1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2009
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #include <lemon/connectivity.h>
20 #include <lemon/list_graph.h>
21 #include <lemon/adaptors.h>
23 #include "test_tools.h"
25 using namespace lemon;
30 typedef ListDigraph Digraph;
31 typedef Undirector<Digraph> Graph;
35 Digraph::NodeMap<int> order(d);
38 check(stronglyConnected(d), "The empty digraph is strongly connected");
39 check(countStronglyConnectedComponents(d) == 0,
40 "The empty digraph has 0 strongly connected component");
41 check(connected(g), "The empty graph is connected");
42 check(countConnectedComponents(g) == 0,
43 "The empty graph has 0 connected component");
45 check(biNodeConnected(g), "The empty graph is bi-node-connected");
46 check(countBiNodeConnectedComponents(g) == 0,
47 "The empty graph has 0 bi-node-connected component");
48 check(biEdgeConnected(g), "The empty graph is bi-edge-connected");
49 check(countBiEdgeConnectedComponents(g) == 0,
50 "The empty graph has 0 bi-edge-connected component");
52 check(dag(d), "The empty digraph is DAG.");
53 check(checkedTopologicalSort(d, order), "The empty digraph is DAG.");
54 check(loopFree(d), "The empty digraph is loop-free.");
55 check(parallelFree(d), "The empty digraph is parallel-free.");
56 check(simpleGraph(d), "The empty digraph is simple.");
58 check(acyclic(g), "The empty graph is acyclic.");
59 check(tree(g), "The empty graph is tree.");
60 check(bipartite(g), "The empty graph is bipartite.");
61 check(loopFree(g), "The empty graph is loop-free.");
62 check(parallelFree(g), "The empty graph is parallel-free.");
63 check(simpleGraph(g), "The empty graph is simple.");
68 Digraph::NodeMap<int> order(d);
70 Digraph::Node n = d.addNode();
71 ::lemon::ignore_unused_variable_warning(n);
73 check(stronglyConnected(d), "This digraph is strongly connected");
74 check(countStronglyConnectedComponents(d) == 1,
75 "This digraph has 1 strongly connected component");
76 check(connected(g), "This graph is connected");
77 check(countConnectedComponents(g) == 1,
78 "This graph has 1 connected component");
80 check(biNodeConnected(g), "This graph is bi-node-connected");
81 check(countBiNodeConnectedComponents(g) == 0,
82 "This graph has 0 bi-node-connected component");
83 check(biEdgeConnected(g), "This graph is bi-edge-connected");
84 check(countBiEdgeConnectedComponents(g) == 1,
85 "This graph has 1 bi-edge-connected component");
87 check(dag(d), "This digraph is DAG.");
88 check(checkedTopologicalSort(d, order), "This digraph is DAG.");
89 check(loopFree(d), "This digraph is loop-free.");
90 check(parallelFree(d), "This digraph is parallel-free.");
91 check(simpleGraph(d), "This digraph is simple.");
93 check(acyclic(g), "This graph is acyclic.");
94 check(tree(g), "This graph is tree.");
95 check(bipartite(g), "This graph is bipartite.");
96 check(loopFree(g), "This graph is loop-free.");
97 check(parallelFree(g), "This graph is parallel-free.");
98 check(simpleGraph(g), "This graph is simple.");
103 ListGraph::NodeMap<bool> map(g);
105 ListGraph::Node n1 = g.addNode();
106 ListGraph::Node n2 = g.addNode();
108 ListGraph::Edge e1 = g.addEdge(n1, n2);
109 ::lemon::ignore_unused_variable_warning(e1);
110 check(biNodeConnected(g), "Graph is bi-node-connected");
112 ListGraph::Node n3 = g.addNode();
113 ::lemon::ignore_unused_variable_warning(n3);
114 check(!biNodeConnected(g), "Graph is not bi-node-connected");
120 Digraph::NodeMap<int> order(d);
123 Digraph::Node n1 = d.addNode();
124 Digraph::Node n2 = d.addNode();
125 Digraph::Node n3 = d.addNode();
126 Digraph::Node n4 = d.addNode();
127 Digraph::Node n5 = d.addNode();
128 Digraph::Node n6 = d.addNode();
138 check(!stronglyConnected(d), "This digraph is not strongly connected");
139 check(countStronglyConnectedComponents(d) == 3,
140 "This digraph has 3 strongly connected components");
141 check(!connected(g), "This graph is not connected");
142 check(countConnectedComponents(g) == 2,
143 "This graph has 2 connected components");
145 check(!dag(d), "This digraph is not DAG.");
146 check(!checkedTopologicalSort(d, order), "This digraph is not DAG.");
147 check(loopFree(d), "This digraph is loop-free.");
148 check(parallelFree(d), "This digraph is parallel-free.");
149 check(simpleGraph(d), "This digraph is simple.");
151 check(!acyclic(g), "This graph is not acyclic.");
152 check(!tree(g), "This graph is not tree.");
153 check(!bipartite(g), "This graph is not bipartite.");
154 check(loopFree(g), "This graph is loop-free.");
155 check(!parallelFree(g), "This graph is not parallel-free.");
156 check(!simpleGraph(g), "This graph is not simple.");
160 check(!loopFree(d), "This digraph is not loop-free.");
161 check(!loopFree(g), "This graph is not loop-free.");
