test/connectivity_test.cc
branch1.1
changeset 844 c01a98ce01fd
child 956 141f9c0db4a3
child 1081 f1398882a928
child 1157 761fe0846f49
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/test/connectivity_test.cc	Tue May 12 12:09:55 2009 +0100
     1.3 @@ -0,0 +1,297 @@
     1.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library.
     1.7 + *
     1.8 + * Copyright (C) 2003-2009
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#include <lemon/connectivity.h>
    1.23 +#include <lemon/list_graph.h>
    1.24 +#include <lemon/adaptors.h>
    1.25 +
    1.26 +#include "test_tools.h"
    1.27 +
    1.28 +using namespace lemon;
    1.29 +
    1.30 +
    1.31 +int main()
    1.32 +{
    1.33 +  typedef ListDigraph Digraph;
    1.34 +  typedef Undirector<Digraph> Graph;
    1.35 +  
    1.36 +  {
    1.37 +    Digraph d;
    1.38 +    Digraph::NodeMap<int> order(d);
    1.39 +    Graph g(d);
    1.40 +    
    1.41 +    check(stronglyConnected(d), "The empty digraph is strongly connected");
    1.42 +    check(countStronglyConnectedComponents(d) == 0,
    1.43 +          "The empty digraph has 0 strongly connected component");
    1.44 +    check(connected(g), "The empty graph is connected");
    1.45 +    check(countConnectedComponents(g) == 0,
    1.46 +          "The empty graph has 0 connected component");
    1.47 +
    1.48 +    check(biNodeConnected(g), "The empty graph is bi-node-connected");
    1.49 +    check(countBiNodeConnectedComponents(g) == 0,
    1.50 +          "The empty graph has 0 bi-node-connected component");
    1.51 +    check(biEdgeConnected(g), "The empty graph is bi-edge-connected");
    1.52 +    check(countBiEdgeConnectedComponents(g) == 0,
    1.53 +          "The empty graph has 0 bi-edge-connected component");
    1.54 +          
    1.55 +    check(dag(d), "The empty digraph is DAG.");
    1.56 +    check(checkedTopologicalSort(d, order), "The empty digraph is DAG.");
    1.57 +    check(loopFree(d), "The empty digraph is loop-free.");
    1.58 +    check(parallelFree(d), "The empty digraph is parallel-free.");
    1.59 +    check(simpleGraph(d), "The empty digraph is simple.");
    1.60 +
    1.61 +    check(acyclic(g), "The empty graph is acyclic.");
    1.62 +    check(tree(g), "The empty graph is tree.");
    1.63 +    check(bipartite(g), "The empty graph is bipartite.");
    1.64 +    check(loopFree(g), "The empty graph is loop-free.");
    1.65 +    check(parallelFree(g), "The empty graph is parallel-free.");
    1.66 +    check(simpleGraph(g), "The empty graph is simple.");
    1.67 +  }
    1.68 +
    1.69 +  {
    1.70 +    Digraph d;
    1.71 +    Digraph::NodeMap<int> order(d);
    1.72 +    Graph g(d);
    1.73 +    Digraph::Node n = d.addNode();
    1.74 +
    1.75 +    check(stronglyConnected(d), "This digraph is strongly connected");
    1.76 +    check(countStronglyConnectedComponents(d) == 1,
    1.77 +          "This digraph has 1 strongly connected component");
    1.78 +    check(connected(g), "This graph is connected");
    1.79 +    check(countConnectedComponents(g) == 1,
    1.80 +          "This graph has 1 connected component");
    1.81 +
    1.82 +    check(biNodeConnected(g), "This graph is bi-node-connected");
    1.83 +    check(countBiNodeConnectedComponents(g) == 0,
