alpar@209
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
alpar@96
|
2 |
*
|
alpar@209
|
3 |
* This file is a part of LEMON, a generic C++ optimization library.
|
alpar@96
|
4 |
*
|
alpar@96
|
5 |
* Copyright (C) 2003-2008
|
alpar@96
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
alpar@96
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
alpar@96
|
8 |
*
|
alpar@96
|
9 |
* Permission to use, modify and distribute this software is granted
|
alpar@96
|
10 |
* provided that this copyright notice appears in all copies. For
|
alpar@96
|
11 |
* precise terms see the accompanying LICENSE file.
|
alpar@96
|
12 |
*
|
alpar@96
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
alpar@96
|
14 |
* express or implied, and with no claim as to its suitability for any
|
alpar@96
|
15 |
* purpose.
|
alpar@96
|
16 |
*
|
alpar@96
|
17 |
*/
|
alpar@96
|
18 |
|
alpar@96
|
19 |
///\ingroup paths
|
alpar@96
|
20 |
///\file
|
alpar@96
|
21 |
///\brief Classes for representing paths in digraphs.
|
alpar@96
|
22 |
///
|
alpar@96
|
23 |
|
alpar@96
|
24 |
#ifndef LEMON_PATH_H
|
alpar@96
|
25 |
#define LEMON_PATH_H
|
alpar@96
|
26 |
|
alpar@96
|
27 |
#include <vector>
|
alpar@96
|
28 |
#include <algorithm>
|
alpar@96
|
29 |
|
alpar@96
|
30 |
#include <lemon/error.h>
|
deba@220
|
31 |
#include <lemon/core.h>
|
alpar@100
|
32 |
#include <lemon/concepts/path.h>
|
alpar@96
|
33 |
|
alpar@96
|
34 |
namespace lemon {
|
alpar@96
|
35 |
|
alpar@96
|
36 |
/// \addtogroup paths
|
alpar@96
|
37 |
/// @{
|
alpar@96
|
38 |
|
alpar@96
|
39 |
|
alpar@96
|
40 |
/// \brief A structure for representing directed paths in a digraph.
|
alpar@96
|
41 |
///
|
alpar@96
|
42 |
/// A structure for representing directed path in a digraph.
|
kpeter@157
|
43 |
/// \tparam _Digraph The digraph type in which the path is.
|
alpar@96
|
44 |
///
|
alpar@96
|
45 |
/// In a sense, the path can be treated as a list of arcs. The
|
alpar@97
|
46 |
/// lemon path type stores just this list. As a consequence, it
|
alpar@97
|
47 |
/// cannot enumerate the nodes of the path and the source node of
|
alpar@97
|
48 |
/// a zero length path is undefined.
|
alpar@96
|
49 |
///
|
alpar@96
|
50 |
/// This implementation is a back and front insertable and erasable
|
alpar@96
|
51 |
/// path type. It can be indexed in O(1) time. The front and back
|
alpar@97
|
52 |
/// insertion and erase is done in O(1) (amortized) time. The
|
alpar@97
|
53 |
/// implementation uses two vectors for storing the front and back
|
alpar@97
|
54 |
/// insertions.
|
alpar@96
|
55 |
template <typename _Digraph>
|
alpar@96
|
56 |
class Path {
|
alpar@96
|
57 |
public:
|
alpar@96
|
58 |
|
alpar@96
|
59 |
typedef _Digraph Digraph;
|
alpar@96
|
60 |
typedef typename Digraph::Arc Arc;
|
alpar@96
|
61 |
|
alpar@96
|
62 |
/// \brief Default constructor
|
alpar@96
|
63 |
///
|
alpar@96
|
64 |
/// Default constructor
|
alpar@96
|
65 |
Path() {}
|
alpar@96
|
66 |
|
alpar@96
|
67 |
/// \brief Template copy constructor
|
alpar@96
|
68 |
///
|
alpar@97
|
69 |
/// This constuctor initializes the path from any other path type.
|
alpar@97
|
70 |
/// It simply makes a copy of the given path.
|
alpar@96
|
71 |
template <typename CPath>
|
alpar@96
|
72 |
Path(const CPath& cpath) {
|
kpeter@551
|
73 |
pathCopy(cpath, *this);
|
alpar@96
|
74 |
}
|
alpar@96
|
75 |
|
alpar@96
|
76 |
/// \brief Template copy assignment
|
alpar@96
|
77 |
///
|
alpar@97
|
78 |
/// This operator makes a copy of a path of any other type.
|
alpar@96
|
79 |
template <typename CPath>
|
alpar@96
|
80 |
Path& operator=(const CPath& cpath) {
|
kpeter@551
|
81 |
pathCopy(cpath, *this);
|
alpar@96
|
82 |
return *this;
|
alpar@96
|
83 |
}
|
alpar@96
|
84 |
|
ladanyi@236
|
85 |
/// \brief LEMON style iterator for path arcs
|
alpar@96
|
86 |
///
|
alpar@96
|
87 |
/// This class is used to iterate on the arcs of the paths.
|
alpar@96
|
88 |
class ArcIt {
|
alpar@96
|
89 |
friend class Path;
|
alpar@96
|
90 |
public:
|
alpar@96
|
91 |
/// \brief Default constructor
|
alpar@96
|
92 |
ArcIt() {}
|
alpar@96
|
93 |
/// \brief Invalid constructor
|
alpar@96
|
94 |
ArcIt(Invalid) : path(0), idx(-1) {}
|
alpar@97
|
95 |
/// \brief Initializate the iterator to the first arc of path
|
alpar@209
|
96 |
ArcIt(const Path &_path)
|
alpar@96
|
97 |
: path(&_path), idx(_path.empty() ? -1 : 0) {}
|
alpar@96
|
98 |
|
alpar@96
|
99 |
private:
|
alpar@96
|
100 |
|
alpar@209
|
101 |
ArcIt(const Path &_path, int _idx)
|
alpar@96
|
102 |
: path(&_path), idx(_idx) {}
|
alpar@96
|
103 |
|
alpar@96
|
104 |
public:
|
alpar@96
|
105 |
|
alpar@96
|
106 |
/// \brief Conversion to Arc
|
alpar@96
|
107 |
operator const Arc&() const {
|
alpar@96
|
108 |
return path->nth(idx);
|
alpar@96
|
109 |
}
|
alpar@96
|
110 |
|
alpar@96
|
111 |
/// \brief Next arc
|
alpar@209
|
112 |
ArcIt& operator++() {
|
alpar@96
|
113 |
++idx;
|
alpar@209
|
114 |
if (idx >= path->length()) idx = -1;
|
alpar@209
|
115 |
return *this;
|
alpar@96
|
116 |
}
|
alpar@96
|
117 |
|
alpar@96
|
118 |
/// \brief Comparison operator
|
alpar@96
|
119 |
bool operator==(const ArcIt& e) const { return idx==e.idx; }
|
alpar@96
|
120 |
/// \brief Comparison operator
|
alpar@96
|
121 |
bool operator!=(const ArcIt& e) const { return idx!=e.idx; }
|
alpar@96
|
122 |
/// \brief Comparison operator
|
alpar@96
|
123 |
bool operator<(const ArcIt& e) const { return idx<e.idx; }
|
alpar@96
|
124 |
|
alpar@96
|
125 |
private:
|
alpar@96
|
126 |
const Path *path;
|
alpar@96
|
127 |
int idx;
|
alpar@96
|
128 |
};
|
alpar@96
|
129 |
|
alpar@96
|
130 |
/// \brief Length of the path.
|
alpar@96
|
131 |
int length() const { return head.size() + tail.size(); }
|
alpar@97
|
132 |
/// \brief Return whether the path is empty.
|
alpar@96
|
133 |
bool empty() const { return head.empty() && tail.empty(); }
|
alpar@96
|
134 |
|
alpar@97
|
135 |
/// \brief Reset the path to an empty one.
|
alpar@96
|
136 |
void clear() { head.clear(); tail.clear(); }
|
alpar@96
|
137 |
|
alpar@97
|
138 |
/// \brief The nth arc.
