Merge #419 to branch 1.1 1.1
authorAlpar Juttner <alpar@cs.elte.hu>
Wed, 13 Jul 2011 14:40:05 +0200
branch1.1
changeset 106440bbb450143e
parent 1054 632a72b27123
parent 1063 0dba9b96550a
child 1069 b1b534ddb539
Merge #419 to branch 1.1
lemon/Makefile.am
lemon/bin_heap.h
lemon/bits/map_extender.h
lemon/concepts/maps.h
test/heap_test.cc
     1.1 --- a/cmake/FindCOIN.cmake	Tue Apr 12 07:46:34 2011 +0200
     1.2 +++ b/cmake/FindCOIN.cmake	Wed Jul 13 14:40:05 2011 +0200
     1.3 @@ -5,42 +5,52 @@
     1.4  )
     1.5  FIND_LIBRARY(COIN_CBC_LIBRARY
     1.6    NAMES Cbc libCbc
     1.7 +  HINTS ${COIN_ROOT_DIR}/lib/coin
     1.8    HINTS ${COIN_ROOT_DIR}/lib
     1.9  )
    1.10  FIND_LIBRARY(COIN_CBC_SOLVER_LIBRARY
    1.11    NAMES CbcSolver libCbcSolver
    1.12 +  HINTS ${COIN_ROOT_DIR}/lib/coin
    1.13    HINTS ${COIN_ROOT_DIR}/lib
    1.14  )
    1.15  FIND_LIBRARY(COIN_CGL_LIBRARY
    1.16    NAMES Cgl libCgl
    1.17 +  HINTS ${COIN_ROOT_DIR}/lib/coin
    1.18    HINTS ${COIN_ROOT_DIR}/lib
    1.19  )
    1.20  FIND_LIBRARY(COIN_CLP_LIBRARY
    1.21    NAMES Clp libClp
    1.22 +  HINTS ${COIN_ROOT_DIR}/lib/coin
    1.23    HINTS ${COIN_ROOT_DIR}/lib
    1.24  )
    1.25  FIND_LIBRARY(COIN_COIN_UTILS_LIBRARY
    1.26    NAMES CoinUtils libCoinUtils
    1.27 +  HINTS ${COIN_ROOT_DIR}/lib/coin
    1.28    HINTS ${COIN_ROOT_DIR}/lib
    1.29  )
    1.30  FIND_LIBRARY(COIN_OSI_LIBRARY
    1.31    NAMES Osi libOsi
    1.32 +  HINTS ${COIN_ROOT_DIR}/lib/coin
    1.33    HINTS ${COIN_ROOT_DIR}/lib
    1.34  )
    1.35  FIND_LIBRARY(COIN_OSI_CBC_LIBRARY
    1.36    NAMES OsiCbc libOsiCbc
    1.37 +  HINTS ${COIN_ROOT_DIR}/lib/coin
    1.38    HINTS ${COIN_ROOT_DIR}/lib
    1.39  )
    1.40  FIND_LIBRARY(COIN_OSI_CLP_LIBRARY
    1.41    NAMES OsiClp libOsiClp
    1.42 +  HINTS ${COIN_ROOT_DIR}/lib/coin
    1.43    HINTS ${COIN_ROOT_DIR}/lib
    1.44  )
    1.45  FIND_LIBRARY(COIN_OSI_VOL_LIBRARY
    1.46    NAMES OsiVol libOsiVol
    1.47 +  HINTS ${COIN_ROOT_DIR}/lib/coin
    1.48    HINTS ${COIN_ROOT_DIR}/lib
    1.49  )
    1.50  FIND_LIBRARY(COIN_VOL_LIBRARY
    1.51    NAMES Vol libVol
    1.52 +  HINTS ${COIN_ROOT_DIR}/lib/coin
    1.53    HINTS ${COIN_ROOT_DIR}/lib
    1.54  )
    1.55  
    1.56 @@ -55,13 +65,13 @@
    1.57    COIN_OSI_LIBRARY
    1.58    COIN_OSI_CBC_LIBRARY
    1.59    COIN_OSI_CLP_LIBRARY
    1.60 -  COIN_OSI_VOL_LIBRARY
    1.61 -  COIN_VOL_LIBRARY
    1.62 +  # COIN_OSI_VOL_LIBRARY
    1.63 +  # COIN_VOL_LIBRARY
    1.64  )
    1.65  
    1.66  IF(COIN_FOUND)
    1.67    SET(COIN_INCLUDE_DIRS ${COIN_INCLUDE_DIR})
    1.68 -  SET(COIN_LIBRARIES "${COIN_CBC_LIBRARY};${COIN_CBC_SOLVER_LIBRARY};${COIN_CGL_LIBRARY};${COIN_CLP_LIBRARY};${COIN_COIN_UTILS_LIBRARY};${COIN_OSI_LIBRARY};${COIN_OSI_CBC_LIBRARY};${COIN_OSI_CLP_LIBRARY};${COIN_OSI_VOL_LIBRARY};${COIN_VOL_LIBRARY}")
    1.69 +  SET(COIN_LIBRARIES "${COIN_CBC_LIBRARY};${COIN_CBC_SOLVER_LIBRARY};${COIN_CGL_LIBRARY};${COIN_CLP_LIBRARY};${COIN_COIN_UTILS_LIBRARY};${COIN_OSI_LIBRARY};${COIN_OSI_CBC_LIBRARY};${COIN_OSI_CLP_LIBRARY}")
    1.70    SET(COIN_CLP_LIBRARIES "${COIN_CLP_LIBRARY};${COIN_COIN_UTILS_LIBRARY}")
    1.71    SET(COIN_CBC_LIBRARIES ${COIN_LIBRARIES})
    1.72  ENDIF(COIN_FOUND)
     2.1 --- a/lemon/Makefile.am	Tue Apr 12 07:46:34 2011 +0200
     2.2 +++ b/lemon/Makefile.am	Wed Jul 13 14:40:05 2011 +0200
     2.3 @@ -59,6 +59,7 @@
     2.4  	lemon/assert.h \
     2.5  	lemon/bfs.h \
     2.6  	lemon/bin_heap.h \
     2.7 +	lemon/bucket_heap.h \
     2.8  	lemon/cbc.h \
     2.9  	lemon/circulation.h \
    2.10  	lemon/clp.h \
    2.11 @@ -76,6 +77,7 @@
    2.12  	lemon/elevator.h \
    2.13  	lemon/error.h \
    2.14  	lemon/euler.h \
    2.15 +	lemon/fib_heap.h \
    2.16  	lemon/full_graph.h \
    2.17  	lemon/glpk.h \
    2.18  	lemon/gomory_hu.h \
    2.19 @@ -98,6 +100,7 @@
    2.20  	lemon/network_simplex.h \
    2.21  	lemon/path.h \
    2.22  	lemon/preflow.h \
    2.23 +	lemon/radix_heap.h \
    2.24  	lemon/radix_sort.h \
    2.25  	lemon/random.h \
    2.26  	lemon/smart_graph.h \
     3.1 --- a/lemon/bin_heap.h	Tue Apr 12 07:46:34 2011 +0200
     3.2 +++ b/lemon/bin_heap.h	Wed Jul 13 14:40:05 2011 +0200
     3.3 @@ -33,23 +33,23 @@
     3.4    ///
     3.5    ///\brief A Binary Heap implementation.
     3.6    ///
     3.7 -  ///This class implements the \e binary \e heap data structure. 
     3.8 -  /// 
     3.9 +  ///This class implements the \e binary \e heap data structure.
    3.10 +  ///
    3.11    ///A \e heap is a data structure for storing items with specified values
    3.12    ///called \e priorities in such a way that finding the item with minimum
    3.13 -  ///priority is efficient. \c Comp specifies the ordering of the priorities.
    3.14 +  ///priority is efficient. \c CMP specifies the ordering of the priorities.
    3.15    ///In a heap one can change the priority of an item, add or erase an
    3.16    ///item, etc.
    3.17    ///
    3.18    ///\tparam PR Type of the priority of the items.
    3.19    ///\tparam IM A read and writable item map with int values, used internally
    3.20    ///to handle the cross references.
    3.21 -  ///\tparam Comp A functor class for the ordering of the priorities.
    3.22 +  ///\tparam CMP A functor class for the ordering of the priorities.
    3.23    ///The default is \c std::less<PR>.
    3.24    ///
    3.25    ///\sa FibHeap
    3.26    ///\sa Dijkstra
    3.27 -  template <typename PR, typename IM, typename Comp = std::less<PR> >
    3.28 +  template <typename PR, typename IM, typename CMP = std::less<PR> >
    3.29    class BinHeap {
    3.30  
    3.31    public:
    3.32 @@ -62,7 +62,7 @@
    3.33      ///\e
    3.34      typedef std::pair<Item,Prio> Pair;
    3.35      ///\e
    3.36 -    typedef Comp Compare;
    3.37 +    typedef CMP Compare;
    3.38  
    3.39      /// \brief Type to represent the items states.
    3.40      ///
     4.1 --- a/lemon/bits/map_extender.h	Tue Apr 12 07:46:34 2011 +0200
     4.2 +++ b/lemon/bits/map_extender.h	Wed Jul 13 14:40:05 2011 +0200
     4.3 @@ -49,6 +49,8 @@
     4.4      typedef typename Parent::Reference Reference;
     4.5      typedef typename Parent::ConstReference ConstReference;
     4.6  
     4.7 +    typedef typename Parent::ReferenceMapTag ReferenceMapTag;
     4.8 +
     4.9      class MapIt;
    4.10      class ConstMapIt;
    4.11  
    4.12 @@ -191,6 +193,8 @@
    4.13      typedef typename Parent::Reference Reference;
    4.14      typedef typename Parent::ConstReference ConstReference;
    4.15  
    4.16 +    typedef typename Parent::ReferenceMapTag ReferenceMapTag;
    4.17 +
    4.18      class MapIt;
    4.19      class ConstMapIt;
    4.20  
     5.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     5.2 +++ b/lemon/bucket_heap.h	Wed Jul 13 14:40:05 2011 +0200
     5.3 @@ -0,0 +1,567 @@
     5.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     5.5 + *
     5.6 + * This file is a part of LEMON, a generic C++ optimization library.
