1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
26 #include <lemon/core.h>
30 ///\brief Miscellaneous property maps
39 /// Base class of maps.
41 /// Base class of maps. It provides the necessary type definitions
42 /// required by the map %concepts.
43 template<typename K, typename V>
46 /// \brief The key type of the map.
48 /// \brief The value type of the map.
49 /// (The type of objects associated with the keys).
54 /// Null map. (a.k.a. DoNothingMap)
56 /// This map can be used if you have to provide a map only for
57 /// its type definitions, or if you have to provide a writable map,
58 /// but data written to it is not required (i.e. it will be sent to
59 /// <tt>/dev/null</tt>).
60 /// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
63 template<typename K, typename V>
64 class NullMap : public MapBase<K, V> {
66 typedef MapBase<K, V> Parent;
67 typedef typename Parent::Key Key;
68 typedef typename Parent::Value Value;
70 /// Gives back a default constructed element.
71 Value operator[](const Key&) const { return Value(); }
72 /// Absorbs the value.
73 void set(const Key&, const Value&) {}
76 /// Returns a \c NullMap class
78 /// This function just returns a \c NullMap class.
80 template <typename K, typename V>
81 NullMap<K, V> nullMap() {
82 return NullMap<K, V>();
88 /// This \ref concepts::ReadMap "readable map" assigns a specified
89 /// value to each key.
91 /// In other aspects it is equivalent to \c NullMap.
92 /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
93 /// concept, but it absorbs the data written to it.
95 /// The simplest way of using this map is through the constMap()
100 template<typename K, typename V>
101 class ConstMap : public MapBase<K, V> {
105 typedef MapBase<K, V> Parent;
106 typedef typename Parent::Key Key;
107 typedef typename Parent::Value Value;
109 /// Default constructor
111 /// Default constructor.
112 /// The value of the map will be default constructed.
115 /// Constructor with specified initial value
117 /// Constructor with specified initial value.
118 /// \param v The initial value of the map.
119 ConstMap(const Value &v) : _value(v) {}
121 /// Gives back the specified value.
122 Value operator[](const Key&) const { return _value; }
124 /// Absorbs the value.
125 void set(const Key&, const Value&) {}
127 /// Sets the value that is assigned to each key.
128 void setAll(const Value &v) {
132 template<typename V1>
133 ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
136 /// Returns a \c ConstMap class
138 /// This function just returns a \c ConstMap class.
139 /// \relates ConstMap
140 template<typename K, typename V>
141 inline ConstMap<K, V> constMap(const V &v) {
142 return ConstMap<K, V>(v);
145 template<typename K, typename V>
146 inline ConstMap<K, V> constMap() {
147 return ConstMap<K, V>();
151 template<typename T, T v>
154 /// Constant map with inlined constant value.
156 /// This \ref concepts::ReadMap "readable map" assigns a specified
157 /// value to each key.
159 /// In other aspects it is equivalent to \c NullMap.
160 /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
161 /// concept, but it absorbs the data written to it.
163 /// The simplest way of using this map is through the constMap()
168 template<typename K, typename V, V v>
169 class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
171 typedef MapBase<K, V> Parent;
172 typedef typename Parent::Key Key;
173 typedef typename Parent::Value Value;
178 /// Gives back the specified value.
179 Value operator[](const Key&) const { return v; }
181 /// Absorbs the value.
182 void set(const Key&, const Value&) {}
185 /// Returns a \c ConstMap class with inlined constant value
187 /// This function just returns a \c ConstMap class with inlined
189 /// \relates ConstMap
190 template<typename K, typename V, V v>
191 inline ConstMap<K, Const<V, v> > constMap() {
192 return ConstMap<K, Const<V, v> >();
198 /// This \ref concepts::ReadMap "read-only map" gives back the given
199 /// key as value without any modification.
202 template <typename T>
203 class IdentityMap : public MapBase<T, T> {
205 typedef MapBase<T, T> Parent;
206 typedef typename Parent::Key Key;
207 typedef typename Parent::Value Value;
209 /// Gives back the given value without any modification.
210 Value operator[](const Key &k) const {
215 /// Returns an \c IdentityMap class
217 /// This function just returns an \c IdentityMap class.
218 /// \relates IdentityMap
220 inline IdentityMap<T> identityMap() {
221 return IdentityMap<T>();
225 /// \brief Map for storing values for integer keys from the range
226 /// <tt>[0..size-1]</tt>.
228 /// This map is essentially a wrapper for \c std::vector. It assigns
229 /// values to integer keys from the range <tt>[0..size-1]</tt>.
230 /// It can be used with some data structures, for example
231 /// \c UnionFind, \c BinHeap, when the used items are small
232 /// integers. This map conforms the \ref concepts::ReferenceMap
233 /// "ReferenceMap" concept.
235 /// The simplest way of using this map is through the rangeMap()
237 template <typename V>
238 class RangeMap : public MapBase<int, V> {
239 template <typename V1>
240 friend class RangeMap;
243 typedef std::vector<V> Vector;
248 typedef MapBase<int, V> Parent;
250 typedef typename Parent::Key Key;
252 typedef typename Parent::Value Value;
254 typedef typename Vector::reference Reference;
255 /// Const reference type
256 typedef typename Vector::const_reference ConstReference;
258 typedef True ReferenceMapTag;
262 /// Constructor with specified default value.
263 RangeMap(int size = 0, const Value &value = Value())
264 : _vector(size, value) {}
266 /// Constructs the map from an appropriate \c std::vector.
267 template <typename V1>
268 RangeMap(const std::vector<V1>& vector)
269 : _vector(vector.begin(), vector.end()) {}
271 /// Constructs the map from another \c RangeMap.
272 template <typename V1>
273 RangeMap(const RangeMap<V1> &c)
274 : _vector(c._vector.begin(), c._vector.end()) {}
276 /// Returns the size of the map.
278 return _vector.size();
283 /// Resizes the underlying \c std::vector container, so changes the
284 /// keyset of the map.
285 /// \param size The new size of the map. The new keyset will be the
286 /// range <tt>[0..size-1]</tt>.
287 /// \param value The default value to assign to the new keys.
288 void resize(int size, const Value &value = Value()) {
289 _vector.resize(size, value);
294 RangeMap& operator=(const RangeMap&);
299 Reference operator[](const Key &k) {
304 ConstReference operator[](const Key &k) const {
309 void set(const Key &k, const Value &v) {
314 /// Returns a \c RangeMap class
316 /// This function just returns a \c RangeMap class.
317 /// \relates RangeMap
319 inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
320 return RangeMap<V>(size, value);
323 /// \brief Returns a \c RangeMap class created from an appropriate
326 /// This function just returns a \c RangeMap class created from an
327 /// appropriate \c std::vector.
328 /// \relates RangeMap
330 inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
331 return RangeMap<V>(vector);
335 /// Map type based on \c std::map
337 /// This map is essentially a wrapper for \c std::map with addition
338 /// that you can specify a default value for the keys that are not
339 /// stored actually. This value can be different from the default
340 /// contructed value (i.e. \c %Value()).
341 /// This type conforms the \ref concepts::ReferenceMap "ReferenceMap"
344 /// This map is useful if a default value should be assigned to most of
345 /// the keys and different values should be assigned only to a few
346 /// keys (i.e. the map is "sparse").