|
alpar@96
|
139 |
///
|
alpar@96
|
140 |
/// \pre n is in the [0..length() - 1] range
|
alpar@96
|
141 |
const Arc& nth(int n) const {
|
alpar@96
|
142 |
return n < int(head.size()) ? *(head.rbegin() + n) :
|
alpar@96
|
143 |
*(tail.begin() + (n - head.size()));
|
alpar@96
|
144 |
}
|
alpar@96
|
145 |
|
alpar@97
|
146 |
/// \brief Initialize arc iterator to point to the nth arc
|
alpar@96
|
147 |
///
|
alpar@96
|
148 |
/// \pre n is in the [0..length() - 1] range
|
alpar@96
|
149 |
ArcIt nthIt(int n) const {
|
alpar@96
|
150 |
return ArcIt(*this, n);
|
alpar@96
|
151 |
}
|
alpar@96
|
152 |
|
alpar@97
|
153 |
/// \brief The first arc of the path
|
alpar@96
|
154 |
const Arc& front() const {
|
alpar@96
|
155 |
return head.empty() ? tail.front() : head.back();
|
alpar@96
|
156 |
}
|
alpar@96
|
157 |
|
alpar@96
|
158 |
/// \brief Add a new arc before the current path
|
alpar@96
|
159 |
void addFront(const Arc& arc) {
|
alpar@96
|
160 |
head.push_back(arc);
|
alpar@96
|
161 |
}
|
alpar@96
|
162 |
|
alpar@96
|
163 |
/// \brief Erase the first arc of the path
|
alpar@96
|
164 |
void eraseFront() {
|
alpar@96
|
165 |
if (!head.empty()) {
|
alpar@96
|
166 |
head.pop_back();
|
alpar@96
|
167 |
} else {
|
alpar@96
|
168 |
head.clear();
|
alpar@96
|
169 |
int halfsize = tail.size() / 2;
|
alpar@96
|
170 |
head.resize(halfsize);
|
alpar@96
|
171 |
std::copy(tail.begin() + 1, tail.begin() + halfsize + 1,
|
alpar@96
|
172 |
head.rbegin());
|
alpar@96
|
173 |
std::copy(tail.begin() + halfsize + 1, tail.end(), tail.begin());
|
alpar@96
|
174 |
tail.resize(tail.size() - halfsize - 1);
|
alpar@96
|
175 |
}
|
alpar@96
|
176 |
}
|
alpar@96
|
177 |
|
alpar@97
|
178 |
/// \brief The last arc of the path
|
alpar@96
|
179 |
const Arc& back() const {
|
alpar@96
|
180 |
return tail.empty() ? head.front() : tail.back();
|
alpar@96
|
181 |
}
|
alpar@96
|
182 |
|
alpar@96
|
183 |
/// \brief Add a new arc behind the current path
|
alpar@96
|
184 |
void addBack(const Arc& arc) {
|
alpar@96
|
185 |
tail.push_back(arc);
|
alpar@96
|
186 |
}
|
alpar@96
|
187 |
|
alpar@96
|
188 |
/// \brief Erase the last arc of the path
|
alpar@96
|
189 |
void eraseBack() {
|
alpar@96
|
190 |
if (!tail.empty()) {
|
alpar@96
|
191 |
tail.pop_back();
|
alpar@96
|
192 |
} else {
|
alpar@96
|
193 |
int halfsize = head.size() / 2;
|
alpar@96
|
194 |
tail.resize(halfsize);
|
alpar@96
|
195 |
std::copy(head.begin() + 1, head.begin() + halfsize + 1,
|
alpar@96
|
196 |
tail.rbegin());
|
alpar@96
|
197 |
std::copy(head.begin() + halfsize + 1, head.end(), head.begin());
|
alpar@96
|
198 |
head.resize(head.size() - halfsize - 1);
|
alpar@96
|
199 |
}
|
alpar@96
|
200 |
}
|
alpar@96
|
201 |
|
alpar@96
|
202 |
typedef True BuildTag;
|
alpar@96
|
203 |
|
alpar@96
|
204 |
template <typename CPath>
|
alpar@96
|
205 |
void build(const CPath& path) {
|
alpar@96
|
206 |
int len = path.length();
|
alpar@96
|
207 |
tail.reserve(len);
|
alpar@96
|
208 |
for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
|
alpar@96
|
209 |
tail.push_back(it);
|
alpar@96
|
210 |
}
|
alpar@96
|
211 |
}
|
alpar@96
|
212 |
|
alpar@96
|
213 |
template <typename CPath>
|
alpar@96
|
214 |
void buildRev(const CPath& path) {
|
alpar@96
|
215 |
int len = path.length();
|
alpar@96
|
216 |
head.reserve(len);
|
alpar@96
|
217 |
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
|
alpar@96
|
218 |
head.push_back(it);
|
alpar@96
|
219 |
}
|
alpar@96
|
220 |
}
|
alpar@96
|
221 |
|
alpar@96
|
222 |
protected:
|
alpar@96
|
223 |
typedef std::vector<Arc> Container;
|
alpar@96
|
224 |
Container head, tail;
|
alpar@96
|
225 |
|
alpar@96
|
226 |
};
|
alpar@96
|
227 |
|
alpar@96
|
228 |
/// \brief A structure for representing directed paths in a digraph.
|
alpar@96
|
229 |
///
|
alpar@96
|
230 |
/// A structure for representing directed path in a digraph.
|
kpeter@157
|
231 |
/// \tparam _Digraph The digraph type in which the path is.
|
alpar@96
|
232 |
///
|
alpar@96
|
233 |
/// In a sense, the path can be treated as a list of arcs. The
|
alpar@96
|
234 |
/// lemon path type stores just this list. As a consequence it
|
alpar@96
|
235 |
/// cannot enumerate the nodes in the path and the zero length paths
|
alpar@96
|
236 |
/// cannot store the source.
|
alpar@96
|
237 |
///
|
alpar@96
|
238 |
/// This implementation is a just back insertable and erasable path
|
alpar@96
|
239 |
/// type. It can be indexed in O(1) time. The back insertion and
|
alpar@96
|
240 |
/// erasure is amortized O(1) time. This implementation is faster
|
alpar@96
|
241 |
/// then the \c Path type because it use just one vector for the
|
alpar@96
|
242 |
/// arcs.
|
alpar@96
|
243 |
template <typename _Digraph>
|
alpar@96
|
244 |
class SimplePath {
|
alpar@96
|
245 |
public:
|
alpar@96
|
246 |
|
alpar@96
|
247 |
typedef _Digraph Digraph;
|
alpar@96
|
248 |
typedef typename Digraph::Arc Arc;
|
alpar@96
|
249 |
|
alpar@96
|
250 |
/// \brief Default constructor
|
alpar@96
|
251 |
///
|
alpar@96
|
252 |
/// Default constructor
|
alpar@96
|
253 |
SimplePath() {}
|
alpar@96
|
254 |
|
alpar@96
|
255 |
/// \brief Template copy constructor
|
alpar@96
|
256 |
///
|
alpar@96
|
257 |
/// This path can be initialized with any other path type. It just
|
alpar@96
|
258 |
/// makes a copy of the given path.
|
alpar@96
|
259 |
template <typename CPath>
|
alpar@96
|
260 |
SimplePath(const CPath& cpath) {
|
kpeter@551
|
261 |
pathCopy(cpath, *this);
|
alpar@96
|
262 |
}
|
alpar@96
|
263 |
|
alpar@96
|
264 |
/// \brief Template copy assignment
|
alpar@96
|
265 |
///
|
alpar@96
|
266 |
/// This path can be initialized with any other path type. It just
|
alpar@96
|
267 |
/// makes a copy of the given path.
