test/max_flow_test.cc
author Balazs Dezso <deba@google.com>
Tue, 15 May 2018 14:16:35 +0200
changeset 1399 1e5da3fc4fbc
parent 1385 8db773f19586
permissions -rw-r--r--
Fix PlanarDrawing::run() function (#610)
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2013
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #include <iostream>
    20 
    21 #include "test_tools.h"
    22 #include <lemon/smart_graph.h>
    23 #include <lemon/preflow.h>
    24 #include <lemon/edmonds_karp.h>
    25 #include <lemon/concepts/digraph.h>
    26 #include <lemon/concepts/maps.h>
    27 #include <lemon/lgf_reader.h>
    28 #include <lemon/elevator.h>
    29 #include <lemon/tolerance.h>
    30 
    31 using namespace lemon;
    32 
    33 char test_lgf[] =
    34   "@nodes\n"
    35   "label\n"
    36   "0\n"
    37   "1\n"
    38   "2\n"
    39   "3\n"
    40   "4\n"
    41   "5\n"
    42   "6\n"
    43   "7\n"
    44   "8\n"
    45   "9\n"
    46   "@arcs\n"
    47   "    label capacity\n"
    48   "0 1 0     20\n"
    49   "0 2 1     0\n"
    50   "1 1 2     3\n"
    51   "1 2 3     8\n"
    52   "1 3 4     8\n"
    53   "2 5 5     5\n"
    54   "3 2 6     5\n"
    55   "3 5 7     5\n"
    56   "3 6 8     5\n"
    57   "4 3 9     3\n"
    58   "5 7 10    3\n"
    59   "5 6 11    10\n"
    60   "5 8 12    10\n"
    61   "6 8 13    8\n"
    62   "8 9 14    20\n"
    63   "8 1 15    5\n"
    64   "9 5 16    5\n"
    65   "@attributes\n"
    66   "source 1\n"
    67   "target 8\n";
    68 
    69 char test_lgf_float[] =
    70   "@nodes\n"
    71   "label\n"
    72   "0\n"
    73   "1\n"
    74   "2\n"
    75   "3\n"
    76   "4\n"
    77   "5\n"
    78   "6\n"
    79   "7\n"
    80   "8\n"
    81   "9\n"
    82   "@arcs\n"
    83   "      capacity\n"
    84   "0 1 0.1\n"
    85   "0 2 0.1\n"
    86   "0 3 0.1\n"
    87   "1 4 0.1\n"
    88   "2 4 0.1\n"
    89   "3 4 0.1\n"
    90   "4 5 0.3\n"
    91   "5 6 0.1\n"
    92   "5 7 0.1\n"
    93   "5 8 0.1\n"
    94   "6 9 0.1\n"
    95   "7 9 0.1\n"
    96   "8 9 0.1\n"
    97   "@attributes\n"
    98   "source 0\n"
    99   "target 9\n";
   100 
   101 // Checks the general interface of a max flow algorithm
   102 template <typename GR, typename CAP>
   103 struct MaxFlowClassConcept
   104 {
   105 
   106   template <typename MF>
   107   struct Constraints {
   108 
   109     typedef typename GR::Node Node;
   110     typedef typename GR::Arc Arc;
   111     typedef typename CAP::Value Value;
   112     typedef concepts::ReadWriteMap<Arc, Value> FlowMap;
   113     typedef concepts::WriteMap<Node, bool> CutMap;
   114 
   115     GR g;
   116     Node n;
   117     Arc e;
   118     CAP cap;
   119     FlowMap flow;
   120     CutMap cut;
   121     Value v;
   122     bool b;
   123 
   124     void constraints() {
   125       checkConcept<concepts::Digraph, GR>();
   126 
   127       const Constraints& me = *this;
   128 
   129       typedef typename MF
   130           ::template SetFlowMap<FlowMap>
   131           ::Create MaxFlowType;
   132       typedef typename MF::Create MaxFlowType2;
   133       MaxFlowType max_flow(me.g, me.cap, me.n, me.n);
   134       const MaxFlowType& const_max_flow = max_flow;
   135 
   136       max_flow
   137           .capacityMap(cap)
   138           .flowMap(flow)
   139           .source(n)
   140           .target(n);
   141 
   142       typename MaxFlowType::Tolerance tol = const_max_flow.tolerance();
   143       max_flow.tolerance(tol);