     5.7 + *
     5.8 + * Copyright (C) 2003-2009
     5.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    5.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    5.11 + *
    5.12 + * Permission to use, modify and distribute this software is granted
    5.13 + * provided that this copyright notice appears in all copies. For
    5.14 + * precise terms see the accompanying LICENSE file.
    5.15 + *
    5.16 + * This software is provided "AS IS" with no warranty of any kind,
    5.17 + * express or implied, and with no claim as to its suitability for any
    5.18 + * purpose.
    5.19 + *
    5.20 + */
    5.21 +
    5.22 +#ifndef LEMON_BUCKET_HEAP_H
    5.23 +#define LEMON_BUCKET_HEAP_H
    5.24 +
    5.25 +///\ingroup auxdat
    5.26 +///\file
    5.27 +///\brief Bucket Heap implementation.
    5.28 +
    5.29 +#include <vector>
    5.30 +#include <utility>
    5.31 +#include <functional>
    5.32 +
    5.33 +namespace lemon {
    5.34 +
    5.35 +  namespace _bucket_heap_bits {
    5.36 +
    5.37 +    template <bool MIN>
    5.38 +    struct DirectionTraits {
    5.39 +      static bool less(int left, int right) {
    5.40 +        return left < right;
    5.41 +      }
    5.42 +      static void increase(int& value) {
    5.43 +        ++value;
    5.44 +      }
    5.45 +    };
    5.46 +
    5.47 +    template <>
    5.48 +    struct DirectionTraits<false> {
    5.49 +      static bool less(int left, int right) {
    5.50 +        return left > right;
    5.51 +      }
    5.52 +      static void increase(int& value) {
    5.53 +        --value;
    5.54 +      }
    5.55 +    };
    5.56 +
    5.57 +  }
    5.58 +
    5.59 +  /// \ingroup auxdat
    5.60 +  ///
    5.61 +  /// \brief A Bucket Heap implementation.
    5.62 +  ///
    5.63 +  /// This class implements the \e bucket \e heap data structure. A \e heap
    5.64 +  /// is a data structure for storing items with specified values called \e
    5.65 +  /// priorities in such a way that finding the item with minimum priority is
    5.66 +  /// efficient. The bucket heap is very simple implementation, it can store
    5.67 +  /// only integer priorities and it stores for each priority in the
    5.68 +  /// \f$ [0..C) \f$ range a list of items. So it should be used only when
    5.69 +  /// the priorities are small. It is not intended to use as dijkstra heap.
    5.70 +  ///
    5.71 +  /// \param IM A read and write Item int map, used internally
    5.72 +  /// to handle the cross references.
    5.73 +  /// \param MIN If the given parameter is false then instead of the
    5.74 +  /// minimum value the maximum can be retrivied with the top() and
    5.75 +  /// prio() member functions.
    5.76 +  template <typename IM, bool MIN = true>
    5.77 +  class BucketHeap {
    5.78 +
    5.79 +  public:
    5.80 +    /// \e
    5.81 +    typedef typename IM::Key Item;
    5.82 +    /// \e
    5.83 +    typedef int Prio;
    5.84 +    /// \e
    5.85 +    typedef std::pair<Item, Prio> Pair;
    5.86 +    /// \e
    5.87 +    typedef IM ItemIntMap;
    5.88 +
    5.89 +  private:
    5.90 +
    5.91 +    typedef _bucket_heap_bits::DirectionTraits<MIN> Direction;
    5.92 +
    5.93 +  public:
    5.94 +
    5.95 +    /// \brief Type to represent the items states.
    5.96 +    ///
    5.97 +    /// Each Item element have a state associated to it. It may be "in heap",
    5.98 +    /// "pre heap" or "post heap". The latter two are indifferent from the
    5.99 +    /// heap's point of view, but may be useful to the user.
   5.100 +    ///
   5.101 +    /// The item-int map must be initialized in such way that it assigns
   5.102 +    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
   5.103 +    enum State {
   5.104 +      IN_HEAP = 0,    ///< = 0.
   5.105 +      PRE_HEAP = -1,  ///< = -1.
   5.106 +      POST_HEAP = -2  ///< = -2.
   5.107 +    };
   5.108 +
   5.109 +  public:
   5.110 +    /// \brief The constructor.
   5.111 +    ///
   5.112 +    /// The constructor.
   5.113 +    /// \param map should be given to the constructor, since it is used
   5.114 +    /// internally to handle the cross references. The value of the map
   5.115 +    /// should be PRE_HEAP (-1) for each element.
   5.116 +    explicit BucketHeap(ItemIntMap &map) : _iim(map), _minimum(0) {}
   5.117 +
   5.118 +    /// The number of items stored in the heap.
   5.119 +    ///
   5.120 +    /// \brief Returns the number of items stored in the heap.
   5.121 +    int size() const { return _data.size(); }
   5.122 +
   5.123 +    /// \brief Checks if the heap stores no items.
   5.124 +    ///
   5.125 +    /// Returns \c true if and only if the heap stores no items.
   5.126 +    bool empty() const { return _data.empty(); }
   5.127 +
   5.128 +    /// \brief Make empty this heap.
   5.129 +    ///
   5.130 +    /// Make empty this heap. It does not change the cross reference
   5.131 +    /// map.  If you want to reuse a heap what is not surely empty you
   5.132 +    /// should first clear the heap and after that you should set the
   5.133 +    /// cross reference map for each item to \c PRE_HEAP.
   5.134 +    void clear() {
   5.135 +      _data.clear(); _first.clear(); _minimum = 0;
   5.136 +    }
   5.137 +
   5.138 +  private:
   5.139 +
   5.140 +    void relocate_last(int idx) {
   5.141 +      if (idx + 1 < int(_data.size())) {
   5.142 +        _data[idx] = _data.back();
   5.143 +        if (_data[idx].prev != -1) {
   5.144 +          _data[_data[idx].prev].next = idx;
   5.145 +        } else {
   5.146 +          _first[_data[idx].value] = idx;
   5.147 +        }
   5.148 +        if (_data[idx].next != -1) {
   5.149 +          _data[_data[idx].next].prev = idx;
   5.150 +        }
   5.151 +        _iim[_data[idx].item] = idx;
   5.152 +      }
   5.153 +      _data.pop_back();
   5.154 +    }
   5.155 +
   5.156 +    void unlace(int idx) {
   5.157 +      if (_data[idx].prev != -1) {
   5.158 +        _data[_data[idx].prev].next = _data[idx].next;
   5.159 +      } else {
   5.160 +        _first[_data[idx].value] = _data[idx].next;
   5.161 +      }
   5.162 +      if (_data[idx].next != -1) {
   5.163 +        _data[_data[idx].next].prev = _data[idx].prev;
   5.164 +      }
   5.165 +    }
   5.166 +
   5.167 +    void lace(int idx) {
   5.168 +      if (int(_first.size()) <= _data[idx].value) {
   5.169 +        _first.resize(_data[idx].value + 1, -1);
   5.170 +      }
   5.171 +      _data[idx].next = _first[_data[idx].value];
   5.172 +      if (_data[idx].next != -1) {
   5.173 +        _data[_data[idx].next].prev = idx;
   5.174 +      }
   5.175 +      _first[_data[idx].value] = idx;
   5.176 +      _data[idx].prev = -1;
   5.177 +    }
   5.178 +
   5.179 +  public:
   5.180 +    /// \brief Insert a pair of item and priority into the heap.
   5.181 +    ///
   5.182 +    /// Adds \c p.first to the heap with priority \c p.second.
   5.183 +    /// \param p The pair to insert.
   5.184 +    void push(const Pair& p) {
   5.185 +      push(p.first, p.second);
   5.186 +    }
   5.187 +
   5.188 +    /// \brief Insert an item into the heap with the given priority.
   5.189 +    ///
   5.190 +    /// Adds \c i to the heap with priority \c p.
   5.191 +    /// \param i The item to insert.
   5.192 +    /// \param p The priority of the item.
   5.193 +    void push(const Item &i, const Prio &p) {
   5.194 +      int idx = _data.size();
   5.195 +      _iim[i] = idx;
   5.196 +      _data.push_back(BucketItem(i, p));
   5.197 +      lace(idx);
   5.198 +      if (Direction::less(p, _minimum)) {
   5.199 +        _minimum = p;
   5.200 +      }
   5.201 +    }
   5.202 +
   5.203 +    /// \brief Returns the item with minimum priority.
   5.204 +    ///
   5.205 +    /// This method returns the item with minimum priority.
   5.206 +    /// \pre The heap must be nonempty.
   5.207 +    Item top() const {
   5.208 +      while (_first[_minimum] == -1) {
   5.209 +        Direction::increase(_minimum);
   5.210 +      }
   5.211 +      return _data[_first[_minimum]].item;
   5.212 +    }
   5.213 +
   5.214 +    /// \brief Returns the minimum priority.
   5.215 +    ///
   5.216 +    /// It returns the minimum priority.
   5.217 +    /// \pre The heap must be nonempty.