|
alpar@96
|
268 |
template <typename CPath>
|
alpar@96
|
269 |
SimplePath& operator=(const CPath& cpath) {
|
kpeter@551
|
270 |
pathCopy(cpath, *this);
|
alpar@96
|
271 |
return *this;
|
alpar@96
|
272 |
}
|
alpar@96
|
273 |
|
alpar@96
|
274 |
/// \brief Iterator class to iterate on the arcs of the paths
|
alpar@96
|
275 |
///
|
alpar@96
|
276 |
/// This class is used to iterate on the arcs of the paths
|
alpar@96
|
277 |
///
|
alpar@96
|
278 |
/// Of course it converts to Digraph::Arc
|
alpar@96
|
279 |
class ArcIt {
|
alpar@96
|
280 |
friend class SimplePath;
|
alpar@96
|
281 |
public:
|
alpar@96
|
282 |
/// Default constructor
|
alpar@96
|
283 |
ArcIt() {}
|
alpar@96
|
284 |
/// Invalid constructor
|
alpar@96
|
285 |
ArcIt(Invalid) : path(0), idx(-1) {}
|
alpar@96
|
286 |
/// \brief Initializate the constructor to the first arc of path
|
alpar@209
|
287 |
ArcIt(const SimplePath &_path)
|
alpar@96
|
288 |
: path(&_path), idx(_path.empty() ? -1 : 0) {}
|
alpar@96
|
289 |
|
alpar@96
|
290 |
private:
|
alpar@96
|
291 |
|
alpar@96
|
292 |
/// Constructor with starting point
|
alpar@209
|
293 |
ArcIt(const SimplePath &_path, int _idx)
|
alpar@96
|
294 |
: idx(_idx), path(&_path) {}
|
alpar@96
|
295 |
|
alpar@96
|
296 |
public:
|
alpar@96
|
297 |
|
alpar@96
|
298 |
///Conversion to Digraph::Arc
|
alpar@96
|
299 |
operator const Arc&() const {
|
alpar@96
|
300 |
return path->nth(idx);
|
alpar@96
|
301 |
}
|
alpar@96
|
302 |
|
alpar@96
|
303 |
/// Next arc
|
alpar@209
|
304 |
ArcIt& operator++() {
|
alpar@96
|
305 |
++idx;
|
alpar@209
|
306 |
if (idx >= path->length()) idx = -1;
|
alpar@209
|
307 |
return *this;
|
alpar@96
|
308 |
}
|
alpar@96
|
309 |
|
alpar@96
|
310 |
/// Comparison operator
|
alpar@96
|
311 |
bool operator==(const ArcIt& e) const { return idx==e.idx; }
|
alpar@96
|
312 |
/// Comparison operator
|
alpar@96
|
313 |
bool operator!=(const ArcIt& e) const { return idx!=e.idx; }
|
alpar@96
|
314 |
/// Comparison operator
|
alpar@96
|
315 |
bool operator<(const ArcIt& e) const { return idx<e.idx; }
|
alpar@96
|
316 |
|
alpar@96
|
317 |
private:
|
alpar@96
|
318 |
const SimplePath *path;
|
alpar@96
|
319 |
int idx;
|
alpar@96
|
320 |
};
|
alpar@96
|
321 |
|
alpar@96
|
322 |
/// \brief Length of the path.
|
alpar@96
|
323 |
int length() const { return data.size(); }
|
alpar@97
|
324 |
/// \brief Return true if the path is empty.
|
alpar@96
|
325 |
bool empty() const { return data.empty(); }
|
alpar@96
|
326 |
|
alpar@97
|
327 |
/// \brief Reset the path to an empty one.
|
alpar@96
|
328 |
void clear() { data.clear(); }
|
alpar@96
|
329 |
|
alpar@97
|
330 |
/// \brief The nth arc.
|
alpar@96
|
331 |
///
|
alpar@96
|
332 |
/// \pre n is in the [0..length() - 1] range
|
alpar@96
|
333 |
const Arc& nth(int n) const {
|
alpar@96
|
334 |
return data[n];
|
alpar@96
|
335 |
}
|
alpar@96
|
336 |
|
alpar@96
|
337 |
/// \brief Initializes arc iterator to point to the nth arc.
|
alpar@96
|
338 |
ArcIt nthIt(int n) const {
|
alpar@96
|
339 |
return ArcIt(*this, n);
|
alpar@96
|
340 |
}
|
alpar@96
|
341 |
|
alpar@97
|
342 |
/// \brief The first arc of the path.
|
alpar@96
|
343 |
const Arc& front() const {
|
alpar@96
|
344 |
return data.front();
|
alpar@96
|
345 |
}
|
alpar@96
|
346 |
|
alpar@97
|
347 |
/// \brief The last arc of the path.
|
alpar@96
|
348 |
const Arc& back() const {
|
alpar@96
|
349 |
return data.back();
|
alpar@96
|
350 |
}
|
alpar@96
|
351 |
|
alpar@96
|
352 |
/// \brief Add a new arc behind the current path.
|
alpar@96
|
353 |
void addBack(const Arc& arc) {
|
alpar@96
|
354 |
data.push_back(arc);
|
alpar@96
|
355 |
}
|
alpar@96
|
356 |
|
alpar@96
|
357 |
/// \brief Erase the last arc of the path
|
alpar@96
|
358 |
void eraseBack() {
|
alpar@96
|
359 |
data.pop_back();
|
alpar@96
|
360 |
}
|
alpar@96
|
361 |
|
alpar@96
|
362 |
typedef True BuildTag;
|
alpar@96
|
363 |
|
alpar@96
|
364 |
template <typename CPath>
|
alpar@96
|
365 |
void build(const CPath& path) {
|
alpar@96
|
366 |
int len = path.length();
|
alpar@96
|
367 |
data.resize(len);
|
alpar@96
|
368 |
int index = 0;
|
alpar@96
|
369 |
for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
|
alpar@96
|
370 |
data[index] = it;;
|
alpar@96
|
371 |
++index;
|
alpar@96
|
372 |
}
|
alpar@96
|
373 |
}
|
alpar@96
|
374 |
|
alpar@96
|
375 |
template <typename CPath>
|
alpar@96
|
376 |
void buildRev(const CPath& path) {
|
alpar@96
|
377 |
int len = path.length();
|
alpar@96
|
378 |
data.resize(len);
|
alpar@96
|
379 |
int index = len;
|
alpar@96
|
380 |
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
|
alpar@96
|
381 |
--index;
|
alpar@96
|
382 |
data[index] = it;;
|
alpar@96
|
383 |
}
|
alpar@96
|
384 |
}
|
alpar@96
|
385 |
|
alpar@96
|
386 |
protected:
|
alpar@96
|
387 |
typedef std::vector<Arc> Container;
|
alpar@96
|
388 |
Container data;
|
alpar@96
|
389 |
|
alpar@96
|
390 |
};
|
alpar@96
|
391 |
|
alpar@96
|
392 |
/// \brief A structure for representing directed paths in a digraph.
|
alpar@96
|
393 |
///
|
alpar@96
|
394 |
/// A structure for representing directed path in a digraph.
|
kpeter@157
|
395 |
/// \tparam _Digraph The digraph type in which the path is.
|
alpar@96
|
396 |
///
|
alpar@96
|
397 |
/// In a sense, the path can be treated as a list of arcs. The
|
alpar@96
|
398 |
/// lemon path type stores just this list. As a consequence it
|
alpar@96
|
399 |
/// cannot enumerate the nodes in the path and the zero length paths
|
alpar@96
|
400 |
/// cannot store the source.
|
alpar@96
|
401 |
///
|
alpar@96
|
402 |
/// This implementation is a back and front insertable and erasable
|
alpar@96
|
403 |
/// path type. It can be indexed in O(k) time, where k is the rank
|
alpar@96
|
404 |
/// of the arc in the path. The length can be computed in O(n)
|
alpar@96
|
405 |
/// time. The front and back insertion and erasure is O(1) time
|
alpar@96
|
406 |
/// and it can be splited and spliced in O(1) time.
