Rework the interface of NetworkSimplex (#234)
authorPeter Kovacs <kpeter@inf.elte.hu>
Wed, 25 Mar 2009 15:58:44 +0100
changeset 6525232721b3f14
parent 651 8c3112a66878
child 653 c7d160f73d52
Rework the interface of NetworkSimplex (#234)

The parameters of the problem can be set with separate functions
instead of different constructors.
lemon/network_simplex.h
test/min_cost_flow_test.cc
tools/dimacs-solver.cc
     1.1 --- a/lemon/network_simplex.h	Tue Mar 24 00:18:25 2009 +0100
     1.2 +++ b/lemon/network_simplex.h	Wed Mar 25 15:58:44 2009 +0100
     1.3 @@ -22,7 +22,7 @@
     1.4  /// \ingroup min_cost_flow
     1.5  ///
     1.6  /// \file
     1.7 -/// \brief Network simplex algorithm for finding a minimum cost flow.
     1.8 +/// \brief Network Simplex algorithm for finding a minimum cost flow.
     1.9  
    1.10  #include <vector>
    1.11  #include <limits>
    1.12 @@ -36,80 +36,89 @@
    1.13    /// \addtogroup min_cost_flow
    1.14    /// @{
    1.15  
    1.16 -  /// \brief Implementation of the primal network simplex algorithm
    1.17 +  /// \brief Implementation of the primal Network Simplex algorithm
    1.18    /// for finding a \ref min_cost_flow "minimum cost flow".
    1.19    ///
    1.20 -  /// \ref NetworkSimplex implements the primal network simplex algorithm
    1.21 +  /// \ref NetworkSimplex implements the primal Network Simplex algorithm
    1.22    /// for finding a \ref min_cost_flow "minimum cost flow".
    1.23    ///
    1.24 -  /// \tparam Digraph The digraph type the algorithm runs on.
    1.25 -  /// \tparam LowerMap The type of the lower bound map.
    1.26 -  /// \tparam CapacityMap The type of the capacity (upper bound) map.
    1.27 -  /// \tparam CostMap The type of the cost (length) map.
    1.28 -  /// \tparam SupplyMap The type of the supply map.
    1.29 +  /// \tparam GR The digraph type the algorithm runs on.
    1.30 +  /// \tparam V The value type used in the algorithm.
    1.31 +  /// By default it is \c int.
    1.32    ///
    1.33 -  /// \warning
    1.34 -  /// - Arc capacities and costs should be \e non-negative \e integers.
    1.35 -  /// - Supply values should be \e signed \e integers.
    1.36 -  /// - The value types of the maps should be convertible to each other.
    1.37 -  /// - \c CostMap::Value must be signed type.
    1.38 +  /// \warning \c V must be a signed integer type.
    1.39    ///
    1.40 -  /// \note \ref NetworkSimplex provides five different pivot rule
    1.41 -  /// implementations that significantly affect the efficiency of the
    1.42 -  /// algorithm.
    1.43 -  /// By default "Block Search" pivot rule is used, which proved to be
    1.44 -  /// by far the most efficient according to our benchmark tests.
    1.45 -  /// However another pivot rule can be selected using \ref run()
    1.46 -  /// function with the proper parameter.
    1.47 -#ifdef DOXYGEN
    1.48 -  template < typename Digraph,
    1.49 -             typename LowerMap,
    1.50 -             typename CapacityMap,
    1.51 -             typename CostMap,
    1.52 -             typename SupplyMap >
    1.53 -
    1.54 -#else
    1.55 -  template < typename Digraph,
    1.56 -             typename LowerMap = typename Digraph::template ArcMap<int>,
    1.57 -             typename CapacityMap = typename Digraph::template ArcMap<int>,
    1.58 -             typename CostMap = typename Digraph::template ArcMap<int>,
    1.59 -             typename SupplyMap = typename Digraph::template NodeMap<int> >
    1.60 -#endif
    1.61 +  /// \note %NetworkSimplex provides five different pivot rule
    1.62 +  /// implementations. For more information see \ref PivotRule.
    1.63 +  template <typename GR, typename V = int>
    1.64    class NetworkSimplex
    1.65    {
    1.66 -    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
    1.67 +  public:
    1.68  
    1.69 -    typedef typename CapacityMap::Value Capacity;
    1.70 -    typedef typename CostMap::Value Cost;
    1.71 -    typedef typename SupplyMap::Value Supply;
    1.72 +    /// The value type of the algorithm
    1.73 +    typedef V Value;
    1.74 +    /// The type of the flow map
    1.75 +    typedef typename GR::template ArcMap<Value> FlowMap;
    1.76 +    /// The type of the potential map
    1.77 +    typedef typename GR::template NodeMap<Value> PotentialMap;
    1.78 +
    1.79 +  public:
    1.80 +
    1.81 +    /// \brief Enum type for selecting the pivot rule.
    1.82 +    ///
    1.83 +    /// Enum type for selecting the pivot rule for the \ref run()
    1.84 +    /// function.
    1.85 +    ///
    1.86 +    /// \ref NetworkSimplex provides five different pivot rule
    1.87 +    /// implementations that significantly affect the running time
    1.88 +    /// of the algorithm.
    1.89 +    /// By default \ref BLOCK_SEARCH "Block Search" is used, which
    1.90 +    /// proved to be the most efficient and the most robust on various
    1.91 +    /// test inputs according to our benchmark tests.
    1.92 +    /// However another pivot rule can be selected using the \ref run()
    1.93 +    /// function with the proper parameter.
    1.94 +    enum PivotRule {
    1.95 +
    1.96 +      /// The First Eligible pivot rule.
    1.97 +      /// The next eligible arc is selected in a wraparound fashion
    1.98 +      /// in every iteration.
    1.99 +      FIRST_ELIGIBLE,
   1.100 +
   1.101 +      /// The Best Eligible pivot rule.
   1.102 +      /// The best eligible arc is selected in every iteration.
   1.103 +      BEST_ELIGIBLE,
   1.104 +
   1.105 +      /// The Block Search pivot rule.
   1.106 +      /// A specified number of arcs are examined in every iteration
   1.107 +      /// in a wraparound fashion and the best eligible arc is selected
   1.108 +      /// from this block.
   1.109 +      BLOCK_SEARCH,
   1.110 +
   1.111 +      /// The Candidate List pivot rule.
   1.112 +      /// In a major iteration a candidate list is built from eligible arcs
   1.113 +      /// in a wraparound fashion and in the following minor iterations
   1.114 +      /// the best eligible arc is selected from this list.
   1.115 +      CANDIDATE_LIST,
   1.116 +
   1.117 +      /// The Altering Candidate List pivot rule.
   1.118 +      /// It is a modified version of the Candidate List method.
   1.119 +      /// It keeps only the several best eligible arcs from the former
   1.120 +      /// candidate list and extends this list in every iteration.
   1.121 +      ALTERING_LIST
   1.122 +    };
   1.123 +
   1.124 +  private:
   1.125 +
   1.126 +    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
   1.127 +
   1.128 +    typedef typename GR::template ArcMap<Value> ValueArcMap;
   1.129 +    typedef typename GR::template NodeMap<Value> ValueNodeMap;
   1.130  
   1.131      typedef std::vector<Arc> ArcVector;
   1.132      typedef std::vector<Node> NodeVector;
   1.133      typedef std::vector<int> IntVector;
   1.134      typedef std::vector<bool> BoolVector;
   1.135 -    typedef std::vector<Capacity> CapacityVector;
   1.136 -    typedef std::vector<Cost> CostVector;
   1.137 -    typedef std::vector<Supply> SupplyVector;
   1.138 -
   1.139 -  public:
   1.140 -
   1.141 -    /// The type of the flow map
   1.142 -    typedef typename Digraph::template ArcMap<Capacity> FlowMap;
   1.143 -    /// The type of the potential map
   1.144 -    typedef typename Digraph::template NodeMap<Cost> PotentialMap;
   1.145 -
   1.146 -  public:
   1.147 -
   1.148 -    /// Enum type for selecting the pivot rule used by \ref run()
   1.149 -    enum PivotRuleEnum {
   1.150 -      FIRST_ELIGIBLE_PIVOT,
   1.151 -      BEST_ELIGIBLE_PIVOT,
   1.152 -      BLOCK_SEARCH_PIVOT,
   1.153 -      CANDIDATE_LIST_PIVOT,
   1.154 -      ALTERING_LIST_PIVOT
   1.155 -    };
   1.156 -
   1.157 -  private:
   1.158 +    typedef std::vector<Value> ValueVector;
   1.159  
   1.160      // State constants for arcs
   1.161      enum ArcStateEnum {
   1.162 @@ -120,15 +129,19 @@
   1.163  
   1.164    private:
   1.165  
   1.166 -    // References for the original data
   1.167 -    const Digraph &_graph;
   1.168 -    const LowerMap *_orig_lower;
   1.169 -    const CapacityMap &_orig_cap;
   1.170 -    const CostMap &_orig_cost;
   1.171 -    const SupplyMap *_orig_supply;
   1.172 -    Node _orig_source;
   1.173 -    Node _orig_target;
   1.174 -    Capacity _orig_flow_value;
   1.175 +    // Data related to the underlying digraph
   1.176 +    const GR &_graph;
   1.177 +    int _node_num;
   1.178 +    int _arc_num;
   1.179 +
   1.180 +    // Parameters of the problem
   1.181 +    ValueArcMap *_plower;
   1.182 +    ValueArcMap *_pupper;
   1.183 +    ValueArcMap *_pcost;
   1.184 +    ValueNodeMap *_psupply;
   1.185 +    bool _pstsup;
   1.186 +    Node _psource, _ptarget;
   1.187 +    Value _pstflow;
   1.188  
   1.189      // Result maps
   1.190      FlowMap *_flow_map;
   1.191 @@ -136,22 +149,18 @@
   1.192      bool _local_flow;
   1.193      bool _local_potential;
   1.194  
   1.195 -    // The number of nodes and arcs in the original graph
   1.196 -    int _node_num;
   1.197 -    int _arc_num;
   1.198 -
   1.199 -    // Data structures for storing the graph
   1.200 +    // Data structures for storing the digraph
   1.201      IntNodeMap _node_id;
   1.202      ArcVector _arc_ref;
   1.203      IntVector _source;
   1.204      IntVector _target;
   1.205  
   1.206 -    // Node and arc maps
   1.207 -    CapacityVector _cap;
   1.208 -    CostVector _cost;
   1.209 -    CostVector _supply;
   1.210 -    CapacityVector _flow;
   1.211 -    CostVector _pi;
   1.212 +    // Node and arc data
   1.213 +    ValueVector _cap;
   1.214 +    ValueVector _cost;
   1.215 +    ValueVector _supply;
   1.216 +    ValueVector _flow;
   1.217 +    ValueVector _pi;
   1.218  
   1.219      // Data for storing the spanning tree structure
   1.220      IntVector _parent;
   1.221 @@ -169,17 +178,11 @@
   1.222      int in_arc, join, u_in, v_in, u_out, v_out;
   1.223      int first, second, right, last;
   1.224      int stem, par_stem, new_stem;
   1.225 -    Capacity delta;
   1.226 +    Value delta;
   1.227  
   1.228    private:
   1.229  
   1.230 -    /// \brief Implementation of the "First Eligible" pivot rule for the
   1.231 -    /// \ref NetworkSimplex "network simplex" algorithm.