347 /// The name of this type also refers to this important usage.
349 /// Apart form that this map can be used in many other cases since it
350 /// is based on \c std::map, which is a general associative container.
351 /// However keep in mind that it is usually not as efficient as other
354 /// The simplest way of using this map is through the sparseMap()
356 template <typename K, typename V, typename Compare = std::less<K> >
357 class SparseMap : public MapBase<K, V> {
358 template <typename K1, typename V1, typename C1>
359 friend class SparseMap;
362 typedef MapBase<K, V> Parent;
364 typedef typename Parent::Key Key;
366 typedef typename Parent::Value Value;
368 typedef Value& Reference;
369 /// Const reference type
370 typedef const Value& ConstReference;
372 typedef True ReferenceMapTag;
376 typedef std::map<K, V, Compare> Map;
382 /// \brief Constructor with specified default value.
383 SparseMap(const Value &value = Value()) : _value(value) {}
384 /// \brief Constructs the map from an appropriate \c std::map, and
385 /// explicitly specifies a default value.
386 template <typename V1, typename Comp1>
387 SparseMap(const std::map<Key, V1, Comp1> &map,
388 const Value &value = Value())
389 : _map(map.begin(), map.end()), _value(value) {}
391 /// \brief Constructs the map from another \c SparseMap.
392 template<typename V1, typename Comp1>
393 SparseMap(const SparseMap<Key, V1, Comp1> &c)
394 : _map(c._map.begin(), c._map.end()), _value(c._value) {}
398 SparseMap& operator=(const SparseMap&);
403 Reference operator[](const Key &k) {
404 typename Map::iterator it = _map.lower_bound(k);
405 if (it != _map.end() && !_map.key_comp()(k, it->first))
408 return _map.insert(it, std::make_pair(k, _value))->second;
412 ConstReference operator[](const Key &k) const {
413 typename Map::const_iterator it = _map.find(k);
414 if (it != _map.end())
421 void set(const Key &k, const Value &v) {
422 typename Map::iterator it = _map.lower_bound(k);
423 if (it != _map.end() && !_map.key_comp()(k, it->first))
426 _map.insert(it, std::make_pair(k, v));
430 void setAll(const Value &v) {
436 /// Returns a \c SparseMap class
438 /// This function just returns a \c SparseMap class with specified
440 /// \relates SparseMap
441 template<typename K, typename V, typename Compare>
442 inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
443 return SparseMap<K, V, Compare>(value);
446 template<typename K, typename V>
447 inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
448 return SparseMap<K, V, std::less<K> >(value);
451 /// \brief Returns a \c SparseMap class created from an appropriate
454 /// This function just returns a \c SparseMap class created from an
455 /// appropriate \c std::map.
456 /// \relates SparseMap
457 template<typename K, typename V, typename Compare>
458 inline SparseMap<K, V, Compare>
459 sparseMap(const std::map<K, V, Compare> &map, const V& value = V())
461 return SparseMap<K, V, Compare>(map, value);
466 /// \addtogroup map_adaptors
469 /// Composition of two maps
471 /// This \ref concepts::ReadMap "read-only map" returns the
472 /// composition of two given maps. That is to say, if \c m1 is of
473 /// type \c M1 and \c m2 is of \c M2, then for
475 /// ComposeMap<M1, M2> cm(m1,m2);
477 /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
479 /// The \c Key type of the map is inherited from \c M2 and the
480 /// \c Value type is from \c M1.
481 /// \c M2::Value must be convertible to \c M1::Key.
483 /// The simplest way of using this map is through the composeMap()
487 template <typename M1, typename M2>
488 class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
492 typedef MapBase<typename M2::Key, typename M1::Value> Parent;
493 typedef typename Parent::Key Key;
494 typedef typename Parent::Value Value;
497 ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
500 typename MapTraits<M1>::ConstReturnValue
501 operator[](const Key &k) const { return _m1[_m2[k]]; }
504 /// Returns a \c ComposeMap class
506 /// This function just returns a \c ComposeMap class.
508 /// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is
509 /// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt>
510 /// will be equal to <tt>m1[m2[x]]</tt>.
512 /// \relates ComposeMap
513 template <typename M1, typename M2>
514 inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) {
515 return ComposeMap<M1, M2>(m1, m2);
519 /// Combination of two maps using an STL (binary) functor.
521 /// This \ref concepts::ReadMap "read-only map" takes two maps and a
522 /// binary functor and returns the combination of the two given maps
523 /// using the functor.
524 /// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2
525 /// and \c f is of \c F, then for
527 /// CombineMap<M1,M2,F,V> cm(m1,m2,f);
529 /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>.
531 /// The \c Key type of the map is inherited from \c M1 (\c M1::Key
532 /// must be convertible to \c M2::Key) and the \c Value type is \c V.
533 /// \c M2::Value and \c M1::Value must be convertible to the
534 /// corresponding input parameter of \c F and the return type of \c F
535 /// must be convertible to \c V.
537 /// The simplest way of using this map is through the combineMap()
541 template<typename M1, typename M2, typename F,
542 typename V = typename F::result_type>
543 class CombineMap : public MapBase<typename M1::Key, V> {
548 typedef MapBase<typename M1::Key, V> Parent;
549 typedef typename Parent::Key Key;
550 typedef typename Parent::Value Value;
553 CombineMap(const M1 &m1, const M2 &m2, const F &f = F())
554 : _m1(m1), _m2(m2), _f(f) {}
556 Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
559 /// Returns a \c CombineMap class
561 /// This function just returns a \c CombineMap class.
563 /// For example, if \c m1 and \c m2 are both maps with \c double
566 /// combineMap(m1,m2,std::plus<double>())
573 /// This function is specialized for adaptable binary function
574 /// classes and C++ functions.
576 /// \relates CombineMap
577 template<typename M1, typename M2, typename F, typename V>
578 inline CombineMap<M1, M2, F, V>
579 combineMap(const M1 &m1, const M2 &m2, const F &f) {
580 return CombineMap<M1, M2, F, V>(m1,m2,f);
583 template<typename M1, typename M2, typename F>
584 inline CombineMap<M1, M2, F, typename F::result_type>
585 combineMap(const M1 &m1, const M2 &m2, const F &f) {
586 return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
589 template<typename M1, typename M2, typename K1, typename K2, typename V>
590 inline CombineMap<M1, M2, V (*)(K1, K2), V>
591 combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
592 return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
596 /// Converts an STL style (unary) functor to a map
598 /// This \ref concepts::ReadMap "read-only map" returns the value
599 /// of a given functor. Actually, it just wraps the functor and
600 /// provides the \c Key and \c Value typedefs.
602 /// Template parameters \c K and \c V will become its \c Key and
603 /// \c Value. In most cases they have to be given explicitly because
604 /// a functor typically does not provide \c argument_type and
605 /// \c result_type typedefs.
606 /// Parameter \c F is the type of the used functor.
