test/max_flow_test.cc
changeset 1402 3c00344f49c9
parent 1385 8db773f19586
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/test/max_flow_test.cc	Wed Oct 17 19:14:07 2018 +0200
     1.3 @@ -0,0 +1,440 @@
     1.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library.
     1.7 + *
     1.8 + * Copyright (C) 2003-2013
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#include <iostream>
    1.23 +
    1.24 +#include "test_tools.h"
    1.25 +#include <lemon/smart_graph.h>
    1.26 +#include <lemon/preflow.h>
    1.27 +#include <lemon/edmonds_karp.h>
    1.28 +#include <lemon/concepts/digraph.h>
    1.29 +#include <lemon/concepts/maps.h>
    1.30 +#include <lemon/lgf_reader.h>
    1.31 +#include <lemon/elevator.h>
    1.32 +#include <lemon/tolerance.h>
    1.33 +
    1.34 +using namespace lemon;
    1.35 +
    1.36 +char test_lgf[] =
    1.37 +  "@nodes\n"
    1.38 +  "label\n"
    1.39 +  "0\n"
    1.40 +  "1\n"
    1.41 +  "2\n"
    1.42 +  "3\n"
    1.43 +  "4\n"
    1.44 +  "5\n"
    1.45 +  "6\n"
    1.46 +  "7\n"
    1.47 +  "8\n"
    1.48 +  "9\n"
    1.49 +  "@arcs\n"
    1.50 +  "    label capacity\n"
    1.51 +  "0 1 0     20\n"
    1.52 +  "0 2 1     0\n"
    1.53 +  "1 1 2     3\n"
    1.54 +  "1 2 3     8\n"
    1.55 +  "1 3 4     8\n"
    1.56 +  "2 5 5     5\n"
    1.57 +  "3 2 6     5\n"
    1.58 +  "3 5 7     5\n"
    1.59 +  "3 6 8     5\n"
    1.60 +  "4 3 9     3\n"
    1.61 +  "5 7 10    3\n"
    1.62 +  "5 6 11    10\n"
    1.63 +  "5 8 12    10\n"
    1.64 +  "6 8 13    8\n"
    1.65 +  "8 9 14    20\n"
    1.66 +  "8 1 15    5\n"
    1.67 +  "9 5 16    5\n"
    1.68 +  "@attributes\n"
    1.69 +  "source 1\n"
    1.70 +  "target 8\n";
    1.71 +
    1.72 +char test_lgf_float[] =
    1.73 +  "@nodes\n"
    1.74 +  "label\n"
    1.75 +  "0\n"
    1.76 +  "1\n"
    1.77 +  "2\n"
    1.78 +  "3\n"
    1.79 +  "4\n"
    1.80 +  "5\n"
    1.81 +  "6\n"
    1.82 +  "7\n"
    1.83 +  "8\n"
    1.84 +  "9\n"
    1.85 +  "@arcs\n"
    1.86 +  "      capacity\n"
    1.87 +  "0 1 0.1\n"
    1.88 +  "0 2 0.1\n"
    1.89 +  "0 3 0.1\n"
    1.90 +  "1 4 0.1\n"
    1.91 +  "2 4 0.1\n"
    1.92 +  "3 4 0.1\n"
    1.93 +  "4 5 0.3\n"
    1.94 +  "5 6 0.1\n"
    1.95 +  "5 7 0.1\n"
    1.96 +  "5 8 0.1\n"
    1.97 +  "6 9 0.1\n"
    1.98 +  "7 9 0.1\n"
    1.99 +  "8 9 0.1\n"
   1.100 +  "@attributes\n"
   1.101 +  "source 0\n"
   1.102 +  "target 9\n";
   1.103 +
   1.104 +// Checks the general interface of a max flow algorithm
   1.105 +template <typename GR, typename CAP>
   1.106 +struct MaxFlowClassConcept
   1.107 +{
   1.108 +
   1.109 +  template <typename MF>
   1.110 +  struct Constraints {
   1.111 +
   1.112 +    typedef typename GR::Node Node;
   1.113 +    typedef typename GR::Arc Arc;
   1.114 +    typedef typename CAP::Value Value;
   1.115 +    typedef concepts::ReadWriteMap<Arc, Value> FlowMap;
   1.116 +    typedef concepts::WriteMap<Node, bool> CutMap;
   1.117 +
   1.118 +    GR g;
   1.119 +    Node n;
   1.120 +    Arc e;
   1.121 +    CAP cap;
