diff -r cd72eae05bdf -r 3c00344f49c9 doc/min_cost_flow.dox --- a/doc/min_cost_flow.dox Mon Jul 16 16:21:40 2018 +0200 +++ b/doc/min_cost_flow.dox Wed Oct 17 19:14:07 2018 +0200 @@ -2,7 +2,7 @@ * * This file is a part of LEMON, a generic C++ optimization library. * - * Copyright (C) 2003-2010 + * Copyright (C) 2003-2013 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * @@ -26,7 +26,7 @@ The \e minimum \e cost \e flow \e problem is to find a feasible flow of minimum total cost from a set of supply nodes to a set of demand nodes in a network with capacity constraints (lower and upper bounds) -and arc costs \ref amo93networkflows. +and arc costs \cite amo93networkflows. Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$, \f$upper: A\rightarrow\mathbf{R}\cup\{+\infty\}\f$ denote the lower and @@ -101,7 +101,7 @@ sup(u) \quad \forall u\in V \f] \f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] -However if the sum of the supply values is zero, then these two problems +However, if the sum of the supply values is zero, then these two problems are equivalent. The \ref min_cost_flow_algs "algorithms" in LEMON support the general form, so if you need the equality form, you have to ensure this additional