   1.232 -    ///
   1.233 -    /// This class implements the "First Eligible" pivot rule
   1.234 -    /// for the \ref NetworkSimplex "network simplex" algorithm.
   1.235 -    ///
   1.236 -    /// For more information see \ref NetworkSimplex::run().
   1.237 +    // Implementation of the First Eligible pivot rule
   1.238      class FirstEligiblePivotRule
   1.239      {
   1.240      private:
   1.241 @@ -187,9 +190,9 @@
   1.242        // References to the NetworkSimplex class
   1.243        const IntVector  &_source;
   1.244        const IntVector  &_target;
   1.245 -      const CostVector &_cost;
   1.246 +      const ValueVector &_cost;
   1.247        const IntVector  &_state;
   1.248 -      const CostVector &_pi;
   1.249 +      const ValueVector &_pi;
   1.250        int &_in_arc;
   1.251        int _arc_num;
   1.252  
   1.253 @@ -198,16 +201,16 @@
   1.254  
   1.255      public:
   1.256  
   1.257 -      /// Constructor
   1.258 +      // Constructor
   1.259        FirstEligiblePivotRule(NetworkSimplex &ns) :
   1.260          _source(ns._source), _target(ns._target),
   1.261          _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   1.262          _in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0)
   1.263        {}
   1.264  
   1.265 -      /// Find next entering arc
   1.266 +      // Find next entering arc
   1.267        bool findEnteringArc() {
   1.268 -        Cost c;
   1.269 +        Value c;
   1.270          for (int e = _next_arc; e < _arc_num; ++e) {
   1.271            c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   1.272            if (c < 0) {
   1.273 @@ -230,13 +233,7 @@
   1.274      }; //class FirstEligiblePivotRule
   1.275  
   1.276  
   1.277 -    /// \brief Implementation of the "Best Eligible" pivot rule for the
   1.278 -    /// \ref NetworkSimplex "network simplex" algorithm.
   1.279 -    ///
   1.280 -    /// This class implements the "Best Eligible" pivot rule
   1.281 -    /// for the \ref NetworkSimplex "network simplex" algorithm.
   1.282 -    ///
   1.283 -    /// For more information see \ref NetworkSimplex::run().
   1.284 +    // Implementation of the Best Eligible pivot rule
   1.285      class BestEligiblePivotRule
   1.286      {
   1.287      private:
   1.288 @@ -244,24 +241,24 @@
   1.289        // References to the NetworkSimplex class
   1.290        const IntVector  &_source;
   1.291        const IntVector  &_target;
   1.292 -      const CostVector &_cost;
   1.293 +      const ValueVector &_cost;
   1.294        const IntVector  &_state;
   1.295 -      const CostVector &_pi;
   1.296 +      const ValueVector &_pi;
   1.297        int &_in_arc;
   1.298        int _arc_num;
   1.299  
   1.300      public:
   1.301  
   1.302 -      /// Constructor
   1.303 +      // Constructor
   1.304        BestEligiblePivotRule(NetworkSimplex &ns) :
   1.305          _source(ns._source), _target(ns._target),
   1.306          _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   1.307          _in_arc(ns.in_arc), _arc_num(ns._arc_num)
   1.308        {}
   1.309  
   1.310 -      /// Find next entering arc
   1.311 +      // Find next entering arc
   1.312        bool findEnteringArc() {
   1.313 -        Cost c, min = 0;
   1.314 +        Value c, min = 0;
   1.315          for (int e = 0; e < _arc_num; ++e) {
   1.316            c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   1.317            if (c < min) {
   1.318 @@ -275,13 +272,7 @@
   1.319      }; //class BestEligiblePivotRule
   1.320  
   1.321  
   1.322 -    /// \brief Implementation of the "Block Search" pivot rule for the
   1.323 -    /// \ref NetworkSimplex "network simplex" algorithm.
   1.324 -    ///
   1.325 -    /// This class implements the "Block Search" pivot rule
   1.326 -    /// for the \ref NetworkSimplex "network simplex" algorithm.
   1.327 -    ///
   1.328 -    /// For more information see \ref NetworkSimplex::run().
   1.329 +    // Implementation of the Block Search pivot rule
   1.330      class BlockSearchPivotRule
   1.331      {
   1.332      private:
   1.333 @@ -289,9 +280,9 @@
   1.334        // References to the NetworkSimplex class
   1.335        const IntVector  &_source;
   1.336        const IntVector  &_target;
   1.337 -      const CostVector &_cost;
   1.338 +      const ValueVector &_cost;
   1.339        const IntVector  &_state;
   1.340 -      const CostVector &_pi;
   1.341 +      const ValueVector &_pi;
   1.342        int &_in_arc;
   1.343        int _arc_num;
   1.344  
   1.345 @@ -301,7 +292,7 @@
   1.346  
   1.347      public:
   1.348  
   1.349 -      /// Constructor
   1.350 +      // Constructor
   1.351        BlockSearchPivotRule(NetworkSimplex &ns) :
   1.352          _source(ns._source), _target(ns._target),
   1.353          _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   1.354 @@ -315,9 +306,9 @@
   1.355                                  MIN_BLOCK_SIZE );
   1.356        }
   1.357  
   1.358 -      /// Find next entering arc
   1.359 +      // Find next entering arc
   1.360        bool findEnteringArc() {
   1.361 -        Cost c, min = 0;
   1.362 +        Value c, min = 0;
   1.363          int cnt = _block_size;
   1.364          int e, min_arc = _next_arc;
   1.365          for (e = _next_arc; e < _arc_num; ++e) {
   1.366 @@ -353,13 +344,7 @@
   1.367      }; //class BlockSearchPivotRule
   1.368  
   1.369  
   1.370 -    /// \brief Implementation of the "Candidate List" pivot rule for the
   1.371 -    /// \ref NetworkSimplex "network simplex" algorithm.
   1.372 -    ///
   1.373 -    /// This class implements the "Candidate List" pivot rule
   1.374 -    /// for the \ref NetworkSimplex "network simplex" algorithm.
   1.375 -    ///
   1.376 -    /// For more information see \ref NetworkSimplex::run().
   1.377 +    // Implementation of the Candidate List pivot rule
   1.378      class CandidateListPivotRule
   1.379      {
   1.380      private:
   1.381 @@ -367,9 +352,9 @@
   1.382        // References to the NetworkSimplex class
   1.383        const IntVector  &_source;
   1.384        const IntVector  &_target;
   1.385 -      const CostVector &_cost;
   1.386 +      const ValueVector &_cost;
   1.387        const IntVector  &_state;
   1.388 -      const CostVector &_pi;
   1.389 +      const ValueVector &_pi;
   1.390        int &_in_arc;
   1.391        int _arc_num;
   1.392  
   1.393 @@ -403,7 +388,7 @@
   1.394  
   1.395        /// Find next entering arc
   1.396        bool findEnteringArc() {
   1.397 -        Cost min, c;
   1.398 +        Value min, c;
   1.399          int e, min_arc = _next_arc;
   1.400          if (_curr_length > 0 && _minor_count < _minor_limit) {
   1.401            // Minor iteration: select the best eligible arc from the
   1.402 @@ -464,13 +449,7 @@
   1.403      }; //class CandidateListPivotRule
   1.404  
   1.405  
   1.406 -    /// \brief Implementation of the "Altering Candidate List" pivot rule
   1.407 -    /// for the \ref NetworkSimplex "network simplex" algorithm.
   1.408 -    ///
   1.409 -    /// This class implements the "Altering Candidate List" pivot rule
   1.410 -    /// for the \ref NetworkSimplex "network simplex" algorithm.
   1.411 -    ///
   1.412 -    /// For more information see \ref NetworkSimplex::run().
   1.413 +    // Implementation of the Altering Candidate List pivot rule
   1.414      class AlteringListPivotRule
   1.415      {
   1.416      private:
   1.417 @@ -478,9 +457,9 @@
   1.418        // References to the NetworkSimplex class
   1.419        const IntVector  &_source;
   1.420        const IntVector  &_target;
   1.421 -      const CostVector &_cost;
   1.422 +      const ValueVector &_cost;
   1.423        const IntVector  &_state;
   1.424 -      const CostVector &_pi;
   1.425 +      const ValueVector &_pi;
   1.426        int &_in_arc;
   1.427        int _arc_num;
   1.428  
   1.429 @@ -488,15 +467,15 @@
   1.430        int _block_size, _head_length, _curr_length;
   1.431        int _next_arc;
   1.432        IntVector _candidates;
   1.433 -      CostVector _cand_cost;
   1.434 +      ValueVector _cand_cost;
   1.435  
   1.436        // Functor class to compare arcs during sort of the candidate list
   1.437        class SortFunc
   1.438        {
   1.439        private:
   1.440 -        const CostVector &_map;
   1.441 +        const ValueVector &_map;
   1.442        public:
   1.443 -        SortFunc(const CostVector &map) : _map(map) {}
   1.444 +        SortFunc(const ValueVector &map) : _map(map) {}
   1.445          bool operator()(int left, int right) {
   1.446            return _map[left] > _map[right];
   1.447          }
   1.448 @@ -506,7 +485,7 @@
   1.449  
   1.450      public:
   1.451  
   1.452 -      /// Constructor
   1.453 +      // Constructor
   1.454        AlteringListPivotRule(NetworkSimplex &ns) :
   1.455          _source(ns._source), _target(ns._target),
   1.456          _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   1.457 @@ -527,7 +506,7 @@
   1.458          _curr_length = 0;
   1.459        }
   1.460  
   1.461 -      /// Find next entering arc
   1.462 +      // Find next entering arc
   1.463        bool findEnteringArc() {
   1.464          // Check the current candidate list
   1.465          int e;
   1.466 @@ -592,95 +571,23 @@
   1.467  
   1.468    public:
   1.469  
   1.470 -    /// \brief General constructor (with lower bounds).