   5.218 +    Prio prio() const {
   5.219 +      while (_first[_minimum] == -1) {
   5.220 +        Direction::increase(_minimum);
   5.221 +      }
   5.222 +      return _minimum;
   5.223 +    }
   5.224 +
   5.225 +    /// \brief Deletes the item with minimum priority.
   5.226 +    ///
   5.227 +    /// This method deletes the item with minimum priority from the heap.
   5.228 +    /// \pre The heap must be non-empty.
   5.229 +    void pop() {
   5.230 +      while (_first[_minimum] == -1) {
   5.231 +        Direction::increase(_minimum);
   5.232 +      }
   5.233 +      int idx = _first[_minimum];
   5.234 +      _iim[_data[idx].item] = -2;
   5.235 +      unlace(idx);
   5.236 +      relocate_last(idx);
   5.237 +    }
   5.238 +
   5.239 +    /// \brief Deletes \c i from the heap.
   5.240 +    ///
   5.241 +    /// This method deletes item \c i from the heap, if \c i was
   5.242 +    /// already stored in the heap.
   5.243 +    /// \param i The item to erase.
   5.244 +    void erase(const Item &i) {
   5.245 +      int idx = _iim[i];
   5.246 +      _iim[_data[idx].item] = -2;
   5.247 +      unlace(idx);
   5.248 +      relocate_last(idx);
   5.249 +    }
   5.250 +
   5.251 +
   5.252 +    /// \brief Returns the priority of \c i.
   5.253 +    ///
   5.254 +    /// This function returns the priority of item \c i.
   5.255 +    /// \pre \c i must be in the heap.
   5.256 +    /// \param i The item.
   5.257 +    Prio operator[](const Item &i) const {
   5.258 +      int idx = _iim[i];
   5.259 +      return _data[idx].value;
   5.260 +    }
   5.261 +
   5.262 +    /// \brief \c i gets to the heap with priority \c p independently
   5.263 +    /// if \c i was already there.
   5.264 +    ///
   5.265 +    /// This method calls \ref push(\c i, \c p) if \c i is not stored
   5.266 +    /// in the heap and sets the priority of \c i to \c p otherwise.
   5.267 +    /// \param i The item.
   5.268 +    /// \param p The priority.
   5.269 +    void set(const Item &i, const Prio &p) {
   5.270 +      int idx = _iim[i];
   5.271 +      if (idx < 0) {
   5.272 +        push(i, p);
   5.273 +      } else if (Direction::less(p, _data[idx].value)) {
   5.274 +        decrease(i, p);
   5.275 +      } else {
   5.276 +        increase(i, p);
   5.277 +      }
   5.278 +    }
   5.279 +
   5.280 +    /// \brief Decreases the priority of \c i to \c p.
   5.281 +    ///
   5.282 +    /// This method decreases the priority of item \c i to \c p.
   5.283 +    /// \pre \c i must be stored in the heap with priority at least \c
   5.284 +    /// p relative to \c Compare.
   5.285 +    /// \param i The item.
   5.286 +    /// \param p The priority.
   5.287 +    void decrease(const Item &i, const Prio &p) {
   5.288 +      int idx = _iim[i];
   5.289 +      unlace(idx);
   5.290 +      _data[idx].value = p;
   5.291 +      if (Direction::less(p, _minimum)) {
   5.292 +        _minimum = p;
   5.293 +      }
   5.294 +      lace(idx);
   5.295 +    }
   5.296 +
   5.297 +    /// \brief Increases the priority of \c i to \c p.
   5.298 +    ///
   5.299 +    /// This method sets the priority of item \c i to \c p.
   5.300 +    /// \pre \c i must be stored in the heap with priority at most \c
   5.301 +    /// p relative to \c Compare.
   5.302 +    /// \param i The item.
   5.303 +    /// \param p The priority.
   5.304 +    void increase(const Item &i, const Prio &p) {
   5.305 +      int idx = _iim[i];
   5.306 +      unlace(idx);
   5.307 +      _data[idx].value = p;
   5.308 +      lace(idx);
   5.309 +    }
   5.310 +
   5.311 +    /// \brief Returns if \c item is in, has already been in, or has
   5.312 +    /// never been in the heap.
   5.313 +    ///
   5.314 +    /// This method returns PRE_HEAP if \c item has never been in the
   5.315 +    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   5.316 +    /// otherwise. In the latter case it is possible that \c item will
   5.317 +    /// get back to the heap again.
   5.318 +    /// \param i The item.
   5.319 +    State state(const Item &i) const {
   5.320 +      int idx = _iim[i];
   5.321 +      if (idx >= 0) idx = 0;
   5.322 +      return State(idx);
   5.323 +    }
   5.324 +
   5.325 +    /// \brief Sets the state of the \c item in the heap.
   5.326 +    ///
   5.327 +    /// Sets the state of the \c item in the heap. It can be used to
   5.328 +    /// manually clear the heap when it is important to achive the
   5.329 +    /// better time complexity.
   5.330 +    /// \param i The item.
   5.331 +    /// \param st The state. It should not be \c IN_HEAP.
   5.332 +    void state(const Item& i, State st) {
   5.333 +      switch (st) {
   5.334 +      case POST_HEAP:
   5.335 +      case PRE_HEAP:
   5.336 +        if (state(i) == IN_HEAP) {
   5.337 +          erase(i);
   5.338 +        }
   5.339 +        _iim[i] = st;
   5.340 +        break;
   5.341 +      case IN_HEAP:
   5.342 +        break;
   5.343 +      }
   5.344 +    }
   5.345 +
   5.346 +  private:
   5.347 +
   5.348 +    struct BucketItem {
   5.349 +      BucketItem(const Item& _item, int _value)
   5.350 +        : item(_item), value(_value) {}
   5.351 +
   5.352 +      Item item;
   5.353 +      int value;
   5.354 +
   5.355 +      int prev, next;
   5.356 +    };
   5.357 +
   5.358 +    ItemIntMap& _iim;
   5.359 +    std::vector<int> _first;
   5.360 +    std::vector<BucketItem> _data;
   5.361 +    mutable int _minimum;
   5.362 +
   5.363 +  }; // class BucketHeap
   5.364 +
   5.365 +  /// \ingroup auxdat
   5.366 +  ///
   5.367 +  /// \brief A Simplified Bucket Heap implementation.
   5.368 +  ///
   5.369 +  /// This class implements a simplified \e bucket \e heap data
   5.370 +  /// structure.  It does not provide some functionality but it faster
   5.371 +  /// and simplier data structure than the BucketHeap. The main
   5.372 +  /// difference is that the BucketHeap stores for every key a double
   5.373 +  /// linked list while this class stores just simple lists. In the
   5.374 +  /// other way it does not support erasing each elements just the
   5.375 +  /// minimal and it does not supports key increasing, decreasing.
   5.376 +  ///
   5.377 +  /// \param IM A read and write Item int map, used internally
   5.378 +  /// to handle the cross references.
   5.379 +  /// \param MIN If the given parameter is false then instead of the
   5.380 +  /// minimum value the maximum can be retrivied with the top() and
   5.381 +  /// prio() member functions.
   5.382 +  ///
   5.383 +  /// \sa BucketHeap
   5.384 +  template <typename IM, bool MIN = true >
   5.385 +  class SimpleBucketHeap {
   5.386 +
   5.387 +  public:
   5.388 +    typedef typename IM::Key Item;
   5.389 +    typedef int Prio;
   5.390 +    typedef std::pair<Item, Prio> Pair;
   5.391 +    typedef IM ItemIntMap;
   5.392 +
   5.393 +  private:
   5.394 +
   5.395 +    typedef _bucket_heap_bits::DirectionTraits<MIN> Direction;
   5.396 +
   5.397 +  public:
   5.398 +
   5.399 +    /// \brief Type to represent the items states.
   5.400 +    ///
   5.401 +    /// Each Item element have a state associated to it. It may be "in heap",
   5.402 +    /// "pre heap" or "post heap". The latter two are indifferent from the
   5.403 +    /// heap's point of view, but may be useful to the user.
   5.404 +    ///
   5.405 +    /// The item-int map must be initialized in such way that it assigns
   5.406 +    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
   5.407 +    enum State {
   5.408 +      IN_HEAP = 0,    ///< = 0.
   5.409 +      PRE_HEAP = -1,  ///< = -1.
   5.410 +      POST_HEAP = -2  ///< = -2.
   5.411 +    };
   5.412 +
   5.413 +  public:
   5.414 +
   5.415 +    /// \brief The constructor.
   5.416 +    ///
   5.417 +    /// The constructor.
   5.418 +    /// \param map should be given to the constructor, since it is used
   5.419 +    /// internally to handle the cross references. The value of the map
   5.420 +    /// should be PRE_HEAP (-1) for each element.
   5.421 +    explicit SimpleBucketHeap(ItemIntMap &map)
   5.422 +      : _iim(map), _free(-1), _num(0), _minimum(0) {}
   5.423 +
   5.424 +    /// \brief Returns the number of items stored in the heap.
   5.425 +    ///
   5.426 +    /// The number of items stored in the heap.
   5.427 +    int size() const { return _num; }
   5.428 +
   5.429 +    /// \brief Checks if the heap stores no items.
   5.430 +    ///
   5.431 +    /// Returns \c true if and only if the heap stores no items.
   5.432 +    bool empty() const { return _num == 0; }
   5.433 +
   5.434 +    /// \brief Make empty this heap.
   5.435 +    ///
   5.436 +    /// Make empty this heap. It does not change the cross reference
   5.437 +    /// map.  If you want to reuse a heap what is not surely empty you
   5.438 +    /// should first clear the heap and after that you should set the
   5.439 +    /// cross reference map for each item to \c PRE_HEAP.