|
alpar@96
|
407 |
template <typename _Digraph>
|
alpar@96
|
408 |
class ListPath {
|
alpar@96
|
409 |
public:
|
alpar@96
|
410 |
|
alpar@96
|
411 |
typedef _Digraph Digraph;
|
alpar@96
|
412 |
typedef typename Digraph::Arc Arc;
|
alpar@96
|
413 |
|
alpar@96
|
414 |
protected:
|
alpar@96
|
415 |
|
alpar@209
|
416 |
// the std::list<> is incompatible
|
alpar@96
|
417 |
// hard to create invalid iterator
|
alpar@96
|
418 |
struct Node {
|
alpar@96
|
419 |
Arc arc;
|
alpar@96
|
420 |
Node *next, *prev;
|
alpar@96
|
421 |
};
|
alpar@96
|
422 |
|
alpar@96
|
423 |
Node *first, *last;
|
alpar@96
|
424 |
|
alpar@96
|
425 |
std::allocator<Node> alloc;
|
alpar@96
|
426 |
|
alpar@96
|
427 |
public:
|
alpar@209
|
428 |
|
alpar@96
|
429 |
/// \brief Default constructor
|
alpar@96
|
430 |
///
|
alpar@96
|
431 |
/// Default constructor
|
alpar@96
|
432 |
ListPath() : first(0), last(0) {}
|
alpar@96
|
433 |
|
alpar@96
|
434 |
/// \brief Template copy constructor
|
alpar@96
|
435 |
///
|
alpar@96
|
436 |
/// This path can be initialized with any other path type. It just
|
alpar@96
|
437 |
/// makes a copy of the given path.
|
alpar@96
|
438 |
template <typename CPath>
|
alpar@96
|
439 |
ListPath(const CPath& cpath) : first(0), last(0) {
|
kpeter@551
|
440 |
pathCopy(cpath, *this);
|
alpar@96
|
441 |
}
|
alpar@96
|
442 |
|
alpar@96
|
443 |
/// \brief Destructor of the path
|
alpar@96
|
444 |
///
|
alpar@96
|
445 |
/// Destructor of the path
|
alpar@96
|
446 |
~ListPath() {
|
alpar@96
|
447 |
clear();
|
alpar@96
|
448 |
}
|
alpar@96
|
449 |
|
alpar@96
|
450 |
/// \brief Template copy assignment
|
alpar@96
|
451 |
///
|
alpar@96
|
452 |
/// This path can be initialized with any other path type. It just
|
alpar@96
|
453 |
/// makes a copy of the given path.
|
alpar@96
|
454 |
template <typename CPath>
|
alpar@96
|
455 |
ListPath& operator=(const CPath& cpath) {
|
kpeter@551
|
456 |
pathCopy(cpath, *this);
|
alpar@96
|
457 |
return *this;
|
alpar@96
|
458 |
}
|
alpar@96
|
459 |
|
alpar@96
|
460 |
/// \brief Iterator class to iterate on the arcs of the paths
|
alpar@96
|
461 |
///
|
alpar@96
|
462 |
/// This class is used to iterate on the arcs of the paths
|
alpar@96
|
463 |
///
|
alpar@96
|
464 |
/// Of course it converts to Digraph::Arc
|
alpar@96
|
465 |
class ArcIt {
|
alpar@96
|
466 |
friend class ListPath;
|
alpar@96
|
467 |
public:
|
alpar@96
|
468 |
/// Default constructor
|
alpar@96
|
469 |
ArcIt() {}
|
alpar@96
|
470 |
/// Invalid constructor
|
alpar@96
|
471 |
ArcIt(Invalid) : path(0), node(0) {}
|
alpar@96
|
472 |
/// \brief Initializate the constructor to the first arc of path
|
alpar@209
|
473 |
ArcIt(const ListPath &_path)
|
alpar@96
|
474 |
: path(&_path), node(_path.first) {}
|
alpar@96
|
475 |
|
alpar@96
|
476 |
protected:
|
alpar@96
|
477 |
|
alpar@209
|
478 |
ArcIt(const ListPath &_path, Node *_node)
|
alpar@96
|
479 |
: path(&_path), node(_node) {}
|
alpar@96
|
480 |
|
alpar@96
|
481 |
|
alpar@96
|
482 |
public:
|
alpar@96
|
483 |
|
alpar@96
|
484 |
///Conversion to Digraph::Arc
|
alpar@96
|
485 |
operator const Arc&() const {
|
alpar@96
|
486 |
return node->arc;
|
alpar@96
|
487 |
}
|
alpar@96
|
488 |
|
alpar@96
|
489 |
/// Next arc
|
alpar@209
|
490 |
ArcIt& operator++() {
|
alpar@96
|
491 |
node = node->next;
|
alpar@209
|
492 |
return *this;
|
alpar@96
|
493 |
}
|
alpar@96
|
494 |
|
alpar@96
|
495 |
/// Comparison operator
|
alpar@96
|
496 |
bool operator==(const ArcIt& e) const { return node==e.node; }
|
alpar@96
|
497 |
/// Comparison operator
|
alpar@96
|
498 |
bool operator!=(const ArcIt& e) const { return node!=e.node; }
|
alpar@96
|
499 |
/// Comparison operator
|
alpar@96
|
500 |
bool operator<(const ArcIt& e) const { return node<e.node; }
|
alpar@96
|
501 |
|
alpar@96
|
502 |
private:
|
alpar@96
|
503 |
const ListPath *path;
|
alpar@96
|
504 |
Node *node;
|
alpar@96
|
505 |
};
|
alpar@96
|
506 |
|
alpar@97
|
507 |
/// \brief The nth arc.
|
alpar@96
|
508 |
///
|
alpar@97
|
509 |
/// This function looks for the nth arc in O(n) time.
|
alpar@96
|
510 |
/// \pre n is in the [0..length() - 1] range
|
alpar@96
|
511 |
const Arc& nth(int n) const {
|
alpar@96
|
512 |
Node *node = first;
|
alpar@96
|
513 |
for (int i = 0; i < n; ++i) {
|
alpar@96
|
514 |
node = node->next;
|
alpar@96
|
515 |
}
|
alpar@96
|
516 |
return node->arc;
|
alpar@96
|
517 |
}
|
alpar@96
|
518 |
|
alpar@96
|
519 |
/// \brief Initializes arc iterator to point to the nth arc.
|
alpar@96
|
520 |
ArcIt nthIt(int n) const {
|
alpar@96
|
521 |
Node *node = first;
|
alpar@96
|
522 |
for (int i = 0; i < n; ++i) {
|
alpar@96
|
523 |
node = node->next;
|
alpar@96
|
524 |
}
|
alpar@96
|
525 |
return ArcIt(*this, node);
|
alpar@96
|
526 |
}
|
alpar@96
|
527 |
|
alpar@96
|
528 |
/// \brief Length of the path.
|
alpar@96
|
529 |
int length() const {
|
alpar@96
|
530 |
int len = 0;
|
alpar@96
|
531 |
Node *node = first;
|
alpar@96
|
532 |
while (node != 0) {
|
alpar@96
|
533 |
node = node->next;
|
alpar@96
|
534 |
++len;
|
alpar@96
|
535 |
}
|
alpar@96
|
536 |
return len;
|
alpar@96
|
537 |
}
|
alpar@96
|
538 |
|
alpar@97
|
539 |
/// \brief Return true if the path is empty.
|
alpar@96
|
540 |
bool empty() const { return first == 0; }
|
alpar@96
|
541 |
|
alpar@97
|
542 |
/// \brief Reset the path to an empty one.