   144 
   145       max_flow.init();
   146       max_flow.init(cap);
   147       max_flow.run();
   148 
   149       v = const_max_flow.flowValue();
   150       v = const_max_flow.flow(e);
   151       const FlowMap& fm = const_max_flow.flowMap();
   152 
   153       b = const_max_flow.minCut(n);
   154       const_max_flow.minCutMap(cut);
   155 
   156       ::lemon::ignore_unused_variable_warning(fm);
   157     }
   158 
   159   };
   160 
   161 };
   162 
   163 // Checks the specific parts of Preflow's interface
   164 void checkPreflowCompile()
   165 {
   166   typedef int Value;
   167   typedef concepts::Digraph Digraph;
   168   typedef concepts::ReadMap<Digraph::Arc, Value> CapMap;
   169   typedef Elevator<Digraph, Digraph::Node> Elev;
   170   typedef LinkedElevator<Digraph, Digraph::Node> LinkedElev;
   171 
   172   Digraph g;
   173   Digraph::Node n;
   174   CapMap cap;
   175 
   176   typedef Preflow<Digraph, CapMap>
   177       ::SetElevator<Elev>
   178       ::SetStandardElevator<LinkedElev>
   179       ::Create PreflowType;
   180   PreflowType preflow_test(g, cap, n, n);
   181   const PreflowType& const_preflow_test = preflow_test;
   182 
   183   const PreflowType::Elevator& elev = const_preflow_test.elevator();
   184   preflow_test.elevator(const_cast<PreflowType::Elevator&>(elev));
   185 
   186   bool b = preflow_test.init(cap);
   187   preflow_test.startFirstPhase();
   188   preflow_test.startSecondPhase();
   189   preflow_test.runMinCut();
   190 
   191   ::lemon::ignore_unused_variable_warning(b);
   192 }
   193 
   194 // Checks the specific parts of EdmondsKarp's interface
   195 void checkEdmondsKarpCompile()
   196 {
   197   typedef int Value;
   198   typedef concepts::Digraph Digraph;
   199   typedef concepts::ReadMap<Digraph::Arc, Value> CapMap;
   200 
   201   Digraph g;
   202   Digraph::Node n;
   203   CapMap cap;
   204 
   205   EdmondsKarp<Digraph, CapMap> ek_test(g, cap, n, n);
   206 
   207   ek_test.init(cap);
   208   bool b = ek_test.checkedInit(cap);
   209   b = ek_test.augment();
   210   ek_test.start();
   211 
   212   ::lemon::ignore_unused_variable_warning(b);
   213 }
   214 
   215 
   216 template <typename T>
   217 T cutValue(const SmartDigraph& g,
   218            const SmartDigraph::NodeMap<bool>& cut,
   219            const SmartDigraph::ArcMap<T>& cap) {
   220 
   221   T c = 0;
   222   for (SmartDigraph::ArcIt e(g); e != INVALID; ++e) {
   223     if (cut[g.source(e)] && !cut[g.target(e)]) c += cap[e];
   224   }
   225   return c;
   226 }
   227 
   228 template <typename T>
   229 bool checkFlow(const SmartDigraph& g,
   230                const SmartDigraph::ArcMap<T>& flow,
   231                const SmartDigraph::ArcMap<T>& cap,
   232                SmartDigraph::Node s, SmartDigraph::Node t,
   233                const Tolerance<T>& tol) {
   234 
   235   for (SmartDigraph::ArcIt e(g); e != INVALID; ++e) {
   236     if (tol.negative(flow[e]) || tol.less(cap[e], flow[e])) return false;
   237   }
   238 
   239   for (SmartDigraph::NodeIt n(g); n != INVALID; ++n) {
   240     if (n == s || n == t) continue;
   241     T sum = 0;
   242     for (SmartDigraph::OutArcIt e(g, n); e != INVALID; ++e) {
   243       sum += flow[e];
   244     }
   245     for (SmartDigraph::InArcIt e(g, n); e != INVALID; ++e) {
   246       sum -= flow[e];
   247     }
   248     if (tol.nonZero(sum)) return false;