   1.122 +    FlowMap flow;
   1.123 +    CutMap cut;
   1.124 +    Value v;
   1.125 +    bool b;
   1.126 +
   1.127 +    void constraints() {
   1.128 +      checkConcept<concepts::Digraph, GR>();
   1.129 +
   1.130 +      const Constraints& me = *this;
   1.131 +
   1.132 +      typedef typename MF
   1.133 +          ::template SetFlowMap<FlowMap>
   1.134 +          ::Create MaxFlowType;
   1.135 +      typedef typename MF::Create MaxFlowType2;
   1.136 +      MaxFlowType max_flow(me.g, me.cap, me.n, me.n);
   1.137 +      const MaxFlowType& const_max_flow = max_flow;
   1.138 +
   1.139 +      max_flow
   1.140 +          .capacityMap(cap)
   1.141 +          .flowMap(flow)
   1.142 +          .source(n)
   1.143 +          .target(n);
   1.144 +
   1.145 +      typename MaxFlowType::Tolerance tol = const_max_flow.tolerance();
   1.146 +      max_flow.tolerance(tol);
   1.147 +
   1.148 +      max_flow.init();
   1.149 +      max_flow.init(cap);
   1.150 +      max_flow.run();
   1.151 +
   1.152 +      v = const_max_flow.flowValue();
   1.153 +      v = const_max_flow.flow(e);
   1.154 +      const FlowMap& fm = const_max_flow.flowMap();
   1.155 +
   1.156 +      b = const_max_flow.minCut(n);
   1.157 +      const_max_flow.minCutMap(cut);
   1.158 +
   1.159 +      ::lemon::ignore_unused_variable_warning(fm);
   1.160 +    }
   1.161 +
   1.162 +  };
   1.163 +
   1.164 +};
   1.165 +
   1.166 +// Checks the specific parts of Preflow's interface
   1.167 +void checkPreflowCompile()
   1.168 +{
   1.169 +  typedef int Value;
   1.170 +  typedef concepts::Digraph Digraph;
   1.171 +  typedef concepts::ReadMap<Digraph::Arc, Value> CapMap;
   1.172 +  typedef Elevator<Digraph, Digraph::Node> Elev;
   1.173 +  typedef LinkedElevator<Digraph, Digraph::Node> LinkedElev;
   1.174 +
   1.175 +  Digraph g;
   1.176 +  Digraph::Node n;
   1.177 +  CapMap cap;
   1.178 +
   1.179 +  typedef Preflow<Digraph, CapMap>
   1.180 +      ::SetElevator<Elev>
   1.181 +      ::SetStandardElevator<LinkedElev>
   1.182 +      ::Create PreflowType;
   1.183 +  PreflowType preflow_test(g, cap, n, n);
   1.184 +  const PreflowType& const_preflow_test = preflow_test;
   1.185 +
   1.186 +  const PreflowType::Elevator& elev = const_preflow_test.elevator();
   1.187 +  preflow_test.elevator(const_cast<PreflowType::Elevator&>(elev));
   1.188 +
   1.189 +  bool b = preflow_test.init(cap);
   1.190 +  preflow_test.startFirstPhase();
   1.191 +  preflow_test.startSecondPhase();
   1.192 +  preflow_test.runMinCut();
   1.193 +
   1.194 +  ::lemon::ignore_unused_variable_warning(b);
   1.195 +}
   1.196 +
   1.197 +// Checks the specific parts of EdmondsKarp's interface
   1.198 +void checkEdmondsKarpCompile()
   1.199 +{
   1.200 +  typedef int Value;
   1.201 +  typedef concepts::Digraph Digraph;
   1.202 +  typedef concepts::ReadMap<Digraph::Arc, Value> CapMap;
   1.203 +
   1.204 +  Digraph g;
   1.205 +  Digraph::Node n;
   1.206 +  CapMap cap;
   1.207 +
   1.208 +  EdmondsKarp<Digraph, CapMap> ek_test(g, cap, n, n);
