1 /* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 * |
|
3 * This file is a part of LEMON, a generic C++ optimization library. |
|
4 * |
|
5 * Copyright (C) 2003-2009 |
|
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 * (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 * |
|
9 * Permission to use, modify and distribute this software is granted |
|
10 * provided that this copyright notice appears in all copies. For |
|
11 * precise terms see the accompanying LICENSE file. |
|
12 * |
|
13 * This software is provided "AS IS" with no warranty of any kind, |
|
14 * express or implied, and with no claim as to its suitability for any |
|
15 * purpose. |
|
16 * |
|
17 */ |
|
18 |
|
19 #ifndef LEMON_BINOM_HEAP_H |
|
20 #define LEMON_BINOM_HEAP_H |
|
21 |
|
22 ///\file |
|
23 ///\ingroup heaps |
|
24 ///\brief Binomial Heap implementation. |
|
25 |
|
26 #include <vector> |
|
27 #include <utility> |
|
28 #include <functional> |
|
29 #include <lemon/math.h> |
|
30 #include <lemon/counter.h> |
|
31 |
|
32 namespace lemon { |
|
33 |
|
34 /// \ingroup heaps |
|
35 /// |
|
36 ///\brief Binomial heap data structure. |
|
37 /// |
|
38 /// This class implements the \e binomial \e heap data structure. |
|
39 /// It fully conforms to the \ref concepts::Heap "heap concept". |
|
40 /// |
|
41 /// The methods \ref increase() and \ref erase() are not efficient |
|
42 /// in a binomial heap. In case of many calls of these operations, |
|
43 /// it is better to use other heap structure, e.g. \ref BinHeap |
|
44 /// "binary heap". |
|
45 /// |
|
46 /// \tparam PR Type of the priorities of the items. |
|
47 /// \tparam IM A read-writable item map with \c int values, used |
|
48 /// internally to handle the cross references. |
|
49 /// \tparam CMP A functor class for comparing the priorities. |
|
50 /// The default is \c std::less<PR>. |
|
51 #ifdef DOXYGEN |
|
52 template <typename PR, typename IM, typename CMP> |
|
53 #else |
|
54 template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
55 #endif |
|
56 class BinomHeap { |
|
57 public: |
|
58 /// Type of the item-int map. |
|
59 typedef IM ItemIntMap; |
|
60 /// Type of the priorities. |
|
61 typedef PR Prio; |
|
62 /// Type of the items stored in the heap. |
|
63 typedef typename ItemIntMap::Key Item; |
|
64 /// Functor type for comparing the priorities. |
|
65 typedef CMP Compare; |
|
66 |
|
67 /// \brief Type to represent the states of the items. |
|
68 /// |
|
69 /// Each item has a state associated to it. It can be "in heap", |
|
70 /// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
71 /// heap's point of view, but may be useful to the user. |
|
72 /// |
|
73 /// The item-int map must be initialized in such way that it assigns |
|
74 /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
75 enum State { |
|
76 IN_HEAP = 0, ///< = 0. |
|
77 PRE_HEAP = -1, ///< = -1. |
|
78 POST_HEAP = -2 ///< = -2. |
|
79 }; |
|
80 |
|
81 private: |
|
82 class Store; |
|
83 |
|
84 std::vector<Store> _data; |
|
85 int _min, _head; |
|
86 ItemIntMap &_iim; |
|
87 Compare _comp; |
|
88 int _num_items; |
|
89 |
|
90 public: |
|
91 /// \brief Constructor. |
|
92 /// |
|
93 /// Constructor. |
|
94 /// \param map A map that assigns \c int values to the items. |
|
95 /// It is used internally to handle the cross references. |
|
96 /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
97 explicit BinomHeap(ItemIntMap &map) |
|
98 : _min(0), _head(-1), _iim(map), _num_items(0) {} |
|
99 |
|
100 /// \brief Constructor. |
|
101 /// |
|
102 /// Constructor. |
|
103 /// \param map A map that assigns \c int values to the items. |