608 /// The simplest way of using this map is through the functorToMap()
613 typename K = typename F::argument_type,
614 typename V = typename F::result_type>
615 class FunctorToMap : public MapBase<K, V> {
618 typedef MapBase<K, V> Parent;
619 typedef typename Parent::Key Key;
620 typedef typename Parent::Value Value;
623 FunctorToMap(const F &f = F()) : _f(f) {}
625 Value operator[](const Key &k) const { return _f(k); }
628 /// Returns a \c FunctorToMap class
630 /// This function just returns a \c FunctorToMap class.
632 /// This function is specialized for adaptable binary function
633 /// classes and C++ functions.
635 /// \relates FunctorToMap
636 template<typename K, typename V, typename F>
637 inline FunctorToMap<F, K, V> functorToMap(const F &f) {
638 return FunctorToMap<F, K, V>(f);
641 template <typename F>
642 inline FunctorToMap<F, typename F::argument_type, typename F::result_type>
643 functorToMap(const F &f)
645 return FunctorToMap<F, typename F::argument_type,
646 typename F::result_type>(f);
649 template <typename K, typename V>
650 inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) {
651 return FunctorToMap<V (*)(K), K, V>(f);
655 /// Converts a map to an STL style (unary) functor
657 /// This class converts a map to an STL style (unary) functor.
658 /// That is it provides an <tt>operator()</tt> to read its values.
660 /// For the sake of convenience it also works as a usual
661 /// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt>
662 /// and the \c Key and \c Value typedefs also exist.
664 /// The simplest way of using this map is through the mapToFunctor()
668 template <typename M>
669 class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
672 typedef MapBase<typename M::Key, typename M::Value> Parent;
673 typedef typename Parent::Key Key;
674 typedef typename Parent::Value Value;
676 typedef typename Parent::Key argument_type;
677 typedef typename Parent::Value result_type;
680 MapToFunctor(const M &m) : _m(m) {}
682 Value operator()(const Key &k) const { return _m[k]; }
684 Value operator[](const Key &k) const { return _m[k]; }
687 /// Returns a \c MapToFunctor class
689 /// This function just returns a \c MapToFunctor class.
690 /// \relates MapToFunctor
692 inline MapToFunctor<M> mapToFunctor(const M &m) {
693 return MapToFunctor<M>(m);
697 /// \brief Map adaptor to convert the \c Value type of a map to
698 /// another type using the default conversion.
700 /// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap
701 /// "readable map" to another type using the default conversion.
702 /// The \c Key type of it is inherited from \c M and the \c Value
704 /// This type conforms the \ref concepts::ReadMap "ReadMap" concept.
706 /// The simplest way of using this map is through the convertMap()
708 template <typename M, typename V>
709 class ConvertMap : public MapBase<typename M::Key, V> {
712 typedef MapBase<typename M::Key, V> Parent;
713 typedef typename Parent::Key Key;
714 typedef typename Parent::Value Value;
719 /// \param m The underlying map.
720 ConvertMap(const M &m) : _m(m) {}
723 Value operator[](const Key &k) const { return _m[k]; }
726 /// Returns a \c ConvertMap class
728 /// This function just returns a \c ConvertMap class.
729 /// \relates ConvertMap
730 template<typename V, typename M>
731 inline ConvertMap<M, V> convertMap(const M &map) {
732 return ConvertMap<M, V>(map);
736 /// Applies all map setting operations to two maps
738 /// This map has two \ref concepts::WriteMap "writable map" parameters
739 /// and each write request will be passed to both of them.
740 /// If \c M1 is also \ref concepts::ReadMap "readable", then the read
741 /// operations will return the corresponding values of \c M1.
743 /// The \c Key and \c Value types are inherited from \c M1.
744 /// The \c Key and \c Value of \c M2 must be convertible from those
747 /// The simplest way of using this map is through the forkMap()
749 template<typename M1, typename M2>
750 class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
754 typedef MapBase<typename M1::Key, typename M1::Value> Parent;
755 typedef typename Parent::Key Key;
756 typedef typename Parent::Value Value;
759 ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {}
760 /// Returns the value associated with the given key in the first map.
761 Value operator[](const Key &k) const { return _m1[k]; }
762 /// Sets the value associated with the given key in both maps.
763 void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); }
766 /// Returns a \c ForkMap class
768 /// This function just returns a \c ForkMap class.
770 template <typename M1, typename M2>
771 inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) {
772 return ForkMap<M1,M2>(m1,m2);
778 /// This \ref concepts::ReadMap "read-only map" returns the sum
779 /// of the values of the two given maps.
780 /// Its \c Key and \c Value types are inherited from \c M1.
781 /// The \c Key and \c Value of \c M2 must be convertible to those of
784 /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
786 /// AddMap<M1,M2> am(m1,m2);
788 /// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>.
790 /// The simplest way of using this map is through the addMap()
793 /// \sa SubMap, MulMap, DivMap
794 /// \sa ShiftMap, ShiftWriteMap
795 template<typename M1, typename M2>
796 class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
800 typedef MapBase<typename M1::Key, typename M1::Value> Parent;
801 typedef typename Parent::Key Key;
802 typedef typename Parent::Value Value;
805 AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
807 Value operator[](const Key &k) const { return _m1[k]+_m2[k]; }
810 /// Returns an \c AddMap class
812 /// This function just returns an \c AddMap class.
814 /// For example, if \c m1 and \c m2 are both maps with \c double
815 /// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to
816 /// <tt>m1[x]+m2[x]</tt>.
819 template<typename M1, typename M2>
820 inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) {
821 return AddMap<M1, M2>(m1,m2);
825 /// Difference of two maps
827 /// This \ref concepts::ReadMap "read-only map" returns the difference
828 /// of the values of the two given maps.
829 /// Its \c Key and \c Value types are inherited from \c M1.
830 /// The \c Key and \c Value of \c M2 must be convertible to those of
833 /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
835 /// SubMap<M1,M2> sm(m1,m2);
837 /// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>.
839 /// The simplest way of using this map is through the subMap()
842 /// \sa AddMap, MulMap, DivMap
843 template<typename M1, typename M2>
844 class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
848 typedef MapBase<typename M1::Key, typename M1::Value> Parent;
849 typedef typename Parent::Key Key;
850 typedef typename Parent::Value Value;
853 SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
855 Value operator[](const Key &k) const { return _m1[k]-_m2[k]; }
858 /// Returns a \c SubMap class
860 /// This function just returns a \c SubMap class.
862 /// For example, if \c m1 and \c m2 are both maps with \c double
863 /// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to
864 /// <tt>m1[x]-m2[x]</tt>.
867 template<typename M1, typename M2>
868 inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
869 return SubMap<M1, M2>(m1,m2);
873 /// Product of two maps
875 /// This \ref concepts::ReadMap "read-only map" returns the product
876 /// of the values of the two given maps.
877 /// Its \c Key and \c Value types are inherited from \c M1.
878 /// The \c Key and \c Value of \c M2 must be convertible to those of
881 /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
883 /// MulMap<M1,M2> mm(m1,m2);
885 /// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>.
887 /// The simplest way of using this map is through the mulMap()
890 /// \sa AddMap, SubMap, DivMap
891 /// \sa ScaleMap, ScaleWriteMap
892 template<typename M1, typename M2>
893 class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
897 typedef MapBase<typename M1::Key, typename M1::Value> Parent;
898 typedef typename Parent::Key Key;
899 typedef typename Parent::Value Value;
902 MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
904 Value operator[](const Key &k) const { return _m1[k]*_m2[k]; }
907 /// Returns a \c MulMap class
909 /// This function just returns a \c MulMap class.