   5.440 +    void clear() {
   5.441 +      _data.clear(); _first.clear(); _free = -1; _num = 0; _minimum = 0;
   5.442 +    }
   5.443 +
   5.444 +    /// \brief Insert a pair of item and priority into the heap.
   5.445 +    ///
   5.446 +    /// Adds \c p.first to the heap with priority \c p.second.
   5.447 +    /// \param p The pair to insert.
   5.448 +    void push(const Pair& p) {
   5.449 +      push(p.first, p.second);
   5.450 +    }
   5.451 +
   5.452 +    /// \brief Insert an item into the heap with the given priority.
   5.453 +    ///
   5.454 +    /// Adds \c i to the heap with priority \c p.
   5.455 +    /// \param i The item to insert.
   5.456 +    /// \param p The priority of the item.
   5.457 +    void push(const Item &i, const Prio &p) {
   5.458 +      int idx;
   5.459 +      if (_free == -1) {
   5.460 +        idx = _data.size();
   5.461 +        _data.push_back(BucketItem(i));
   5.462 +      } else {
   5.463 +        idx = _free;
   5.464 +        _free = _data[idx].next;
   5.465 +        _data[idx].item = i;
   5.466 +      }
   5.467 +      _iim[i] = idx;
   5.468 +      if (p >= int(_first.size())) _first.resize(p + 1, -1);
   5.469 +      _data[idx].next = _first[p];
   5.470 +      _first[p] = idx;
   5.471 +      if (Direction::less(p, _minimum)) {
   5.472 +        _minimum = p;
   5.473 +      }
   5.474 +      ++_num;
   5.475 +    }
   5.476 +
   5.477 +    /// \brief Returns the item with minimum priority.
   5.478 +    ///
   5.479 +    /// This method returns the item with minimum priority.
   5.480 +    /// \pre The heap must be nonempty.
   5.481 +    Item top() const {
   5.482 +      while (_first[_minimum] == -1) {
   5.483 +        Direction::increase(_minimum);
   5.484 +      }
   5.485 +      return _data[_first[_minimum]].item;
   5.486 +    }
   5.487 +
   5.488 +    /// \brief Returns the minimum priority.
   5.489 +    ///
   5.490 +    /// It returns the minimum priority.
   5.491 +    /// \pre The heap must be nonempty.
   5.492 +    Prio prio() const {
   5.493 +      while (_first[_minimum] == -1) {
   5.494 +        Direction::increase(_minimum);
   5.495 +      }
   5.496 +      return _minimum;
   5.497 +    }
   5.498 +
   5.499 +    /// \brief Deletes the item with minimum priority.
   5.500 +    ///
   5.501 +    /// This method deletes the item with minimum priority from the heap.
   5.502 +    /// \pre The heap must be non-empty.
   5.503 +    void pop() {
   5.504 +      while (_first[_minimum] == -1) {
   5.505 +        Direction::increase(_minimum);
   5.506 +      }
   5.507 +      int idx = _first[_minimum];
   5.508 +      _iim[_data[idx].item] = -2;
   5.509 +      _first[_minimum] = _data[idx].next;
   5.510 +      _data[idx].next = _free;
   5.511 +      _free = idx;
   5.512 +      --_num;
   5.513 +    }
   5.514 +
   5.515 +    /// \brief Returns the priority of \c i.
   5.516 +    ///
   5.517 +    /// This function returns the priority of item \c i.
   5.518 +    /// \warning This operator is not a constant time function
   5.519 +    /// because it scans the whole data structure to find the proper
   5.520 +    /// value.
   5.521 +    /// \pre \c i must be in the heap.
   5.522 +    /// \param i The item.
   5.523 +    Prio operator[](const Item &i) const {
   5.524 +      for (int k = 0; k < _first.size(); ++k) {
   5.525 +        int idx = _first[k];
   5.526 +        while (idx != -1) {
   5.527 +          if (_data[idx].item == i) {
   5.528 +            return k;
   5.529 +          }
   5.530 +          idx = _data[idx].next;
   5.531 +        }
   5.532 +      }
   5.533 +      return -1;
   5.534 +    }
   5.535 +
   5.536 +    /// \brief Returns if \c item is in, has already been in, or has
   5.537 +    /// never been in the heap.
   5.538 +    ///
   5.539 +    /// This method returns PRE_HEAP if \c item has never been in the
   5.540 +    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   5.541 +    /// otherwise. In the latter case it is possible that \c item will
   5.542 +    /// get back to the heap again.
   5.543 +    /// \param i The item.
   5.544 +    State state(const Item &i) const {
   5.545 +      int idx = _iim[i];
   5.546 +      if (idx >= 0) idx = 0;
   5.547 +      return State(idx);
   5.548 +    }
   5.549 +
   5.550 +  private:
   5.551 +
   5.552 +    struct BucketItem {
   5.553 +      BucketItem(const Item& _item)
   5.554 +        : item(_item) {}
   5.555 +
   5.556 +      Item item;
   5.557 +      int next;
   5.558 +    };
   5.559 +
   5.560 +    ItemIntMap& _iim;
   5.561 +    std::vector<int> _first;
   5.562 +    std::vector<BucketItem> _data;
   5.563 +    int _free, _num;
   5.564 +    mutable int _minimum;
   5.565 +
   5.566 +  }; // class SimpleBucketHeap
   5.567 +
   5.568 +}
   5.569 +
   5.570 +#endif
     6.1 --- a/lemon/concepts/maps.h	Tue Apr 12 07:46:34 2011 +0200
     6.2 +++ b/lemon/concepts/maps.h	Wed Jul 13 14:40:05 2011 +0200
     6.3 @@ -182,7 +182,8 @@
     6.4  
     6.5        template<typename _ReferenceMap>
     6.6        struct Constraints {
     6.7 -        void constraints() {
     6.8 +        typename enable_if<typename _ReferenceMap::ReferenceMapTag, void>::type
     6.9 +        constraints() {
    6.10            checkConcept<ReadWriteMap<K, T>, _ReferenceMap >();
    6.11            ref = m[key];
    6.12            m[key] = val;
     7.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     7.2 +++ b/lemon/fib_heap.h	Wed Jul 13 14:40:05 2011 +0200
     7.3 @@ -0,0 +1,468 @@
     7.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     7.5 + *
     7.6 + * This file is a part of LEMON, a generic C++ optimization library.
     7.7 + *
     7.8 + * Copyright (C) 2003-2009
     7.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    7.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    7.11 + *
    7.12 + * Permission to use, modify and distribute this software is granted
    7.13 + * provided that this copyright notice appears in all copies. For
    7.14 + * precise terms see the accompanying LICENSE file.
    7.15 + *
    7.16 + * This software is provided "AS IS" with no warranty of any kind,
    7.17 + * express or implied, and with no claim as to its suitability for any
    7.18 + * purpose.
    7.19 + *
    7.20 + */
    7.21 +
    7.22 +#ifndef LEMON_FIB_HEAP_H
    7.23 +#define LEMON_FIB_HEAP_H
    7.24 +
    7.25 +///\file
    7.26 +///\ingroup auxdat
    7.27 +///\brief Fibonacci Heap implementation.
    7.28 +
    7.29 +#include <vector>
    7.30 +#include <functional>
    7.31 +#include <lemon/math.h>
    7.32 +
    7.33 +namespace lemon {
    7.34 +
    7.35 +  /// \ingroup auxdat
    7.36 +  ///
    7.37 +  ///\brief Fibonacci Heap.
    7.38 +  ///
    7.39 +  ///This class implements the \e Fibonacci \e heap data structure. A \e heap
    7.40 +  ///is a data structure for storing items with specified values called \e
    7.41 +  ///priorities in such a way that finding the item with minimum priority is
    7.42 +  ///efficient. \c CMP specifies the ordering of the priorities. In a heap
    7.43 +  ///one can change the priority of an item, add or erase an item, etc.
    7.44 +  ///
    7.45 +  ///The methods \ref increase and \ref erase are not efficient in a Fibonacci
    7.46 +  ///heap. In case of many calls to these operations, it is better to use a
    7.47 +  ///\ref BinHeap "binary heap".
    7.48 +  ///
    7.49 +  ///\param PRIO Type of the priority of the items.
    7.50 +  ///\param IM A read and writable Item int map, used internally
    7.51 +  ///to handle the cross references.
    7.52 +  ///\param CMP A class for the ordering of the priorities. The
    7.53 +  ///default is \c std::less<PRIO>.
    7.54 +  ///
    7.55 +  ///\sa BinHeap
    7.56 +  ///\sa Dijkstra
    7.57 +#ifdef DOXYGEN
    7.58 +  template <typename PRIO, typename IM, typename CMP>
    7.59 +#else
    7.60 +  template <typename PRIO, typename IM, typename CMP = std::less<PRIO> >
    7.61 +#endif
    7.62 +  class FibHeap {
    7.63 +  public:
    7.64 +    ///\e
    7.65 +    typedef IM ItemIntMap;
    7.66 +    ///\e
    7.67 +    typedef PRIO Prio;
    7.68 +    ///\e
    7.69 +    typedef typename ItemIntMap::Key Item;
    7.70 +    ///\e
    7.71 +    typedef std::pair<Item,Prio> Pair;
    7.72 +    ///\e
    7.73 +    typedef CMP Compare;
    7.74 +
    7.75 +  private:
    7.76 +    class Store;
    7.77 +
    7.78 +    std::vector<Store> _data;
    7.79 +    int _minimum;
    7.80 +    ItemIntMap &_iim;
    7.81 +    Compare _comp;
    7.82 +    int _num;
    7.83 +
    7.84 +  public:
    7.85 +
    7.86 +    /// \brief Type to represent the items states.