|
104 /// It is used internally to handle the cross references. |
|
105 /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
106 /// \param comp The function object used for comparing the priorities. |
|
107 BinomHeap(ItemIntMap &map, const Compare &comp) |
|
108 : _min(0), _head(-1), _iim(map), _comp(comp), _num_items(0) {} |
|
109 |
|
110 /// \brief The number of items stored in the heap. |
|
111 /// |
|
112 /// This function returns the number of items stored in the heap. |
|
113 int size() const { return _num_items; } |
|
114 |
|
115 /// \brief Check if the heap is empty. |
|
116 /// |
|
117 /// This function returns \c true if the heap is empty. |
|
118 bool empty() const { return _num_items==0; } |
|
119 |
|
120 /// \brief Make the heap empty. |
|
121 /// |
|
122 /// This functon makes the heap empty. |
|
123 /// It does not change the cross reference map. If you want to reuse |
|
124 /// a heap that is not surely empty, you should first clear it and |
|
125 /// then you should set the cross reference map to \c PRE_HEAP |
|
126 /// for each item. |
|
127 void clear() { |
|
128 _data.clear(); _min=0; _num_items=0; _head=-1; |
|
129 } |
|
130 |
|
131 /// \brief Set the priority of an item or insert it, if it is |
|
132 /// not stored in the heap. |
|
133 /// |
|
134 /// This method sets the priority of the given item if it is |
|
135 /// already stored in the heap. Otherwise it inserts the given |
|
136 /// item into the heap with the given priority. |
|
137 /// \param item The item. |
|
138 /// \param value The priority. |
|
139 void set (const Item& item, const Prio& value) { |
|
140 int i=_iim[item]; |
|
141 if ( i >= 0 && _data[i].in ) { |
|
142 if ( _comp(value, _data[i].prio) ) decrease(item, value); |
|
143 if ( _comp(_data[i].prio, value) ) increase(item, value); |
|
144 } else push(item, value); |
|
145 } |
|
146 |
|
147 /// \brief Insert an item into the heap with the given priority. |
|
148 /// |
|
149 /// This function inserts the given item into the heap with the |
|
150 /// given priority. |
|
151 /// \param item The item to insert. |
|
152 /// \param value The priority of the item. |
|
153 /// \pre \e item must not be stored in the heap. |
|
154 void push (const Item& item, const Prio& value) { |
|
155 int i=_iim[item]; |
|
156 if ( i<0 ) { |
|
157 int s=_data.size(); |
|
158 _iim.set( item,s ); |
|
159 Store st; |
|
160 st.name=item; |
|
161 st.prio=value; |
|
162 _data.push_back(st); |
|
163 i=s; |
|
164 } |
|
165 else { |
|
166 _data[i].parent=_data[i].right_neighbor=_data[i].child=-1; |
|
167 _data[i].degree=0; |
|
168 _data[i].in=true; |
|
169 _data[i].prio=value; |
|
170 } |
|
171 |
|
172 if( 0==_num_items ) { |
|
173 _head=i; |
|
174 _min=i; |
|
175 } else { |
|
176 merge(i); |
|
177 if( _comp(_data[i].prio, _data[_min].prio) ) _min=i; |
|
178 } |
|
179 ++_num_items; |
|
180 } |
|
181 |
|
182 /// \brief Return the item having minimum priority. |
|
183 /// |
|
184 /// This function returns the item having minimum priority. |
|
185 /// \pre The heap must be non-empty. |
|
186 Item top() const { return _data[_min].name; } |
|
187 |
|
188 /// \brief The minimum priority. |
|
189 /// |
|
190 /// This function returns the minimum priority. |
|
191 /// \pre The heap must be non-empty. |
|
192 Prio prio() const { return _data[_min].prio; } |
|
193 |
|
194 /// \brief The priority of the given item. |
|
195 /// |
|
196 /// This function returns the priority of the given item. |
|
197 /// \param item The item. |
|
198 /// \pre \e item must be in the heap. |
|
199 const Prio& operator[](const Item& item) const { |
