test/connectivity_test.cc
author Peter Kovacs <kpeter@inf.elte.hu>
Fri, 26 Feb 2010 23:53:09 +0100
changeset 914 aa8c9008b3de
child 956 141f9c0db4a3
child 1081 f1398882a928
child 1157 761fe0846f49
permissions -rw-r--r--
Better return type for cycleLength() functions (#179)
in the min mean cycle algorithms.

The original Value type is used instead of the LargeValue type,
which is introduced for internal computations.
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2009
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #include <lemon/connectivity.h>
    20 #include <lemon/list_graph.h>
    21 #include <lemon/adaptors.h>
    22 
    23 #include "test_tools.h"
    24 
    25 using namespace lemon;
    26 
    27 
    28 int main()
    29 {
    30   typedef ListDigraph Digraph;
    31   typedef Undirector<Digraph> Graph;
    32   
    33   {
    34     Digraph d;
    35     Digraph::NodeMap<int> order(d);
    36     Graph g(d);
    37     
    38     check(stronglyConnected(d), "The empty digraph is strongly connected");
    39     check(countStronglyConnectedComponents(d) == 0,
    40           "The empty digraph has 0 strongly connected component");
    41     check(connected(g), "The empty graph is connected");
    42     check(countConnectedComponents(g) == 0,
    43           "The empty graph has 0 connected component");
    44 
    45     check(biNodeConnected(g), "The empty graph is bi-node-connected");
    46     check(countBiNodeConnectedComponents(g) == 0,
    47           "The empty graph has 0 bi-node-connected component");
    48     check(biEdgeConnected(g), "The empty graph is bi-edge-connected");
    49     check(countBiEdgeConnectedComponents(g) == 0,
    50           "The empty graph has 0 bi-edge-connected component");
    51           
    52     check(dag(d), "The empty digraph is DAG.");
    53     check(checkedTopologicalSort(d, order), "The empty digraph is DAG.");
    54     check(loopFree(d), "The empty digraph is loop-free.");
    55     check(parallelFree(d), "The empty digraph is parallel-free.");
    56     check(simpleGraph(d), "The empty digraph is simple.");
    57 
    58     check(acyclic(g), "The empty graph is acyclic.");
    59     check(tree(g), "The empty graph is tree.");
    60     check(bipartite(g), "The empty graph is bipartite.");
    61     check(loopFree(g), "The empty graph is loop-free.");
    62     check(parallelFree(g), "The empty graph is parallel-free.");
    63     check(simpleGraph(g), "The empty graph is simple.");
    64   }
    65 
    66   {
    67     Digraph d;
    68     Digraph::NodeMap<int> order(d);
    69     Graph g(d);
    70     Digraph::Node n = d.addNode();
    71 
    72     check(stronglyConnected(d), "This digraph is strongly connected");
    73     check(countStronglyConnectedComponents(d) == 1,
    74           "This digraph has 1 strongly connected component");
    75     check(connected(g), "This graph is connected");
    76     check(countConnectedComponents(g) == 1,
    77           "This graph has 1 connected component");
    78 
    79     check(biNodeConnected(g), "This graph is bi-node-connected");
    80     check(countBiNodeConnectedComponents(g) == 0,
    81           "This graph has 0 bi-node-connected component");
    82     check(biEdgeConnected(g), "This graph is bi-edge-connected");
    83     check(countBiEdgeConnectedComponents(g) == 1,
    84           "This graph has 1 bi-edge-connected component");
    85           
    86     check(dag(d), "This digraph is DAG.");
    87     check(checkedTopologicalSort(d, order), "This digraph is DAG.");
    88     check(loopFree(d), "This digraph is loop-free.");
    89     check(parallelFree(d), "This digraph is parallel-free.");
    90     check(simpleGraph(d), "This digraph is simple.");
    91 
    92     check(acyclic(g), "This graph is acyclic.");
    93     check(tree(g), "This graph is tree.");
    94     check(bipartite(g), "This graph is bipartite.");
    95     check(loopFree(g), "This graph is loop-free.");
    96     check(parallelFree(g), "This graph is parallel-free.");
    97     check(simpleGraph(g), "This graph is simple.");
    98   }
    99 
   100   {