    7.87 +    ///
    7.88 +    /// Each Item element have a state associated to it. It may be "in heap",
    7.89 +    /// "pre heap" or "post heap". The latter two are indifferent from the
    7.90 +    /// heap's point of view, but may be useful to the user.
    7.91 +    ///
    7.92 +    /// The item-int map must be initialized in such way that it assigns
    7.93 +    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
    7.94 +    enum State {
    7.95 +      IN_HEAP = 0,    ///< = 0.
    7.96 +      PRE_HEAP = -1,  ///< = -1.
    7.97 +      POST_HEAP = -2  ///< = -2.
    7.98 +    };
    7.99 +
   7.100 +    /// \brief The constructor
   7.101 +    ///
   7.102 +    /// \c map should be given to the constructor, since it is
   7.103 +    ///   used internally to handle the cross references.
   7.104 +    explicit FibHeap(ItemIntMap &map)
   7.105 +      : _minimum(0), _iim(map), _num() {}
   7.106 +
   7.107 +    /// \brief The constructor
   7.108 +    ///
   7.109 +    /// \c map should be given to the constructor, since it is used
   7.110 +    /// internally to handle the cross references. \c comp is an
   7.111 +    /// object for ordering of the priorities.
   7.112 +    FibHeap(ItemIntMap &map, const Compare &comp)
   7.113 +      : _minimum(0), _iim(map), _comp(comp), _num() {}
   7.114 +
   7.115 +    /// \brief The number of items stored in the heap.
   7.116 +    ///
   7.117 +    /// Returns the number of items stored in the heap.
   7.118 +    int size() const { return _num; }
   7.119 +
   7.120 +    /// \brief Checks if the heap stores no items.
   7.121 +    ///
   7.122 +    ///   Returns \c true if and only if the heap stores no items.
   7.123 +    bool empty() const { return _num==0; }
   7.124 +
   7.125 +    /// \brief Make empty this heap.
   7.126 +    ///
   7.127 +    /// Make empty this heap. It does not change the cross reference
   7.128 +    /// map.  If you want to reuse a heap what is not surely empty you
   7.129 +    /// should first clear the heap and after that you should set the
   7.130 +    /// cross reference map for each item to \c PRE_HEAP.
   7.131 +    void clear() {
   7.132 +      _data.clear(); _minimum = 0; _num = 0;
   7.133 +    }
   7.134 +
   7.135 +    /// \brief \c item gets to the heap with priority \c value independently
   7.136 +    /// if \c item was already there.
   7.137 +    ///
   7.138 +    /// This method calls \ref push(\c item, \c value) if \c item is not
   7.139 +    /// stored in the heap and it calls \ref decrease(\c item, \c value) or
   7.140 +    /// \ref increase(\c item, \c value) otherwise.
   7.141 +    void set (const Item& item, const Prio& value) {
   7.142 +      int i=_iim[item];
   7.143 +      if ( i >= 0 && _data[i].in ) {
   7.144 +        if ( _comp(value, _data[i].prio) ) decrease(item, value);
   7.145 +        if ( _comp(_data[i].prio, value) ) increase(item, value);
   7.146 +      } else push(item, value);
   7.147 +    }
   7.148 +
   7.149 +    /// \brief Adds \c item to the heap with priority \c value.
   7.150 +    ///
   7.151 +    /// Adds \c item to the heap with priority \c value.
   7.152 +    /// \pre \c item must not be stored in the heap.
   7.153 +    void push (const Item& item, const Prio& value) {
   7.154 +      int i=_iim[item];
   7.155 +      if ( i < 0 ) {
   7.156 +        int s=_data.size();
   7.157 +        _iim.set( item, s );
   7.158 +        Store st;
   7.159 +        st.name=item;
   7.160 +        _data.push_back(st);
   7.161 +        i=s;
   7.162 +      } else {
   7.163 +        _data[i].parent=_data[i].child=-1;
   7.164 +        _data[i].degree=0;
   7.165 +        _data[i].in=true;
   7.166 +        _data[i].marked=false;
   7.167 +      }
   7.168 +
   7.169 +      if ( _num ) {
   7.170 +        _data[_data[_minimum].right_neighbor].left_neighbor=i;
   7.171 +        _data[i].right_neighbor=_data[_minimum].right_neighbor;
   7.172 +        _data[_minimum].right_neighbor=i;
   7.173 +        _data[i].left_neighbor=_minimum;
   7.174 +        if ( _comp( value, _data[_minimum].prio) ) _minimum=i;
   7.175 +      } else {
   7.176 +        _data[i].right_neighbor=_data[i].left_neighbor=i;
   7.177 +        _minimum=i;
   7.178 +      }
   7.179 +      _data[i].prio=value;
   7.180 +      ++_num;
   7.181 +    }
   7.182 +
   7.183 +    /// \brief Returns the item with minimum priority relative to \c Compare.
   7.184 +    ///
   7.185 +    /// This method returns the item with minimum priority relative to \c
   7.186 +    /// Compare.
   7.187 +    /// \pre The heap must be nonempty.
   7.188 +    Item top() const { return _data[_minimum].name; }
   7.189 +
   7.190 +    /// \brief Returns the minimum priority relative to \c Compare.
   7.191 +    ///
   7.192 +    /// It returns the minimum priority relative to \c Compare.
   7.193 +    /// \pre The heap must be nonempty.
   7.194 +    const Prio& prio() const { return _data[_minimum].prio; }
   7.195 +
   7.196 +    /// \brief Returns the priority of \c item.
   7.197 +    ///
   7.198 +    /// It returns the priority of \c item.
   7.199 +    /// \pre \c item must be in the heap.
   7.200 +    const Prio& operator[](const Item& item) const {
   7.201 +      return _data[_iim[item]].prio;
   7.202 +    }
   7.203 +
   7.204 +    /// \brief Deletes the item with minimum priority relative to \c Compare.
   7.205 +    ///
   7.206 +    /// This method deletes the item with minimum priority relative to \c
   7.207 +    /// Compare from the heap.
   7.208 +    /// \pre The heap must be non-empty.
   7.209 +    void pop() {
   7.210 +      /*The first case is that there are only one root.*/
   7.211 +      if ( _data[_minimum].left_neighbor==_minimum ) {
   7.212 +        _data[_minimum].in=false;
   7.213 +        if ( _data[_minimum].degree!=0 ) {
   7.214 +          makeroot(_data[_minimum].child);
   7.215 +          _minimum=_data[_minimum].child;
   7.216 +          balance();
   7.217 +        }
   7.218 +      } else {
   7.219 +        int right=_data[_minimum].right_neighbor;
   7.220 +        unlace(_minimum);
   7.221 +        _data[_minimum].in=false;
   7.222 +        if ( _data[_minimum].degree > 0 ) {
   7.223 +          int left=_data[_minimum].left_neighbor;
   7.224 +          int child=_data[_minimum].child;
   7.225 +          int last_child=_data[child].left_neighbor;
   7.226 +
   7.227 +          makeroot(child);
   7.228 +
   7.229 +          _data[left].right_neighbor=child;
   7.230 +          _data[child].left_neighbor=left;
   7.231 +          _data[right].left_neighbor=last_child;
   7.232 +          _data[last_child].right_neighbor=right;
   7.233 +        }
   7.234 +        _minimum=right;
   7.235 +        balance();
   7.236 +      } // the case where there are more roots
   7.237 +      --_num;
   7.238 +    }
   7.239 +
   7.240 +    /// \brief Deletes \c item from the heap.
   7.241 +    ///
   7.242 +    /// This method deletes \c item from the heap, if \c item was already
   7.243 +    /// stored in the heap. It is quite inefficient in Fibonacci heaps.
   7.244 +    void erase (const Item& item) {
   7.245 +      int i=_iim[item];
   7.246 +
   7.247 +      if ( i >= 0 && _data[i].in ) {
   7.248 +        if ( _data[i].parent!=-1 ) {
   7.249 +          int p=_data[i].parent;
   7.250 +          cut(i,p);
   7.251 +          cascade(p);
   7.252 +        }
   7.253 +        _minimum=i;     //As if its prio would be -infinity
   7.254 +        pop();
   7.255 +      }
   7.256 +    }
   7.257 +
   7.258 +    /// \brief Decreases the priority of \c item to \c value.
   7.259 +    ///
   7.260 +    /// This method decreases the priority of \c item to \c value.
   7.261 +    /// \pre \c item must be stored in the heap with priority at least \c
   7.262 +    ///   value relative to \c Compare.
   7.263 +    void decrease (Item item, const Prio& value) {
   7.264 +      int i=_iim[item];
   7.265 +      _data[i].prio=value;
   7.266 +      int p=_data[i].parent;
   7.267 +
   7.268 +      if ( p!=-1 && _comp(value, _data[p].prio) ) {
   7.269 +        cut(i,p);
   7.270 +        cascade(p);
   7.271 +      }
   7.272 +      if ( _comp(value, _data[_minimum].prio) ) _minimum=i;
   7.273 +    }
   7.274 +
   7.275 +    /// \brief Increases the priority of \c item to \c value.
   7.276 +    ///
   7.277 +    /// This method sets the priority of \c item to \c value. Though
   7.278 +    /// there is no precondition on the priority of \c item, this
   7.279 +    /// method should be used only if it is indeed necessary to increase
   7.280 +    /// (relative to \c Compare) the priority of \c item, because this
   7.281 +    /// method is inefficient.
   7.282 +    void increase (Item item, const Prio& value) {
   7.283 +      erase(item);
   7.284 +      push(item, value);
   7.285 +    }
   7.286 +
   7.287 +
   7.288 +    /// \brief Returns if \c item is in, has already been in, or has never
   7.289 +    /// been in the heap.