   1.209 +
   1.210 +  ek_test.init(cap);
   1.211 +  bool b = ek_test.checkedInit(cap);
   1.212 +  b = ek_test.augment();
   1.213 +  ek_test.start();
   1.214 +
   1.215 +  ::lemon::ignore_unused_variable_warning(b);
   1.216 +}
   1.217 +
   1.218 +
   1.219 +template <typename T>
   1.220 +T cutValue(const SmartDigraph& g,
   1.221 +           const SmartDigraph::NodeMap<bool>& cut,
   1.222 +           const SmartDigraph::ArcMap<T>& cap) {
   1.223 +
   1.224 +  T c = 0;
   1.225 +  for (SmartDigraph::ArcIt e(g); e != INVALID; ++e) {
   1.226 +    if (cut[g.source(e)] && !cut[g.target(e)]) c += cap[e];
   1.227 +  }
   1.228 +  return c;
   1.229 +}
   1.230 +
   1.231 +template <typename T>
   1.232 +bool checkFlow(const SmartDigraph& g,
   1.233 +               const SmartDigraph::ArcMap<T>& flow,
   1.234 +               const SmartDigraph::ArcMap<T>& cap,
   1.235 +               SmartDigraph::Node s, SmartDigraph::Node t,
   1.236 +               const Tolerance<T>& tol) {
   1.237 +
   1.238 +  for (SmartDigraph::ArcIt e(g); e != INVALID; ++e) {
   1.239 +    if (tol.negative(flow[e]) || tol.less(cap[e], flow[e])) return false;
   1.240 +  }
   1.241 +
   1.242 +  for (SmartDigraph::NodeIt n(g); n != INVALID; ++n) {
   1.243 +    if (n == s || n == t) continue;
   1.244 +    T sum = 0;
   1.245 +    for (SmartDigraph::OutArcIt e(g, n); e != INVALID; ++e) {
   1.246 +      sum += flow[e];
   1.247 +    }
   1.248 +    for (SmartDigraph::InArcIt e(g, n); e != INVALID; ++e) {
   1.249 +      sum -= flow[e];
   1.250 +    }
   1.251 +    if (tol.nonZero(sum)) return false;
   1.252 +  }
   1.253 +  return true;
   1.254 +}
   1.255 +
   1.256 +void checkInitPreflow()
   1.257 +{
   1.258 +  DIGRAPH_TYPEDEFS(SmartDigraph);
   1.259 +
   1.260 +  SmartDigraph g;
   1.261 +  SmartDigraph::ArcMap<int> cap(g), iflow(g);
   1.262 +  Node s = g.addNode(); Node t = g.addNode();
   1.263 +  Node n1 = g.addNode(); Node n2 = g.addNode();
   1.264 +  Arc a;
   1.265 +  a = g.addArc(s, n1); cap[a] = 20; iflow[a] = 20;
   1.266 +  a = g.addArc(n1, n2); cap[a] = 10; iflow[a] = 0;
   1.267 +  a = g.addArc(n2, t); cap[a] = 20; iflow[a] = 0;
   1.268 +
   1.269 +  Preflow<SmartDigraph> pre(g, cap, s, t);
   1.270 +  pre.init(iflow);
   1.271 +  pre.startFirstPhase();
   1.272 +
   1.273 +  check(pre.flowValue() == 10, "Incorrect max flow value.");
   1.274 +  check(pre.minCut(s), "Wrong min cut (Node s).");
   1.275 +  check(pre.minCut(n1), "Wrong min cut (Node n1).");
   1.276 +  check(!pre.minCut(n2), "Wrong min cut (Node n2).");
   1.277 +  check(!pre.minCut(t), "Wrong min cut (Node t).");
   1.278 +}
   1.279 +
   1.280 +template <typename MF, typename SF>
   1.281 +void checkMaxFlowAlg(const char *input_lgf,  typename MF::Value expected) {
   1.282 +  typedef SmartDigraph Digraph;
   1.283 +  DIGRAPH_TYPEDEFS(Digraph);
   1.284 +
   1.285 +  typedef typename MF::Value Value;
   1.286 +  typedef Digraph::ArcMap<Value> CapMap;
   1.287 +  typedef CapMap FlowMap;
   1.288 +  typedef BoolNodeMap CutMap;
