155 |
typedef typename GR::ArcIt ArcIt;
|
kpeter@606
|
156 |
typedef typename GR::OutArcIt OutArcIt;
|
kpeter@606
|
157 |
typedef typename GR::InArcIt InArcIt;
|
alpar@567
|
158 |
|
kpeter@606
|
159 |
const GR &g;
|
kpeter@606
|
160 |
typename GR::template NodeMap<OutArcIt> nedge;
|
kpeter@606
|
161 |
typename GR::template EdgeMap<bool> visited;
|
alpar@567
|
162 |
std::list<Arc> euler;
|
alpar@567
|
163 |
|
alpar@567
|
164 |
public:
|
alpar@567
|
165 |
|
alpar@567
|
166 |
///Constructor
|
alpar@567
|
167 |
|
kpeter@606
|
168 |
///\param gr An graph.
|
alpar@567
|
169 |
///\param start The starting point of the tour. If it is not given
|
alpar@567
|
170 |
/// the tour will start from the first node.
|
kpeter@606
|
171 |
EulerIt(const GR &gr, typename GR::Node start = INVALID)
|
kpeter@606
|
172 |
: g(gr), nedge(g), visited(g, false)
|
alpar@567
|
173 |
{
|
alpar@567
|
174 |
if(start==INVALID) start=NodeIt(g);
|
alpar@567
|
175 |
for(NodeIt n(g);n!=INVALID;++n) nedge[n]=OutArcIt(g,n);
|
alpar@567
|
176 |
while(nedge[start]!=INVALID) {
|
alpar@567
|
177 |
euler.push_back(nedge[start]);
|
alpar@567
|
178 |
visited[nedge[start]]=true;
|
alpar@567
|
179 |
Node next=g.target(nedge[start]);
|
alpar@567
|
180 |
++nedge[start];
|
alpar@567
|
181 |
start=next;
|
alpar@567
|
182 |
while(nedge[start]!=INVALID && visited[nedge[start]]) ++nedge[start];
|
alpar@567
|
183 |
}
|
alpar@567
|
184 |
}
|
alpar@567
|
185 |
|
alpar@567
|
186 |
///Arc Conversion
|
alpar@567
|
187 |
operator Arc() const { return euler.empty()?INVALID:euler.front(); }
|
alpar@567
|
188 |
///Arc Conversion
|
alpar@567
|
189 |
operator Edge() const { return euler.empty()?INVALID:euler.front(); }
|
alpar@567
|
190 |
///\e
|
alpar@567
|
191 |
bool operator==(Invalid) const { return euler.empty(); }
|
alpar@567
|
192 |
///\e
|
alpar@567
|
193 |
bool operator!=(Invalid) const { return !euler.empty(); }
|
alpar@567
|
194 |
|
alpar@567
|
195 |
///Next arc of the tour
|
alpar@567
|
196 |
EulerIt &operator++() {
|
alpar@567
|
197 |
Node s=g.target(euler.front());
|
alpar@567
|
198 |
euler.pop_front();
|
alpar@567
|
199 |
typename std::list<Arc>::iterator next=euler.begin();
|
alpar@567
|
200 |
|
alpar@567
|
201 |
while(nedge[s]!=INVALID) {
|
alpar@567
|
202 |
while(nedge[s]!=INVALID && visited[nedge[s]]) ++nedge[s];
|
alpar@567
|
203 |
if(nedge[s]==INVALID) break;
|
alpar@567
|
204 |
else {
|
alpar@567
|
205 |
euler.insert(next,nedge[s]);
|
alpar@567
|
206 |
visited[nedge[s]]=true;
|
alpar@567
|
207 |
Node n=g.target(nedge[s]);
|
alpar@567
|
208 |
++nedge[s];
|
alpar@567
|
209 |
s=n;
|
alpar@567
|
210 |
}
|
alpar@567
|
211 |
}
|
alpar@567
|
212 |
return *this;
|
alpar@567
|
213 |
}
|
alpar@567
|
214 |
|
alpar@567
|
215 |
///Postfix incrementation
|
alpar@567
|
216 |
|
alpar@567
|
217 |
///\warning This incrementation
|
alpar@567
|
218 |
///returns an \c Arc, not an \ref EulerIt, as one may
|
alpar@567
|
219 |
///expect.
|
alpar@567
|
220 |
Arc operator++(int)
|
alpar@567
|
221 |
{
|
alpar@567
|
222 |
Arc e=*this;
|
alpar@567
|
223 |
++(*this);
|
alpar@567
|
224 |
return e;
|
alpar@567
|
225 |
}
|
alpar@567
|
226 |
};
|
alpar@567
|
227 |
|
alpar@567
|
228 |
|
alpar@568
|
229 |
///Checks if the graph is Eulerian
|
alpar@567
|
230 |
|
kpeter@633
|
231 |
/// \ingroup graph_properties
|
alpar@568
|
232 |
///Checks if the graph is Eulerian. It works for both directed and undirected
|
alpar@567
|
233 |
///graphs.
|
alpar@568
|
234 |
///\note By definition, a digraph is called \e Eulerian if
|
alpar@567
|
235 |
///and only if it is connected and the number of its incoming and outgoing
|
alpar@567
|
236 |
///arcs are the same for each node.
|
alpar@568
|
237 |
///Similarly, an undirected graph is called \e Eulerian if
|
alpar@567
|
238 |
///and only if it is connected and the number of incident arcs is even
|
alpar@568
|
239 |
///for each node. <em>Therefore, there are digraphs which are not Eulerian,
|
alpar@568
|
240 |
///but still have an Euler tour</em>.
|
kpeter@606
|
241 |
template<typename GR>
|
alpar@567
|
242 |
#ifdef DOXYGEN
|
alpar@567
|
243 |
bool
|
alpar@567
|
244 |
#else
|
kpeter@606
|
245 |
typename enable_if<UndirectedTagIndicator<GR>,bool>::type
|
kpeter@606
|
246 |
eulerian(const GR &g)
|
alpar@567
|
247 |
{
|
kpeter@606
|
248 |
for(typename GR::NodeIt n(g);n!=INVALID;++n)
|
alpar@567
|
249 |
if(countIncEdges(g,n)%2) return false;
|
alpar@567
|
250 |
return connected(g);
|
alpar@567
|
251 |
}
|
kpeter@606
|
252 |
template<class GR>
|
kpeter@606
|
253 |
typename disable_if<UndirectedTagIndicator<GR>,bool>::type
|
alpar@567
|
254 |
#endif
|
kpeter@606
|
255 |
eulerian(const GR &g)
|
alpar@567
|
256 |
{
|
kpeter@606
|
257 |
for(typename GR::NodeIt n(g);n!=INVALID;++n)
|
alpar@567
|
258 |
if(countInArcs(g,n)!=countOutArcs(g,n)) return false;
|
kpeter@606
|
259 |
return connected(Undirector<const GR>(g));
|
alpar@567
|
260 |
}
|
alpar@567
|
261 |
|
alpar@567
|
262 |
}
|
alpar@567
|
263 |
|
alpar@567
|
264 |
#endif
|