   7.290 +    ///
   7.291 +    /// This method returns PRE_HEAP if \c item has never been in the
   7.292 +    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   7.293 +    /// otherwise. In the latter case it is possible that \c item will
   7.294 +    /// get back to the heap again.
   7.295 +    State state(const Item &item) const {
   7.296 +      int i=_iim[item];
   7.297 +      if( i>=0 ) {
   7.298 +        if ( _data[i].in ) i=0;
   7.299 +        else i=-2;
   7.300 +      }
   7.301 +      return State(i);
   7.302 +    }
   7.303 +
   7.304 +    /// \brief Sets the state of the \c item in the heap.
   7.305 +    ///
   7.306 +    /// Sets the state of the \c item in the heap. It can be used to
   7.307 +    /// manually clear the heap when it is important to achive the
   7.308 +    /// better time _complexity.
   7.309 +    /// \param i The item.
   7.310 +    /// \param st The state. It should not be \c IN_HEAP.
   7.311 +    void state(const Item& i, State st) {
   7.312 +      switch (st) {
   7.313 +      case POST_HEAP:
   7.314 +      case PRE_HEAP:
   7.315 +        if (state(i) == IN_HEAP) {
   7.316 +          erase(i);
   7.317 +        }
   7.318 +        _iim[i] = st;
   7.319 +        break;
   7.320 +      case IN_HEAP:
   7.321 +        break;
   7.322 +      }
   7.323 +    }
   7.324 +
   7.325 +  private:
   7.326 +
   7.327 +    void balance() {
   7.328 +
   7.329 +      int maxdeg=int( std::floor( 2.08*log(double(_data.size()))))+1;
   7.330 +
   7.331 +      std::vector<int> A(maxdeg,-1);
   7.332 +
   7.333 +      /*
   7.334 +       *Recall that now minimum does not point to the minimum prio element.
   7.335 +       *We set minimum to this during balance().
   7.336 +       */
   7.337 +      int anchor=_data[_minimum].left_neighbor;
   7.338 +      int next=_minimum;
   7.339 +      bool end=false;
   7.340 +
   7.341 +      do {
   7.342 +        int active=next;
   7.343 +        if ( anchor==active ) end=true;
   7.344 +        int d=_data[active].degree;
   7.345 +        next=_data[active].right_neighbor;
   7.346 +
   7.347 +        while (A[d]!=-1) {
   7.348 +          if( _comp(_data[active].prio, _data[A[d]].prio) ) {
   7.349 +            fuse(active,A[d]);
   7.350 +          } else {
   7.351 +            fuse(A[d],active);
   7.352 +            active=A[d];
   7.353 +          }
   7.354 +          A[d]=-1;
   7.355 +          ++d;
   7.356 +        }
   7.357 +        A[d]=active;
   7.358 +      } while ( !end );
   7.359 +
   7.360 +
   7.361 +      while ( _data[_minimum].parent >=0 )
   7.362 +        _minimum=_data[_minimum].parent;
   7.363 +      int s=_minimum;
   7.364 +      int m=_minimum;
   7.365 +      do {
   7.366 +        if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s;
   7.367 +        s=_data[s].right_neighbor;
   7.368 +      } while ( s != m );
   7.369 +    }
   7.370 +
   7.371 +    void makeroot(int c) {
   7.372 +      int s=c;
   7.373 +      do {
   7.374 +        _data[s].parent=-1;
   7.375 +        s=_data[s].right_neighbor;
   7.376 +      } while ( s != c );
   7.377 +    }
   7.378 +
   7.379 +    void cut(int a, int b) {
   7.380 +      /*
   7.381 +       *Replacing a from the children of b.
   7.382 +       */
   7.383 +      --_data[b].degree;
   7.384 +
   7.385 +      if ( _data[b].degree !=0 ) {
   7.386 +        int child=_data[b].child;
   7.387 +        if ( child==a )
   7.388 +          _data[b].child=_data[child].right_neighbor;
   7.389 +        unlace(a);
   7.390 +      }
   7.391 +
   7.392 +
   7.393 +      /*Lacing a to the roots.*/
   7.394 +      int right=_data[_minimum].right_neighbor;
   7.395 +      _data[_minimum].right_neighbor=a;
   7.396 +      _data[a].left_neighbor=_minimum;
   7.397 +      _data[a].right_neighbor=right;
   7.398 +      _data[right].left_neighbor=a;
   7.399 +
   7.400 +      _data[a].parent=-1;
   7.401 +      _data[a].marked=false;
   7.402 +    }
   7.403 +
   7.404 +    void cascade(int a) {
   7.405 +      if ( _data[a].parent!=-1 ) {
   7.406 +        int p=_data[a].parent;
   7.407 +
   7.408 +        if ( _data[a].marked==false ) _data[a].marked=true;
   7.409 +        else {
   7.410 +          cut(a,p);
   7.411 +          cascade(p);
   7.412 +        }
   7.413 +      }
   7.414 +    }
   7.415 +
   7.416 +    void fuse(int a, int b) {
   7.417 +      unlace(b);
   7.418 +
   7.419 +      /*Lacing b under a.*/
   7.420 +      _data[b].parent=a;
   7.421 +
   7.422 +      if (_data[a].degree==0) {
   7.423 +        _data[b].left_neighbor=b;
   7.424 +        _data[b].right_neighbor=b;
   7.425 +        _data[a].child=b;
   7.426 +      } else {
   7.427 +        int child=_data[a].child;
   7.428 +        int last_child=_data[child].left_neighbor;
   7.429 +        _data[child].left_neighbor=b;
   7.430 +        _data[b].right_neighbor=child;
   7.431 +        _data[last_child].right_neighbor=b;
   7.432 +        _data[b].left_neighbor=last_child;
   7.433 +      }
   7.434 +
   7.435 +      ++_data[a].degree;
   7.436 +
   7.437 +      _data[b].marked=false;
   7.438 +    }
   7.439 +
   7.440 +    /*
   7.441 +     *It is invoked only if a has siblings.
   7.442 +     */
   7.443 +    void unlace(int a) {
   7.444 +      int leftn=_data[a].left_neighbor;
   7.445 +      int rightn=_data[a].right_neighbor;
   7.446 +      _data[leftn].right_neighbor=rightn;
   7.447 +      _data[rightn].left_neighbor=leftn;
   7.448 +    }
   7.449 +
   7.450 +
   7.451 +    class Store {
   7.452 +      friend class FibHeap;
   7.453 +
   7.454 +      Item name;
   7.455 +      int parent;
   7.456 +      int left_neighbor;
   7.457 +      int right_neighbor;
   7.458 +      int child;
   7.459 +      int degree;
   7.460 +      bool marked;
   7.461 +      bool in;
   7.462 +      Prio prio;
   7.463 +
   7.464 +      Store() : parent(-1), child(-1), degree(), marked(false), in(true) {}
   7.465 +    };
   7.466 +  };
   7.467 +
   7.468 +} //namespace lemon
   7.469 +
   7.470 +#endif //LEMON_FIB_HEAP_H
   7.471 +
     8.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     8.2 +++ b/lemon/radix_heap.h	Wed Jul 13 14:40:05 2011 +0200
     8.3 @@ -0,0 +1,433 @@
     8.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     8.5 + *
     8.6 + * This file is a part of LEMON, a generic C++ optimization library.
     8.7 + *
     8.8 + * Copyright (C) 2003-2009
     8.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    8.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    8.11 + *
    8.12 + * Permission to use, modify and distribute this software is granted
    8.13 + * provided that this copyright notice appears in all copies. For
    8.14 + * precise terms see the accompanying LICENSE file.
    8.15 + *
    8.16 + * This software is provided "AS IS" with no warranty of any kind,
    8.17 + * express or implied, and with no claim as to its suitability for any
    8.18 + * purpose.
    8.19 + *
    8.20 + */
    8.21 +
    8.22 +#ifndef LEMON_RADIX_HEAP_H
    8.23 +#define LEMON_RADIX_HEAP_H
    8.24 +
    8.25 +///\ingroup auxdat
    8.26 +///\file
    8.27 +///\brief Radix Heap implementation.
    8.28 +
    8.29 +#include <vector>
    8.30 +#include <lemon/error.h>
    8.31 +
    8.32 +namespace lemon {
    8.33 +
    8.34 +
    8.35 +  /// \ingroup auxdata
    8.36 +  ///
    8.37 +  /// \brief A Radix Heap implementation.
    8.38 +  ///
    8.39 +  /// This class implements the \e radix \e heap data structure. A \e heap
    8.40 +  /// is a data structure for storing items with specified values called \e
    8.41 +  /// priorities in such a way that finding the item with minimum priority is
    8.42 +  /// efficient. This heap type can store only items with \e int priority.
    8.43 +  /// In a heap one can change the priority of an item, add or erase an
    8.44 +  /// item, but the priority cannot be decreased under the last removed
    8.45 +  /// item's priority.
    8.46 +  ///
    8.47 +  /// \param IM A read and writable Item int map, used internally
    8.48 +  /// to handle the cross references.
    8.49 +  ///
    8.50 +  /// \see BinHeap
    8.51 +  /// \see Dijkstra
    8.52 +  template <typename IM>
    8.53 +  class RadixHeap {
    8.54 +
    8.55 +  public:
    8.56 +    typedef typename IM::Key Item;
    8.57 +    typedef int Prio;
    8.58 +    typedef IM ItemIntMap;
    8.59 +
    8.60 +    /// \brief Exception thrown by RadixHeap.
    8.61 +    ///
    8.62 +    /// This Exception is thrown when a smaller priority
    8.63 +    /// is inserted into the \e RadixHeap then the last time erased.