911 /// For example, if \c m1 and \c m2 are both maps with \c double
912 /// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to
913 /// <tt>m1[x]*m2[x]</tt>.
916 template<typename M1, typename M2>
917 inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
918 return MulMap<M1, M2>(m1,m2);
922 /// Quotient of two maps
924 /// This \ref concepts::ReadMap "read-only map" returns the quotient
925 /// of the values of the two given maps.
926 /// Its \c Key and \c Value types are inherited from \c M1.
927 /// The \c Key and \c Value of \c M2 must be convertible to those of
930 /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
932 /// DivMap<M1,M2> dm(m1,m2);
934 /// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>.
936 /// The simplest way of using this map is through the divMap()
939 /// \sa AddMap, SubMap, MulMap
940 template<typename M1, typename M2>
941 class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
945 typedef MapBase<typename M1::Key, typename M1::Value> Parent;
946 typedef typename Parent::Key Key;
947 typedef typename Parent::Value Value;
950 DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
952 Value operator[](const Key &k) const { return _m1[k]/_m2[k]; }
955 /// Returns a \c DivMap class
957 /// This function just returns a \c DivMap class.
959 /// For example, if \c m1 and \c m2 are both maps with \c double
960 /// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to
961 /// <tt>m1[x]/m2[x]</tt>.
964 template<typename M1, typename M2>
965 inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
966 return DivMap<M1, M2>(m1,m2);
970 /// Shifts a map with a constant.
972 /// This \ref concepts::ReadMap "read-only map" returns the sum of
973 /// the given map and a constant value (i.e. it shifts the map with
974 /// the constant). Its \c Key and \c Value are inherited from \c M.
978 /// ShiftMap<M> sh(m,v);
982 /// ConstMap<M::Key, M::Value> cm(v);
983 /// AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm);
986 /// The simplest way of using this map is through the shiftMap()
989 /// \sa ShiftWriteMap
990 template<typename M, typename C = typename M::Value>
991 class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
995 typedef MapBase<typename M::Key, typename M::Value> Parent;
996 typedef typename Parent::Key Key;
997 typedef typename Parent::Value Value;
1002 /// \param m The undelying map.
1003 /// \param v The constant value.
1004 ShiftMap(const M &m, const C &v) : _m(m), _v(v) {}
1006 Value operator[](const Key &k) const { return _m[k]+_v; }
1009 /// Shifts a map with a constant (read-write version).
1011 /// This \ref concepts::ReadWriteMap "read-write map" returns the sum
1012 /// of the given map and a constant value (i.e. it shifts the map with
1013 /// the constant). Its \c Key and \c Value are inherited from \c M.
1014 /// It makes also possible to write the map.
1016 /// The simplest way of using this map is through the shiftWriteMap()
1020 template<typename M, typename C = typename M::Value>
1021 class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
1025 typedef MapBase<typename M::Key, typename M::Value> Parent;
1026 typedef typename Parent::Key Key;
1027 typedef typename Parent::Value Value;
1032 /// \param m The undelying map.
1033 /// \param v The constant value.
1034 ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {}
1036 Value operator[](const Key &k) const { return _m[k]+_v; }
1038 void set(const Key &k, const Value &v) { _m.set(k, v-_v); }
1041 /// Returns a \c ShiftMap class
1043 /// This function just returns a \c ShiftMap class.
1045 /// For example, if \c m is a map with \c double values and \c v is
1046 /// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to
1047 /// <tt>m[x]+v</tt>.
1049 /// \relates ShiftMap
1050 template<typename M, typename C>
1051 inline ShiftMap<M, C> shiftMap(const M &m, const C &v) {
1052 return ShiftMap<M, C>(m,v);
1055 /// Returns a \c ShiftWriteMap class
1057 /// This function just returns a \c ShiftWriteMap class.
1059 /// For example, if \c m is a map with \c double values and \c v is
1060 /// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to
1061 /// <tt>m[x]+v</tt>.
1062 /// Moreover it makes also possible to write the map.
1064 /// \relates ShiftWriteMap
1065 template<typename M, typename C>
1066 inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) {
1067 return ShiftWriteMap<M, C>(m,v);
1071 /// Scales a map with a constant.
1073 /// This \ref concepts::ReadMap "read-only map" returns the value of
1074 /// the given map multiplied from the left side with a constant value.
1075 /// Its \c Key and \c Value are inherited from \c M.
1079 /// ScaleMap<M> sc(m,v);
1081 /// is equivalent to
1083 /// ConstMap<M::Key, M::Value> cm(v);
1084 /// MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m);
1087 /// The simplest way of using this map is through the scaleMap()
1090 /// \sa ScaleWriteMap
1091 template<typename M, typename C = typename M::Value>
1092 class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
1096 typedef MapBase<typename M::Key, typename M::Value> Parent;
1097 typedef typename Parent::Key Key;
1098 typedef typename Parent::Value Value;
1103 /// \param m The undelying map.
1104 /// \param v The constant value.
1105 ScaleMap(const M &m, const C &v) : _m(m), _v(v) {}
1107 Value operator[](const Key &k) const { return _v*_m[k]; }
1110 /// Scales a map with a constant (read-write version).
1112 /// This \ref concepts::ReadWriteMap "read-write map" returns the value of
1113 /// the given map multiplied from the left side with a constant value.
1114 /// Its \c Key and \c Value are inherited from \c M.
1115 /// It can also be used as write map if the \c / operator is defined
1116 /// between \c Value and \c C and the given multiplier is not zero.
1118 /// The simplest way of using this map is through the scaleWriteMap()
1122 template<typename M, typename C = typename M::Value>
1123 class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
1127 typedef MapBase<typename M::Key, typename M::Value> Parent;
1128 typedef typename Parent::Key Key;
1129 typedef typename Parent::Value Value;
1134 /// \param m The undelying map.
1135 /// \param v The constant value.
1136 ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
1138 Value operator[](const Key &k) const { return _v*_m[k]; }
1140 void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
1143 /// Returns a \c ScaleMap class
1145 /// This function just returns a \c ScaleMap class.
1147 /// For example, if \c m is a map with \c double values and \c v is
1148 /// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to
1149 /// <tt>v*m[x]</tt>.
1151 /// \relates ScaleMap
1152 template<typename M, typename C>
1153 inline ScaleMap<M, C> scaleMap(const M &m, const C &v) {
1154 return ScaleMap<M, C>(m,v);
1157 /// Returns a \c ScaleWriteMap class
1159 /// This function just returns a \c ScaleWriteMap class.
1161 /// For example, if \c m is a map with \c double values and \c v is
1162 /// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to
1163 /// <tt>v*m[x]</tt>.
1164 /// Moreover it makes also possible to write the map.
1166 /// \relates ScaleWriteMap
1167 template<typename M, typename C>
1168 inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) {
1169 return ScaleWriteMap<M, C>(m,v);
1173 /// Negative of a map
1175 /// This \ref concepts::ReadMap "read-only map" returns the negative
1176 /// of the values of the given map (using the unary \c - operator).