162 check(!simpleGraph(d), "This digraph is not simple.");
166 check(!parallelFree(d), "This digraph is not parallel-free.");
171 Digraph::ArcMap<bool> cutarcs(d, false);
174 Digraph::Node n1 = d.addNode();
175 Digraph::Node n2 = d.addNode();
176 Digraph::Node n3 = d.addNode();
177 Digraph::Node n4 = d.addNode();
178 Digraph::Node n5 = d.addNode();
179 Digraph::Node n6 = d.addNode();
180 Digraph::Node n7 = d.addNode();
181 Digraph::Node n8 = d.addNode();
194 check(!stronglyConnected(d), "This digraph is not strongly connected");
195 check(countStronglyConnectedComponents(d) == 3,
196 "This digraph has 3 strongly connected components");
197 Digraph::NodeMap<int> scomp1(d);
198 check(stronglyConnectedComponents(d, scomp1) == 3,
199 "This digraph has 3 strongly connected components");
200 check(scomp1[n1] != scomp1[n3] && scomp1[n1] != scomp1[n4] &&
201 scomp1[n3] != scomp1[n4], "Wrong stronglyConnectedComponents()");
202 check(scomp1[n1] == scomp1[n2] && scomp1[n1] == scomp1[n5] &&
203 scomp1[n1] == scomp1[n8], "Wrong stronglyConnectedComponents()");
204 check(scomp1[n4] == scomp1[n6] && scomp1[n4] == scomp1[n7],
205 "Wrong stronglyConnectedComponents()");
206 Digraph::ArcMap<bool> scut1(d, false);
207 check(stronglyConnectedCutArcs(d, scut1) == 0,
208 "This digraph has 0 strongly connected cut arc.");
209 for (Digraph::ArcIt a(d); a != INVALID; ++a) {
210 check(!scut1[a], "Wrong stronglyConnectedCutArcs()");
213 check(!connected(g), "This graph is not connected");
214 check(countConnectedComponents(g) == 3,
215 "This graph has 3 connected components");
216 Graph::NodeMap<int> comp(g);
217 check(connectedComponents(g, comp) == 3,
218 "This graph has 3 connected components");
219 check(comp[n1] != comp[n3] && comp[n1] != comp[n4] &&
220 comp[n3] != comp[n4], "Wrong connectedComponents()");
221 check(comp[n1] == comp[n2] && comp[n1] == comp[n5] &&
222 comp[n1] == comp[n8], "Wrong connectedComponents()");
223 check(comp[n4] == comp[n6] && comp[n4] == comp[n7],
224 "Wrong connectedComponents()");
226 cutarcs[d.addArc(n3, n1)] = true;
227 cutarcs[d.addArc(n3, n5)] = true;
228 cutarcs[d.addArc(n3, n8)] = true;
229 cutarcs[d.addArc(n8, n6)] = true;
230 cutarcs[d.addArc(n8, n7)] = true;
232 check(!stronglyConnected(d), "This digraph is not strongly connected");
233 check(countStronglyConnectedComponents(d) == 3,
234 "This digraph has 3 strongly connected components");
235 Digraph::NodeMap<int> scomp2(d);
236 check(stronglyConnectedComponents(d, scomp2) == 3,
237 "This digraph has 3 strongly connected components");
238 check(scomp2[n3] == 0, "Wrong stronglyConnectedComponents()");
239 check(scomp2[n1] == 1 && scomp2[n2] == 1 && scomp2[n5] == 1 &&
240 scomp2[n8] == 1, "Wrong stronglyConnectedComponents()");
241 check(scomp2[n4] == 2 && scomp2[n6] == 2 && scomp2[n7] == 2,
242 "Wrong stronglyConnectedComponents()");
243 Digraph::ArcMap<bool> scut2(d, false);
244 check(stronglyConnectedCutArcs(d, scut2) == 5,
245 "This digraph has 5 strongly connected cut arcs.");
246 for (Digraph::ArcIt a(d); a != INVALID; ++a) {
247 check(scut2[a] == cutarcs[a], "Wrong stronglyConnectedCutArcs()");
252 // DAG example for topological sort from the book New Algorithms
253 // (T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein)
255 Digraph::NodeMap<int> order(d);
257 Digraph::Node belt = d.addNode();
258 Digraph::Node trousers = d.addNode();
259 Digraph::Node necktie = d.addNode();
260 Digraph::Node coat = d.addNode();
261 Digraph::Node socks = d.addNode();
262 Digraph::Node shirt = d.addNode();
263 Digraph::Node shoe = d.addNode();
264 Digraph::Node watch = d.addNode();
265 Digraph::Node pants = d.addNode();
266 ::lemon::ignore_unused_variable_warning(watch);
268 d.addArc(socks, shoe);
269 d.addArc(pants, shoe);
270 d.addArc(pants, trousers);
271 d.addArc(trousers, shoe);
272 d.addArc(trousers, belt);
273 d.addArc(belt, coat);
274 d.addArc(shirt, belt);
275 d.addArc(shirt, necktie);
276 d.addArc(necktie, coat);
278 check(dag(d), "This digraph is DAG.");
279 topologicalSort(d, order);
280 for (Digraph::ArcIt a(d); a != INVALID; ++a) {
281 check(order[d.source(a)] < order[d.target(a)],
282 "Wrong topologicalSort()");
288 ListGraph::NodeMap<bool> map(g);
290 ListGraph::Node n1 = g.addNode();
291 ListGraph::Node n2 = g.addNode();
292 ListGraph::Node n3 = g.addNode();
293 ListGraph::Node n4 = g.addNode();
294 ListGraph::Node n5 = g.addNode();
295 ListGraph::Node n6 = g.addNode();
296 ListGraph::Node n7 = g.addNode();
306 check(bipartite(g), "This graph is bipartite");
307 check(bipartitePartitions(g, map), "This graph is bipartite");
309 check(map[n1] == map[n2] && map[n1] == map[n6] && map[n1] == map[n7],
310 "Wrong bipartitePartitions()");
311 check(map[n3] == map[n4] && map[n3] == map[n5],
312 "Wrong bipartitePartitions()");