   1.471 +    /// \brief Constructor.
   1.472      ///
   1.473 -    /// General constructor (with lower bounds).
   1.474 +    /// Constructor.
   1.475      ///
   1.476      /// \param graph The digraph the algorithm runs on.
   1.477 -    /// \param lower The lower bounds of the arcs.
   1.478 -    /// \param capacity The capacities (upper bounds) of the arcs.
   1.479 -    /// \param cost The cost (length) values of the arcs.
   1.480 -    /// \param supply The supply values of the nodes (signed).
   1.481 -    NetworkSimplex( const Digraph &graph,
   1.482 -                    const LowerMap &lower,
   1.483 -                    const CapacityMap &capacity,
   1.484 -                    const CostMap &cost,
   1.485 -                    const SupplyMap &supply ) :
   1.486 -      _graph(graph), _orig_lower(&lower), _orig_cap(capacity),
   1.487 -      _orig_cost(cost), _orig_supply(&supply),
   1.488 +    NetworkSimplex(const GR& graph) :
   1.489 +      _graph(graph),
   1.490 +      _plower(NULL), _pupper(NULL), _pcost(NULL),
   1.491 +      _psupply(NULL), _pstsup(false),
   1.492        _flow_map(NULL), _potential_map(NULL),
   1.493        _local_flow(false), _local_potential(false),
   1.494        _node_id(graph)
   1.495 -    {}
   1.496 -
   1.497 -    /// \brief General constructor (without lower bounds).
   1.498 -    ///
   1.499 -    /// General constructor (without lower bounds).
   1.500 -    ///
   1.501 -    /// \param graph The digraph the algorithm runs on.
   1.502 -    /// \param capacity The capacities (upper bounds) of the arcs.
   1.503 -    /// \param cost The cost (length) values of the arcs.
   1.504 -    /// \param supply The supply values of the nodes (signed).
   1.505 -    NetworkSimplex( const Digraph &graph,
   1.506 -                    const CapacityMap &capacity,
   1.507 -                    const CostMap &cost,
   1.508 -                    const SupplyMap &supply ) :
   1.509 -      _graph(graph), _orig_lower(NULL), _orig_cap(capacity),
   1.510 -      _orig_cost(cost), _orig_supply(&supply),
   1.511 -      _flow_map(NULL), _potential_map(NULL),
   1.512 -      _local_flow(false), _local_potential(false),
   1.513 -      _node_id(graph)
   1.514 -    {}
   1.515 -
   1.516 -    /// \brief Simple constructor (with lower bounds).
   1.517 -    ///
   1.518 -    /// Simple constructor (with lower bounds).
   1.519 -    ///
   1.520 -    /// \param graph The digraph the algorithm runs on.
   1.521 -    /// \param lower The lower bounds of the arcs.
   1.522 -    /// \param capacity The capacities (upper bounds) of the arcs.
   1.523 -    /// \param cost The cost (length) values of the arcs.
   1.524 -    /// \param s The source node.
   1.525 -    /// \param t The target node.
   1.526 -    /// \param flow_value The required amount of flow from node \c s
   1.527 -    /// to node \c t (i.e. the supply of \c s and the demand of \c t).
   1.528 -    NetworkSimplex( const Digraph &graph,
   1.529 -                    const LowerMap &lower,
   1.530 -                    const CapacityMap &capacity,
   1.531 -                    const CostMap &cost,
   1.532 -                    Node s, Node t,
   1.533 -                    Capacity flow_value ) :
   1.534 -      _graph(graph), _orig_lower(&lower), _orig_cap(capacity),
   1.535 -      _orig_cost(cost), _orig_supply(NULL),
   1.536 -      _orig_source(s), _orig_target(t), _orig_flow_value(flow_value),
   1.537 -      _flow_map(NULL), _potential_map(NULL),
   1.538 -      _local_flow(false), _local_potential(false),
   1.539 -      _node_id(graph)
   1.540 -    {}
   1.541 -
   1.542 -    /// \brief Simple constructor (without lower bounds).
   1.543 -    ///
   1.544 -    /// Simple constructor (without lower bounds).
   1.545 -    ///
   1.546 -    /// \param graph The digraph the algorithm runs on.
   1.547 -    /// \param capacity The capacities (upper bounds) of the arcs.
   1.548 -    /// \param cost The cost (length) values of the arcs.
   1.549 -    /// \param s The source node.
   1.550 -    /// \param t The target node.
   1.551 -    /// \param flow_value The required amount of flow from node \c s
   1.552 -    /// to node \c t (i.e. the supply of \c s and the demand of \c t).
   1.553 -    NetworkSimplex( const Digraph &graph,
   1.554 -                    const CapacityMap &capacity,
   1.555 -                    const CostMap &cost,
   1.556 -                    Node s, Node t,
   1.557 -                    Capacity flow_value ) :
   1.558 -      _graph(graph), _orig_lower(NULL), _orig_cap(capacity),
   1.559 -      _orig_cost(cost), _orig_supply(NULL),
   1.560 -      _orig_source(s), _orig_target(t), _orig_flow_value(flow_value),
   1.561 -      _flow_map(NULL), _potential_map(NULL),
   1.562 -      _local_flow(false), _local_potential(false),
   1.563 -      _node_id(graph)
   1.564 -    {}
   1.565 +    {
   1.566 +      LEMON_ASSERT(std::numeric_limits<Value>::is_integer &&
   1.567 +                   std::numeric_limits<Value>::is_signed,
   1.568 +        "The value type of NetworkSimplex must be a signed integer");
   1.569 +    }
   1.570  
   1.571      /// Destructor.
   1.572      ~NetworkSimplex() {
   1.573 @@ -688,12 +595,165 @@
   1.574        if (_local_potential) delete _potential_map;
   1.575      }
   1.576  
   1.577 +    /// \brief Set the lower bounds on the arcs.
   1.578 +    ///
   1.579 +    /// This function sets the lower bounds on the arcs.
   1.580 +    /// If neither this function nor \ref boundMaps() is used before
   1.581 +    /// calling \ref run(), the lower bounds will be set to zero
   1.582 +    /// on all arcs.
   1.583 +    ///
   1.584 +    /// \param map An arc map storing the lower bounds.
   1.585 +    /// Its \c Value type must be convertible to the \c Value type
   1.586 +    /// of the algorithm.
   1.587 +    ///
   1.588 +    /// \return <tt>(*this)</tt>
   1.589 +    template <typename LOWER>
   1.590 +    NetworkSimplex& lowerMap(const LOWER& map) {
   1.591 +      delete _plower;
   1.592 +      _plower = new ValueArcMap(_graph);
   1.593 +      for (ArcIt a(_graph); a != INVALID; ++a) {
   1.594 +        (*_plower)[a] = map[a];
   1.595 +      }
   1.596 +      return *this;
   1.597 +    }
   1.598 +
   1.599 +    /// \brief Set the upper bounds (capacities) on the arcs.
   1.600 +    ///
   1.601 +    /// This function sets the upper bounds (capacities) on the arcs.
   1.602 +    /// If none of the functions \ref upperMap(), \ref capacityMap()
   1.603 +    /// and \ref boundMaps() is used before calling \ref run(),
   1.604 +    /// the upper bounds (capacities) will be set to
   1.605 +    /// \c std::numeric_limits<Value>::max() on all arcs.
   1.606 +    ///
   1.607 +    /// \param map An arc map storing the upper bounds.
   1.608 +    /// Its \c Value type must be convertible to the \c Value type
   1.609 +    /// of the algorithm.
   1.610 +    ///
   1.611 +    /// \return <tt>(*this)</tt>
   1.612 +    template<typename UPPER>
   1.613 +    NetworkSimplex& upperMap(const UPPER& map) {
   1.614 +      delete _pupper;
   1.615 +      _pupper = new ValueArcMap(_graph);
   1.616 +      for (ArcIt a(_graph); a != INVALID; ++a) {
   1.617 +        (*_pupper)[a] = map[a];
   1.618 +      }
   1.619 +      return *this;
   1.620 +    }
   1.621 +
   1.622 +    /// \brief Set the upper bounds (capacities) on the arcs.
   1.623 +    ///
   1.624 +    /// This function sets the upper bounds (capacities) on the arcs.
   1.625 +    /// It is just an alias for \ref upperMap().
   1.626 +    ///
   1.627 +    /// \return <tt>(*this)</tt>
   1.628 +    template<typename CAP>
   1.629 +    NetworkSimplex& capacityMap(const CAP& map) {
   1.630 +      return upperMap(map);
   1.631 +    }
   1.632 +
   1.633 +    /// \brief Set the lower and upper bounds on the arcs.
   1.634 +    ///
   1.635 +    /// This function sets the lower and upper bounds on the arcs.
   1.636 +    /// If neither this function nor \ref lowerMap() is used before
   1.637 +    /// calling \ref run(), the lower bounds will be set to zero
   1.638 +    /// on all arcs.
