1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
 
     3  * This file is a part of LEMON, a generic C++ optimization library.
 
     5  * Copyright (C) 2003-2013
 
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
 
     9  * Permission to use, modify and distribute this software is granted
 
    10  * provided that this copyright notice appears in all copies. For
 
    11  * precise terms see the accompanying LICENSE file.
 
    13  * This software is provided "AS IS" with no warranty of any kind,
 
    14  * express or implied, and with no claim as to its suitability for any
 
    19 #ifndef LEMON_HARTMANN_ORLIN_MMC_H
 
    20 #define LEMON_HARTMANN_ORLIN_MMC_H
 
    22 /// \ingroup min_mean_cycle
 
    25 /// \brief Hartmann-Orlin's algorithm for finding a minimum mean cycle.
 
    29 #include <lemon/core.h>
 
    30 #include <lemon/path.h>
 
    31 #include <lemon/tolerance.h>
 
    32 #include <lemon/connectivity.h>
 
    36   /// \brief Default traits class of HartmannOrlinMmc class.
 
    38   /// Default traits class of HartmannOrlinMmc class.
 
    39   /// \tparam GR The type of the digraph.
 
    40   /// \tparam CM The type of the cost map.
 
    41   /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
 
    43   template <typename GR, typename CM>
 
    45   template <typename GR, typename CM,
 
    46     bool integer = std::numeric_limits<typename CM::Value>::is_integer>
 
    48   struct HartmannOrlinMmcDefaultTraits
 
    50     /// The type of the digraph
 
    52     /// The type of the cost map
 
    54     /// The type of the arc costs
 
    55     typedef typename CostMap::Value Cost;
 
    57     /// \brief The large cost type used for internal computations
 
    59     /// The large cost type used for internal computations.
 
    60     /// It is \c long \c long if the \c Cost type is integer,
 
    61     /// otherwise it is \c double.
 
    62     /// \c Cost must be convertible to \c LargeCost.
 
    63     typedef double LargeCost;
 
    65     /// The tolerance type used for internal computations
 
    66     typedef lemon::Tolerance<LargeCost> Tolerance;
 
    68     /// \brief The path type of the found cycles
 
    70     /// The path type of the found cycles.
 
    71     /// It must conform to the \ref lemon::concepts::Path "Path" concept
 
    72     /// and it must have an \c addFront() function.
 
    73     typedef lemon::Path<Digraph> Path;
 
    76   // Default traits class for integer cost types
 
    77   template <typename GR, typename CM>
 
    78   struct HartmannOrlinMmcDefaultTraits<GR, CM, true>
 
    82     typedef typename CostMap::Value Cost;
 
    83 #ifdef LEMON_HAVE_LONG_LONG
 
    84     typedef long long LargeCost;
 
    86     typedef long LargeCost;
 
    88     typedef lemon::Tolerance<LargeCost> Tolerance;
 
    89     typedef lemon::Path<Digraph> Path;
 
    93   /// \addtogroup min_mean_cycle
 
    96   /// \brief Implementation of the Hartmann-Orlin algorithm for finding
 
    97   /// a minimum mean cycle.
 
    99   /// This class implements the Hartmann-Orlin algorithm for finding
 
   100   /// a directed cycle of minimum mean cost in a digraph
 
   101   /// \cite hartmann93finding, \cite dasdan98minmeancycle.
 
   102   /// This method is based on \ref KarpMmc "Karp"'s original algorithm, but
 
   103   /// applies an early termination scheme. It makes the algorithm
 
   104   /// significantly faster for some problem instances, but slower for others.
 
   105   /// The algorithm runs in time O(nm) and uses space O(n<sup>2</sup>+m).
 
   107   /// \tparam GR The type of the digraph the algorithm runs on.
 