   101     Digraph d;
   102     Digraph::NodeMap<int> order(d);
   103     Graph g(d);
   104     
   105     Digraph::Node n1 = d.addNode();
   106     Digraph::Node n2 = d.addNode();
   107     Digraph::Node n3 = d.addNode();
   108     Digraph::Node n4 = d.addNode();
   109     Digraph::Node n5 = d.addNode();
   110     Digraph::Node n6 = d.addNode();
   111     
   112     d.addArc(n1, n3);
   113     d.addArc(n3, n2);
   114     d.addArc(n2, n1);
   115     d.addArc(n4, n2);
   116     d.addArc(n4, n3);
   117     d.addArc(n5, n6);
   118     d.addArc(n6, n5);
   119 
   120     check(!stronglyConnected(d), "This digraph is not strongly connected");
   121     check(countStronglyConnectedComponents(d) == 3,
   122           "This digraph has 3 strongly connected components");
   123     check(!connected(g), "This graph is not connected");
   124     check(countConnectedComponents(g) == 2,
   125           "This graph has 2 connected components");
   126 
   127     check(!dag(d), "This digraph is not DAG.");
   128     check(!checkedTopologicalSort(d, order), "This digraph is not DAG.");
   129     check(loopFree(d), "This digraph is loop-free.");
   130     check(parallelFree(d), "This digraph is parallel-free.");
   131     check(simpleGraph(d), "This digraph is simple.");
   132 
   133     check(!acyclic(g), "This graph is not acyclic.");
   134     check(!tree(g), "This graph is not tree.");
   135     check(!bipartite(g), "This graph is not bipartite.");
   136     check(loopFree(g), "This graph is loop-free.");
   137     check(!parallelFree(g), "This graph is not parallel-free.");
   138     check(!simpleGraph(g), "This graph is not simple.");
   139     
   140     d.addArc(n3, n3);
   141     
   142     check(!loopFree(d), "This digraph is not loop-free.");
   143     check(!loopFree(g), "This graph is not loop-free.");
   144     check(!simpleGraph(d), "This digraph is not simple.");
   145     
   146     d.addArc(n3, n2);
   147     
   148     check(!parallelFree(d), "This digraph is not parallel-free.");
   149   }
   150   
   151   {
   152     Digraph d;
   153     Digraph::ArcMap<bool> cutarcs(d, false);
   154     Graph g(d);
   155     
   156     Digraph::Node n1 = d.addNode();
   157     Digraph::Node n2 = d.addNode();
   158     Digraph::Node n3 = d.addNode();
   159     Digraph::Node n4 = d.addNode();
   160     Digraph::Node n5 = d.addNode();
   161     Digraph::Node n6 = d.addNode();
   162     Digraph::Node n7 = d.addNode();
   163     Digraph::Node n8 = d.addNode();
   164 
   165     d.addArc(n1, n2);
   166     d.addArc(n5, n1);
   167     d.addArc(n2, n8);
   168     d.addArc(n8, n5);
   169     d.addArc(n6, n4);
   170     d.addArc(n4, n6);
   171     d.addArc(n2, n5);
   172     d.addArc(n1, n8);
   173     d.addArc(n6, n7);
   174     d.addArc(n7, n6);
   175    
   176     check(!stronglyConnected(d), "This digraph is not strongly connected");
   177     check(countStronglyConnectedComponents(d) == 3,
   178           "This digraph has 3 strongly connected components");
   179     Digraph::NodeMap<int> scomp1(d);
   180     check(stronglyConnectedComponents(d, scomp1) == 3,
   181           "This digraph has 3 strongly connected components");
   182     check(scomp1[n1] != scomp1[n3] && scomp1[n1] != scomp1[n4] &&
   183           scomp1[n3] != scomp1[n4], "Wrong stronglyConnectedComponents()");
   184     check(scomp1[n1] == scomp1[n2] && scomp1[n1] == scomp1[n5] &&
   185           scomp1[n1] == scomp1[n8], "Wrong stronglyConnectedComponents()");
   186     check(scomp1[n4] == scomp1[n6] && scomp1[n4] == scomp1[n7],
   187           "Wrong stronglyConnectedComponents()");
   188     Digraph::ArcMap<bool> scut1(d, false);
   189     check(stronglyConnectedCutArcs(d, scut1) == 0,
   190           "This digraph has 0 strongly connected cut arc.");
   191     for (Digraph::ArcIt a(d); a != INVALID; ++a) {
   192       check(!scut1[a], "Wrong stronglyConnectedCutArcs()");
   193     }
   194 
   195     check(!connected(g), "This graph is not connected");
   196     check(countConnectedComponents(g) == 3,
   197           "This graph has 3 connected components");