    1.84 +          "This graph has 0 bi-node-connected component");
    1.85 +    check(biEdgeConnected(g), "This graph is bi-edge-connected");
    1.86 +    check(countBiEdgeConnectedComponents(g) == 1,
    1.87 +          "This graph has 1 bi-edge-connected component");
    1.88 +          
    1.89 +    check(dag(d), "This digraph is DAG.");
    1.90 +    check(checkedTopologicalSort(d, order), "This digraph is DAG.");
    1.91 +    check(loopFree(d), "This digraph is loop-free.");
    1.92 +    check(parallelFree(d), "This digraph is parallel-free.");
    1.93 +    check(simpleGraph(d), "This digraph is simple.");
    1.94 +
    1.95 +    check(acyclic(g), "This graph is acyclic.");
    1.96 +    check(tree(g), "This graph is tree.");
    1.97 +    check(bipartite(g), "This graph is bipartite.");
    1.98 +    check(loopFree(g), "This graph is loop-free.");
    1.99 +    check(parallelFree(g), "This graph is parallel-free.");
   1.100 +    check(simpleGraph(g), "This graph is simple.");
   1.101 +  }
   1.102 +
   1.103 +  {
   1.104 +    Digraph d;
   1.105 +    Digraph::NodeMap<int> order(d);
   1.106 +    Graph g(d);
   1.107 +    
   1.108 +    Digraph::Node n1 = d.addNode();
   1.109 +    Digraph::Node n2 = d.addNode();
   1.110 +    Digraph::Node n3 = d.addNode();
   1.111 +    Digraph::Node n4 = d.addNode();
   1.112 +    Digraph::Node n5 = d.addNode();
   1.113 +    Digraph::Node n6 = d.addNode();
   1.114 +    
   1.115 +    d.addArc(n1, n3);
   1.116 +    d.addArc(n3, n2);
   1.117 +    d.addArc(n2, n1);
   1.118 +    d.addArc(n4, n2);
   1.119 +    d.addArc(n4, n3);
   1.120 +    d.addArc(n5, n6);
   1.121 +    d.addArc(n6, n5);
   1.122 +
   1.123 +    check(!stronglyConnected(d), "This digraph is not strongly connected");
   1.124 +    check(countStronglyConnectedComponents(d) == 3,
   1.125 +          "This digraph has 3 strongly connected components");
   1.126 +    check(!connected(g), "This graph is not connected");
   1.127 +    check(countConnectedComponents(g) == 2,
   1.128 +          "This graph has 2 connected components");
   1.129 +
   1.130 +    check(!dag(d), "This digraph is not DAG.");
   1.131 +    check(!checkedTopologicalSort(d, order), "This digraph is not DAG.");
   1.132 +    check(loopFree(d), "This digraph is loop-free.");
   1.133 +    check(parallelFree(d), "This digraph is parallel-free.");
   1.134 +    check(simpleGraph(d), "This digraph is simple.");
   1.135 +
   1.136 +    check(!acyclic(g), "This graph is not acyclic.");
   1.137 +    check(!tree(g), "This graph is not tree.");
   1.138 +    check(!bipartite(g), "This graph is not bipartite.");
   1.139 +    check(loopFree(g), "This graph is loop-free.");
   1.140 +    check(!parallelFree(g), "This graph is not parallel-free.");
   1.141 +    check(!simpleGraph(g), "This graph is not simple.");
   1.142 +    
   1.143 +    d.addArc(n3, n3);
   1.144 +    
   1.145 +    check(!loopFree(d), "This digraph is not loop-free.");
   1.146 +    check(!loopFree(g), "This graph is not loop-free.");
   1.147 +    check(!simpleGraph(d), "This digraph is not simple.");
   1.148 +    
   1.149 +    d.addArc(n3, n2);
   1.150 +    
   1.151 +    check(!parallelFree(d), "This digraph is not parallel-free.");
   1.152 +  }
   1.153 +  
   1.154 +  {
   1.155 +    Digraph d;
   1.156 +    Digraph::ArcMap<bool> cutarcs(d, false);