   1.639 +    /// If none of the functions \ref upperMap(), \ref capacityMap()
   1.640 +    /// and \ref boundMaps() is used before calling \ref run(),
   1.641 +    /// the upper bounds (capacities) will be set to
   1.642 +    /// \c std::numeric_limits<Value>::max() on all arcs.
   1.643 +    ///
   1.644 +    /// \param lower An arc map storing the lower bounds.
   1.645 +    /// \param upper An arc map storing the upper bounds.
   1.646 +    ///
   1.647 +    /// The \c Value type of the maps must be convertible to the
   1.648 +    /// \c Value type of the algorithm.
   1.649 +    ///
   1.650 +    /// \note This function is just a shortcut of calling \ref lowerMap()
   1.651 +    /// and \ref upperMap() separately.
   1.652 +    ///
   1.653 +    /// \return <tt>(*this)</tt>
   1.654 +    template <typename LOWER, typename UPPER>
   1.655 +    NetworkSimplex& boundMaps(const LOWER& lower, const UPPER& upper) {
   1.656 +      return lowerMap(lower).upperMap(upper);
   1.657 +    }
   1.658 +
   1.659 +    /// \brief Set the costs of the arcs.
   1.660 +    ///
   1.661 +    /// This function sets the costs of the arcs.
   1.662 +    /// If it is not used before calling \ref run(), the costs
   1.663 +    /// will be set to \c 1 on all arcs.
   1.664 +    ///
   1.665 +    /// \param map An arc map storing the costs.
   1.666 +    /// Its \c Value type must be convertible to the \c Value type
   1.667 +    /// of the algorithm.
   1.668 +    ///
   1.669 +    /// \return <tt>(*this)</tt>
   1.670 +    template<typename COST>
   1.671 +    NetworkSimplex& costMap(const COST& map) {
   1.672 +      delete _pcost;
   1.673 +      _pcost = new ValueArcMap(_graph);
   1.674 +      for (ArcIt a(_graph); a != INVALID; ++a) {
   1.675 +        (*_pcost)[a] = map[a];
   1.676 +      }
   1.677 +      return *this;
   1.678 +    }
   1.679 +
   1.680 +    /// \brief Set the supply values of the nodes.
   1.681 +    ///
   1.682 +    /// This function sets the supply values of the nodes.
   1.683 +    /// If neither this function nor \ref stSupply() is used before
   1.684 +    /// calling \ref run(), the supply of each node will be set to zero.
   1.685 +    /// (It makes sense only if non-zero lower bounds are given.)
   1.686 +    ///
   1.687 +    /// \param map A node map storing the supply values.
   1.688 +    /// Its \c Value type must be convertible to the \c Value type
   1.689 +    /// of the algorithm.
   1.690 +    ///
   1.691 +    /// \return <tt>(*this)</tt>
   1.692 +    template<typename SUP>
   1.693 +    NetworkSimplex& supplyMap(const SUP& map) {
   1.694 +      delete _psupply;
   1.695 +      _pstsup = false;
   1.696 +      _psupply = new ValueNodeMap(_graph);
   1.697 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.698 +        (*_psupply)[n] = map[n];
   1.699 +      }
   1.700 +      return *this;
   1.701 +    }
   1.702 +
   1.703 +    /// \brief Set single source and target nodes and a supply value.
   1.704 +    ///
   1.705 +    /// This function sets a single source node and a single target node
   1.706 +    /// and the required flow value.
   1.707 +    /// If neither this function nor \ref supplyMap() is used before
   1.708 +    /// calling \ref run(), the supply of each node will be set to zero.
   1.709 +    /// (It makes sense only if non-zero lower bounds are given.)
   1.710 +    ///
   1.711 +    /// \param s The source node.
   1.712 +    /// \param t The target node.
   1.713 +    /// \param k The required amount of flow from node \c s to node \c t
   1.714 +    /// (i.e. the supply of \c s and the demand of \c t).
   1.715 +    ///
   1.716 +    /// \return <tt>(*this)</tt>
   1.717 +    NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) {
   1.718 +      delete _psupply;
   1.719 +      _psupply = NULL;
   1.720 +      _pstsup = true;
   1.721 +      _psource = s;
   1.722 +      _ptarget = t;
   1.723 +      _pstflow = k;
   1.724 +      return *this;
   1.725 +    }
   1.726 +
   1.727      /// \brief Set the flow map.
   1.728      ///
   1.729      /// This function sets the flow map.
   1.730 +    /// If it is not used before calling \ref run(), an instance will
   1.731 +    /// be allocated automatically. The destructor deallocates this
   1.732 +    /// automatically allocated map, of course.
   1.733      ///
   1.734      /// \return <tt>(*this)</tt>
   1.735 -    NetworkSimplex& flowMap(FlowMap &map) {
   1.736 +    NetworkSimplex& flowMap(FlowMap& map) {
   1.737        if (_local_flow) {
   1.738          delete _flow_map;
   1.739          _local_flow = false;
   1.740 @@ -704,10 +764,14 @@
   1.741  
   1.742      /// \brief Set the potential map.
   1.743      ///
   1.744 -    /// This function sets the potential map.
   1.745 +    /// This function sets the potential map, which is used for storing
   1.746 +    /// the dual solution.
   1.747 +    /// If it is not used before calling \ref run(), an instance will
   1.748 +    /// be allocated automatically. The destructor deallocates this
   1.749 +    /// automatically allocated map, of course.
   1.750      ///
   1.751      /// \return <tt>(*this)</tt>
   1.752 -    NetworkSimplex& potentialMap(PotentialMap &map) {
   1.753 +    NetworkSimplex& potentialMap(PotentialMap& map) {
   1.754        if (_local_potential) {
   1.755          delete _potential_map;
   1.756          _local_potential = false;
   1.757 @@ -716,47 +780,29 @@
   1.758        return *this;
   1.759      }
   1.760  
   1.761 -    /// \name Execution control
   1.762 -    /// The algorithm can be executed using the
   1.763 -    /// \ref lemon::NetworkSimplex::run() "run()" function.
   1.764 +    /// \name Execution Control
   1.765 +    /// The algorithm can be executed using \ref run().
   1.766 +
   1.767      /// @{
   1.768  
   1.769      /// \brief Run the algorithm.
   1.770      ///
   1.771      /// This function runs the algorithm.
   1.772 +    /// The paramters can be specified using \ref lowerMap(),
   1.773 +    /// \ref upperMap(), \ref capacityMap(), \ref boundMaps(), 
   1.774 +    /// \ref costMap(), \ref supplyMap() and \ref stSupply()
   1.775 +    /// functions. For example,
   1.776 +    /// \code
   1.777 +    ///   NetworkSimplex<ListDigraph> ns(graph);
   1.778 +    ///   ns.boundMaps(lower, upper).costMap(cost)
   1.779 +    ///     .supplyMap(sup).run();
   1.780 +    /// \endcode
   1.781      ///
   1.782 -    /// \param pivot_rule The pivot rule that is used during the
   1.783 -    /// algorithm.
   1.784 -    ///
   1.785 -    /// The available pivot rules:
   1.786 -    ///
   1.787 -    /// - FIRST_ELIGIBLE_PIVOT The next eligible arc is selected in
   1.788 -    /// a wraparound fashion in every iteration
   1.789 -    /// (\ref FirstEligiblePivotRule).
   1.790 -    ///
   1.791 -    /// - BEST_ELIGIBLE_PIVOT The best eligible arc is selected in
   1.792 -    /// every iteration (\ref BestEligiblePivotRule).
   1.793 -    ///
   1.794 -    /// - BLOCK_SEARCH_PIVOT A specified number of arcs are examined in
   1.795 -    /// every iteration in a wraparound fashion and the best eligible
   1.796 -    /// arc is selected from this block (\ref BlockSearchPivotRule).
   1.797 -    ///
   1.798 -    /// - CANDIDATE_LIST_PIVOT In a major iteration a candidate list is
   1.799 -    /// built from eligible arcs in a wraparound fashion and in the
   1.800 -    /// following minor iterations the best eligible arc is selected
   1.801 -    /// from this list (\ref CandidateListPivotRule).
   1.802 -    ///
   1.803 -    /// - ALTERING_LIST_PIVOT It is a modified version of the
   1.804 -    /// "Candidate List" pivot rule. It keeps only the several best
   1.805 -    /// eligible arcs from the former candidate list and extends this
   1.806 -    /// list in every iteration (\ref AlteringListPivotRule).
   1.807 -    ///
   1.808 -    /// According to our comprehensive benchmark tests the "Block Search"
   1.809 -    /// pivot rule proved to be the fastest and the most robust on
   1.810 -    /// various test inputs. Thus it is the default option.
   1.811 +    /// \param pivot_rule The pivot rule that will be used during the
   1.812 +    /// algorithm. For more information see \ref PivotRule.
   1.813      ///
   1.814      /// \return \c true if a feasible flow can be found.
   1.815 -    bool run(PivotRuleEnum pivot_rule = BLOCK_SEARCH_PIVOT) {
   1.816 +    bool run(PivotRule pivot_rule = BLOCK_SEARCH) {
   1.817        return init() && start(pivot_rule);
   1.818      }
   1.819  
   1.820 @@ -765,10 +811,53 @@
   1.821      /// \name Query Functions
   1.822      /// The results of the algorithm can be obtained using these
   1.823      /// functions.\n
   1.824 -    /// \ref lemon::NetworkSimplex::run() "run()" must be called before
   1.825 -    /// using them.
   1.826 +    /// The \ref run() function must be called before using them.
   1.827 +
   1.828      /// @{
   1.829  
   1.830 +    /// \brief Return the total cost of the found flow.
   1.831 +    ///
   1.832 +    /// This function returns the total cost of the found flow.
   1.833 +    /// The complexity of the function is \f$ O(e) \f$.
   1.834 +    ///
   1.835 +    /// \note The return type of the function can be specified as a
   1.836 +    /// template parameter. For example,
   1.837 +    /// \code
   1.838 +    ///   ns.totalCost<double>();
   1.839 +    /// \endcode
   1.840 +    /// It is useful if the total cost cannot be stored in the \c Value
   1.841 +    /// type of the algorithm, which is the default return type of the
   1.842 +    /// function.