    8.64 +    /// \see RadixHeap
    8.65 +
    8.66 +    class UnderFlowPriorityError : public Exception {
    8.67 +    public:
    8.68 +      virtual const char* what() const throw() {
    8.69 +        return "lemon::RadixHeap::UnderFlowPriorityError";
    8.70 +      }
    8.71 +    };
    8.72 +
    8.73 +    /// \brief Type to represent the items states.
    8.74 +    ///
    8.75 +    /// Each Item element have a state associated to it. It may be "in heap",
    8.76 +    /// "pre heap" or "post heap". The latter two are indifferent from the
    8.77 +    /// heap's point of view, but may be useful to the user.
    8.78 +    ///
    8.79 +    /// The ItemIntMap \e should be initialized in such way that it maps
    8.80 +    /// PRE_HEAP (-1) to any element to be put in the heap...
    8.81 +    enum State {
    8.82 +      IN_HEAP = 0,
    8.83 +      PRE_HEAP = -1,
    8.84 +      POST_HEAP = -2
    8.85 +    };
    8.86 +
    8.87 +  private:
    8.88 +
    8.89 +    struct RadixItem {
    8.90 +      int prev, next, box;
    8.91 +      Item item;
    8.92 +      int prio;
    8.93 +      RadixItem(Item _item, int _prio) : item(_item), prio(_prio) {}
    8.94 +    };
    8.95 +
    8.96 +    struct RadixBox {
    8.97 +      int first;
    8.98 +      int min, size;
    8.99 +      RadixBox(int _min, int _size) : first(-1), min(_min), size(_size) {}
   8.100 +    };
   8.101 +
   8.102 +    std::vector<RadixItem> data;
   8.103 +    std::vector<RadixBox> boxes;
   8.104 +
   8.105 +    ItemIntMap &_iim;
   8.106 +
   8.107 +
   8.108 +  public:
   8.109 +    /// \brief The constructor.
   8.110 +    ///
   8.111 +    /// The constructor.
   8.112 +    ///
   8.113 +    /// \param map It should be given to the constructor, since it is used
   8.114 +    /// internally to handle the cross references. The value of the map
   8.115 +    /// should be PRE_HEAP (-1) for each element.
   8.116 +    ///
   8.117 +    /// \param minimal The initial minimal value of the heap.
   8.118 +    /// \param capacity It determines the initial capacity of the heap.
   8.119 +    RadixHeap(ItemIntMap &map, int minimal = 0, int capacity = 0)
   8.120 +      : _iim(map) {
   8.121 +      boxes.push_back(RadixBox(minimal, 1));
   8.122 +      boxes.push_back(RadixBox(minimal + 1, 1));
   8.123 +      while (lower(boxes.size() - 1, capacity + minimal - 1)) {
   8.124 +        extend();
   8.125 +      }
   8.126 +    }
   8.127 +
   8.128 +    /// The number of items stored in the heap.
   8.129 +    ///
   8.130 +    /// \brief Returns the number of items stored in the heap.
   8.131 +    int size() const { return data.size(); }
   8.132 +    /// \brief Checks if the heap stores no items.
   8.133 +    ///
   8.134 +    /// Returns \c true if and only if the heap stores no items.
   8.135 +    bool empty() const { return data.empty(); }
   8.136 +
   8.137 +    /// \brief Make empty this heap.
   8.138 +    ///
   8.139 +    /// Make empty this heap. It does not change the cross reference
   8.140 +    /// map.  If you want to reuse a heap what is not surely empty you
   8.141 +    /// should first clear the heap and after that you should set the
   8.142 +    /// cross reference map for each item to \c PRE_HEAP.
   8.143 +    void clear(int minimal = 0, int capacity = 0) {
   8.144 +      data.clear(); boxes.clear();
   8.145 +      boxes.push_back(RadixBox(minimal, 1));
   8.146 +      boxes.push_back(RadixBox(minimal + 1, 1));
   8.147 +      while (lower(boxes.size() - 1, capacity + minimal - 1)) {
   8.148 +        extend();
   8.149 +      }
   8.150 +    }
   8.151 +
   8.152 +  private:
   8.153 +
   8.154 +    bool upper(int box, Prio pr) {
   8.155 +      return pr < boxes[box].min;
   8.156 +    }
   8.157 +
   8.158 +    bool lower(int box, Prio pr) {
   8.159 +      return pr >= boxes[box].min + boxes[box].size;
   8.160 +    }
   8.161 +
   8.162 +    /// \brief Remove item from the box list.
   8.163 +    void remove(int index) {
   8.164 +      if (data[index].prev >= 0) {
   8.165 +        data[data[index].prev].next = data[index].next;
   8.166 +      } else {
   8.167 +        boxes[data[index].box].first = data[index].next;
   8.168 +      }
   8.169 +      if (data[index].next >= 0) {
   8.170 +        data[data[index].next].prev = data[index].prev;
   8.171 +      }
   8.172 +    }
   8.173 +
   8.174 +    /// \brief Insert item into the box list.
   8.175 +    void insert(int box, int index) {
   8.176 +      if (boxes[box].first == -1) {
   8.177 +        boxes[box].first = index;
   8.178 +        data[index].next = data[index].prev = -1;
   8.179 +      } else {
   8.180 +        data[index].next = boxes[box].first;
   8.181 +        data[boxes[box].first].prev = index;
   8.182 +        data[index].prev = -1;
   8.183 +        boxes[box].first = index;
   8.184 +      }
   8.185 +      data[index].box = box;
   8.186 +    }
   8.187 +
   8.188 +    /// \brief Add a new box to the box list.
   8.189 +    void extend() {
   8.190 +      int min = boxes.back().min + boxes.back().size;
   8.191 +      int bs = 2 * boxes.back().size;
   8.192 +      boxes.push_back(RadixBox(min, bs));
   8.193 +    }
   8.194 +
   8.195 +    /// \brief Move an item up into the proper box.
   8.196 +    void bubble_up(int index) {
   8.197 +      if (!lower(data[index].box, data[index].prio)) return;
   8.198 +      remove(index);
   8.199 +      int box = findUp(data[index].box, data[index].prio);
   8.200 +      insert(box, index);
   8.201 +    }
   8.202 +
   8.203 +    /// \brief Find up the proper box for the item with the given prio.
   8.204 +    int findUp(int start, int pr) {
   8.205 +      while (lower(start, pr)) {
   8.206 +        if (++start == int(boxes.size())) {
   8.207 +          extend();
   8.208 +        }
   8.209 +      }
   8.210 +      return start;
   8.211 +    }
   8.212 +
   8.213 +    /// \brief Move an item down into the proper box.
   8.214 +    void bubble_down(int index) {
   8.215 +      if (!upper(data[index].box, data[index].prio)) return;
   8.216 +      remove(index);
   8.217 +      int box = findDown(data[index].box, data[index].prio);
   8.218 +      insert(box, index);
   8.219 +    }
   8.220 +
   8.221 +    /// \brief Find up the proper box for the item with the given prio.
   8.222 +    int findDown(int start, int pr) {
   8.223 +      while (upper(start, pr)) {
   8.224 +        if (--start < 0) throw UnderFlowPriorityError();
   8.225 +      }
   8.226 +      return start;
   8.227 +    }
   8.228 +
   8.229 +    /// \brief Find the first not empty box.
   8.230 +    int findFirst() {
   8.231 +      int first = 0;
   8.232 +      while (boxes[first].first == -1) ++first;
   8.233 +      return first;
   8.234 +    }
   8.235 +
   8.236 +    /// \brief Gives back the minimal prio of the box.
   8.237 +    int minValue(int box) {
   8.238 +      int min = data[boxes[box].first].prio;
   8.239 +      for (int k = boxes[box].first; k != -1; k = data[k].next) {
   8.240 +        if (data[k].prio < min) min = data[k].prio;
   8.241 +      }
   8.242 +      return min;
   8.243 +    }
   8.244 +
   8.245 +    /// \brief Rearrange the items of the heap and makes the
   8.246 +    /// first box not empty.
   8.247 +    void moveDown() {
   8.248 +      int box = findFirst();
   8.249 +      if (box == 0) return;
   8.250 +      int min = minValue(box);
   8.251 +      for (int i = 0; i <= box; ++i) {
   8.252 +        boxes[i].min = min;
   8.253 +        min += boxes[i].size;
   8.254 +      }
   8.255 +      int curr = boxes[box].first, next;
   8.256 +      while (curr != -1) {
   8.257 +        next = data[curr].next;
   8.258 +        bubble_down(curr);
   8.259 +        curr = next;
   8.260 +      }
   8.261 +    }
   8.262 +
   8.263 +    void relocate_last(int index) {
   8.264 +      if (index != int(data.size()) - 1) {
   8.265 +        data[index] = data.back();
   8.266 +        if (data[index].prev != -1) {
   8.267 +          data[data[index].prev].next = index;
   8.268 +        } else {
   8.269 +          boxes[data[index].box].first = index;
   8.270 +        }
   8.271 +        if (data[index].next != -1) {
   8.272 +          data[data[index].next].prev = index;
   8.273 +        }
   8.274 +        _iim[data[index].item] = index;
   8.275 +      }
   8.276 +      data.pop_back();
   8.277 +    }
   8.278 +
   8.279 +  public:
   8.280 +
   8.281 +    /// \brief Insert an item into the heap with the given priority.
   8.282 +    ///
   8.283 +    /// Adds \c i to the heap with priority \c p.
   8.284 +    /// \param i The item to insert.
   8.285 +    /// \param p The priority of the item.
   8.286 +    void push(const Item &i, const Prio &p) {
   8.287 +      int n = data.size();
   8.288 +      _iim.set(i, n);
   8.289 +      data.push_back(RadixItem(i, p));
   8.290 +      while (lower(boxes.size() - 1, p)) {
   8.291 +        extend();
   8.292 +      }
   8.293 +      int box = findDown(boxes.size() - 1, p);
   8.294 +      insert(box, n);
   8.295 +    }
   8.296 +
   8.297 +    /// \brief Returns the item with minimum priority.
