1.1 --- a/lemon/maps.h Thu Jun 11 23:13:24 2009 +0200
1.2 +++ b/lemon/maps.h Sat Jun 27 13:07:26 2009 +0200
1.3 @@ -24,6 +24,7 @@
1.4 #include <vector>
1.5
1.6 #include <lemon/core.h>
1.7 +#include <lemon/smart_graph.h>
1.8
1.9 ///\file
1.10 ///\ingroup maps
1.11 @@ -1818,7 +1819,7 @@
1.12 /// \brief Provides an immutable and unique id for each item in a graph.
1.13 ///
1.14 /// IdMap provides a unique and immutable id for each item of the
1.15 - /// same type (\c Node, \c Arc or \c Edge) in a graph. This id is
1.16 + /// same type (\c Node, \c Arc or \c Edge) in a graph. This id is
1.17 /// - \b unique: different items get different ids,
1.18 /// - \b immutable: the id of an item does not change (even if you
1.19 /// delete other nodes).
1.20 @@ -2004,7 +2005,7 @@
1.21 if (it != _inv_map.end() && it->second == key) {
1.22 _inv_map.erase(it);
1.23 }
1.24 - _inv_map.insert(make_pair(val, key));
1.25 + _inv_map.insert(std::make_pair(val, key));
1.26 Map::set(key, val);
1.27 }
1.28
1.29 @@ -2254,7 +2255,7 @@
1.30 }
1.31
1.32 /// \brief Gives back the item belonging to a \e RangeId
1.33 - ///
1.34 + ///
1.35 /// Gives back the item belonging to a \e RangeId.
1.36 Item operator()(int id) const {
1.37 return _inv_map[id];
1.38 @@ -2311,6 +2312,894 @@
1.39 }
1.40 };
1.41
1.42 + /// \brief Dynamic iterable bool map.
1.43 + ///
1.44 + /// This class provides a special graph map type which can store for
1.45 + /// each graph item(node, arc, edge, etc.) a bool value. For both
1.46 + /// the true and the false values it is possible to iterate on the
1.47 + /// keys.
1.48 + ///
1.49 + /// \param GR The graph type.
1.50 + /// \param ITEM One of the graph's item types, the key of the map.
1.51 + template <typename GR, typename ITEM>
1.52 + class IterableBoolMap
1.53 + : protected ItemSetTraits<GR, ITEM>::template Map<int>::Type {
1.54 + private:
1.55 + typedef GR Graph;
1.56 +
1.57 + typedef typename ItemSetTraits<Graph, ITEM>::ItemIt KeyIt;
1.58 + typedef typename ItemSetTraits<GR, ITEM>::template Map<int>::Type Parent;
1.59 +
1.60 + std::vector<ITEM> _array;
1.61 + int _sep;
1.62 +
1.63 + public:
1.64 +
1.65 + /// Indicates that the map if reference map.
1.66 + typedef True ReferenceMapTag;
1.67 +
1.68 + /// The key type
1.69 + typedef ITEM Key;
1.70 + /// The value type
1.71 + typedef bool Value;
1.72 + /// The const reference type.
1.73 + typedef const Value& ConstReference;
1.74 +
1.75 + private:
1.76 +
1.77 + int position(const Key& key) const {
1.78 + return Parent::operator[](key);
1.79 + }
1.80 +
1.81 + public:
1.82 +
1.83 + /// \brief Refernce to the value of the map.
1.84 + ///
1.85 + /// This class is similar to the bool type. It can be converted to
1.86 + /// bool and it provides the same operators.
1.87 + class Reference {
1.88 + friend class IterableBoolMap;
1.89 + private:
1.90 + Reference(IterableBoolMap& map, const Key& key)
1.91 + : _key(key), _map(map) {}
1.92 + public:
1.93 +
1.94 + Reference& operator=(const Reference& value) {
1.95 + _map.set(_key, static_cast<bool>(value));
1.96 + return *this;
1.97 + }
1.98 +
1.99 + operator bool() const {
1.100 + return static_cast<const IterableBoolMap&>(_map)[_key];
1.101 + }
1.102 +
1.103 + Reference& operator=(bool value) {
1.104 + _map.set(_key, value);
1.105 + return *this;
1.106 + }
1.107 + Reference& operator&=(bool value) {
1.108 + _map.set(_key, _map[_key] & value);
1.109 + return *this;
1.110 + }
1.111 + Reference& operator|=(bool value) {
1.112 + _map.set(_key, _map[_key] | value);
1.113 + return *this;
1.114 + }
1.115 + Reference& operator^=(bool value) {
1.116 + _map.set(_key, _map[_key] ^ value);
1.117 + return *this;
1.118 + }
1.119 + private:
1.120 + Key _key;
1.121 + IterableBoolMap& _map;
1.122 + };
1.123 +
1.124 + /// \brief Constructor of the map with a default value.
1.125 + ///
1.126 + /// Constructor of the map with a default value.
1.127 + explicit IterableBoolMap(const Graph& graph, bool def = false)
1.128 + : Parent(graph) {
1.129 + typename Parent::Notifier* nf = Parent::notifier();
1.130 + Key it;
1.131 + for (nf->first(it); it != INVALID; nf->next(it)) {
1.132 + Parent::set(it, _array.size());
1.133 + _array.push_back(it);
1.134 + }
1.135 + _sep = (def ? _array.size() : 0);
1.136 + }
1.137 +
1.138 + /// \brief Const subscript operator of the map.
1.139 + ///
1.140 + /// Const subscript operator of the map.
1.141 + bool operator[](const Key& key) const {
1.142 + return position(key) < _sep;
1.143 + }
1.144 +
1.145 + /// \brief Subscript operator of the map.
1.146 + ///
1.147 + /// Subscript operator of the map.