   108   /// \tparam CM The type of the cost map. The default
 
   109   /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
 
   110   /// \tparam TR The traits class that defines various types used by the
 
   111   /// algorithm. By default, it is \ref HartmannOrlinMmcDefaultTraits
 
   112   /// "HartmannOrlinMmcDefaultTraits<GR, CM>".
 
   113   /// In most cases, this parameter should not be set directly,
 
   114   /// consider to use the named template parameters instead.
 
   116   template <typename GR, typename CM, typename TR>
 
   118   template < typename GR,
 
   119              typename CM = typename GR::template ArcMap<int>,
 
   120              typename TR = HartmannOrlinMmcDefaultTraits<GR, CM> >
 
   122   class HartmannOrlinMmc
 
   126     /// The type of the digraph
 
   127     typedef typename TR::Digraph Digraph;
 
   128     /// The type of the cost map
 
   129     typedef typename TR::CostMap CostMap;
 
   130     /// The type of the arc costs
 
   131     typedef typename TR::Cost Cost;
 
   133     /// \brief The large cost type
 
   135     /// The large cost type used for internal computations.
 
   136     /// By default, it is \c long \c long if the \c Cost type is integer,
 
   137     /// otherwise it is \c double.
 
   138     typedef typename TR::LargeCost LargeCost;
 
   140     /// The tolerance type
 
   141     typedef typename TR::Tolerance Tolerance;
 
   143     /// \brief The path type of the found cycles
 
   145     /// The path type of the found cycles.
 
   146     /// Using the \ref lemon::HartmannOrlinMmcDefaultTraits
 
   147     /// "default traits class",
 
   148     /// it is \ref lemon::Path "Path<Digraph>".
 
   149     typedef typename TR::Path Path;
 
   152     /// \ref lemon::HartmannOrlinMmcDefaultTraits "traits class"
 
   158     TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
 
   160     // Data sturcture for path data
 
   165       PathData(LargeCost d, Arc p = INVALID) :
 
   169     typedef typename Digraph::template NodeMap<std::vector<PathData> >
 
   174     // The digraph the algorithm runs on
 
   176     // The cost of the arcs
 
   177     const CostMap &_cost;
 
   179     // Data for storing the strongly connected components
 
   181     typename Digraph::template NodeMap<int> _comp;
 
   182     std::vector<std::vector<Node> > _comp_nodes;
 
   183     std::vector<Node>* _nodes;
 
   184     typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs;
 
   186     // Data for the found cycles
 
   187     bool _curr_found, _best_found;
 
   188     LargeCost _curr_cost, _best_cost;
 
   189     int _curr_size, _best_size;
 
   190     Node _curr_node, _best_node;
 
   191     int _curr_level, _best_level;
 
   196     // Node map for storing path data
 
   197     PathDataNodeMap _data;
 
   198     // The processed nodes in the last round
 
   199     std::vector<Node> _process;
 
   201     Tolerance _tolerance;
 
   208     /// \name Named Template Parameters
 
   211     template <typename T>
 
   212     struct SetLargeCostTraits : public Traits {
 
   214       typedef lemon::Tolerance<T> Tolerance;
 
   217     /// \brief \ref named-templ-param "Named parameter" for setting
 
   218     /// \c LargeCost type.
 
   220     /// \ref named-templ-param "Named parameter" for setting \c LargeCost
 
   221     /// type. It is used for internal computations in the algorithm.
 
   222     template <typename T>
 
   224       : public HartmannOrlinMmc<GR, CM, SetLargeCostTraits<T> > {
 
   225       typedef HartmannOrlinMmc<GR, CM, SetLargeCostTraits<T> > Create;
 
   228     template <typename T>
 
   229     struct SetPathTraits : public Traits {
 
   233     /// \brief \ref named-templ-param "Named parameter" for setting
 
   236     /// \ref named-templ-param "Named parameter" for setting the \c %Path
 
   237     /// type of the found cycles.
 
   238     /// It must conform to the \ref lemon::concepts::Path "Path" concept
 
   239     /// and it must have an \c addFront() function.
 