|
alpar@96
|
543 |
void clear() {
|
alpar@96
|
544 |
while (first != 0) {
|
alpar@96
|
545 |
last = first->next;
|
alpar@96
|
546 |
alloc.destroy(first);
|
alpar@96
|
547 |
alloc.deallocate(first, 1);
|
alpar@96
|
548 |
first = last;
|
alpar@96
|
549 |
}
|
alpar@96
|
550 |
}
|
alpar@96
|
551 |
|
alpar@97
|
552 |
/// \brief The first arc of the path
|
alpar@96
|
553 |
const Arc& front() const {
|
alpar@96
|
554 |
return first->arc;
|
alpar@96
|
555 |
}
|
alpar@96
|
556 |
|
alpar@96
|
557 |
/// \brief Add a new arc before the current path
|
alpar@96
|
558 |
void addFront(const Arc& arc) {
|
alpar@96
|
559 |
Node *node = alloc.allocate(1);
|
alpar@96
|
560 |
alloc.construct(node, Node());
|
alpar@96
|
561 |
node->prev = 0;
|
alpar@96
|
562 |
node->next = first;
|
alpar@96
|
563 |
node->arc = arc;
|
alpar@96
|
564 |
if (first) {
|
alpar@96
|
565 |
first->prev = node;
|
alpar@96
|
566 |
first = node;
|
alpar@96
|
567 |
} else {
|
alpar@96
|
568 |
first = last = node;
|
alpar@96
|
569 |
}
|
alpar@96
|
570 |
}
|
alpar@96
|
571 |
|
alpar@96
|
572 |
/// \brief Erase the first arc of the path
|
alpar@96
|
573 |
void eraseFront() {
|
alpar@96
|
574 |
Node *node = first;
|
alpar@96
|
575 |
first = first->next;
|
alpar@96
|
576 |
if (first) {
|
alpar@96
|
577 |
first->prev = 0;
|
alpar@96
|
578 |
} else {
|
alpar@96
|
579 |
last = 0;
|
alpar@96
|
580 |
}
|
alpar@96
|
581 |
alloc.destroy(node);
|
alpar@96
|
582 |
alloc.deallocate(node, 1);
|
alpar@96
|
583 |
}
|
alpar@96
|
584 |
|
alpar@97
|
585 |
/// \brief The last arc of the path.
|
alpar@96
|
586 |
const Arc& back() const {
|
alpar@96
|
587 |
return last->arc;
|
alpar@96
|
588 |
}
|
alpar@96
|
589 |
|
alpar@96
|
590 |
/// \brief Add a new arc behind the current path.
|
alpar@96
|
591 |
void addBack(const Arc& arc) {
|
alpar@96
|
592 |
Node *node = alloc.allocate(1);
|
alpar@96
|
593 |
alloc.construct(node, Node());
|
alpar@96
|
594 |
node->next = 0;
|
alpar@96
|
595 |
node->prev = last;
|
alpar@96
|
596 |
node->arc = arc;
|
alpar@96
|
597 |
if (last) {
|
alpar@96
|
598 |
last->next = node;
|
alpar@96
|
599 |
last = node;
|
alpar@96
|
600 |
} else {
|
alpar@96
|
601 |
last = first = node;
|
alpar@96
|
602 |
}
|
alpar@96
|
603 |
}
|
alpar@96
|
604 |
|
alpar@96
|
605 |
/// \brief Erase the last arc of the path
|
alpar@96
|
606 |
void eraseBack() {
|
alpar@96
|
607 |
Node *node = last;
|
alpar@96
|
608 |
last = last->prev;
|
alpar@96
|
609 |
if (last) {
|
alpar@96
|
610 |
last->next = 0;
|
alpar@96
|
611 |
} else {
|
alpar@96
|
612 |
first = 0;
|
alpar@96
|
613 |
}
|
alpar@96
|
614 |
alloc.destroy(node);
|
alpar@96
|
615 |
alloc.deallocate(node, 1);
|
alpar@96
|
616 |
}
|
alpar@96
|
617 |
|
alpar@97
|
618 |
/// \brief Splice a path to the back of the current path.
|
alpar@96
|
619 |
///
|
alpar@97
|
620 |
/// It splices \c tpath to the back of the current path and \c
|
alpar@96
|
621 |
/// tpath becomes empty. The time complexity of this function is
|
alpar@96
|
622 |
/// O(1).
|
alpar@96
|
623 |
void spliceBack(ListPath& tpath) {
|
alpar@96
|
624 |
if (first) {
|
alpar@96
|
625 |
if (tpath.first) {
|
alpar@96
|
626 |
last->next = tpath.first;
|
alpar@96
|
627 |
tpath.first->prev = last;
|
alpar@96
|
628 |
last = tpath.last;
|
alpar@96
|
629 |
}
|
alpar@96
|
630 |
} else {
|
alpar@96
|
631 |
first = tpath.first;
|
alpar@96
|
632 |
last = tpath.last;
|
alpar@96
|
633 |
}
|
alpar@96
|
634 |
tpath.first = tpath.last = 0;
|
alpar@96
|
635 |
}
|
alpar@96
|
636 |
|
alpar@97
|
637 |
/// \brief Splice a path to the front of the current path.
|
alpar@96
|
638 |
///
|
alpar@97
|
639 |
/// It splices \c tpath before the current path and \c tpath
|
alpar@96
|
640 |
/// becomes empty. The time complexity of this function
|
alpar@96
|
641 |
/// is O(1).
|
alpar@96
|
642 |
void spliceFront(ListPath& tpath) {
|
alpar@96
|
643 |
if (first) {
|
alpar@96
|
644 |
if (tpath.first) {
|
alpar@96
|
645 |
first->prev = tpath.last;
|
alpar@96
|
646 |
tpath.last->next = first;
|
alpar@96
|
647 |
first = tpath.first;
|
alpar@96
|
648 |
}
|
alpar@96
|
649 |
} else {
|
alpar@96
|
650 |
first = tpath.first;
|
alpar@96
|
651 |
last = tpath.last;
|
alpar@96
|
652 |
}
|
alpar@96
|
653 |
tpath.first = tpath.last = 0;
|
alpar@96
|
654 |
}
|
alpar@96
|
655 |
|
alpar@97
|
656 |
/// \brief Splice a path into the current path.
|
alpar@96
|
657 |
///
|
alpar@96
|
658 |
/// It splices the \c tpath into the current path before the
|
alpar@96
|
659 |
/// position of \c it iterator and \c tpath becomes empty. The
|
alpar@97
|
660 |
/// time complexity of this function is O(1). If the \c it is
|
alpar@97
|
661 |
/// \c INVALID then it will splice behind the current path.
|
alpar@96
|
662 |
void splice(ArcIt it, ListPath& tpath) {
|
alpar@96
|
663 |
if (it.node) {
|
alpar@96
|
664 |
if (tpath.first) {
|
alpar@96
|
665 |
tpath.first->prev = it.node->prev;
|
alpar@96
|
666 |
if (it.node->prev) {
|
alpar@96
|
667 |
it.node->prev->next = tpath.first;
|
alpar@96
|
668 |
} else {
|
alpar@96
|
669 |
first = tpath.first;
|
alpar@96
|
670 |
}
|
alpar@96
|
671 |
it.node->prev = tpath.last;
|
alpar@96
|
672 |
tpath.last->next = it.node;
|
alpar@96
|
673 |
}
|
alpar@96
|
674 |
} else {
|
alpar@96
|
675 |
if (first) {
|
alpar@96
|
676 |
if (tpath.first) {
|
alpar@96
|
677 |
last->next = tpath.first;
|
alpar@96
|
678 |
tpath.first->prev = last;
|
alpar@96
|
679 |
last = tpath.last;
|
alpar@96
|
680 |
}
|
alpar@96
|
681 |
} else {
|
alpar@96
|
682 |
first = tpath.first;
|
alpar@96
|
683 |
last = tpath.last;
|
alpar@96
|
684 |
}
|
alpar@96
|
685 |
}
|
alpar@96
|
686 |
tpath.first = tpath.last = 0;
|
alpar@96
|
687 |
}
|
alpar@96
|
688 |
|
alpar@97
|
689 |
/// \brief Split the current path.