   249   }
   250   return true;
   251 }
   252 
   253 void checkInitPreflow()
   254 {
   255   DIGRAPH_TYPEDEFS(SmartDigraph);
   256 
   257   SmartDigraph g;
   258   SmartDigraph::ArcMap<int> cap(g), iflow(g);
   259   Node s = g.addNode(); Node t = g.addNode();
   260   Node n1 = g.addNode(); Node n2 = g.addNode();
   261   Arc a;
   262   a = g.addArc(s, n1); cap[a] = 20; iflow[a] = 20;
   263   a = g.addArc(n1, n2); cap[a] = 10; iflow[a] = 0;
   264   a = g.addArc(n2, t); cap[a] = 20; iflow[a] = 0;
   265 
   266   Preflow<SmartDigraph> pre(g, cap, s, t);
   267   pre.init(iflow);
   268   pre.startFirstPhase();
   269 
   270   check(pre.flowValue() == 10, "Incorrect max flow value.");
   271   check(pre.minCut(s), "Wrong min cut (Node s).");
   272   check(pre.minCut(n1), "Wrong min cut (Node n1).");
   273   check(!pre.minCut(n2), "Wrong min cut (Node n2).");
   274   check(!pre.minCut(t), "Wrong min cut (Node t).");
   275 }
   276 
   277 template <typename MF, typename SF>
   278 void checkMaxFlowAlg(const char *input_lgf,  typename MF::Value expected) {
   279   typedef SmartDigraph Digraph;
   280   DIGRAPH_TYPEDEFS(Digraph);
   281 
   282   typedef typename MF::Value Value;
   283   typedef Digraph::ArcMap<Value> CapMap;
   284   typedef CapMap FlowMap;
   285   typedef BoolNodeMap CutMap;
   286 
   287   Tolerance<Value> tol;
   288 
   289   Digraph g;
   290   Node s, t;
   291   CapMap cap(g);
   292   std::istringstream input(input_lgf);
   293   DigraphReader<Digraph>(g, input)
   294       .arcMap("capacity", cap)
   295       .node("source", s)
   296       .node("target", t)
   297       .run();
   298 
   299   MF max_flow(g, cap, s, t);
   300   max_flow.run();
   301 
   302   check(!tol.different(expected, max_flow.flowValue()),
   303         "Incorrect max flow value.");
   304   check(checkFlow(g, max_flow.flowMap(), cap, s, t, tol),
   305         "The flow is not feasible.");
   306 
   307   CutMap min_cut(g);
   308   max_flow.minCutMap(min_cut);
   309   Value min_cut_value = cutValue(g, min_cut, cap);
   310 
   311   check(!tol.different(expected, min_cut_value),
   312         "Incorrect min cut value.");
   313 
   314   FlowMap flow(g);
   315   for (ArcIt e(g); e != INVALID; ++e) flow[e] = 13 * max_flow.flowMap()[e];
   316   for (ArcIt e(g); e != INVALID; ++e) cap[e] = 17 * cap[e];
   317   max_flow.init(flow);
   318 
   319   SF::startFirstPhase(max_flow);       // start first phase of the algorithm
   320 
   321   CutMap min_cut1(g);
   322   max_flow.minCutMap(min_cut1);
   323   min_cut_value = cutValue(g, min_cut1, cap);
   324 
   325   check(!tol.different(17 * expected, max_flow.flowValue()),
   326         "Incorrect max flow value.");
   327   check(!tol.different(17 * expected, min_cut_value),
   328         "Incorrect min cut value.");
   329 
   330   SF::startSecondPhase(max_flow);       // start second phase of the algorithm
   331 
   332   check(checkFlow(g, max_flow.flowMap(), cap, s, t, tol),
   333         "The flow is not feasible.");
   334 
   335   CutMap min_cut2(g);
   336   max_flow.minCutMap(min_cut2);
   337   min_cut_value = cutValue(g, min_cut2, cap);
   338 
   339   check(!tol.different(17 * expected, max_flow.flowValue()),
   340         "Incorrect max flow value.");
   341   check(!tol.different(17 * expected, min_cut_value),
   342         "Incorrect min cut value.");
   343 
   344   max_flow.flowMap(flow);
   345 