   240     template <typename T>
 
   242       : public HartmannOrlinMmc<GR, CM, SetPathTraits<T> > {
 
   243       typedef HartmannOrlinMmc<GR, CM, SetPathTraits<T> > Create;
 
   250     HartmannOrlinMmc() {}
 
   254     /// \brief Constructor.
 
   256     /// The constructor of the class.
 
   258     /// \param digraph The digraph the algorithm runs on.
 
   259     /// \param cost The costs of the arcs.
 
   260     HartmannOrlinMmc( const Digraph &digraph,
 
   261                       const CostMap &cost ) :
 
   262       _gr(digraph), _cost(cost), _comp(digraph), _out_arcs(digraph),
 
   263       _best_found(false), _best_cost(0), _best_size(1),
 
   264       _cycle_path(NULL), _local_path(false), _data(digraph),
 
   265       INF(std::numeric_limits<LargeCost>::has_infinity ?
 
   266           std::numeric_limits<LargeCost>::infinity() :
 
   267           std::numeric_limits<LargeCost>::max())
 
   271     ~HartmannOrlinMmc() {
 
   272       if (_local_path) delete _cycle_path;
 
   275     /// \brief Set the path structure for storing the found cycle.
 
   277     /// This function sets an external path structure for storing the
 
   280     /// If you don't call this function before calling \ref run() or
 
   281     /// \ref findCycleMean(), a local \ref Path "path" structure
 
   282     /// will be allocated. The destuctor deallocates this automatically
 
   283     /// allocated object, of course.
 
   285     /// \note The algorithm calls only the \ref lemon::Path::addFront()
 
   286     /// "addFront()" function of the given path structure.
 
   288     /// \return <tt>(*this)</tt>
 
   289     HartmannOrlinMmc& cycle(Path &path) {
 
   298     /// \brief Set the tolerance used by the algorithm.
 
   300     /// This function sets the tolerance object used by the algorithm.
 
   302     /// \return <tt>(*this)</tt>
 
   303     HartmannOrlinMmc& tolerance(const Tolerance& tolerance) {
 
   304       _tolerance = tolerance;
 
   308     /// \brief Return a const reference to the tolerance.
 
   310     /// This function returns a const reference to the tolerance object
 
   311     /// used by the algorithm.
 
   312     const Tolerance& tolerance() const {
 
   316     /// \name Execution control
 
   317     /// The simplest way to execute the algorithm is to call the \ref run()
 
   319     /// If you only need the minimum mean cost, you may call
 
   320     /// \ref findCycleMean().
 
   324     /// \brief Run the algorithm.
 
   326     /// This function runs the algorithm.
 
   327     /// It can be called more than once (e.g. if the underlying digraph
 
   328     /// and/or the arc costs have been modified).
 
   330     /// \return \c true if a directed cycle exists in the digraph.
 
   332     /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
 
   334     ///   return mmc.findCycleMean() && mmc.findCycle();
 
   337       return findCycleMean() && findCycle();
 
   340     /// \brief Find the minimum cycle mean.
 
   342     /// This function finds the minimum mean cost of the directed
 
   343     /// cycles in the digraph.
 
   345     /// \return \c true if a directed cycle exists in the digraph.
 
   346     bool findCycleMean() {
 
   347       // Initialization and find strongly connected components
 
   351       // Find the minimum cycle mean in the components
 
   352       for (int comp = 0; comp < _comp_num; ++comp) {
 
   353         if (!initComponent(comp)) continue;
 
   356         // Update the best cycle (global minimum mean cycle)
 
   357         if ( _curr_found && (!_best_found ||
 
   358              _curr_cost * _best_size < _best_cost * _curr_size) ) {
 
   360           _best_cost = _curr_cost;
 
   361           _best_size = _curr_size;
 
   362           _best_node = _curr_node;
 
   363           _best_level = _curr_level;
 
   369     /// \brief Find a minimum mean directed cycle.
 