|
alpar@96
|
690 |
///
|
alpar@97
|
691 |
/// It splits the current path into two parts. The part before
|
alpar@97
|
692 |
/// the iterator \c it will remain in the current path and the part
|
alpar@97
|
693 |
/// starting with
|
alpar@97
|
694 |
/// \c it will put into \c tpath. If \c tpath have arcs
|
alpar@97
|
695 |
/// before the operation they are removed first. The time
|
alpar@97
|
696 |
/// complexity of this function is O(1) plus the the time of emtying
|
alpar@97
|
697 |
/// \c tpath. If \c it is \c INVALID then it just clears \c tpath
|
alpar@96
|
698 |
void split(ArcIt it, ListPath& tpath) {
|
alpar@96
|
699 |
tpath.clear();
|
alpar@96
|
700 |
if (it.node) {
|
alpar@96
|
701 |
tpath.first = it.node;
|
alpar@96
|
702 |
tpath.last = last;
|
alpar@96
|
703 |
if (it.node->prev) {
|
alpar@96
|
704 |
last = it.node->prev;
|
alpar@96
|
705 |
last->next = 0;
|
alpar@96
|
706 |
} else {
|
alpar@96
|
707 |
first = last = 0;
|
alpar@96
|
708 |
}
|
alpar@96
|
709 |
it.node->prev = 0;
|
alpar@96
|
710 |
}
|
alpar@96
|
711 |
}
|
alpar@96
|
712 |
|
alpar@96
|
713 |
|
alpar@96
|
714 |
typedef True BuildTag;
|
alpar@96
|
715 |
|
alpar@96
|
716 |
template <typename CPath>
|
alpar@96
|
717 |
void build(const CPath& path) {
|
alpar@96
|
718 |
for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
|
alpar@96
|
719 |
addBack(it);
|
alpar@96
|
720 |
}
|
alpar@96
|
721 |
}
|
alpar@96
|
722 |
|
alpar@96
|
723 |
template <typename CPath>
|
alpar@96
|
724 |
void buildRev(const CPath& path) {
|
alpar@96
|
725 |
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
|
alpar@96
|
726 |
addFront(it);
|
alpar@96
|
727 |
}
|
alpar@96
|
728 |
}
|
alpar@96
|
729 |
|
alpar@96
|
730 |
};
|
alpar@96
|
731 |
|
alpar@96
|
732 |
/// \brief A structure for representing directed paths in a digraph.
|
alpar@96
|
733 |
///
|
alpar@96
|
734 |
/// A structure for representing directed path in a digraph.
|
kpeter@157
|
735 |
/// \tparam _Digraph The digraph type in which the path is.
|
alpar@96
|
736 |
///
|
alpar@96
|
737 |
/// In a sense, the path can be treated as a list of arcs. The
|
alpar@96
|
738 |
/// lemon path type stores just this list. As a consequence it
|
alpar@97
|
739 |
/// cannot enumerate the nodes in the path and the source node of
|
alpar@97
|
740 |
/// a zero length path is undefined.
|
alpar@96
|
741 |
///
|
alpar@97
|
742 |
/// This implementation is completly static, i.e. it can be copy constucted
|
alpar@97
|
743 |
/// or copy assigned from another path, but otherwise it cannot be
|
alpar@97
|
744 |
/// modified.
|
alpar@97
|
745 |
///
|
alpar@97
|
746 |
/// Being the the most memory efficient path type in LEMON,
|
alpar@97
|
747 |
/// it is intented to be
|
alpar@97
|
748 |
/// used when you want to store a large number of paths.
|
alpar@96
|
749 |
template <typename _Digraph>
|
alpar@96
|
750 |
class StaticPath {
|
alpar@96
|
751 |
public:
|
alpar@96
|
752 |
|
alpar@96
|
753 |
typedef _Digraph Digraph;
|
alpar@96
|
754 |
typedef typename Digraph::Arc Arc;
|
alpar@96
|
755 |
|
alpar@96
|
756 |
/// \brief Default constructor
|
alpar@96
|
757 |
///
|
alpar@96
|
758 |
/// Default constructor
|
alpar@96
|
759 |
StaticPath() : len(0), arcs(0) {}
|
alpar@209
|
760 |
|
alpar@96
|
761 |
/// \brief Template copy constructor
|
alpar@96
|
762 |
///
|
alpar@97
|
763 |
/// This path can be initialized from any other path type.
|
alpar@96
|
764 |
template <typename CPath>
|
alpar@96
|
765 |
StaticPath(const CPath& cpath) : arcs(0) {
|
kpeter@551
|
766 |
pathCopy(cpath, *this);
|
alpar@96
|
767 |
}
|
alpar@96
|
768 |
|
alpar@96
|
769 |
/// \brief Destructor of the path
|
alpar@96
|
770 |
///
|
alpar@96
|
771 |
/// Destructor of the path
|
alpar@96
|
772 |
~StaticPath() {
|
alpar@96
|
773 |
if (arcs) delete[] arcs;
|
alpar@96
|
774 |
}
|
alpar@96
|
775 |
|
alpar@96
|
776 |
/// \brief Template copy assignment
|
alpar@96
|
777 |
///
|
alpar@97
|
778 |
/// This path can be made equal to any other path type. It simply
|
alpar@96
|
779 |
/// makes a copy of the given path.
|
alpar@96
|
780 |
template <typename CPath>
|
alpar@96
|
781 |
StaticPath& operator=(const CPath& cpath) {
|
kpeter@551
|
782 |
pathCopy(cpath, *this);
|
alpar@96
|
783 |
return *this;
|
alpar@96
|
784 |
}
|
alpar@96
|
785 |
|
alpar@96
|
786 |
/// \brief Iterator class to iterate on the arcs of the paths
|
alpar@96
|
787 |
///
|
alpar@96
|
788 |
/// This class is used to iterate on the arcs of the paths
|
alpar@96
|
789 |
///
|
alpar@96
|
790 |
/// Of course it converts to Digraph::Arc
|
alpar@96
|
791 |
class ArcIt {
|
alpar@96
|
792 |
friend class StaticPath;
|
alpar@96
|
793 |
public:
|
alpar@96
|
794 |
/// Default constructor
|
alpar@96
|
795 |
ArcIt() {}
|
alpar@96
|
796 |
/// Invalid constructor
|
alpar@96
|
797 |
ArcIt(Invalid) : path(0), idx(-1) {}
|
alpar@96
|
798 |
/// Initializate the constructor to the first arc of path
|
alpar@209
|
799 |
ArcIt(const StaticPath &_path)
|
alpar@96
|
800 |
: path(&_path), idx(_path.empty() ? -1 : 0) {}
|
alpar@96
|
801 |
|
alpar@96
|
802 |
private:
|
alpar@96
|
803 |
|
alpar@96
|
804 |
/// Constructor with starting point
|
alpar@209
|
805 |
ArcIt(const StaticPath &_path, int _idx)
|
alpar@96
|
806 |
: idx(_idx), path(&_path) {}
|
alpar@96
|
807 |
|
alpar@96
|
808 |
public:
|
alpar@96
|
809 |
|
alpar@96
|
810 |
///Conversion to Digraph::Arc
|
alpar@96
|
811 |
operator const Arc&() const {
|
alpar@96
|
812 |
return path->nth(idx);
|
alpar@96
|
813 |
}
|
alpar@96
|
814 |
|
alpar@96
|
815 |
/// Next arc
|
alpar@209
|
816 |
ArcIt& operator++() {
|
alpar@96
|
817 |
++idx;
|
alpar@209
|
818 |
if (idx >= path->length()) idx = -1;
|
alpar@209
|
819 |
return *this;
|
alpar@96
|
820 |
}
|
alpar@96
|
821 |
|
alpar@96
|
822 |
/// Comparison operator
|
alpar@96
|
823 |
bool operator==(const ArcIt& e) const { return idx==e.idx; }
|
alpar@96
|
824 |
/// Comparison operator
|
alpar@96
|
825 |
bool operator!=(const ArcIt& e) const { return idx!=e.idx; }
|
alpar@96
|
826 |
/// Comparison operator
|
alpar@96
|
827 |
bool operator<(const ArcIt& e) const { return idx<e.idx; }
|
alpar@96
|
828 |
|
alpar@96
|
829 |
private:
|
alpar@96
|
830 |
const StaticPath *path;
|
alpar@96
|
831 |
int idx;
|
alpar@96
|
832 |
};
|
alpar@96
|
833 |
|
alpar@97
|
834 |
/// \brief The nth arc.
|
alpar@96
|
835 |
///
|
alpar@96
|
836 |
/// \pre n is in the [0..length() - 1] range
|
alpar@96
|
837 |
const Arc& nth(int n) const {
|
alpar@96
|
838 |
return arcs[n];
|
alpar@96
|
839 |
}
|
alpar@96
|
840 |
|
alpar@97
|
841 |
/// \brief The arc iterator pointing to the nth arc.