   1.843 +    ///
   1.844 +    /// \pre \ref run() must be called before using this function.
   1.845 +    template <typename Num>
   1.846 +    Num totalCost() const {
   1.847 +      Num c = 0;
   1.848 +      if (_pcost) {
   1.849 +        for (ArcIt e(_graph); e != INVALID; ++e)
   1.850 +          c += (*_flow_map)[e] * (*_pcost)[e];
   1.851 +      } else {
   1.852 +        for (ArcIt e(_graph); e != INVALID; ++e)
   1.853 +          c += (*_flow_map)[e];
   1.854 +      }
   1.855 +      return c;
   1.856 +    }
   1.857 +
   1.858 +#ifndef DOXYGEN
   1.859 +    Value totalCost() const {
   1.860 +      return totalCost<Value>();
   1.861 +    }
   1.862 +#endif
   1.863 +
   1.864 +    /// \brief Return the flow on the given arc.
   1.865 +    ///
   1.866 +    /// This function returns the flow on the given arc.
   1.867 +    ///
   1.868 +    /// \pre \ref run() must be called before using this function.
   1.869 +    Value flow(const Arc& a) const {
   1.870 +      return (*_flow_map)[a];
   1.871 +    }
   1.872 +
   1.873      /// \brief Return a const reference to the flow map.
   1.874      ///
   1.875      /// This function returns a const reference to an arc map storing
   1.876 @@ -779,48 +868,28 @@
   1.877        return *_flow_map;
   1.878      }
   1.879  
   1.880 +    /// \brief Return the potential (dual value) of the given node.
   1.881 +    ///
   1.882 +    /// This function returns the potential (dual value) of the
   1.883 +    /// given node.
   1.884 +    ///
   1.885 +    /// \pre \ref run() must be called before using this function.
   1.886 +    Value potential(const Node& n) const {
   1.887 +      return (*_potential_map)[n];
   1.888 +    }
   1.889 +
   1.890      /// \brief Return a const reference to the potential map
   1.891      /// (the dual solution).
   1.892      ///
   1.893      /// This function returns a const reference to a node map storing
   1.894 -    /// the found potentials (the dual solution).
   1.895 +    /// the found potentials, which form the dual solution of the
   1.896 +    /// \ref min_cost_flow "minimum cost flow" problem.
   1.897      ///
   1.898      /// \pre \ref run() must be called before using this function.
   1.899      const PotentialMap& potentialMap() const {
   1.900        return *_potential_map;
   1.901      }
   1.902  
   1.903 -    /// \brief Return the flow on the given arc.
   1.904 -    ///
   1.905 -    /// This function returns the flow on the given arc.
   1.906 -    ///
   1.907 -    /// \pre \ref run() must be called before using this function.
   1.908 -    Capacity flow(const Arc& arc) const {
   1.909 -      return (*_flow_map)[arc];
   1.910 -    }
   1.911 -
   1.912 -    /// \brief Return the potential of the given node.
   1.913 -    ///
   1.914 -    /// This function returns the potential of the given node.
   1.915 -    ///
   1.916 -    /// \pre \ref run() must be called before using this function.
   1.917 -    Cost potential(const Node& node) const {
   1.918 -      return (*_potential_map)[node];
   1.919 -    }
   1.920 -
   1.921 -    /// \brief Return the total cost of the found flow.
   1.922 -    ///
   1.923 -    /// This function returns the total cost of the found flow.
   1.924 -    /// The complexity of the function is \f$ O(e) \f$.
   1.925 -    ///
   1.926 -    /// \pre \ref run() must be called before using this function.
   1.927 -    Cost totalCost() const {
   1.928 -      Cost c = 0;
   1.929 -      for (ArcIt e(_graph); e != INVALID; ++e)
   1.930 -        c += (*_flow_map)[e] * _orig_cost[e];
   1.931 -      return c;
   1.932 -    }
   1.933 -
   1.934      /// @}
   1.935  
   1.936    private:
   1.937 @@ -842,6 +911,7 @@
   1.938        _arc_num = countArcs(_graph);
   1.939        int all_node_num = _node_num + 1;
   1.940        int all_arc_num = _arc_num + _node_num;
   1.941 +      if (_node_num == 0) return false;
   1.942  
   1.943        _arc_ref.resize(_arc_num);
   1.944        _source.resize(all_arc_num);
   1.945 @@ -864,12 +934,17 @@
   1.946  
   1.947        // Initialize node related data
   1.948        bool valid_supply = true;
   1.949 -      if (_orig_supply) {
   1.950 -        Supply sum = 0;
   1.951 +      if (!_pstsup && !_psupply) {
   1.952 +        _pstsup = true;
   1.953 +        _psource = _ptarget = NodeIt(_graph);
   1.954 +        _pstflow = 0;
   1.955 +      }
   1.956 +      if (_psupply) {
   1.957 +        Value sum = 0;
   1.958          int i = 0;
   1.959          for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   1.960            _node_id[n] = i;
   1.961 -          _supply[i] = (*_orig_supply)[n];
   1.962 +          _supply[i] = (*_psupply)[n];
   1.963            sum += _supply[i];
   1.964          }
   1.965          valid_supply = (sum == 0);
   1.966 @@ -879,8 +954,8 @@
   1.967            _node_id[n] = i;
   1.968            _supply[i] = 0;
   1.969          }
   1.970 -        _supply[_node_id[_orig_source]] =  _orig_flow_value;
   1.971 -        _supply[_node_id[_orig_target]] = -_orig_flow_value;
   1.972 +        _supply[_node_id[_psource]] =  _pstflow;
   1.973 +        _supply[_node_id[_ptarget]]   = -_pstflow;
   1.974        }
   1.975        if (!valid_supply) return false;
   1.976  
   1.977 @@ -904,18 +979,41 @@
   1.978        }
   1.979  
   1.980        // Initialize arc maps
   1.981 -      for (int i = 0; i != _arc_num; ++i) {
   1.982 -        Arc e = _arc_ref[i];
   1.983 -        _source[i] = _node_id[_graph.source(e)];
   1.984 -        _target[i] = _node_id[_graph.target(e)];
   1.985 -        _cost[i] = _orig_cost[e];
   1.986 -        _cap[i] = _orig_cap[e];
   1.987 +      if (_pupper && _pcost) {
   1.988 +        for (int i = 0; i != _arc_num; ++i) {
   1.989 +          Arc e = _arc_ref[i];
   1.990 +          _source[i] = _node_id[_graph.source(e)];
   1.991 +          _target[i] = _node_id[_graph.target(e)];
   1.992 +          _cap[i] = (*_pupper)[e];
   1.993 +          _cost[i] = (*_pcost)[e];
   1.994 +        }
   1.995 +      } else {
   1.996 +        for (int i = 0; i != _arc_num; ++i) {
   1.997 +          Arc e = _arc_ref[i];
   1.998 +          _source[i] = _node_id[_graph.source(e)];
   1.999 +          _target[i] = _node_id[_graph.target(e)];
  1.1000 +        }
  1.1001 +        if (_pupper) {
  1.1002 +          for (int i = 0; i != _arc_num; ++i)
  1.1003 +            _cap[i] = (*_pupper)[_arc_ref[i]];
  1.1004 +        } else {
  1.1005 +          Value val = std::numeric_limits<Value>::max();
  1.1006 +          for (int i = 0; i != _arc_num; ++i)
  1.1007 +            _cap[i] = val;
  1.1008 +        }
  1.1009 +        if (_pcost) {
  1.1010 +          for (int i = 0; i != _arc_num; ++i)
  1.1011 +            _cost[i] = (*_pcost)[_arc_ref[i]];
  1.1012 +        } else {
  1.1013 +          for (int i = 0; i != _arc_num; ++i)
  1.1014 +            _cost[i] = 1;
  1.1015 +        }
  1.1016        }
  1.1017  
  1.1018        // Remove non-zero lower bounds
  1.1019 -      if (_orig_lower) {
  1.1020 +      if (_plower) {
  1.1021          for (int i = 0; i != _arc_num; ++i) {
  1.1022 -          Capacity c = (*_orig_lower)[_arc_ref[i]];
  1.1023 +          Value c = (*_plower)[_arc_ref[i]];
  1.1024            if (c != 0) {
  1.1025              _cap[i] -= c;
  1.1026              _supply[_source[i]] -= c;
  1.1027 @@ -925,8 +1023,8 @@
  1.1028        }
  1.1029  
  1.1030        // Add artificial arcs and initialize the spanning tree data structure
  1.1031 -      Cost max_cost = std::numeric_limits<Cost>::max() / 4;
  1.1032 -      Capacity max_cap = std::numeric_limits<Capacity>::max();
  1.1033 +      Value max_cap = std::numeric_limits<Value>::max();
  1.1034 +      Value max_cost = std::numeric_limits<Value>::max() / 4;
  1.1035        for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
  1.1036          _thread[u] = u + 1;
  1.1037          _rev_thread[u + 1] = u;
  1.1038 @@ -979,7 +1077,7 @@
  1.1039        }
  1.1040        delta = _cap[in_arc];
  1.1041        int result = 0;
  1.1042 -      Capacity d;
  1.1043 +      Value d;
  1.1044        int e;
  1.1045  
  1.1046        // Search the cycle along the path form the first node to the root
  1.1047 @@ -1017,7 +1115,7 @@
  1.1048      void changeFlow(bool change) {
  1.1049        // Augment along the cycle
  1.1050        if (delta > 0) {
  1.1051 -        Capacity val = _state[in_arc] * delta;
  1.1052 +        Value val = _state[in_arc] * delta;
  1.1053          _flow[in_arc] += val;
  1.1054          for (int u = _source[in_arc]; u != join; u = _parent[u]) {
  1.1055            _flow[_pred[u]] += _forward[u] ? -val : val;
  1.1056 @@ -1158,7 +1256,7 @@
  1.1057  
  1.1058      // Update potentials
  1.1059      void updatePotential() {
  1.1060 -      Cost sigma = _forward[u_in] ?
  1.1061 +      Value sigma = _forward[u_in] ?