   371     /// This function finds a directed cycle of minimum mean cost
 
   372     /// in the digraph using the data computed by findCycleMean().
 
   374     /// \return \c true if a directed cycle exists in the digraph.
 
   376     /// \pre \ref findCycleMean() must be called before using this function.
 
   378       if (!_best_found) return false;
 
   379       IntNodeMap reached(_gr, -1);
 
   380       int r = _best_level + 1;
 
   382       while (reached[u] < 0) {
 
   384         u = _gr.source(_data[u][r].pred);
 
   387       Arc e = _data[u][r].pred;
 
   388       _cycle_path->addFront(e);
 
   389       _best_cost = _cost[e];
 
   392       while ((v = _gr.source(e)) != u) {
 
   393         e = _data[v][--r].pred;
 
   394         _cycle_path->addFront(e);
 
   395         _best_cost += _cost[e];
 
   403     /// \name Query Functions
 
   404     /// The results of the algorithm can be obtained using these
 
   406     /// The algorithm should be executed before using them.
 
   410     /// \brief Return the total cost of the found cycle.
 
   412     /// This function returns the total cost of the found cycle.
 
   414     /// \pre \ref run() or \ref findCycleMean() must be called before
 
   415     /// using this function.
 
   416     Cost cycleCost() const {
 
   417       return static_cast<Cost>(_best_cost);
 
   420     /// \brief Return the number of arcs on the found cycle.
 
   422     /// This function returns the number of arcs on the found cycle.
 
   424     /// \pre \ref run() or \ref findCycleMean() must be called before
 
   425     /// using this function.
 
   426     int cycleSize() const {
 
   430     /// \brief Return the mean cost of the found cycle.
 
   432     /// This function returns the mean cost of the found cycle.
 
   434     /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
 
   437     ///   return static_cast<double>(alg.cycleCost()) / alg.cycleSize();
 
   440     /// \pre \ref run() or \ref findCycleMean() must be called before
 
   441     /// using this function.
 
   442     double cycleMean() const {
 
   443       return static_cast<double>(_best_cost) / _best_size;
 
   446     /// \brief Return the found cycle.
 
   448     /// This function returns a const reference to the path structure
 
   449     /// storing the found cycle.
 
   451     /// \pre \ref run() or \ref findCycle() must be called before using
 
   453     const Path& cycle() const {
 
   465         _cycle_path = new Path;
 
   467       _cycle_path->clear();
 
   471       _cycle_path->clear();
 
   472       for (NodeIt u(_gr); u != INVALID; ++u)
 
   476     // Find strongly connected components and initialize _comp_nodes
 
   478     void findComponents() {
 
   479       _comp_num = stronglyConnectedComponents(_gr, _comp);
 
   480       _comp_nodes.resize(_comp_num);
 
   481       if (_comp_num == 1) {
 
   482         _comp_nodes[0].clear();
 
   483         for (NodeIt n(_gr); n != INVALID; ++n) {
 
   484           _comp_nodes[0].push_back(n);
 
   485           _out_arcs[n].clear();
 
   486           for (OutArcIt a(_gr, n); a != INVALID; ++a) {
 
   487             _out_arcs[n].push_back(a);
 
   491         for (int i = 0; i < _comp_num; ++i)
 
   492           _comp_nodes[i].clear();
 
   493         for (NodeIt n(_gr); n != INVALID; ++n) {
 
   495           _comp_nodes[k].push_back(n);
 
   496           _out_arcs[n].clear();
 
   497           for (OutArcIt a(_gr, n); a != INVALID; ++a) {
 
   498             if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a);
 
   504     // Initialize path data for the current component
 
   505     bool initComponent(int comp) {
 
   506       _nodes = &(_comp_nodes[comp]);
 
   507       int n = _nodes->size();
 
   508       if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) {
 
   511       for (int i = 0; i < n; ++i) {
 
   512         _data[(*_nodes)[i]].resize(n + 1, PathData(INF));
 
   517     // Process all rounds of computing path data for the current component.
 