|
alpar@96
|
842 |
ArcIt nthIt(int n) const {
|
alpar@96
|
843 |
return ArcIt(*this, n);
|
alpar@96
|
844 |
}
|
alpar@96
|
845 |
|
alpar@97
|
846 |
/// \brief The length of the path.
|
alpar@96
|
847 |
int length() const { return len; }
|
alpar@96
|
848 |
|
alpar@97
|
849 |
/// \brief Return true when the path is empty.
|
alpar@96
|
850 |
int empty() const { return len == 0; }
|
alpar@96
|
851 |
|
kpeter@313
|
852 |
/// \brief Erase all arcs in the digraph.
|
alpar@96
|
853 |
void clear() {
|
alpar@96
|
854 |
len = 0;
|
alpar@96
|
855 |
if (arcs) delete[] arcs;
|
alpar@96
|
856 |
arcs = 0;
|
alpar@96
|
857 |
}
|
alpar@96
|
858 |
|
alpar@97
|
859 |
/// \brief The first arc of the path.
|
alpar@96
|
860 |
const Arc& front() const {
|
alpar@96
|
861 |
return arcs[0];
|
alpar@96
|
862 |
}
|
alpar@96
|
863 |
|
alpar@97
|
864 |
/// \brief The last arc of the path.
|
alpar@96
|
865 |
const Arc& back() const {
|
alpar@96
|
866 |
return arcs[len - 1];
|
alpar@96
|
867 |
}
|
alpar@96
|
868 |
|
alpar@96
|
869 |
|
alpar@96
|
870 |
typedef True BuildTag;
|
alpar@96
|
871 |
|
alpar@96
|
872 |
template <typename CPath>
|
alpar@96
|
873 |
void build(const CPath& path) {
|
alpar@96
|
874 |
len = path.length();
|
alpar@96
|
875 |
arcs = new Arc[len];
|
alpar@96
|
876 |
int index = 0;
|
alpar@96
|
877 |
for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
|
alpar@96
|
878 |
arcs[index] = it;
|
alpar@96
|
879 |
++index;
|
alpar@96
|
880 |
}
|
alpar@96
|
881 |
}
|
alpar@96
|
882 |
|
alpar@96
|
883 |
template <typename CPath>
|
alpar@96
|
884 |
void buildRev(const CPath& path) {
|
alpar@96
|
885 |
len = path.length();
|
alpar@96
|
886 |
arcs = new Arc[len];
|
alpar@96
|
887 |
int index = len;
|
alpar@96
|
888 |
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
|
alpar@96
|
889 |
--index;
|
alpar@96
|
890 |
arcs[index] = it;
|
alpar@96
|
891 |
}
|
alpar@96
|
892 |
}
|
alpar@96
|
893 |
|
alpar@96
|
894 |
private:
|
alpar@96
|
895 |
int len;
|
alpar@96
|
896 |
Arc* arcs;
|
alpar@96
|
897 |
};
|
alpar@96
|
898 |
|
alpar@98
|
899 |
///////////////////////////////////////////////////////////////////////
|
alpar@98
|
900 |
// Additional utilities
|
alpar@98
|
901 |
///////////////////////////////////////////////////////////////////////
|
alpar@98
|
902 |
|
alpar@98
|
903 |
namespace _path_bits {
|
alpar@98
|
904 |
|
alpar@98
|
905 |
template <typename Path, typename Enable = void>
|
deba@144
|
906 |
struct RevPathTagIndicator {
|
alpar@98
|
907 |
static const bool value = false;
|
alpar@98
|
908 |
};
|
alpar@98
|
909 |
|
deba@144
|
910 |
template <typename Path>
|
deba@144
|
911 |
struct RevPathTagIndicator<
|
alpar@209
|
912 |
Path,
|
deba@144
|
913 |
typename enable_if<typename Path::RevPathTag, void>::type
|
deba@144
|
914 |
> {
|
deba@144
|
915 |
static const bool value = true;
|
deba@144
|
916 |
};
|
deba@144
|
917 |
|
deba@144
|
918 |
template <typename Path, typename Enable = void>
|
deba@144
|
919 |
struct BuildTagIndicator {
|
deba@144
|
920 |
static const bool value = false;
|
deba@144
|
921 |
};
|
deba@144
|
922 |
|
deba@144
|
923 |
template <typename Path>
|
deba@144
|
924 |
struct BuildTagIndicator<
|
alpar@209
|
925 |
Path,
|
deba@144
|
926 |
typename enable_if<typename Path::BuildTag, void>::type
|
alpar@98
|
927 |
> {
|
alpar@98
|
928 |
static const bool value = true;
|
alpar@98
|
929 |
};
|
alpar@98
|
930 |
|
kpeter@551
|
931 |
template <typename From, typename To,
|
kpeter@551
|
932 |
bool buildEnable = BuildTagIndicator<To>::value>
|
kpeter@517
|
933 |
struct PathCopySelectorForward {
|
kpeter@551
|
934 |
static void copy(const From& from, To& to) {
|
kpeter@551
|
935 |
to.clear();
|
kpeter@551
|
936 |
for (typename From::ArcIt it(from); it != INVALID; ++it) {
|
kpeter@551
|
937 |
to.addBack(it);
|
alpar@98
|
938 |
}
|
alpar@98
|
939 |
}
|
alpar@98
|
940 |
};
|
alpar@98
|
941 |
|
kpeter@551
|
942 |
template <typename From, typename To>
|
kpeter@551
|
943 |
struct PathCopySelectorForward<From, To, true> {
|
kpeter@551
|
944 |
static void copy(const From& from, To& to) {
|
kpeter@551
|
945 |
to.clear();
|
kpeter@551
|
946 |
to.build(from);
|
kpeter@517
|
947 |
}
|
kpeter@517
|
948 |
};
|
kpeter@517
|
949 |
|
kpeter@551
|
950 |
template <typename From, typename To,
|
kpeter@551
|
951 |
bool buildEnable = BuildTagIndicator<To>::value>
|
kpeter@517
|
952 |
struct PathCopySelectorBackward {
|
kpeter@551
|
953 |
static void copy(const From& from, To& to) {
|
kpeter@551
|
954 |
to.clear();
|
kpeter@551
|
955 |
for (typename From::RevArcIt it(from); it != INVALID; ++it) {
|
kpeter@551
|
956 |
to.addFront(it);
|
alpar@98
|
957 |
}
|
alpar@98
|
958 |
}
|
alpar@98
|
959 |
};
|
alpar@98
|
960 |
|
kpeter@551
|
961 |
template <typename From, typename To>
|
kpeter@551
|
962 |
struct PathCopySelectorBackward<From, To, true> {
|
kpeter@551
|
963 |
static void copy(const From& from, To& to) {
|
kpeter@551
|
964 |
to.clear();
|
kpeter@551
|
965 |
to.buildRev(from);
|
alpar@98
|
966 |
}
|
alpar@98
|
967 |
};
|
alpar@98
|
968 |
|
kpeter@517
|
969 |
|
kpeter@551
|
970 |
template <typename From, typename To,
|
kpeter@551
|
971 |
bool revEnable = RevPathTagIndicator<From>::value>
|
kpeter@517
|
972 |
struct PathCopySelector {
|
kpeter@551
|
973 |
static void copy(const From& from, To& to) {
|
kpeter@551
|
974 |
PathCopySelectorForward<From, To>::copy(from, to);
|
kpeter@517
|
975 |
}
|
kpeter@517
|
976 |
};
|
kpeter@517
|
977 |
|
kpeter@551
|
978 |
template <typename From, typename To>
|
kpeter@551
|
979 |
struct PathCopySelector<From, To, true> {
|
kpeter@551
|
980 |
static void copy(const From& from, To& to) {
|
kpeter@551
|
981 |
PathCopySelectorBackward<From, To>::copy(from, to);
|
kpeter@517
|
982 |
}
|
kpeter@517
|
983 |
};
|
kpeter@517
|
984 |
|
alpar@98
|
985 |
}
|
alpar@98
|
986 |
|
alpar@98
|
987 |
|
alpar@98
|
988 |
/// \brief Make a copy of a path.