   1.157 +    Graph g(d);
   1.158 +    
   1.159 +    Digraph::Node n1 = d.addNode();
   1.160 +    Digraph::Node n2 = d.addNode();
   1.161 +    Digraph::Node n3 = d.addNode();
   1.162 +    Digraph::Node n4 = d.addNode();
   1.163 +    Digraph::Node n5 = d.addNode();
   1.164 +    Digraph::Node n6 = d.addNode();
   1.165 +    Digraph::Node n7 = d.addNode();
   1.166 +    Digraph::Node n8 = d.addNode();
   1.167 +
   1.168 +    d.addArc(n1, n2);
   1.169 +    d.addArc(n5, n1);
   1.170 +    d.addArc(n2, n8);
   1.171 +    d.addArc(n8, n5);
   1.172 +    d.addArc(n6, n4);
   1.173 +    d.addArc(n4, n6);
   1.174 +    d.addArc(n2, n5);
   1.175 +    d.addArc(n1, n8);
   1.176 +    d.addArc(n6, n7);
   1.177 +    d.addArc(n7, n6);
   1.178 +   
   1.179 +    check(!stronglyConnected(d), "This digraph is not strongly connected");
   1.180 +    check(countStronglyConnectedComponents(d) == 3,
   1.181 +          "This digraph has 3 strongly connected components");
   1.182 +    Digraph::NodeMap<int> scomp1(d);
   1.183 +    check(stronglyConnectedComponents(d, scomp1) == 3,
   1.184 +          "This digraph has 3 strongly connected components");
   1.185 +    check(scomp1[n1] != scomp1[n3] && scomp1[n1] != scomp1[n4] &&
   1.186 +          scomp1[n3] != scomp1[n4], "Wrong stronglyConnectedComponents()");
   1.187 +    check(scomp1[n1] == scomp1[n2] && scomp1[n1] == scomp1[n5] &&
   1.188 +          scomp1[n1] == scomp1[n8], "Wrong stronglyConnectedComponents()");
   1.189 +    check(scomp1[n4] == scomp1[n6] && scomp1[n4] == scomp1[n7],
   1.190 +          "Wrong stronglyConnectedComponents()");
   1.191 +    Digraph::ArcMap<bool> scut1(d, false);
   1.192 +    check(stronglyConnectedCutArcs(d, scut1) == 0,
   1.193 +          "This digraph has 0 strongly connected cut arc.");
   1.194 +    for (Digraph::ArcIt a(d); a != INVALID; ++a) {
   1.195 +      check(!scut1[a], "Wrong stronglyConnectedCutArcs()");
   1.196 +    }
   1.197 +
   1.198 +    check(!connected(g), "This graph is not connected");
   1.199 +    check(countConnectedComponents(g) == 3,
   1.200 +          "This graph has 3 connected components");
   1.201 +    Graph::NodeMap<int> comp(g);
   1.202 +    check(connectedComponents(g, comp) == 3,
   1.203 +          "This graph has 3 connected components");
   1.204 +    check(comp[n1] != comp[n3] && comp[n1] != comp[n4] &&
   1.205 +          comp[n3] != comp[n4], "Wrong connectedComponents()");
   1.206 +    check(comp[n1] == comp[n2] && comp[n1] == comp[n5] &&
   1.207 +          comp[n1] == comp[n8], "Wrong connectedComponents()");
   1.208 +    check(comp[n4] == comp[n6] && comp[n4] == comp[n7],
   1.209 +          "Wrong connectedComponents()");
   1.210 +
   1.211 +    cutarcs[d.addArc(n3, n1)] = true;
   1.212 +    cutarcs[d.addArc(n3, n5)] = true;
   1.213 +    cutarcs[d.addArc(n3, n8)] = true;
   1.214 +    cutarcs[d.addArc(n8, n6)] = true;
   1.215 +    cutarcs[d.addArc(n8, n7)] = true;
   1.216 +
   1.217 +    check(!stronglyConnected(d), "This digraph is not strongly connected");
   1.218 +    check(countStronglyConnectedComponents(d) == 3,
   1.219 +          "This digraph has 3 strongly connected components");
   1.220 +    Digraph::NodeMap<int> scomp2(d);
   1.221 +    check(stronglyConnectedComponents(d, scomp2) == 3,