1177 /// Its \c Key and \c Value are inherited from \c M.
1179 /// If M::Value is \c int, \c double etc., then
1181 /// NegMap<M> neg(m);
1183 /// is equivalent to
1185 /// ScaleMap<M> neg(m,-1);
1188 /// The simplest way of using this map is through the negMap()
1192 template<typename M>
1193 class NegMap : public MapBase<typename M::Key, typename M::Value> {
1196 typedef MapBase<typename M::Key, typename M::Value> Parent;
1197 typedef typename Parent::Key Key;
1198 typedef typename Parent::Value Value;
1201 NegMap(const M &m) : _m(m) {}
1203 Value operator[](const Key &k) const { return -_m[k]; }
1206 /// Negative of a map (read-write version)
1208 /// This \ref concepts::ReadWriteMap "read-write map" returns the
1209 /// negative of the values of the given map (using the unary \c -
1211 /// Its \c Key and \c Value are inherited from \c M.
1212 /// It makes also possible to write the map.
1214 /// If M::Value is \c int, \c double etc., then
1216 /// NegWriteMap<M> neg(m);
1218 /// is equivalent to
1220 /// ScaleWriteMap<M> neg(m,-1);
1223 /// The simplest way of using this map is through the negWriteMap()
1227 template<typename M>
1228 class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
1231 typedef MapBase<typename M::Key, typename M::Value> Parent;
1232 typedef typename Parent::Key Key;
1233 typedef typename Parent::Value Value;
1236 NegWriteMap(M &m) : _m(m) {}
1238 Value operator[](const Key &k) const { return -_m[k]; }
1240 void set(const Key &k, const Value &v) { _m.set(k, -v); }
1243 /// Returns a \c NegMap class
1245 /// This function just returns a \c NegMap class.
1247 /// For example, if \c m is a map with \c double values, then
1248 /// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
1251 template <typename M>
1252 inline NegMap<M> negMap(const M &m) {
1253 return NegMap<M>(m);
1256 /// Returns a \c NegWriteMap class
1258 /// This function just returns a \c NegWriteMap class.
1260 /// For example, if \c m is a map with \c double values, then
1261 /// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
1262 /// Moreover it makes also possible to write the map.
1264 /// \relates NegWriteMap
1265 template <typename M>
1266 inline NegWriteMap<M> negWriteMap(M &m) {
1267 return NegWriteMap<M>(m);
1271 /// Absolute value of a map
1273 /// This \ref concepts::ReadMap "read-only map" returns the absolute
1274 /// value of the values of the given map.
1275 /// Its \c Key and \c Value are inherited from \c M.
1276 /// \c Value must be comparable to \c 0 and the unary \c -
1277 /// operator must be defined for it, of course.
1279 /// The simplest way of using this map is through the absMap()
1281 template<typename M>
1282 class AbsMap : public MapBase<typename M::Key, typename M::Value> {
1285 typedef MapBase<typename M::Key, typename M::Value> Parent;
1286 typedef typename Parent::Key Key;
1287 typedef typename Parent::Value Value;
1290 AbsMap(const M &m) : _m(m) {}
1292 Value operator[](const Key &k) const {
1294 return tmp >= 0 ? tmp : -tmp;
1299 /// Returns an \c AbsMap class
1301 /// This function just returns an \c AbsMap class.
1303 /// For example, if \c m is a map with \c double values, then
1304 /// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if
1305 /// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is
1309 template<typename M>
1310 inline AbsMap<M> absMap(const M &m) {
1311 return AbsMap<M>(m);
1316 // Logical maps and map adaptors:
1318 /// \addtogroup maps
1321 /// Constant \c true map.
1323 /// This \ref concepts::ReadMap "read-only map" assigns \c true to
1330 /// is equivalent to
1332 /// ConstMap<K,bool> tm(true);
1337 template <typename K>
1338 class TrueMap : public MapBase<K, bool> {
1340 typedef MapBase<K, bool> Parent;
1341 typedef typename Parent::Key Key;
1342 typedef typename Parent::Value Value;
1344 /// Gives back \c true.
1345 Value operator[](const Key&) const { return true; }
1348 /// Returns a \c TrueMap class
1350 /// This function just returns a \c TrueMap class.
1351 /// \relates TrueMap
1352 template<typename K>
1353 inline TrueMap<K> trueMap() {
1354 return TrueMap<K>();
1358 /// Constant \c false map.
1360 /// This \ref concepts::ReadMap "read-only map" assigns \c false to
1367 /// is equivalent to
1369 /// ConstMap<K,bool> fm(false);
1374 template <typename K>
1375 class FalseMap : public MapBase<K, bool> {
1377 typedef MapBase<K, bool> Parent;
1378 typedef typename Parent::Key Key;
1379 typedef typename Parent::Value Value;
1381 /// Gives back \c false.
1382 Value operator[](const Key&) const { return false; }
1385 /// Returns a \c FalseMap class
1387 /// This function just returns a \c FalseMap class.
1388 /// \relates FalseMap
1389 template<typename K>
1390 inline FalseMap<K> falseMap() {
1391 return FalseMap<K>();
1396 /// \addtogroup map_adaptors
1399 /// Logical 'and' of two maps
1401 /// This \ref concepts::ReadMap "read-only map" returns the logical
1402 /// 'and' of the values of the two given maps.
1403 /// Its \c Key type is inherited from \c M1 and its \c Value type is
1404 /// \c bool. \c M2::Key must be convertible to \c M1::Key.
1406 /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1408 /// AndMap<M1,M2> am(m1,m2);
1410 /// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>.
1412 /// The simplest way of using this map is through the andMap()
1416 /// \sa NotMap, NotWriteMap
1417 template<typename M1, typename M2>
1418 class AndMap : public MapBase<typename M1::Key, bool> {
1422 typedef MapBase<typename M1::Key, bool> Parent;
1423 typedef typename Parent::Key Key;
1424 typedef typename Parent::Value Value;
1427 AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1429 Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; }
1432 /// Returns an \c AndMap class
1434 /// This function just returns an \c AndMap class.
1436 /// For example, if \c m1 and \c m2 are both maps with \c bool values,
1437 /// then <tt>andMap(m1,m2)[x]</tt> will be equal to
1438 /// <tt>m1[x]&&m2[x]</tt>.
1441 template<typename M1, typename M2>
1442 inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) {
1443 return AndMap<M1, M2>(m1,m2);
1447 /// Logical 'or' of two maps
1449 /// This \ref concepts::ReadMap "read-only map" returns the logical
1450 /// 'or' of the values of the two given maps.
1451 /// Its \c Key type is inherited from \c M1 and its \c Value type is
1452 /// \c bool. \c M2::Key must be convertible to \c M1::Key.
1454 /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1456 /// OrMap<M1,M2> om(m1,m2);
1458 /// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>.
1460 /// The simplest way of using this map is through the orMap()
1464 /// \sa NotMap, NotWriteMap
1465 template<typename M1, typename M2>
1466 class OrMap : public MapBase<typename M1::Key, bool> {
1470 typedef MapBase<typename M1::Key, bool> Parent;
1471 typedef typename Parent::Key Key;
1472 typedef typename Parent::Value Value;
1475 OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1477 Value operator[](const Key &k) const { return _m1[k]||_m2[k]; }
1480 /// Returns an \c OrMap class
1482 /// This function just returns an \c OrMap class.