|
200 return _data[_iim[item]].prio; |
|
201 } |
|
202 |
|
203 /// \brief Remove the item having minimum priority. |
|
204 /// |
|
205 /// This function removes the item having minimum priority. |
|
206 /// \pre The heap must be non-empty. |
|
207 void pop() { |
|
208 _data[_min].in=false; |
|
209 |
|
210 int head_child=-1; |
|
211 if ( _data[_min].child!=-1 ) { |
|
212 int child=_data[_min].child; |
|
213 int neighb; |
|
214 while( child!=-1 ) { |
|
215 neighb=_data[child].right_neighbor; |
|
216 _data[child].parent=-1; |
|
217 _data[child].right_neighbor=head_child; |
|
218 head_child=child; |
|
219 child=neighb; |
|
220 } |
|
221 } |
|
222 |
|
223 if ( _data[_head].right_neighbor==-1 ) { |
|
224 // there was only one root |
|
225 _head=head_child; |
|
226 } |
|
227 else { |
|
228 // there were more roots |
|
229 if( _head!=_min ) { unlace(_min); } |
|
230 else { _head=_data[_head].right_neighbor; } |
|
231 merge(head_child); |
|
232 } |
|
233 _min=findMin(); |
|
234 --_num_items; |
|
235 } |
|
236 |
|
237 /// \brief Remove the given item from the heap. |
|
238 /// |
|
239 /// This function removes the given item from the heap if it is |
|
240 /// already stored. |
|
241 /// \param item The item to delete. |
|
242 /// \pre \e item must be in the heap. |
|
243 void erase (const Item& item) { |
|
244 int i=_iim[item]; |
|
245 if ( i >= 0 && _data[i].in ) { |
|
246 decrease( item, _data[_min].prio-1 ); |
|
247 pop(); |
|
248 } |
|
249 } |
|
250 |
|
251 /// \brief Decrease the priority of an item to the given value. |
|
252 /// |
|
253 /// This function decreases the priority of an item to the given value. |
|
254 /// \param item The item. |
|
255 /// \param value The priority. |
|
256 /// \pre \e item must be stored in the heap with priority at least \e value. |
|
257 void decrease (Item item, const Prio& value) { |
|
258 int i=_iim[item]; |
|
259 int p=_data[i].parent; |
|
260 _data[i].prio=value; |
|
261 |
|
262 while( p!=-1 && _comp(value, _data[p].prio) ) { |
|
263 _data[i].name=_data[p].name; |
|
264 _data[i].prio=_data[p].prio; |
|
265 _data[p].name=item; |
|
266 _data[p].prio=value; |
|
267 _iim[_data[i].name]=i; |
|
268 i=p; |
|
269 p=_data[p].parent; |
|
270 } |
|
271 _iim[item]=i; |
|
272 if ( _comp(value, _data[_min].prio) ) _min=i; |
|
273 } |
|
274 |
|
275 /// \brief Increase the priority of an item to the given value. |
|
276 /// |
|
277 /// This function increases the priority of an item to the given value. |
|
278 /// \param item The item. |
|
279 /// \param value The priority. |
|
280 /// \pre \e item must be stored in the heap with priority at most \e value. |
|
281 void increase (Item item, const Prio& value) { |
|
282 erase(item); |
|
283 push(item, value); |
|
284 } |
|
285 |
|
286 /// \brief Return the state of an item. |
|
287 /// |
|
288 /// This method returns \c PRE_HEAP if the given item has never |
|
289 /// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
290 /// and \c POST_HEAP otherwise. |
|
291 /// In the latter case it is possible that the item will get back |
|
292 /// to the heap again. |
|
293 /// \param item The item. |
|
294 State state(const Item &item) const { |
|
295 int i=_iim[item]; |
|
296 if( i>=0 ) { |
|
297 if ( _data[i].in ) i=0; |
|
298 else i=-2; |
|
299 } |
|
300 return State(i); |
|
301 } |
|
302 |
|
303 /// \brief Set the state of an item in the heap. |
|
304 /// |
|
305 /// This function sets the state of the given item in the heap. |
|
306 /// It can be used to manually clear the heap when it is important |
|
307 /// to achive better time complexity. |