   346   NodeIt tmp1(g, s);
   347   ++tmp1;
   348   if (tmp1 != INVALID) s = tmp1;
   349 
   350   NodeIt tmp2(g, t);
   351   ++tmp2;
   352   if (tmp2 != INVALID) t = tmp2;
   353 
   354   max_flow.source(s);
   355   max_flow.target(t);
   356 
   357   max_flow.run();
   358 
   359   CutMap min_cut3(g);
   360   max_flow.minCutMap(min_cut3);
   361   min_cut_value = cutValue(g, min_cut3, cap);
   362 
   363   check(!tol.different(max_flow.flowValue(), min_cut_value),
   364         "The max flow value or the min cut value is wrong.");
   365 }
   366 
   367 // Struct for calling start functions of a general max flow algorithm
   368 template <typename MF>
   369 struct GeneralStartFunctions {
   370 
   371   static void startFirstPhase(MF& mf) {
   372     mf.start();
   373   }
   374 
   375   static void startSecondPhase(MF& mf) {
   376     ::lemon::ignore_unused_variable_warning(mf);
   377   }
   378 
   379 };
   380 
   381 // Struct for calling start functions of Preflow
   382 template <typename MF>
   383 struct PreflowStartFunctions {
   384 
   385   static void startFirstPhase(MF& mf) {
   386     mf.startFirstPhase();
   387   }
   388 
   389   static void startSecondPhase(MF& mf) {
   390     mf.startSecondPhase();
   391   }
   392 
   393 };
   394 
   395 int main() {
   396 
   397   typedef concepts::Digraph GR;
   398   typedef concepts::ReadMap<GR::Arc, int> CM1;
   399   typedef concepts::ReadMap<GR::Arc, double> CM2;
   400 
   401   // Check the interface of Preflow
   402   checkConcept< MaxFlowClassConcept<GR, CM1>,
   403                 Preflow<GR, CM1> >();
   404   checkConcept< MaxFlowClassConcept<GR, CM2>,
   405                 Preflow<GR, CM2> >();
   406 
   407   // Check the interface of EdmondsKarp
   408   checkConcept< MaxFlowClassConcept<GR, CM1>,
   409                 EdmondsKarp<GR, CM1> >();
   410   checkConcept< MaxFlowClassConcept<GR, CM2>,
   411                 EdmondsKarp<GR, CM2> >();
   412 
   413   // Check Preflow
   414   typedef Preflow<SmartDigraph, SmartDigraph::ArcMap<int> > PType1;
   415   typedef Preflow<SmartDigraph, SmartDigraph::ArcMap<float> > PType2;
   416   typedef Preflow<SmartDigraph, SmartDigraph::ArcMap<double> > PType3;
   417 
   418   checkMaxFlowAlg<PType1, PreflowStartFunctions<PType1> >(test_lgf, 13);
   419   checkMaxFlowAlg<PType2, PreflowStartFunctions<PType2> >(test_lgf, 13);
   420   checkMaxFlowAlg<PType3, PreflowStartFunctions<PType3> >(test_lgf, 13);
   421 
   422   checkMaxFlowAlg<PType2, PreflowStartFunctions<PType2> >(test_lgf_float, 0.3f);
   423   checkMaxFlowAlg<PType3, PreflowStartFunctions<PType3> >(test_lgf_float, 0.3);
   424 
   425   checkInitPreflow();
   426 
   427   // Check EdmondsKarp
   428   typedef EdmondsKarp<SmartDigraph, SmartDigraph::ArcMap<int> > EKType1;
   429   typedef EdmondsKarp<SmartDigraph, SmartDigraph::ArcMap<float> > EKType2;
   430   typedef EdmondsKarp<SmartDigraph, SmartDigraph::ArcMap<double> > EKType3;
   431 
   432   checkMaxFlowAlg<EKType1, GeneralStartFunctions<EKType1> >(test_lgf, 13);
   433   checkMaxFlowAlg<EKType2, GeneralStartFunctions<EKType2> >(test_lgf, 13);
   434   checkMaxFlowAlg<EKType3, GeneralStartFunctions<EKType3> >(test_lgf, 13);
   435 
   436   checkMaxFlowAlg<EKType2, GeneralStartFunctions<EKType2> >(test_lgf_float, 0.3f);
   437   checkMaxFlowAlg<EKType3, GeneralStartFunctions<EKType3> >(test_lgf_float, 0.3);
   438 
   439   return 0;
   440 }