1484 /// For example, if \c m1 and \c m2 are both maps with \c bool values,
1485 /// then <tt>orMap(m1,m2)[x]</tt> will be equal to
1486 /// <tt>m1[x]||m2[x]</tt>.
1489 template<typename M1, typename M2>
1490 inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) {
1491 return OrMap<M1, M2>(m1,m2);
1495 /// Logical 'not' of a map
1497 /// This \ref concepts::ReadMap "read-only map" returns the logical
1498 /// negation of the values of the given map.
1499 /// Its \c Key is inherited from \c M and its \c Value is \c bool.
1501 /// The simplest way of using this map is through the notMap()
1505 template <typename M>
1506 class NotMap : public MapBase<typename M::Key, bool> {
1509 typedef MapBase<typename M::Key, bool> Parent;
1510 typedef typename Parent::Key Key;
1511 typedef typename Parent::Value Value;
1514 NotMap(const M &m) : _m(m) {}
1516 Value operator[](const Key &k) const { return !_m[k]; }
1519 /// Logical 'not' of a map (read-write version)
1521 /// This \ref concepts::ReadWriteMap "read-write map" returns the
1522 /// logical negation of the values of the given map.
1523 /// Its \c Key is inherited from \c M and its \c Value is \c bool.
1524 /// It makes also possible to write the map. When a value is set,
1525 /// the opposite value is set to the original map.
1527 /// The simplest way of using this map is through the notWriteMap()
1531 template <typename M>
1532 class NotWriteMap : public MapBase<typename M::Key, bool> {
1535 typedef MapBase<typename M::Key, bool> Parent;
1536 typedef typename Parent::Key Key;
1537 typedef typename Parent::Value Value;
1540 NotWriteMap(M &m) : _m(m) {}
1542 Value operator[](const Key &k) const { return !_m[k]; }
1544 void set(const Key &k, bool v) { _m.set(k, !v); }
1547 /// Returns a \c NotMap class
1549 /// This function just returns a \c NotMap class.
1551 /// For example, if \c m is a map with \c bool values, then
1552 /// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
1555 template <typename M>
1556 inline NotMap<M> notMap(const M &m) {
1557 return NotMap<M>(m);
1560 /// Returns a \c NotWriteMap class
1562 /// This function just returns a \c NotWriteMap class.
1564 /// For example, if \c m is a map with \c bool values, then
1565 /// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
1566 /// Moreover it makes also possible to write the map.
1568 /// \relates NotWriteMap
1569 template <typename M>
1570 inline NotWriteMap<M> notWriteMap(M &m) {
1571 return NotWriteMap<M>(m);
1575 /// Combination of two maps using the \c == operator
1577 /// This \ref concepts::ReadMap "read-only map" assigns \c true to
1578 /// the keys for which the corresponding values of the two maps are
1580 /// Its \c Key type is inherited from \c M1 and its \c Value type is
1581 /// \c bool. \c M2::Key must be convertible to \c M1::Key.
1583 /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1585 /// EqualMap<M1,M2> em(m1,m2);
1587 /// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>.
1589 /// The simplest way of using this map is through the equalMap()
1593 template<typename M1, typename M2>
1594 class EqualMap : public MapBase<typename M1::Key, bool> {
1598 typedef MapBase<typename M1::Key, bool> Parent;
1599 typedef typename Parent::Key Key;
1600 typedef typename Parent::Value Value;
1603 EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1605 Value operator[](const Key &k) const { return _m1[k]==_m2[k]; }
1608 /// Returns an \c EqualMap class
1610 /// This function just returns an \c EqualMap class.
1612 /// For example, if \c m1 and \c m2 are maps with keys and values of
1613 /// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to
1614 /// <tt>m1[x]==m2[x]</tt>.
1616 /// \relates EqualMap
1617 template<typename M1, typename M2>
1618 inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) {
1619 return EqualMap<M1, M2>(m1,m2);
1623 /// Combination of two maps using the \c < operator
1625 /// This \ref concepts::ReadMap "read-only map" assigns \c true to
1626 /// the keys for which the corresponding value of the first map is
1627 /// less then the value of the second map.
1628 /// Its \c Key type is inherited from \c M1 and its \c Value type is
1629 /// \c bool. \c M2::Key must be convertible to \c M1::Key.
1631 /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1633 /// LessMap<M1,M2> lm(m1,m2);
1635 /// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>.
1637 /// The simplest way of using this map is through the lessMap()
1641 template<typename M1, typename M2>
1642 class LessMap : public MapBase<typename M1::Key, bool> {
1646 typedef MapBase<typename M1::Key, bool> Parent;
1647 typedef typename Parent::Key Key;
1648 typedef typename Parent::Value Value;
1651 LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1653 Value operator[](const Key &k) const { return _m1[k]<_m2[k]; }
1656 /// Returns an \c LessMap class
1658 /// This function just returns an \c LessMap class.
1660 /// For example, if \c m1 and \c m2 are maps with keys and values of
1661 /// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to
1662 /// <tt>m1[x]<m2[x]</tt>.
1664 /// \relates LessMap
1665 template<typename M1, typename M2>
1666 inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) {
1667 return LessMap<M1, M2>(m1,m2);
1670 namespace _maps_bits {
1672 template <typename _Iterator, typename Enable = void>
1673 struct IteratorTraits {
1674 typedef typename std::iterator_traits<_Iterator>::value_type Value;
1677 template <typename _Iterator>
1678 struct IteratorTraits<_Iterator,
1679 typename exists<typename _Iterator::container_type>::type>
1681 typedef typename _Iterator::container_type::value_type Value;
1688 /// \addtogroup maps
1691 /// \brief Writable bool map for logging each \c true assigned element
1693 /// A \ref concepts::WriteMap "writable" bool map for logging
1694 /// each \c true assigned element, i.e it copies subsequently each
1695 /// keys set to \c true to the given iterator.
1696 /// The most important usage of it is storing certain nodes or arcs
1697 /// that were marked \c true by an algorithm.
1699 /// There are several algorithms that provide solutions through bool
1700 /// maps and most of them assign \c true at most once for each key.
1701 /// In these cases it is a natural request to store each \c true
1702 /// assigned elements (in order of the assignment), which can be
1703 /// easily done with LoggerBoolMap.
1705 /// The simplest way of using this map is through the loggerBoolMap()
1708 /// \tparam It The type of the iterator.
1709 /// \tparam Ke The key type of the map. The default value set
1710 /// according to the iterator type should work in most cases.
1712 /// \note The container of the iterator must contain enough space
1713 /// for the elements or the iterator should be an inserter iterator.
1715 template <typename It, typename Ke>
1717 template <typename It,
1718 typename Ke=typename _maps_bits::IteratorTraits<It>::Value>
1720 class LoggerBoolMap {
1722 typedef It Iterator;
1728 LoggerBoolMap(Iterator it)
1729 : _begin(it), _end(it) {}
1731 /// Gives back the given iterator set for the first key
1732 Iterator begin() const {
1736 /// Gives back the the 'after the last' iterator
1737 Iterator end() const {
1741 /// The set function of the map
1742 void set(const Key& key, Value value) {
1753 /// Returns a \c LoggerBoolMap class
1755 /// This function just returns a \c LoggerBoolMap class.