  1.1062          _pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] :
  1.1063          _pi[v_in] - _pi[u_in] + _cost[_pred[u_in]];
  1.1064        if (_succ_num[u_in] > _node_num / 2) {
  1.1065 @@ -1181,28 +1279,28 @@
  1.1066      }
  1.1067  
  1.1068      // Execute the algorithm
  1.1069 -    bool start(PivotRuleEnum pivot_rule) {
  1.1070 +    bool start(PivotRule pivot_rule) {
  1.1071        // Select the pivot rule implementation
  1.1072        switch (pivot_rule) {
  1.1073 -        case FIRST_ELIGIBLE_PIVOT:
  1.1074 +        case FIRST_ELIGIBLE:
  1.1075            return start<FirstEligiblePivotRule>();
  1.1076 -        case BEST_ELIGIBLE_PIVOT:
  1.1077 +        case BEST_ELIGIBLE:
  1.1078            return start<BestEligiblePivotRule>();
  1.1079 -        case BLOCK_SEARCH_PIVOT:
  1.1080 +        case BLOCK_SEARCH:
  1.1081            return start<BlockSearchPivotRule>();
  1.1082 -        case CANDIDATE_LIST_PIVOT:
  1.1083 +        case CANDIDATE_LIST:
  1.1084            return start<CandidateListPivotRule>();
  1.1085 -        case ALTERING_LIST_PIVOT:
  1.1086 +        case ALTERING_LIST:
  1.1087            return start<AlteringListPivotRule>();
  1.1088        }
  1.1089        return false;
  1.1090      }
  1.1091  
  1.1092 -    template<class PivotRuleImplementation>
  1.1093 +    template <typename PivotRuleImpl>
  1.1094      bool start() {
  1.1095 -      PivotRuleImplementation pivot(*this);
  1.1096 +      PivotRuleImpl pivot(*this);
  1.1097  
  1.1098 -      // Execute the network simplex algorithm
  1.1099 +      // Execute the Network Simplex algorithm
  1.1100        while (pivot.findEnteringArc()) {
  1.1101          findJoinNode();
  1.1102          bool change = findLeavingArc();
  1.1103 @@ -1219,10 +1317,10 @@
  1.1104        }
  1.1105  
  1.1106        // Copy flow values to _flow_map
  1.1107 -      if (_orig_lower) {
  1.1108 +      if (_plower) {
  1.1109          for (int i = 0; i != _arc_num; ++i) {
  1.1110            Arc e = _arc_ref[i];
  1.1111 -          _flow_map->set(e, (*_orig_lower)[e] + _flow[i]);
  1.1112 +          _flow_map->set(e, (*_plower)[e] + _flow[i]);
  1.1113          }
  1.1114        } else {
  1.1115          for (int i = 0; i != _arc_num; ++i) {
     2.1 --- a/test/min_cost_flow_test.cc	Tue Mar 24 00:18:25 2009 +0100
     2.2 +++ b/test/min_cost_flow_test.cc	Wed Mar 25 15:58:44 2009 +0100
     2.3 @@ -20,15 +20,9 @@
     2.4  #include <fstream>
     2.5  
     2.6  #include <lemon/list_graph.h>
     2.7 -#include <lemon/smart_graph.h>
     2.8  #include <lemon/lgf_reader.h>
     2.9  
    2.10 -//#include <lemon/cycle_canceling.h>
    2.11 -//#include <lemon/capacity_scaling.h>
    2.12 -//#include <lemon/cost_scaling.h>
    2.13  #include <lemon/network_simplex.h>
    2.14 -//#include <lemon/min_cost_flow.h>
    2.15 -//#include <lemon/min_cost_max_flow.h>
    2.16  
    2.17  #include <lemon/concepts/digraph.h>
    2.18  #include <lemon/concept_check.h>
    2.19 @@ -93,36 +87,30 @@
    2.20      void constraints() {
    2.21        checkConcept<concepts::Digraph, GR>();
    2.22  
    2.23 -      MCF mcf_test1(g, lower, upper, cost, sup);
    2.24 -      MCF mcf_test2(g, upper, cost, sup);
    2.25 -      MCF mcf_test3(g, lower, upper, cost, n, n, k);
    2.26 -      MCF mcf_test4(g, upper, cost, n, n, k);
    2.27 +      MCF mcf(g);
    2.28  
    2.29 -      // TODO: This part should be enabled and the next part
    2.30 -      // should be removed if map copying is supported
    2.31 -/*
    2.32 -      flow = mcf_test1.flowMap();
    2.33 -      mcf_test1.flowMap(flow);
    2.34 +      b = mcf.lowerMap(lower)
    2.35 +             .upperMap(upper)
    2.36 +             .capacityMap(upper)
    2.37 +             .boundMaps(lower, upper)
    2.38 +             .costMap(cost)
    2.39 +             .supplyMap(sup)
    2.40 +             .stSupply(n, n, k)
    2.41 +             .run();
    2.42  
    2.43 -      pot = mcf_test1.potentialMap();
    2.44 -      mcf_test1.potentialMap(pot);
    2.45 -*/
    2.46 -/**/
    2.47 -      const typename MCF::FlowMap &fm =
    2.48 -        mcf_test1.flowMap();
    2.49 -      mcf_test1.flowMap(flow);
    2.50 -      const typename MCF::PotentialMap &pm =
    2.51 -        mcf_test1.potentialMap();
    2.52 -      mcf_test1.potentialMap(pot);
    2.53 +      const typename MCF::FlowMap &fm = mcf.flowMap();
    2.54 +      const typename MCF::PotentialMap &pm = mcf.potentialMap();
    2.55 +
    2.56 +      v = mcf.totalCost();
    2.57 +      double x = mcf.template totalCost<double>();
    2.58 +      v = mcf.flow(a);
    2.59 +      v = mcf.potential(n);
    2.60 +      mcf.flowMap(flow);
    2.61 +      mcf.potentialMap(pot);
    2.62 +
    2.63        ignore_unused_variable_warning(fm);
    2.64        ignore_unused_variable_warning(pm);
    2.65 -/**/
    2.66 -
    2.67 -      mcf_test1.run();
    2.68 -
    2.69 -      v = mcf_test1.totalCost();
    2.70 -      v = mcf_test1.flow(a);
    2.71 -      v = mcf_test1.potential(n);
    2.72 +      ignore_unused_variable_warning(x);
    2.73      }
    2.74  
    2.75      typedef typename GR::Node Node;
    2.76 @@ -139,6 +127,7 @@
    2.77      const Arc &a;
    2.78      const Value &k;
    2.79      Value v;
    2.80 +    bool b;
    2.81  
    2.82      typename MCF::FlowMap &flow;
    2.83      typename MCF::PotentialMap &pot;
    2.84 @@ -172,7 +161,7 @@
    2.85  }
    2.86  
    2.87  // Check the feasibility of the given potentials (dual soluiton)
    2.88 -// using the Complementary Slackness optimality condition
    2.89 +// using the "Complementary Slackness" optimality condition
    2.90  template < typename GR, typename LM, typename UM,
    2.91             typename CM, typename FM, typename PM >
    2.92  bool checkPotential( const GR& gr, const LM& lower, const UM& upper,
    2.93 @@ -217,23 +206,14 @@
    2.94    // Check the interfaces
    2.95    {
    2.96      typedef int Value;
    2.97 -    // This typedef should be enabled if the standard maps are
    2.98 -    // reference maps in the graph concepts
    2.99 +    // TODO: This typedef should be enabled if the standard maps are
   2.100 +    // reference maps in the graph concepts (See #190).