   518     // _data[v][k] is the cost of a shortest directed walk from the root
 
   519     // node to node v containing exactly k arcs.
 
   520     void processRounds() {
 
   521       Node start = (*_nodes)[0];
 
   522       _data[start][0] = PathData(0);
 
   524       _process.push_back(start);
 
   526       int k, n = _nodes->size();
 
   528       bool terminate = false;
 
   529       for (k = 1; k <= n && int(_process.size()) < n && !terminate; ++k) {
 
   530         processNextBuildRound(k);
 
   531         if (k == next_check || k == n) {
 
   532           terminate = checkTermination(k);
 
   533           next_check = next_check * 3 / 2;
 
   536       for ( ; k <= n && !terminate; ++k) {
 
   537         processNextFullRound(k);
 
   538         if (k == next_check || k == n) {
 
   539           terminate = checkTermination(k);
 
   540           next_check = next_check * 3 / 2;
 
   545     // Process one round and rebuild _process
 
   546     void processNextBuildRound(int k) {
 
   547       std::vector<Node> next;
 
   551       for (int i = 0; i < int(_process.size()); ++i) {
 
   553         for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
 
   556           d = _data[u][k-1].dist + _cost[e];
 
   557           if (_tolerance.less(d, _data[v][k].dist)) {
 
   558             if (_data[v][k].dist == INF) next.push_back(v);
 
   559             _data[v][k] = PathData(d, e);
 
   566     // Process one round using _nodes instead of _process
 
   567     void processNextFullRound(int k) {
 
   571       for (int i = 0; i < int(_nodes->size()); ++i) {
 
   573         for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
 
   576           d = _data[u][k-1].dist + _cost[e];
 
   577           if (_tolerance.less(d, _data[v][k].dist)) {
 
   578             _data[v][k] = PathData(d, e);
 
   584     // Check early termination
 
   585     bool checkTermination(int k) {
 
   586       typedef std::pair<int, int> Pair;
 
   587       typename GR::template NodeMap<Pair> level(_gr, Pair(-1, 0));
 
   588       typename GR::template NodeMap<LargeCost> pi(_gr);
 
   589       int n = _nodes->size();
 
   594       // Search for cycles that are already found
 
   596       for (int i = 0; i < n; ++i) {
 
   598         if (_data[u][k].dist == INF) continue;
 
   599         for (int j = k; j >= 0; --j) {
 
   600           if (level[u].first == i && level[u].second > 0) {
 
   602             cost = _data[u][level[u].second].dist - _data[u][j].dist;
 
   603             size = level[u].second - j;
 
   604             if (!_curr_found || cost * _curr_size < _curr_cost * size) {
 
   608               _curr_level = level[u].second;
 
   612           level[u] = Pair(i, j);
 
   614             u = _gr.source(_data[u][j].pred);
 
   619       // If at least one cycle is found, check the optimality condition
 
   621       if (_curr_found && k < n) {
 
   622         // Find node potentials
 
   623         for (int i = 0; i < n; ++i) {
 
   626           for (int j = 0; j <= k; ++j) {
 
   627             if (_data[u][j].dist < INF) {
 
   628               d = _data[u][j].dist * _curr_size - j * _curr_cost;
 
   629               if (_tolerance.less(d, pi[u])) pi[u] = d;
 
   634         // Check the optimality condition for all arcs
 
   636         for (ArcIt a(_gr); a != INVALID; ++a) {
 
   637           if (_tolerance.less(_cost[a] * _curr_size - _curr_cost,
 
   638                               pi[_gr.target(a)] - pi[_gr.source(a)]) ) {
 
   648   }; //class HartmannOrlinMmc
 
   654 #endif //LEMON_HARTMANN_ORLIN_MMC_H