   8.298 +    ///
   8.299 +    /// This method returns the item with minimum priority.
   8.300 +    /// \pre The heap must be nonempty.
   8.301 +    Item top() const {
   8.302 +      const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown();
   8.303 +      return data[boxes[0].first].item;
   8.304 +    }
   8.305 +
   8.306 +    /// \brief Returns the minimum priority.
   8.307 +    ///
   8.308 +    /// It returns the minimum priority.
   8.309 +    /// \pre The heap must be nonempty.
   8.310 +    Prio prio() const {
   8.311 +      const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown();
   8.312 +      return data[boxes[0].first].prio;
   8.313 +     }
   8.314 +
   8.315 +    /// \brief Deletes the item with minimum priority.
   8.316 +    ///
   8.317 +    /// This method deletes the item with minimum priority.
   8.318 +    /// \pre The heap must be non-empty.
   8.319 +    void pop() {
   8.320 +      moveDown();
   8.321 +      int index = boxes[0].first;
   8.322 +      _iim[data[index].item] = POST_HEAP;
   8.323 +      remove(index);
   8.324 +      relocate_last(index);
   8.325 +    }
   8.326 +
   8.327 +    /// \brief Deletes \c i from the heap.
   8.328 +    ///
   8.329 +    /// This method deletes item \c i from the heap, if \c i was
   8.330 +    /// already stored in the heap.
   8.331 +    /// \param i The item to erase.
   8.332 +    void erase(const Item &i) {
   8.333 +      int index = _iim[i];
   8.334 +      _iim[i] = POST_HEAP;
   8.335 +      remove(index);
   8.336 +      relocate_last(index);
   8.337 +   }
   8.338 +
   8.339 +    /// \brief Returns the priority of \c i.
   8.340 +    ///
   8.341 +    /// This function returns the priority of item \c i.
   8.342 +    /// \pre \c i must be in the heap.
   8.343 +    /// \param i The item.
   8.344 +    Prio operator[](const Item &i) const {
   8.345 +      int idx = _iim[i];
   8.346 +      return data[idx].prio;
   8.347 +    }
   8.348 +
   8.349 +    /// \brief \c i gets to the heap with priority \c p independently
   8.350 +    /// if \c i was already there.
   8.351 +    ///
   8.352 +    /// This method calls \ref push(\c i, \c p) if \c i is not stored
   8.353 +    /// in the heap and sets the priority of \c i to \c p otherwise.
   8.354 +    /// It may throw an \e UnderFlowPriorityException.
   8.355 +    /// \param i The item.
   8.356 +    /// \param p The priority.
   8.357 +    void set(const Item &i, const Prio &p) {
   8.358 +      int idx = _iim[i];
   8.359 +      if( idx < 0 ) {
   8.360 +        push(i, p);
   8.361 +      }
   8.362 +      else if( p >= data[idx].prio ) {
   8.363 +        data[idx].prio = p;
   8.364 +        bubble_up(idx);
   8.365 +      } else {
   8.366 +        data[idx].prio = p;
   8.367 +        bubble_down(idx);
   8.368 +      }
   8.369 +    }
   8.370 +
   8.371 +
   8.372 +    /// \brief Decreases the priority of \c i to \c p.
   8.373 +    ///
   8.374 +    /// This method decreases the priority of item \c i to \c p.
   8.375 +    /// \pre \c i must be stored in the heap with priority at least \c p, and
   8.376 +    /// \c should be greater or equal to the last removed item's priority.
   8.377 +    /// \param i The item.
   8.378 +    /// \param p The priority.
   8.379 +    void decrease(const Item &i, const Prio &p) {
   8.380 +      int idx = _iim[i];
   8.381 +      data[idx].prio = p;
   8.382 +      bubble_down(idx);
   8.383 +    }
   8.384 +
   8.385 +    /// \brief Increases the priority of \c i to \c p.
   8.386 +    ///
   8.387 +    /// This method sets the priority of item \c i to \c p.
   8.388 +    /// \pre \c i must be stored in the heap with priority at most \c p
   8.389 +    /// \param i The item.
   8.390 +    /// \param p The priority.
   8.391 +    void increase(const Item &i, const Prio &p) {
   8.392 +      int idx = _iim[i];
   8.393 +      data[idx].prio = p;
   8.394 +      bubble_up(idx);
   8.395 +    }
   8.396 +
   8.397 +    /// \brief Returns if \c item is in, has already been in, or has
   8.398 +    /// never been in the heap.
   8.399 +    ///
   8.400 +    /// This method returns PRE_HEAP if \c item has never been in the
   8.401 +    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   8.402 +    /// otherwise. In the latter case it is possible that \c item will
   8.403 +    /// get back to the heap again.
   8.404 +    /// \param i The item.
   8.405 +    State state(const Item &i) const {
   8.406 +      int s = _iim[i];
   8.407 +      if( s >= 0 ) s = 0;
   8.408 +      return State(s);
   8.409 +    }
   8.410 +
   8.411 +    /// \brief Sets the state of the \c item in the heap.
   8.412 +    ///
   8.413 +    /// Sets the state of the \c item in the heap. It can be used to
   8.414 +    /// manually clear the heap when it is important to achive the
   8.415 +    /// better time complexity.
   8.416 +    /// \param i The item.
   8.417 +    /// \param st The state. It should not be \c IN_HEAP.
   8.418 +    void state(const Item& i, State st) {
   8.419 +      switch (st) {
   8.420 +      case POST_HEAP:
   8.421 +      case PRE_HEAP:
   8.422 +        if (state(i) == IN_HEAP) {
   8.423 +          erase(i);
   8.424 +        }
   8.425 +        _iim[i] = st;
   8.426 +        break;
   8.427 +      case IN_HEAP:
   8.428 +        break;
   8.429 +      }
   8.430 +    }
   8.431 +
   8.432 +  }; // class RadixHeap
   8.433 +
   8.434 +} // namespace lemon
   8.435 +
   8.436 +#endif // LEMON_RADIX_HEAP_H
     9.1 --- a/test/CMakeLists.txt	Tue Apr 12 07:46:34 2011 +0200
     9.2 +++ b/test/CMakeLists.txt	Wed Jul 13 14:40:05 2011 +0200
     9.3 @@ -65,6 +65,7 @@
     9.4  
     9.5    TARGET_LINK_LIBRARIES(lp_test ${LP_TEST_LIBS})
     9.6    ADD_TEST(lp_test lp_test)
     9.7 +  ADD_DEPENDENCIES(check lp_test)
     9.8  
     9.9    IF(WIN32 AND LEMON_HAVE_GLPK)
    9.10      GET_TARGET_PROPERTY(TARGET_LOC lp_test LOCATION)
    9.11 @@ -106,6 +107,7 @@
    9.12  
    9.13    TARGET_LINK_LIBRARIES(mip_test ${MIP_TEST_LIBS})
    9.14    ADD_TEST(mip_test mip_test)
    9.15 +  ADD_DEPENDENCIES(check mip_test)
    9.16  
    9.17    IF(WIN32 AND LEMON_HAVE_GLPK)
    9.18      GET_TARGET_PROPERTY(TARGET_LOC mip_test LOCATION)
    10.1 --- a/test/heap_test.cc	Tue Apr 12 07:46:34 2011 +0200
    10.2 +++ b/test/heap_test.cc	Wed Jul 13 14:40:05 2011 +0200
    10.3 @@ -31,6 +31,9 @@
    10.4  #include <lemon/maps.h>
    10.5  
    10.6  #include <lemon/bin_heap.h>
    10.7 +#include <lemon/fib_heap.h>
    10.8 +#include <lemon/radix_heap.h>
    10.9 +#include <lemon/bucket_heap.h>
   10.10  
   10.11  #include "test_tools.h"
   10.12  
   10.13 @@ -183,5 +186,39 @@
   10.14      dijkstraHeapTest<NodeHeap>(digraph, length, source);
   10.15    }
   10.16  
   10.17 +  {
   10.18 +    typedef FibHeap<Prio, ItemIntMap> IntHeap;
   10.19 +    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
   10.20 +    heapSortTest<IntHeap>();
   10.21 +    heapIncreaseTest<IntHeap>();
   10.22 +
   10.23 +    typedef FibHeap<Prio, IntNodeMap > NodeHeap;
   10.24 +    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
   10.25 +    dijkstraHeapTest<NodeHeap>(digraph, length, source);
   10.26 +  }
   10.27 +
   10.28 +  {
   10.29 +    typedef RadixHeap<ItemIntMap> IntHeap;
   10.30 +    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
   10.31 +    heapSortTest<IntHeap>();
   10.32 +    heapIncreaseTest<IntHeap>();
   10.33 +
   10.34 +    typedef RadixHeap<IntNodeMap > NodeHeap;
   10.35 +    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
   10.36 +    dijkstraHeapTest<NodeHeap>(digraph, length, source);
   10.37 +  }
   10.38 +
   10.39 +  {
   10.40 +    typedef BucketHeap<ItemIntMap> IntHeap;
   10.41 +    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
   10.42 +    heapSortTest<IntHeap>();
   10.43 +    heapIncreaseTest<IntHeap>();
   10.44 +
   10.45 +    typedef BucketHeap<IntNodeMap > NodeHeap;
   10.46 +    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
   10.47 +    dijkstraHeapTest<NodeHeap>(digraph, length, source);
   10.48 +  }
   10.49 +
   10.50 +
   10.51    return 0;
   10.52  }