   198     Graph::NodeMap<int> comp(g);
   199     check(connectedComponents(g, comp) == 3,
   200           "This graph has 3 connected components");
   201     check(comp[n1] != comp[n3] && comp[n1] != comp[n4] &&
   202           comp[n3] != comp[n4], "Wrong connectedComponents()");
   203     check(comp[n1] == comp[n2] && comp[n1] == comp[n5] &&
   204           comp[n1] == comp[n8], "Wrong connectedComponents()");
   205     check(comp[n4] == comp[n6] && comp[n4] == comp[n7],
   206           "Wrong connectedComponents()");
   207 
   208     cutarcs[d.addArc(n3, n1)] = true;
   209     cutarcs[d.addArc(n3, n5)] = true;
   210     cutarcs[d.addArc(n3, n8)] = true;
   211     cutarcs[d.addArc(n8, n6)] = true;
   212     cutarcs[d.addArc(n8, n7)] = true;
   213 
   214     check(!stronglyConnected(d), "This digraph is not strongly connected");
   215     check(countStronglyConnectedComponents(d) == 3,
   216           "This digraph has 3 strongly connected components");
   217     Digraph::NodeMap<int> scomp2(d);
   218     check(stronglyConnectedComponents(d, scomp2) == 3,
   219           "This digraph has 3 strongly connected components");
   220     check(scomp2[n3] == 0, "Wrong stronglyConnectedComponents()");
   221     check(scomp2[n1] == 1 && scomp2[n2] == 1 && scomp2[n5] == 1 &&
   222           scomp2[n8] == 1, "Wrong stronglyConnectedComponents()");
   223     check(scomp2[n4] == 2 && scomp2[n6] == 2 && scomp2[n7] == 2,
   224           "Wrong stronglyConnectedComponents()");
   225     Digraph::ArcMap<bool> scut2(d, false);
   226     check(stronglyConnectedCutArcs(d, scut2) == 5,
   227           "This digraph has 5 strongly connected cut arcs.");
   228     for (Digraph::ArcIt a(d); a != INVALID; ++a) {
   229       check(scut2[a] == cutarcs[a], "Wrong stronglyConnectedCutArcs()");
   230     }
   231   }
   232 
   233   {
   234     // DAG example for topological sort from the book New Algorithms
   235     // (T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein)
   236     Digraph d;
   237     Digraph::NodeMap<int> order(d);
   238     
   239     Digraph::Node belt = d.addNode();
   240     Digraph::Node trousers = d.addNode();
   241     Digraph::Node necktie = d.addNode();
   242     Digraph::Node coat = d.addNode();
   243     Digraph::Node socks = d.addNode();
   244     Digraph::Node shirt = d.addNode();
   245     Digraph::Node shoe = d.addNode();
   246     Digraph::Node watch = d.addNode();
   247     Digraph::Node pants = d.addNode();
   248 
   249     d.addArc(socks, shoe);
   250     d.addArc(pants, shoe);
   251     d.addArc(pants, trousers);
   252     d.addArc(trousers, shoe);
   253     d.addArc(trousers, belt);
   254     d.addArc(belt, coat);
   255     d.addArc(shirt, belt);
   256     d.addArc(shirt, necktie);
   257     d.addArc(necktie, coat);
   258     
   259     check(dag(d), "This digraph is DAG.");
   260     topologicalSort(d, order);
   261     for (Digraph::ArcIt a(d); a != INVALID; ++a) {
   262       check(order[d.source(a)] < order[d.target(a)],
   263             "Wrong topologicalSort()");
   264     }
   265   }
   266 
   267   {
   268     ListGraph g;
   269     ListGraph::NodeMap<bool> map(g);
   270     
   271     ListGraph::Node n1 = g.addNode();
   272     ListGraph::Node n2 = g.addNode();
   273     ListGraph::Node n3 = g.addNode();
   274     ListGraph::Node n4 = g.addNode();
   275     ListGraph::Node n5 = g.addNode();
   276     ListGraph::Node n6 = g.addNode();
   277     ListGraph::Node n7 = g.addNode();
   278 
   279     g.addEdge(n1, n3);
   280     g.addEdge(n1, n4);
   281     g.addEdge(n2, n5);
   282     g.addEdge(n3, n6);
   283     g.addEdge(n4, n6);
   284     g.addEdge(n4, n7);
   285     g.addEdge(n5, n7);
   286    
   287     check(bipartite(g), "This graph is bipartite");
   288     check(bipartitePartitions(g, map), "This graph is bipartite");
   289     
   290     check(map[n1] == map[n2] && map[n1] == map[n6] && map[n1] == map[n7],
   291           "Wrong bipartitePartitions()");
   292     check(map[n3] == map[n4] && map[n3] == map[n5],
   293           "Wrong bipartitePartitions()");
   294   }
   295 
   296   return 0;
   297 }