   1.289 +
   1.290 +  Tolerance<Value> tol;
   1.291 +
   1.292 +  Digraph g;
   1.293 +  Node s, t;
   1.294 +  CapMap cap(g);
   1.295 +  std::istringstream input(input_lgf);
   1.296 +  DigraphReader<Digraph>(g, input)
   1.297 +      .arcMap("capacity", cap)
   1.298 +      .node("source", s)
   1.299 +      .node("target", t)
   1.300 +      .run();
   1.301 +
   1.302 +  MF max_flow(g, cap, s, t);
   1.303 +  max_flow.run();
   1.304 +
   1.305 +  check(!tol.different(expected, max_flow.flowValue()),
   1.306 +        "Incorrect max flow value.");
   1.307 +  check(checkFlow(g, max_flow.flowMap(), cap, s, t, tol),
   1.308 +        "The flow is not feasible.");
   1.309 +
   1.310 +  CutMap min_cut(g);
   1.311 +  max_flow.minCutMap(min_cut);
   1.312 +  Value min_cut_value = cutValue(g, min_cut, cap);
   1.313 +
   1.314 +  check(!tol.different(expected, min_cut_value),
   1.315 +        "Incorrect min cut value.");
   1.316 +
   1.317 +  FlowMap flow(g);
   1.318 +  for (ArcIt e(g); e != INVALID; ++e) flow[e] = 13 * max_flow.flowMap()[e];
   1.319 +  for (ArcIt e(g); e != INVALID; ++e) cap[e] = 17 * cap[e];
   1.320 +  max_flow.init(flow);
   1.321 +
   1.322 +  SF::startFirstPhase(max_flow);       // start first phase of the algorithm
   1.323 +
   1.324 +  CutMap min_cut1(g);
   1.325 +  max_flow.minCutMap(min_cut1);
   1.326 +  min_cut_value = cutValue(g, min_cut1, cap);
   1.327 +
   1.328 +  check(!tol.different(17 * expected, max_flow.flowValue()),
   1.329 +        "Incorrect max flow value.");
   1.330 +  check(!tol.different(17 * expected, min_cut_value),
   1.331 +        "Incorrect min cut value.");
   1.332 +
   1.333 +  SF::startSecondPhase(max_flow);       // start second phase of the algorithm
   1.334 +
   1.335 +  check(checkFlow(g, max_flow.flowMap(), cap, s, t, tol),
   1.336 +        "The flow is not feasible.");
   1.337 +
   1.338 +  CutMap min_cut2(g);
   1.339 +  max_flow.minCutMap(min_cut2);
   1.340 +  min_cut_value = cutValue(g, min_cut2, cap);
   1.341 +
   1.342 +  check(!tol.different(17 * expected, max_flow.flowValue()),
   1.343 +        "Incorrect max flow value.");
   1.344 +  check(!tol.different(17 * expected, min_cut_value),
   1.345 +        "Incorrect min cut value.");
   1.346 +
   1.347 +  max_flow.flowMap(flow);
   1.348 +
   1.349 +  NodeIt tmp1(g, s);
   1.350 +  ++tmp1;
   1.351 +  if (tmp1 != INVALID) s = tmp1;
   1.352 +
   1.353 +  NodeIt tmp2(g, t);
   1.354 +  ++tmp2;
   1.355 +  if (tmp2 != INVALID) t = tmp2;
   1.356 +
   1.357 +  max_flow.source(s);
   1.358 +  max_flow.target(t);
   1.359 +
   1.360 +  max_flow.run();
   1.361 +
   1.362 +  CutMap min_cut3(g);
   1.363 +  max_flow.minCutMap(min_cut3);
   1.364 +  min_cut_value = cutValue(g, min_cut3, cap);
   1.365 +
   1.366 +  check(!tol.different(max_flow.flowValue(), min_cut_value),
   1.367 +        "The max flow value or the min cut value is wrong.");
   1.368 +}
   1.369 +
   1.370 +// Struct for calling start functions of a general max flow algorithm