   1.222 +          "This digraph has 3 strongly connected components");
   1.223 +    check(scomp2[n3] == 0, "Wrong stronglyConnectedComponents()");
   1.224 +    check(scomp2[n1] == 1 && scomp2[n2] == 1 && scomp2[n5] == 1 &&
   1.225 +          scomp2[n8] == 1, "Wrong stronglyConnectedComponents()");
   1.226 +    check(scomp2[n4] == 2 && scomp2[n6] == 2 && scomp2[n7] == 2,
   1.227 +          "Wrong stronglyConnectedComponents()");
   1.228 +    Digraph::ArcMap<bool> scut2(d, false);
   1.229 +    check(stronglyConnectedCutArcs(d, scut2) == 5,
   1.230 +          "This digraph has 5 strongly connected cut arcs.");
   1.231 +    for (Digraph::ArcIt a(d); a != INVALID; ++a) {
   1.232 +      check(scut2[a] == cutarcs[a], "Wrong stronglyConnectedCutArcs()");
   1.233 +    }
   1.234 +  }
   1.235 +
   1.236 +  {
   1.237 +    // DAG example for topological sort from the book New Algorithms
   1.238 +    // (T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein)
   1.239 +    Digraph d;
   1.240 +    Digraph::NodeMap<int> order(d);
   1.241 +    
   1.242 +    Digraph::Node belt = d.addNode();
   1.243 +    Digraph::Node trousers = d.addNode();
   1.244 +    Digraph::Node necktie = d.addNode();
   1.245 +    Digraph::Node coat = d.addNode();
   1.246 +    Digraph::Node socks = d.addNode();
   1.247 +    Digraph::Node shirt = d.addNode();
   1.248 +    Digraph::Node shoe = d.addNode();
   1.249 +    Digraph::Node watch = d.addNode();
   1.250 +    Digraph::Node pants = d.addNode();
   1.251 +
   1.252 +    d.addArc(socks, shoe);
   1.253 +    d.addArc(pants, shoe);
   1.254 +    d.addArc(pants, trousers);
   1.255 +    d.addArc(trousers, shoe);
   1.256 +    d.addArc(trousers, belt);
   1.257 +    d.addArc(belt, coat);
   1.258 +    d.addArc(shirt, belt);
   1.259 +    d.addArc(shirt, necktie);
   1.260 +    d.addArc(necktie, coat);
   1.261 +    
   1.262 +    check(dag(d), "This digraph is DAG.");
   1.263 +    topologicalSort(d, order);
   1.264 +    for (Digraph::ArcIt a(d); a != INVALID; ++a) {
   1.265 +      check(order[d.source(a)] < order[d.target(a)],
   1.266 +            "Wrong topologicalSort()");
   1.267 +    }
   1.268 +  }
   1.269 +
   1.270 +  {
   1.271 +    ListGraph g;
   1.272 +    ListGraph::NodeMap<bool> map(g);
   1.273 +    
   1.274 +    ListGraph::Node n1 = g.addNode();
   1.275 +    ListGraph::Node n2 = g.addNode();
   1.276 +    ListGraph::Node n3 = g.addNode();
   1.277 +    ListGraph::Node n4 = g.addNode();
   1.278 +    ListGraph::Node n5 = g.addNode();
   1.279 +    ListGraph::Node n6 = g.addNode();
   1.280 +    ListGraph::Node n7 = g.addNode();
   1.281 +
   1.282 +    g.addEdge(n1, n3);
   1.283 +    g.addEdge(n1, n4);
   1.284 +    g.addEdge(n2, n5);
   1.285 +    g.addEdge(n3, n6);
   1.286 +    g.addEdge(n4, n6);
   1.287 +    g.addEdge(n4, n7);
   1.288 +    g.addEdge(n5, n7);
   1.289 +   
   1.290 +    check(bipartite(g), "This graph is bipartite");
   1.291 +    check(bipartitePartitions(g, map), "This graph is bipartite");
   1.292 +    
   1.293 +    check(map[n1] == map[n2] && map[n1] == map[n6] && map[n1] == map[n7],
   1.294 +          "Wrong bipartitePartitions()");
   1.295 +    check(map[n3] == map[n4] && map[n3] == map[n5],
   1.296 +          "Wrong bipartitePartitions()");
   1.297 +  }
   1.298 +
   1.299 +  return 0;
   1.300 +}