|
alpar@98
|
989 |
///
|
kpeter@551
|
990 |
/// This function makes a copy of a path.
|
kpeter@551
|
991 |
template <typename From, typename To>
|
kpeter@551
|
992 |
void pathCopy(const From& from, To& to) {
|
kpeter@551
|
993 |
checkConcept<concepts::PathDumper<typename From::Digraph>, From>();
|
kpeter@551
|
994 |
_path_bits::PathCopySelector<From, To>::copy(from, to);
|
kpeter@551
|
995 |
}
|
kpeter@551
|
996 |
|
kpeter@551
|
997 |
/// \brief Deprecated version of \ref pathCopy().
|
kpeter@551
|
998 |
///
|
kpeter@551
|
999 |
/// Deprecated version of \ref pathCopy() (only for reverse compatibility).
|
kpeter@551
|
1000 |
template <typename To, typename From>
|
kpeter@551
|
1001 |
void copyPath(To& to, const From& from) {
|
kpeter@551
|
1002 |
pathCopy(from, to);
|
alpar@98
|
1003 |
}
|
alpar@98
|
1004 |
|
alpar@98
|
1005 |
/// \brief Check the consistency of a path.
|
alpar@98
|
1006 |
///
|
alpar@98
|
1007 |
/// This function checks that the target of each arc is the same
|
alpar@209
|
1008 |
/// as the source of the next one.
|
alpar@209
|
1009 |
///
|
alpar@98
|
1010 |
template <typename Digraph, typename Path>
|
alpar@98
|
1011 |
bool checkPath(const Digraph& digraph, const Path& path) {
|
alpar@98
|
1012 |
typename Path::ArcIt it(path);
|
alpar@98
|
1013 |
if (it == INVALID) return true;
|
alpar@98
|
1014 |
typename Digraph::Node node = digraph.target(it);
|
alpar@98
|
1015 |
++it;
|
alpar@98
|
1016 |
while (it != INVALID) {
|
alpar@98
|
1017 |
if (digraph.source(it) != node) return false;
|
alpar@98
|
1018 |
node = digraph.target(it);
|
alpar@98
|
1019 |
++it;
|
alpar@98
|
1020 |
}
|
alpar@98
|
1021 |
return true;
|
alpar@98
|
1022 |
}
|
alpar@98
|
1023 |
|
alpar@98
|
1024 |
/// \brief The source of a path
|
alpar@98
|
1025 |
///
|
kpeter@548
|
1026 |
/// This function returns the source node of the given path.
|
kpeter@548
|
1027 |
/// If the path is empty, then it returns \c INVALID.
|
alpar@98
|
1028 |
template <typename Digraph, typename Path>
|
alpar@98
|
1029 |
typename Digraph::Node pathSource(const Digraph& digraph, const Path& path) {
|
kpeter@548
|
1030 |
return path.empty() ? INVALID : digraph.source(path.front());
|
alpar@98
|
1031 |
}
|
alpar@98
|
1032 |
|
alpar@98
|
1033 |
/// \brief The target of a path
|
alpar@98
|
1034 |
///
|
kpeter@548
|
1035 |
/// This function returns the target node of the given path.
|
kpeter@548
|
1036 |
/// If the path is empty, then it returns \c INVALID.
|
alpar@98
|
1037 |
template <typename Digraph, typename Path>
|
alpar@98
|
1038 |
typename Digraph::Node pathTarget(const Digraph& digraph, const Path& path) {
|
kpeter@548
|
1039 |
return path.empty() ? INVALID : digraph.target(path.back());
|
alpar@98
|
1040 |
}
|
alpar@98
|
1041 |
|
alpar@98
|
1042 |
/// \brief Class which helps to iterate through the nodes of a path
|
alpar@98
|
1043 |
///
|
alpar@98
|
1044 |
/// In a sense, the path can be treated as a list of arcs. The
|
alpar@98
|
1045 |
/// lemon path type stores only this list. As a consequence, it
|
alpar@98
|
1046 |
/// cannot enumerate the nodes in the path and the zero length paths
|
alpar@98
|
1047 |
/// cannot have a source node.
|
alpar@98
|
1048 |
///
|
alpar@98
|
1049 |
/// This class implements the node iterator of a path structure. To
|
alpar@98
|
1050 |
/// provide this feature, the underlying digraph should be passed to
|
alpar@98
|
1051 |
/// the constructor of the iterator.
|
alpar@98
|
1052 |
template <typename Path>
|
alpar@98
|
1053 |
class PathNodeIt {
|
alpar@98
|
1054 |
private:
|
alpar@98
|
1055 |
const typename Path::Digraph *_digraph;
|
alpar@98
|
1056 |
typename Path::ArcIt _it;
|
alpar@98
|
1057 |
typename Path::Digraph::Node _nd;
|
alpar@98
|
1058 |
|
alpar@98
|
1059 |
public:
|
alpar@98
|
1060 |
|
alpar@98
|
1061 |
typedef typename Path::Digraph Digraph;
|
alpar@98
|
1062 |
typedef typename Digraph::Node Node;
|
alpar@209
|
1063 |
|
alpar@98
|
1064 |
/// Default constructor
|
alpar@98
|
1065 |
PathNodeIt() {}
|
alpar@98
|
1066 |
/// Invalid constructor
|
alpar@209
|
1067 |
PathNodeIt(Invalid)
|
alpar@98
|
1068 |
: _digraph(0), _it(INVALID), _nd(INVALID) {}
|
alpar@98
|
1069 |
/// Constructor
|
alpar@209
|
1070 |
PathNodeIt(const Digraph& digraph, const Path& path)
|
alpar@98
|
1071 |
: _digraph(&digraph), _it(path) {
|
alpar@98
|
1072 |
_nd = (_it != INVALID ? _digraph->source(_it) : INVALID);
|
alpar@98
|
1073 |
}
|
alpar@98
|
1074 |
/// Constructor
|
alpar@209
|
1075 |
PathNodeIt(const Digraph& digraph, const Path& path, const Node& src)
|
alpar@98
|
1076 |
: _digraph(&digraph), _it(path), _nd(src) {}
|
alpar@98
|
1077 |
|
alpar@98
|
1078 |
///Conversion to Digraph::Node
|
alpar@98
|
1079 |
operator Node() const {
|
alpar@98
|
1080 |
return _nd;
|
alpar@98
|
1081 |
}
|
alpar@98
|
1082 |
|
alpar@98
|
1083 |
/// Next node
|
alpar@98
|
1084 |
PathNodeIt& operator++() {
|
alpar@98
|
1085 |
if (_it == INVALID) _nd = INVALID;
|
alpar@98
|
1086 |
else {
|
alpar@209
|
1087 |
_nd = _digraph->target(_it);
|
alpar@209
|
1088 |
++_it;
|
alpar@98
|
1089 |
}
|
alpar@98
|
1090 |
return *this;
|
alpar@98
|
1091 |
}
|
alpar@98
|
1092 |
|
alpar@98
|
1093 |
/// Comparison operator
|
alpar@209
|
1094 |
bool operator==(const PathNodeIt& n) const {
|
alpar@209
|
1095 |
return _it == n._it && _nd == n._nd;
|
alpar@98
|
1096 |
}
|
alpar@98
|
1097 |
/// Comparison operator
|
alpar@209
|
1098 |
bool operator!=(const PathNodeIt& n) const {
|
alpar@209
|
1099 |
return _it != n._it || _nd != n._nd;
|
alpar@98
|
1100 |
}
|
alpar@98
|
1101 |
/// Comparison operator
|
alpar@209
|
1102 |
bool operator<(const PathNodeIt& n) const {
|
alpar@98
|
1103 |
return (_it < n._it && _nd != INVALID);
|
alpar@98
|
1104 |
}
|
alpar@209
|
1105 |
|
alpar@98
|
1106 |
};
|
alpar@209
|
1107 |
|
alpar@96
|
1108 |
///@}
|
alpar@96
|
1109 |
|
alpar@96
|
1110 |
} // namespace lemon
|
alpar@96
|
1111 |
|
alpar@96
|
1112 |
#endif // LEMON_PATH_H
|