   1.371 +template <typename MF>
   1.372 +struct GeneralStartFunctions {
   1.373 +
   1.374 +  static void startFirstPhase(MF& mf) {
   1.375 +    mf.start();
   1.376 +  }
   1.377 +
   1.378 +  static void startSecondPhase(MF& mf) {
   1.379 +    ::lemon::ignore_unused_variable_warning(mf);
   1.380 +  }
   1.381 +
   1.382 +};
   1.383 +
   1.384 +// Struct for calling start functions of Preflow
   1.385 +template <typename MF>
   1.386 +struct PreflowStartFunctions {
   1.387 +
   1.388 +  static void startFirstPhase(MF& mf) {
   1.389 +    mf.startFirstPhase();
   1.390 +  }
   1.391 +
   1.392 +  static void startSecondPhase(MF& mf) {
   1.393 +    mf.startSecondPhase();
   1.394 +  }
   1.395 +
   1.396 +};
   1.397 +
   1.398 +int main() {
   1.399 +
   1.400 +  typedef concepts::Digraph GR;
   1.401 +  typedef concepts::ReadMap<GR::Arc, int> CM1;
   1.402 +  typedef concepts::ReadMap<GR::Arc, double> CM2;
   1.403 +
   1.404 +  // Check the interface of Preflow
   1.405 +  checkConcept< MaxFlowClassConcept<GR, CM1>,
   1.406 +                Preflow<GR, CM1> >();
   1.407 +  checkConcept< MaxFlowClassConcept<GR, CM2>,
   1.408 +                Preflow<GR, CM2> >();
   1.409 +
   1.410 +  // Check the interface of EdmondsKarp
   1.411 +  checkConcept< MaxFlowClassConcept<GR, CM1>,
   1.412 +                EdmondsKarp<GR, CM1> >();
   1.413 +  checkConcept< MaxFlowClassConcept<GR, CM2>,
   1.414 +                EdmondsKarp<GR, CM2> >();
   1.415 +
   1.416 +  // Check Preflow
   1.417 +  typedef Preflow<SmartDigraph, SmartDigraph::ArcMap<int> > PType1;
   1.418 +  typedef Preflow<SmartDigraph, SmartDigraph::ArcMap<float> > PType2;
   1.419 +  typedef Preflow<SmartDigraph, SmartDigraph::ArcMap<double> > PType3;
   1.420 +
   1.421 +  checkMaxFlowAlg<PType1, PreflowStartFunctions<PType1> >(test_lgf, 13);
   1.422 +  checkMaxFlowAlg<PType2, PreflowStartFunctions<PType2> >(test_lgf, 13);
   1.423 +  checkMaxFlowAlg<PType3, PreflowStartFunctions<PType3> >(test_lgf, 13);
   1.424 +
   1.425 +  checkMaxFlowAlg<PType2, PreflowStartFunctions<PType2> >(test_lgf_float, 0.3f);
   1.426 +  checkMaxFlowAlg<PType3, PreflowStartFunctions<PType3> >(test_lgf_float, 0.3);
   1.427 +
   1.428 +  checkInitPreflow();
   1.429 +
   1.430 +  // Check EdmondsKarp
   1.431 +  typedef EdmondsKarp<SmartDigraph, SmartDigraph::ArcMap<int> > EKType1;
   1.432 +  typedef EdmondsKarp<SmartDigraph, SmartDigraph::ArcMap<float> > EKType2;
   1.433 +  typedef EdmondsKarp<SmartDigraph, SmartDigraph::ArcMap<double> > EKType3;
   1.434 +
   1.435 +  checkMaxFlowAlg<EKType1, GeneralStartFunctions<EKType1> >(test_lgf, 13);
   1.436 +  checkMaxFlowAlg<EKType2, GeneralStartFunctions<EKType2> >(test_lgf, 13);
   1.437 +  checkMaxFlowAlg<EKType3, GeneralStartFunctions<EKType3> >(test_lgf, 13);
   1.438 +
   1.439 +  checkMaxFlowAlg<EKType2, GeneralStartFunctions<EKType2> >(test_lgf_float, 0.3f);
   1.440 +  checkMaxFlowAlg<EKType3, GeneralStartFunctions<EKType3> >(test_lgf_float, 0.3);
   1.441 +
   1.442 +  return 0;
   1.443 +}