|
308 /// \param i The item. |
|
309 /// \param st The state. It should not be \c IN_HEAP. |
|
310 void state(const Item& i, State st) { |
|
311 switch (st) { |
|
312 case POST_HEAP: |
|
313 case PRE_HEAP: |
|
314 if (state(i) == IN_HEAP) { |
|
315 erase(i); |
|
316 } |
|
317 _iim[i] = st; |
|
318 break; |
|
319 case IN_HEAP: |
|
320 break; |
|
321 } |
|
322 } |
|
323 |
|
324 private: |
|
325 |
|
326 // Find the minimum of the roots |
|
327 int findMin() { |
|
328 if( _head!=-1 ) { |
|
329 int min_loc=_head, min_val=_data[_head].prio; |
|
330 for( int x=_data[_head].right_neighbor; x!=-1; |
|
331 x=_data[x].right_neighbor ) { |
|
332 if( _comp( _data[x].prio,min_val ) ) { |
|
333 min_val=_data[x].prio; |
|
334 min_loc=x; |
|
335 } |
|
336 } |
|
337 return min_loc; |
|
338 } |
|
339 else return -1; |
|
340 } |
|
341 |
|
342 // Merge the heap with another heap starting at the given position |
|
343 void merge(int a) { |
|
344 if( _head==-1 || a==-1 ) return; |
|
345 if( _data[a].right_neighbor==-1 && |
|
346 _data[a].degree<=_data[_head].degree ) { |
|
347 _data[a].right_neighbor=_head; |
|
348 _head=a; |
|
349 } else { |
|
350 interleave(a); |
|
351 } |
|
352 if( _data[_head].right_neighbor==-1 ) return; |
|
353 |
|
354 int x=_head; |
|
355 int x_prev=-1, x_next=_data[x].right_neighbor; |
|
356 while( x_next!=-1 ) { |
|
357 if( _data[x].degree!=_data[x_next].degree || |
|
358 ( _data[x_next].right_neighbor!=-1 && |
|
359 _data[_data[x_next].right_neighbor].degree==_data[x].degree ) ) { |
|
360 x_prev=x; |
|
361 x=x_next; |
|
362 } |
|
363 else { |
|
364 if( _comp(_data[x_next].prio,_data[x].prio) ) { |
|
365 if( x_prev==-1 ) { |
|
366 _head=x_next; |
|
367 } else { |
|
368 _data[x_prev].right_neighbor=x_next; |
|
369 } |
|
370 fuse(x,x_next); |
|
371 x=x_next; |
|
372 } |
|
373 else { |
|
374 _data[x].right_neighbor=_data[x_next].right_neighbor; |
|
375 fuse(x_next,x); |
|
376 } |
|
377 } |
|
378 x_next=_data[x].right_neighbor; |
|
379 } |
|
380 } |
|
381 |
|
382 // Interleave the elements of the given list into the list of the roots |
|
383 void interleave(int a) { |
|
384 int p=_head, q=a; |
|
385 int curr=_data.size(); |
|
386 _data.push_back(Store()); |
|
387 |
|
388 while( p!=-1 || q!=-1 ) { |
|
389 if( q==-1 || ( p!=-1 && _data[p].degree<_data[q].degree ) ) { |
|
390 _data[curr].right_neighbor=p; |
|
391 curr=p; |
|
392 p=_data[p].right_neighbor; |
|
393 } |
|
394 else { |
|
395 _data[curr].right_neighbor=q; |
|
396 curr=q; |
|
397 q=_data[q].right_neighbor; |
|
398 } |
|
399 } |
|
400 |
|
401 _head=_data.back().right_neighbor; |
|
402 _data.pop_back(); |
|
403 } |
|
404 |
|
405 // Lace node a under node b |
|
406 void fuse(int a, int b) { |
|
407 _data[a].parent=b; |
|
408 _data[a].right_neighbor=_data[b].child; |
|
409 _data[b].child=a; |
|
410 |
|
411 ++_data[b].degree; |
|
412 } |
|
413 |
|
414 // Unlace node a (if it has siblings) |
|
415 void unlace(int a) { |
|
416 int neighb=_data[a].right_neighbor; |
|
417 int other=_head; |
|
418 |
|
419 while( _data[other].right_neighbor!=a ) |
|
420 other=_data[other].right_neighbor; |
|
421 _data[other].right_neighbor=neighb; |
|
422 } |
|
423 |
|
424 private: |
|
425 |
|
426 class Store { |
|
427 friend class BinomHeap; |
|
428 |
|
429 Item name; |
|
430 int parent; |
|
431 int right_neighbor; |
|
432 int child; |
|
433 int degree; |
|
434 bool in; |
|
435 Prio prio; |
|
436 |
|
437 Store() : parent(-1), right_neighbor(-1), child(-1), degree(0), |
|
438 in(true) {} |
|
439 }; |
|
440 }; |
|
441 |
|
442 } //namespace lemon |
|
443 |
|
444 #endif //LEMON_BINOM_HEAP_H |
|
445 |
|