1757 /// The most important usage of it is storing certain nodes or arcs
1758 /// that were marked \c true by an algorithm.
1759 /// For example it makes easier to store the nodes in the processing
1760 /// order of Dfs algorithm, as the following examples show.
1762 /// std::vector<Node> v;
1763 /// dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run();
1766 /// std::vector<Node> v(countNodes(g));
1767 /// dfs(g,s).processedMap(loggerBoolMap(v.begin())).run();
1770 /// \note The container of the iterator must contain enough space
1771 /// for the elements or the iterator should be an inserter iterator.
1773 /// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so
1774 /// it cannot be used when a readable map is needed, for example as
1775 /// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms.
1777 /// \relates LoggerBoolMap
1778 template<typename Iterator>
1779 inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) {
1780 return LoggerBoolMap<Iterator>(it);
1785 /// \addtogroup graph_maps
1788 /// Provides an immutable and unique id for each item in the graph.
1790 /// The IdMap class provides a unique and immutable id for each item of the
1791 /// same type (e.g. node) in the graph. This id is <ul><li>\b unique:
1792 /// different items (nodes) get different ids <li>\b immutable: the id of an
1793 /// item (node) does not change (even if you delete other nodes). </ul>
1794 /// Through this map you get access (i.e. can read) the inner id values of
1795 /// the items stored in the graph. This map can be inverted with its member
1796 /// class \c InverseMap or with the \c operator() member.
1798 template <typename _Graph, typename _Item>
1801 typedef _Graph Graph;
1806 /// \brief Constructor.
1808 /// Constructor of the map.
1809 explicit IdMap(const Graph& graph) : _graph(&graph) {}
1811 /// \brief Gives back the \e id of the item.
1813 /// Gives back the immutable and unique \e id of the item.
1814 int operator[](const Item& item) const { return _graph->id(item);}
1816 /// \brief Gives back the item by its id.
1818 /// Gives back the item by its id.
1819 Item operator()(int id) { return _graph->fromId(id, Item()); }
1822 const Graph* _graph;
1826 /// \brief The class represents the inverse of its owner (IdMap).
1828 /// The class represents the inverse of its owner (IdMap).
1833 /// \brief Constructor.
1835 /// Constructor for creating an id-to-item map.
1836 explicit InverseMap(const Graph& graph) : _graph(&graph) {}
1838 /// \brief Constructor.
1840 /// Constructor for creating an id-to-item map.
1841 explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
1843 /// \brief Gives back the given item from its id.
1845 /// Gives back the given item from its id.
1847 Item operator[](int id) const { return _graph->fromId(id, Item());}
1850 const Graph* _graph;
1853 /// \brief Gives back the inverse of the map.
1855 /// Gives back the inverse of the IdMap.
1856 InverseMap inverse() const { return InverseMap(*_graph);}
1860 /// \brief Returns the source of the given arc.
1862 /// The SourceMap gives back the source Node of the given arc.
1864 template <typename Digraph>
1868 typedef typename Digraph::Node Value;
1869 typedef typename Digraph::Arc Key;
1871 /// \brief Constructor
1874 /// \param digraph The digraph that the map belongs to.
1875 explicit SourceMap(const Digraph& digraph) : _digraph(digraph) {}
1877 /// \brief The subscript operator.
1879 /// The subscript operator.
1880 /// \param arc The arc
1881 /// \return The source of the arc
1882 Value operator[](const Key& arc) const {
1883 return _digraph.source(arc);
1887 const Digraph& _digraph;
1890 /// \brief Returns a \c SourceMap class.
1892 /// This function just returns an \c SourceMap class.
1893 /// \relates SourceMap
1894 template <typename Digraph>
1895 inline SourceMap<Digraph> sourceMap(const Digraph& digraph) {
1896 return SourceMap<Digraph>(digraph);
1899 /// \brief Returns the target of the given arc.
1901 /// The TargetMap gives back the target Node of the given arc.
1903 template <typename Digraph>
1907 typedef typename Digraph::Node Value;
1908 typedef typename Digraph::Arc Key;
1910 /// \brief Constructor
1913 /// \param digraph The digraph that the map belongs to.
1914 explicit TargetMap(const Digraph& digraph) : _digraph(digraph) {}
1916 /// \brief The subscript operator.
1918 /// The subscript operator.
1919 /// \param e The arc
1920 /// \return The target of the arc
1921 Value operator[](const Key& e) const {
1922 return _digraph.target(e);
1926 const Digraph& _digraph;
1929 /// \brief Returns a \c TargetMap class.
1931 /// This function just returns a \c TargetMap class.
1932 /// \relates TargetMap
1933 template <typename Digraph>
1934 inline TargetMap<Digraph> targetMap(const Digraph& digraph) {
1935 return TargetMap<Digraph>(digraph);
1938 /// \brief Returns the "forward" directed arc view of an edge.
1940 /// Returns the "forward" directed arc view of an edge.
1941 /// \see BackwardMap
1942 template <typename Graph>
1946 typedef typename Graph::Arc Value;
1947 typedef typename Graph::Edge Key;
1949 /// \brief Constructor
1952 /// \param graph The graph that the map belongs to.
1953 explicit ForwardMap(const Graph& graph) : _graph(graph) {}
1955 /// \brief The subscript operator.
1957 /// The subscript operator.
1958 /// \param key An edge
1959 /// \return The "forward" directed arc view of edge
1960 Value operator[](const Key& key) const {
1961 return _graph.direct(key, true);
1965 const Graph& _graph;
1968 /// \brief Returns a \c ForwardMap class.
1970 /// This function just returns an \c ForwardMap class.
1971 /// \relates ForwardMap
1972 template <typename Graph>
1973 inline ForwardMap<Graph> forwardMap(const Graph& graph) {
1974 return ForwardMap<Graph>(graph);
1977 /// \brief Returns the "backward" directed arc view of an edge.
1979 /// Returns the "backward" directed arc view of an edge.
1981 template <typename Graph>
1985 typedef typename Graph::Arc Value;
1986 typedef typename Graph::Edge Key;
1988 /// \brief Constructor
1991 /// \param graph The graph that the map belongs to.
1992 explicit BackwardMap(const Graph& graph) : _graph(graph) {}
1994 /// \brief The subscript operator.
1996 /// The subscript operator.
1997 /// \param key An edge
1998 /// \return The "backward" directed arc view of edge
1999 Value operator[](const Key& key) const {
2000 return _graph.direct(key, false);
2004 const Graph& _graph;
2007 /// \brief Returns a \c BackwardMap class
2009 /// This function just returns a \c BackwardMap class.
2010 /// \relates BackwardMap
2011 template <typename Graph>
2012 inline BackwardMap<Graph> backwardMap(const Graph& graph) {
2013 return BackwardMap<Graph>(graph);
2016 /// \brief Potential difference map
2018 /// If there is an potential map on the nodes then we
2019 /// can get an arc map as we get the substraction of the
2020 /// values of the target and source.