   2.101 +/**/
   2.102      //typedef concepts::Digraph GR;
   2.103      typedef ListDigraph GR;
   2.104 -    typedef concepts::ReadMap<GR::Node, Value> NM;
   2.105 -    typedef concepts::ReadMap<GR::Arc, Value> AM;
   2.106 -
   2.107 -    //checkConcept< McfClassConcept<GR, Value>,
   2.108 -    //              CycleCanceling<GR, AM, AM, AM, NM> >();
   2.109 -    //checkConcept< McfClassConcept<GR, Value>,
   2.110 -    //              CapacityScaling<GR, AM, AM, AM, NM> >();
   2.111 -    //checkConcept< McfClassConcept<GR, Value>,
   2.112 -    //              CostScaling<GR, AM, AM, AM, NM> >();
   2.113 +/**/
   2.114      checkConcept< McfClassConcept<GR, Value>,
   2.115 -                  NetworkSimplex<GR, AM, AM, AM, NM> >();
   2.116 -    //checkConcept< MinCostFlow<GR, Value>,
   2.117 -    //              NetworkSimplex<GR, AM, AM, AM, NM> >();
   2.118 +                  NetworkSimplex<GR, Value> >();
   2.119    }
   2.120  
   2.121    // Run various MCF tests
   2.122 @@ -244,6 +224,7 @@
   2.123    Digraph gr;
   2.124    Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), u(gr);
   2.125    Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr);
   2.126 +  ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max());
   2.127    Node v, w;
   2.128  
   2.129    std::istringstream input(test_lgf);
   2.130 @@ -259,197 +240,50 @@
   2.131      .node("target", w)
   2.132      .run();
   2.133  
   2.134 -/*
   2.135 -  // A. Test CapacityScaling with scaling
   2.136 +  // A. Test NetworkSimplex with the default pivot rule
   2.137    {
   2.138 -    CapacityScaling<Digraph> mcf1(gr, u, c, s1);
   2.139 -    CapacityScaling<Digraph> mcf2(gr, u, c, v, w, 27);
   2.140 -    CapacityScaling<Digraph> mcf3(gr, u, c, s3);
   2.141 -    CapacityScaling<Digraph> mcf4(gr, l2, u, c, s1);
   2.142 -    CapacityScaling<Digraph> mcf5(gr, l2, u, c, v, w, 27);
   2.143 -    CapacityScaling<Digraph> mcf6(gr, l2, u, c, s3);
   2.144 +    NetworkSimplex<Digraph> mcf1(gr), mcf2(gr), mcf3(gr), mcf4(gr),
   2.145 +                            mcf5(gr), mcf6(gr), mcf7(gr), mcf8(gr);
   2.146  
   2.147 -    checkMcf(mcf1, mcf1.run(), gr, l1, u, c, s1, true,  5240, "#A1");
   2.148 -    checkMcf(mcf2, mcf2.run(), gr, l1, u, c, s2, true,  7620, "#A2");
   2.149 -    checkMcf(mcf3, mcf3.run(), gr, l1, u, c, s3, true,     0, "#A3");
   2.150 -    checkMcf(mcf4, mcf4.run(), gr, l2, u, c, s1, true,  5970, "#A4");
   2.151 -    checkMcf(mcf5, mcf5.run(), gr, l2, u, c, s2, true,  8010, "#A5");
   2.152 -    checkMcf(mcf6, mcf6.run(), gr, l2, u, c, s3, false,    0, "#A6");
   2.153 +    checkMcf(mcf1, mcf1.upperMap(u).costMap(c).supplyMap(s1).run(),
   2.154 +             gr, l1, u, c, s1, true,  5240, "#A1");
   2.155 +    checkMcf(mcf2, mcf2.upperMap(u).costMap(c).stSupply(v, w, 27).run(),
   2.156 +             gr, l1, u, c, s2, true,  7620, "#A2");
   2.157 +    checkMcf(mcf3, mcf3.boundMaps(l2, u).costMap(c).supplyMap(s1).run(),
   2.158 +             gr, l2, u, c, s1, true,  5970, "#A3");
   2.159 +    checkMcf(mcf4, mcf4.boundMaps(l2, u).costMap(c).stSupply(v, w, 27).run(),
   2.160 +             gr, l2, u, c, s2, true,  8010, "#A4");
   2.161 +    checkMcf(mcf5, mcf5.supplyMap(s1).run(),
   2.162 +             gr, l1, cu, cc, s1, true,  74, "#A5");
   2.163 +    checkMcf(mcf6, mcf6.stSupply(v, w, 27).lowerMap(l2).run(),
   2.164 +             gr, l2, cu, cc, s2, true,  94, "#A6");
   2.165 +    checkMcf(mcf7, mcf7.run(),
   2.166 +             gr, l1, cu, cc, s3, true,   0, "#A7");
   2.167 +    checkMcf(mcf8, mcf8.boundMaps(l2, u).run(),
   2.168 +             gr, l2, u, cc, s3, false,   0, "#A8");
   2.169    }
   2.170  
   2.171 -  // B. Test CapacityScaling without scaling
   2.172 +  // B. Test NetworkSimplex with each pivot rule
   2.173    {
   2.174 -    CapacityScaling<Digraph> mcf1(gr, u, c, s1);
   2.175 -    CapacityScaling<Digraph> mcf2(gr, u, c, v, w, 27);
   2.176 -    CapacityScaling<Digraph> mcf3(gr, u, c, s3);
   2.177 -    CapacityScaling<Digraph> mcf4(gr, l2, u, c, s1);
   2.178 -    CapacityScaling<Digraph> mcf5(gr, l2, u, c, v, w, 27);
   2.179 -    CapacityScaling<Digraph> mcf6(gr, l2, u, c, s3);
   2.180 +    NetworkSimplex<Digraph> mcf1(gr), mcf2(gr), mcf3(gr), mcf4(gr), mcf5(gr);
   2.181 +    NetworkSimplex<Digraph>::PivotRule pr;
   2.182  
   2.183 -    checkMcf(mcf1, mcf1.run(false), gr, l1, u, c, s1, true,  5240, "#B1");
   2.184 -    checkMcf(mcf2, mcf2.run(false), gr, l1, u, c, s2, true,  7620, "#B2");
   2.185 -    checkMcf(mcf3, mcf3.run(false), gr, l1, u, c, s3, true,     0, "#B3");
   2.186 -    checkMcf(mcf4, mcf4.run(false), gr, l2, u, c, s1, true,  5970, "#B4");
   2.187 -    checkMcf(mcf5, mcf5.run(false), gr, l2, u, c, s2, true,  8010, "#B5");
   2.188 -    checkMcf(mcf6, mcf6.run(false), gr, l2, u, c, s3, false,    0, "#B6");
   2.189 +    pr = NetworkSimplex<Digraph>::FIRST_ELIGIBLE;
   2.190 +    checkMcf(mcf1, mcf1.boundMaps(l2, u).costMap(c).supplyMap(s1).run(pr),
   2.191 +             gr, l2, u, c, s1, true,  5970, "#B1");
   2.192 +    pr = NetworkSimplex<Digraph>::BEST_ELIGIBLE;
   2.193 +    checkMcf(mcf2, mcf2.boundMaps(l2, u).costMap(c).supplyMap(s1).run(pr),
   2.194 +             gr, l2, u, c, s1, true,  5970, "#B2");
   2.195 +    pr = NetworkSimplex<Digraph>::BLOCK_SEARCH;
   2.196 +    checkMcf(mcf3, mcf3.boundMaps(l2, u).costMap(c).supplyMap(s1).run(pr),
   2.197 +             gr, l2, u, c, s1, true,  5970, "#B3");
   2.198 +    pr = NetworkSimplex<Digraph>::CANDIDATE_LIST;
   2.199 +    checkMcf(mcf4, mcf4.boundMaps(l2, u).costMap(c).supplyMap(s1).run(pr),
   2.200 +             gr, l2, u, c, s1, true,  5970, "#B4");
   2.201 +    pr = NetworkSimplex<Digraph>::ALTERING_LIST;
   2.202 +    checkMcf(mcf5, mcf5.boundMaps(l2, u).costMap(c).supplyMap(s1).run(pr),
   2.203 +             gr, l2, u, c, s1, true,  5970, "#B5");
   2.204    }
   2.205  
   2.206 -  // C. Test CostScaling using partial augment-relabel method
   2.207 -  {
   2.208 -    CostScaling<Digraph> mcf1(gr, u, c, s1);
   2.209 -    CostScaling<Digraph> mcf2(gr, u, c, v, w, 27);
   2.210 -    CostScaling<Digraph> mcf3(gr, u, c, s3);
   2.211 -    CostScaling<Digraph> mcf4(gr, l2, u, c, s1);
   2.212 -    CostScaling<Digraph> mcf5(gr, l2, u, c, v, w, 27);
   2.213 -    CostScaling<Digraph> mcf6(gr, l2, u, c, s3);
   2.214 -
   2.215 -    checkMcf(mcf1, mcf1.run(), gr, l1, u, c, s1, true,  5240, "#C1");
   2.216 -    checkMcf(mcf2, mcf2.run(), gr, l1, u, c, s2, true,  7620, "#C2");
   2.217 -    checkMcf(mcf3, mcf3.run(), gr, l1, u, c, s3, true,     0, "#C3");
   2.218 -    checkMcf(mcf4, mcf4.run(), gr, l2, u, c, s1, true,  5970, "#C4");
   2.219 -    checkMcf(mcf5, mcf5.run(), gr, l2, u, c, s2, true,  8010, "#C5");
   2.220 -    checkMcf(mcf6, mcf6.run(), gr, l2, u, c, s3, false,    0, "#C6");
   2.221 -  }
   2.222 -
   2.223 -  // D. Test CostScaling using push-relabel method
   2.224 -  {
   2.225 -    CostScaling<Digraph> mcf1(gr, u, c, s1);
   2.226 -    CostScaling<Digraph> mcf2(gr, u, c, v, w, 27);
   2.227 -    CostScaling<Digraph> mcf3(gr, u, c, s3);
   2.228 -    CostScaling<Digraph> mcf4(gr, l2, u, c, s1);
   2.229 -    CostScaling<Digraph> mcf5(gr, l2, u, c, v, w, 27);
   2.230 -    CostScaling<Digraph> mcf6(gr, l2, u, c, s3);
   2.231 -
   2.232 -    checkMcf(mcf1, mcf1.run(false), gr, l1, u, c, s1, true,  5240, "#D1");
   2.233 -    checkMcf(mcf2, mcf2.run(false), gr, l1, u, c, s2, true,  7620, "#D2");
   2.234 -    checkMcf(mcf3, mcf3.run(false), gr, l1, u, c, s3, true,     0, "#D3");
   2.235 -    checkMcf(mcf4, mcf4.run(false), gr, l2, u, c, s1, true,  5970, "#D4");