2021 template <typename Digraph, typename NodeMap>
2022 class PotentialDifferenceMap {
2024 typedef typename Digraph::Arc Key;
2025 typedef typename NodeMap::Value Value;
2027 /// \brief Constructor
2029 /// Contructor of the map
2030 explicit PotentialDifferenceMap(const Digraph& digraph,
2031 const NodeMap& potential)
2032 : _digraph(digraph), _potential(potential) {}
2034 /// \brief Const subscription operator
2036 /// Const subscription operator
2037 Value operator[](const Key& arc) const {
2038 return _potential[_digraph.target(arc)] -
2039 _potential[_digraph.source(arc)];
2043 const Digraph& _digraph;
2044 const NodeMap& _potential;
2047 /// \brief Returns a PotentialDifferenceMap.
2049 /// This function just returns a PotentialDifferenceMap.
2050 /// \relates PotentialDifferenceMap
2051 template <typename Digraph, typename NodeMap>
2052 PotentialDifferenceMap<Digraph, NodeMap>
2053 potentialDifferenceMap(const Digraph& digraph, const NodeMap& potential) {
2054 return PotentialDifferenceMap<Digraph, NodeMap>(digraph, potential);
2057 /// \brief Map of the node in-degrees.
2059 /// This map returns the in-degree of a node. Once it is constructed,
2060 /// the degrees are stored in a standard NodeMap, so each query is done
2061 /// in constant time. On the other hand, the values are updated automatically
2062 /// whenever the digraph changes.
2064 /// \warning Besides addNode() and addArc(), a digraph structure may provide
2065 /// alternative ways to modify the digraph. The correct behavior of InDegMap
2066 /// is not guarantied if these additional features are used. For example
2067 /// the functions \ref ListDigraph::changeSource() "changeSource()",
2068 /// \ref ListDigraph::changeTarget() "changeTarget()" and
2069 /// \ref ListDigraph::reverseArc() "reverseArc()"
2070 /// of \ref ListDigraph will \e not update the degree values correctly.
2074 template <typename _Digraph>
2076 : protected ItemSetTraits<_Digraph, typename _Digraph::Arc>
2077 ::ItemNotifier::ObserverBase {
2081 typedef _Digraph Digraph;
2083 typedef typename Digraph::Node Key;
2085 typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
2086 ::ItemNotifier::ObserverBase Parent;
2091 : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
2094 typedef typename ItemSetTraits<Digraph, Key>::
2095 template Map<int>::Type Parent;
2097 AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
2099 virtual void add(const Key& key) {
2101 Parent::set(key, 0);
2104 virtual void add(const std::vector<Key>& keys) {
2106 for (int i = 0; i < int(keys.size()); ++i) {
2107 Parent::set(keys[i], 0);
2111 virtual void build() {
2114 typename Parent::Notifier* nf = Parent::notifier();
2115 for (nf->first(it); it != INVALID; nf->next(it)) {
2123 /// \brief Constructor.
2125 /// Constructor for creating in-degree map.
2126 explicit InDegMap(const Digraph& digraph)
2127 : _digraph(digraph), _deg(digraph) {
2128 Parent::attach(_digraph.notifier(typename Digraph::Arc()));
2130 for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
2131 _deg[it] = countInArcs(_digraph, it);
2135 /// Gives back the in-degree of a Node.
2136 int operator[](const Key& key) const {
2142 typedef typename Digraph::Arc Arc;
2144 virtual void add(const Arc& arc) {
2145 ++_deg[_digraph.target(arc)];
2148 virtual void add(const std::vector<Arc>& arcs) {
2149 for (int i = 0; i < int(arcs.size()); ++i) {
2150 ++_deg[_digraph.target(arcs[i])];
2154 virtual void erase(const Arc& arc) {
2155 --_deg[_digraph.target(arc)];
2158 virtual void erase(const std::vector<Arc>& arcs) {
2159 for (int i = 0; i < int(arcs.size()); ++i) {
2160 --_deg[_digraph.target(arcs[i])];
2164 virtual void build() {
2165 for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
2166 _deg[it] = countInArcs(_digraph, it);
2170 virtual void clear() {
2171 for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
2177 const Digraph& _digraph;
2181 /// \brief Map of the node out-degrees.
2183 /// This map returns the out-degree of a node. Once it is constructed,
2184 /// the degrees are stored in a standard NodeMap, so each query is done
2185 /// in constant time. On the other hand, the values are updated automatically
2186 /// whenever the digraph changes.
2188 /// \warning Besides addNode() and addArc(), a digraph structure may provide
2189 /// alternative ways to modify the digraph. The correct behavior of OutDegMap
2190 /// is not guarantied if these additional features are used. For example
2191 /// the functions \ref ListDigraph::changeSource() "changeSource()",
2192 /// \ref ListDigraph::changeTarget() "changeTarget()" and
2193 /// \ref ListDigraph::reverseArc() "reverseArc()"
2194 /// of \ref ListDigraph will \e not update the degree values correctly.
2198 template <typename _Digraph>
2200 : protected ItemSetTraits<_Digraph, typename _Digraph::Arc>
2201 ::ItemNotifier::ObserverBase {
2205 typedef _Digraph Digraph;
2207 typedef typename Digraph::Node Key;
2209 typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
2210 ::ItemNotifier::ObserverBase Parent;
2215 : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
2218 typedef typename ItemSetTraits<Digraph, Key>::
2219 template Map<int>::Type Parent;
2221 AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
2223 virtual void add(const Key& key) {
2225 Parent::set(key, 0);
2227 virtual void add(const std::vector<Key>& keys) {
2229 for (int i = 0; i < int(keys.size()); ++i) {
2230 Parent::set(keys[i], 0);
2233 virtual void build() {
2236 typename Parent::Notifier* nf = Parent::notifier();
2237 for (nf->first(it); it != INVALID; nf->next(it)) {
2245 /// \brief Constructor.
2247 /// Constructor for creating out-degree map.
2248 explicit OutDegMap(const Digraph& digraph)
2249 : _digraph(digraph), _deg(digraph) {
2250 Parent::attach(_digraph.notifier(typename Digraph::Arc()));
2252 for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
2253 _deg[it] = countOutArcs(_digraph, it);
2257 /// Gives back the out-degree of a Node.
2258 int operator[](const Key& key) const {
2264 typedef typename Digraph::Arc Arc;
2266 virtual void add(const Arc& arc) {
2267 ++_deg[_digraph.source(arc)];
2270 virtual void add(const std::vector<Arc>& arcs) {
2271 for (int i = 0; i < int(arcs.size()); ++i) {
2272 ++_deg[_digraph.source(arcs[i])];
2276 virtual void erase(const Arc& arc) {
2277 --_deg[_digraph.source(arc)];
2280 virtual void erase(const std::vector<Arc>& arcs) {
2281 for (int i = 0; i < int(arcs.size()); ++i) {
2282 --_deg[_digraph.source(arcs[i])];
2286 virtual void build() {
2287 for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
2288 _deg[it] = countOutArcs(_digraph, it);
2292 virtual void clear() {
2293 for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
2299 const Digraph& _digraph;
2306 #endif // LEMON_MAPS_H