   2.236 -    checkMcf(mcf5, mcf5.run(false), gr, l2, u, c, s2, true,  8010, "#D5");
   2.237 -    checkMcf(mcf6, mcf6.run(false), gr, l2, u, c, s3, false,    0, "#D6");
   2.238 -  }
   2.239 -*/
   2.240 -
   2.241 -  // E. Test NetworkSimplex with FIRST_ELIGIBLE_PIVOT
   2.242 -  {
   2.243 -    NetworkSimplex<Digraph>::PivotRuleEnum pr =
   2.244 -      NetworkSimplex<Digraph>::FIRST_ELIGIBLE_PIVOT;
   2.245 -    NetworkSimplex<Digraph> mcf1(gr, u, c, s1);
   2.246 -    NetworkSimplex<Digraph> mcf2(gr, u, c, v, w, 27);
   2.247 -    NetworkSimplex<Digraph> mcf3(gr, u, c, s3);
   2.248 -    NetworkSimplex<Digraph> mcf4(gr, l2, u, c, s1);
   2.249 -    NetworkSimplex<Digraph> mcf5(gr, l2, u, c, v, w, 27);
   2.250 -    NetworkSimplex<Digraph> mcf6(gr, l2, u, c, s3);
   2.251 -
   2.252 -    checkMcf(mcf1, mcf1.run(pr), gr, l1, u, c, s1, true,  5240, "#E1");
   2.253 -    checkMcf(mcf2, mcf2.run(pr), gr, l1, u, c, s2, true,  7620, "#E2");
   2.254 -    checkMcf(mcf3, mcf3.run(pr), gr, l1, u, c, s3, true,     0, "#E3");
   2.255 -    checkMcf(mcf4, mcf4.run(pr), gr, l2, u, c, s1, true,  5970, "#E4");
   2.256 -    checkMcf(mcf5, mcf5.run(pr), gr, l2, u, c, s2, true,  8010, "#E5");
   2.257 -    checkMcf(mcf6, mcf6.run(pr), gr, l2, u, c, s3, false,    0, "#E6");
   2.258 -  }
   2.259 -
   2.260 -  // F. Test NetworkSimplex with BEST_ELIGIBLE_PIVOT
   2.261 -  {
   2.262 -    NetworkSimplex<Digraph>::PivotRuleEnum pr =
   2.263 -      NetworkSimplex<Digraph>::BEST_ELIGIBLE_PIVOT;
   2.264 -    NetworkSimplex<Digraph> mcf1(gr, u, c, s1);
   2.265 -    NetworkSimplex<Digraph> mcf2(gr, u, c, v, w, 27);
   2.266 -    NetworkSimplex<Digraph> mcf3(gr, u, c, s3);
   2.267 -    NetworkSimplex<Digraph> mcf4(gr, l2, u, c, s1);
   2.268 -    NetworkSimplex<Digraph> mcf5(gr, l2, u, c, v, w, 27);
   2.269 -    NetworkSimplex<Digraph> mcf6(gr, l2, u, c, s3);
   2.270 -
   2.271 -    checkMcf(mcf1, mcf1.run(pr), gr, l1, u, c, s1, true,  5240, "#F1");
   2.272 -    checkMcf(mcf2, mcf2.run(pr), gr, l1, u, c, s2, true,  7620, "#F2");
   2.273 -    checkMcf(mcf3, mcf3.run(pr), gr, l1, u, c, s3, true,     0, "#F3");
   2.274 -    checkMcf(mcf4, mcf4.run(pr), gr, l2, u, c, s1, true,  5970, "#F4");
   2.275 -    checkMcf(mcf5, mcf5.run(pr), gr, l2, u, c, s2, true,  8010, "#F5");
   2.276 -    checkMcf(mcf6, mcf6.run(pr), gr, l2, u, c, s3, false,    0, "#F6");
   2.277 -  }
   2.278 -
   2.279 -  // G. Test NetworkSimplex with BLOCK_SEARCH_PIVOT
   2.280 -  {
   2.281 -    NetworkSimplex<Digraph>::PivotRuleEnum pr =
   2.282 -      NetworkSimplex<Digraph>::BLOCK_SEARCH_PIVOT;
   2.283 -    NetworkSimplex<Digraph> mcf1(gr, u, c, s1);
   2.284 -    NetworkSimplex<Digraph> mcf2(gr, u, c, v, w, 27);
   2.285 -    NetworkSimplex<Digraph> mcf3(gr, u, c, s3);
   2.286 -    NetworkSimplex<Digraph> mcf4(gr, l2, u, c, s1);
   2.287 -    NetworkSimplex<Digraph> mcf5(gr, l2, u, c, v, w, 27);
   2.288 -    NetworkSimplex<Digraph> mcf6(gr, l2, u, c, s3);
   2.289 -
   2.290 -    checkMcf(mcf1, mcf1.run(pr), gr, l1, u, c, s1, true,  5240, "#G1");
   2.291 -    checkMcf(mcf2, mcf2.run(pr), gr, l1, u, c, s2, true,  7620, "#G2");
   2.292 -    checkMcf(mcf3, mcf3.run(pr), gr, l1, u, c, s3, true,     0, "#G3");
   2.293 -    checkMcf(mcf4, mcf4.run(pr), gr, l2, u, c, s1, true,  5970, "#G4");
   2.294 -    checkMcf(mcf5, mcf5.run(pr), gr, l2, u, c, s2, true,  8010, "#G5");
   2.295 -    checkMcf(mcf6, mcf6.run(pr), gr, l2, u, c, s3, false,    0, "#G6");
   2.296 -  }
   2.297 -
   2.298 -  // H. Test NetworkSimplex with CANDIDATE_LIST_PIVOT
   2.299 -  {
   2.300 -    NetworkSimplex<Digraph>::PivotRuleEnum pr =
   2.301 -      NetworkSimplex<Digraph>::CANDIDATE_LIST_PIVOT;
   2.302 -    NetworkSimplex<Digraph> mcf1(gr, u, c, s1);
   2.303 -    NetworkSimplex<Digraph> mcf2(gr, u, c, v, w, 27);
   2.304 -    NetworkSimplex<Digraph> mcf3(gr, u, c, s3);
   2.305 -    NetworkSimplex<Digraph> mcf4(gr, l2, u, c, s1);
   2.306 -    NetworkSimplex<Digraph> mcf5(gr, l2, u, c, v, w, 27);
   2.307 -    NetworkSimplex<Digraph> mcf6(gr, l2, u, c, s3);
   2.308 -
   2.309 -    checkMcf(mcf1, mcf1.run(pr), gr, l1, u, c, s1, true,  5240, "#H1");
   2.310 -    checkMcf(mcf2, mcf2.run(pr), gr, l1, u, c, s2, true,  7620, "#H2");
   2.311 -    checkMcf(mcf3, mcf3.run(pr), gr, l1, u, c, s3, true,     0, "#H3");
   2.312 -    checkMcf(mcf4, mcf4.run(pr), gr, l2, u, c, s1, true,  5970, "#H4");
   2.313 -    checkMcf(mcf5, mcf5.run(pr), gr, l2, u, c, s2, true,  8010, "#H5");
   2.314 -    checkMcf(mcf6, mcf6.run(pr), gr, l2, u, c, s3, false,    0, "#H6");
   2.315 -  }
   2.316 -
   2.317 -  // I. Test NetworkSimplex with ALTERING_LIST_PIVOT
   2.318 -  {
   2.319 -    NetworkSimplex<Digraph>::PivotRuleEnum pr =
   2.320 -      NetworkSimplex<Digraph>::ALTERING_LIST_PIVOT;
   2.321 -    NetworkSimplex<Digraph> mcf1(gr, u, c, s1);
   2.322 -    NetworkSimplex<Digraph> mcf2(gr, u, c, v, w, 27);
   2.323 -    NetworkSimplex<Digraph> mcf3(gr, u, c, s3);
   2.324 -    NetworkSimplex<Digraph> mcf4(gr, l2, u, c, s1);
   2.325 -    NetworkSimplex<Digraph> mcf5(gr, l2, u, c, v, w, 27);
   2.326 -    NetworkSimplex<Digraph> mcf6(gr, l2, u, c, s3);
   2.327 -
   2.328 -    checkMcf(mcf1, mcf1.run(pr), gr, l1, u, c, s1, true,  5240, "#I1");
   2.329 -    checkMcf(mcf2, mcf2.run(pr), gr, l1, u, c, s2, true,  7620, "#I2");
   2.330 -    checkMcf(mcf3, mcf3.run(pr), gr, l1, u, c, s3, true,     0, "#I3");
   2.331 -    checkMcf(mcf4, mcf4.run(pr), gr, l2, u, c, s1, true,  5970, "#I4");
   2.332 -    checkMcf(mcf5, mcf5.run(pr), gr, l2, u, c, s2, true,  8010, "#I5");
   2.333 -    checkMcf(mcf6, mcf6.run(pr), gr, l2, u, c, s3, false,    0, "#I6");
   2.334 -  }
   2.335 -
   2.336 -/*
   2.337 -  // J. Test MinCostFlow
   2.338 -  {
   2.339 -    MinCostFlow<Digraph> mcf1(gr, u, c, s1);
   2.340 -    MinCostFlow<Digraph> mcf2(gr, u, c, v, w, 27);
   2.341 -    MinCostFlow<Digraph> mcf3(gr, u, c, s3);
   2.342 -    MinCostFlow<Digraph> mcf4(gr, l2, u, c, s1);
   2.343 -    MinCostFlow<Digraph> mcf5(gr, l2, u, c, v, w, 27);
   2.344 -    MinCostFlow<Digraph> mcf6(gr, l2, u, c, s3);
   2.345 -
   2.346 -    checkMcf(mcf1, mcf1.run(), gr, l1, u, c, s1, true,  5240, "#J1");
   2.347 -    checkMcf(mcf2, mcf2.run(), gr, l1, u, c, s2, true,  7620, "#J2");
   2.348 -    checkMcf(mcf3, mcf3.run(), gr, l1, u, c, s3, true,     0, "#J3");
   2.349 -    checkMcf(mcf4, mcf4.run(), gr, l2, u, c, s1, true,  5970, "#J4");
   2.350 -    checkMcf(mcf5, mcf5.run(), gr, l2, u, c, s2, true,  8010, "#J5");
   2.351 -    checkMcf(mcf6, mcf6.run(), gr, l2, u, c, s3, false,    0, "#J6");
   2.352 -  }
   2.353 -*/
   2.354 -/*
   2.355 -  // K. Test MinCostMaxFlow
   2.356 -  {
   2.357 -    MinCostMaxFlow<Digraph> mcmf(gr, u, c, v, w);
   2.358 -    mcmf.run();
   2.359 -    checkMcf(mcmf, true, gr, l1, u, c, s3, true, 7620, "#K1");
   2.360 -  }
   2.361 -*/
   2.362 -
   2.363    return 0;
   2.364  }
     3.1 --- a/tools/dimacs-solver.cc	Tue Mar 24 00:18:25 2009 +0100
     3.2 +++ b/tools/dimacs-solver.cc	Wed Mar 25 15:58:44 2009 +0100
     3.3 @@ -105,9 +105,8 @@
     3.4    readDimacsMin(is, g, lower, cap, cost, sup, desc);
     3.5    if (report) std::cerr << "Read the file: " << ti << '\n';
     3.6    ti.restart();
     3.7 -  NetworkSimplex< Digraph, Digraph::ArcMap<Value>, Digraph::ArcMap<Value>,
     3.8 -                  Digraph::ArcMap<Value>, Digraph::NodeMap<Value> >
     3.9 -    ns(g, lower, cap, cost, sup);
    3.10 +  NetworkSimplex<Digraph, Value> ns(g);
    3.11 +  ns.lowerMap(lower).capacityMap(cap).costMap(cost).supplyMap(sup);
    3.12    if (report) std::cerr << "Setup NetworkSimplex class: " << ti << '\n';
    3.13    ti.restart();
    3.14    ns.run();