1.148 + Reference operator[](const Key& key) {
1.149 + return Reference(*this, key);
1.150 + }
1.151 +
1.152 + /// \brief Set operation of the map.
1.153 + ///
1.154 + /// Set operation of the map.
1.155 + void set(const Key& key, bool value) {
1.156 + int pos = position(key);
1.157 + if (value) {
1.158 + if (pos < _sep) return;
1.159 + Key tmp = _array[_sep];
1.160 + _array[_sep] = key;
1.161 + Parent::set(key, _sep);
1.162 + _array[pos] = tmp;
1.163 + Parent::set(tmp, pos);
1.164 + ++_sep;
1.165 + } else {
1.166 + if (pos >= _sep) return;
1.167 + --_sep;
1.168 + Key tmp = _array[_sep];
1.169 + _array[_sep] = key;
1.170 + Parent::set(key, _sep);
1.171 + _array[pos] = tmp;
1.172 + Parent::set(tmp, pos);
1.173 + }
1.174 + }
1.175 +
1.176 + /// \brief Set all items.
1.177 + ///
1.178 + /// Set all items in the map.
1.179 + /// \note Constant time operation.
1.180 + void setAll(bool value) {
1.181 + _sep = (value ? _array.size() : 0);
1.182 + }
1.183 +
1.184 + /// \brief Returns the number of the keys mapped to true.
1.185 + ///
1.186 + /// Returns the number of the keys mapped to true.
1.187 + int trueNum() const {
1.188 + return _sep;
1.189 + }
1.190 +
1.191 + /// \brief Returns the number of the keys mapped to false.
1.192 + ///
1.193 + /// Returns the number of the keys mapped to false.
1.194 + int falseNum() const {
1.195 + return _array.size() - _sep;
1.196 + }
1.197 +
1.198 + /// \brief Iterator for the keys mapped to true.
1.199 + ///
1.200 + /// Iterator for the keys mapped to true. It works
1.201 + /// like a graph item iterator in the map, it can be converted
1.202 + /// the key type of the map, incremented with \c ++ operator, and
1.203 + /// if the iterator leave the last valid key it will be equal to
1.204 + /// \c INVALID.
1.205 + class TrueIt : public Key {
1.206 + public:
1.207 + typedef Key Parent;
1.208 +
1.209 + /// \brief Creates an iterator.
1.210 + ///
1.211 + /// Creates an iterator. It iterates on the
1.212 + /// keys which mapped to true.
1.213 + /// \param map The IterableIntMap
1.214 + explicit TrueIt(const IterableBoolMap& map)
1.215 + : Parent(map._sep > 0 ? map._array[map._sep - 1] : INVALID),
1.216 + _map(&map) {}
1.217 +
1.218 + /// \brief Invalid constructor \& conversion.
1.219 + ///
1.220 + /// This constructor initializes the key to be invalid.
1.221 + /// \sa Invalid for more details.
1.222 + TrueIt(Invalid) : Parent(INVALID), _map(0) {}
1.223 +
1.224 + /// \brief Increment operator.
1.225 + ///
1.226 + /// Increment Operator.
1.227 + TrueIt& operator++() {
1.228 + int pos = _map->position(*this);
1.229 + Parent::operator=(pos > 0 ? _map->_array[pos - 1] : INVALID);
1.230 + return *this;
1.231 + }
1.232 +
1.233 +
1.234 + private:
1.235 + const IterableBoolMap* _map;
1.236 + };
1.237 +
1.238 + /// \brief Iterator for the keys mapped to false.
1.239 + ///
1.240 + /// Iterator for the keys mapped to false. It works
1.241 + /// like a graph item iterator in the map, it can be converted
1.242 + /// the key type of the map, incremented with \c ++ operator, and
1.243 + /// if the iterator leave the last valid key it will be equal to
1.244 + /// \c INVALID.
1.245 + class FalseIt : public Key {
1.246 + public:
1.247 + typedef Key Parent;
1.248 +
1.249 + /// \brief Creates an iterator.
1.250 + ///
1.251 + /// Creates an iterator. It iterates on the
1.252 + /// keys which mapped to false.
1.253 + /// \param map The IterableIntMap
1.254 + explicit FalseIt(const IterableBoolMap& map)
1.255 + : Parent(map._sep < int(map._array.size()) ?
1.256 + map._array.back() : INVALID), _map(&map) {}
1.257 +
1.258 + /// \brief Invalid constructor \& conversion.
1.259 + ///
1.260 + /// This constructor initializes the key to be invalid.
1.261 + /// \sa Invalid for more details.
1.262 + FalseIt(Invalid) : Parent(INVALID), _map(0) {}
1.263 +
1.264 + /// \brief Increment operator.
1.265 + ///
1.266 + /// Increment Operator.
1.267 + FalseIt& operator++() {
1.268 + int pos = _map->position(*this);
1.269 + Parent::operator=(pos > _map->_sep ? _map->_array[pos - 1] : INVALID);
1.270 + return *this;
1.271 + }
1.272 +
1.273 + private:
1.274 + const IterableBoolMap* _map;
1.275 + };
1.276 +
1.277 + /// \brief Iterator for the keys mapped to a given value.
1.278 + ///
1.279 + /// Iterator for the keys mapped to a given value. It works
1.280 + /// like a graph item iterator in the map, it can be converted
1.281 + /// the key type of the map, incremented with \c ++ operator, and
1.282 + /// if the iterator leave the last valid key it will be equal to
1.283 + /// \c INVALID.
1.284 + class ItemIt : public Key {
1.285 + public:
1.286 + typedef Key Parent;
1.287 +
1.288 + /// \brief Creates an iterator.
1.289 + ///
1.290 + /// Creates an iterator. It iterates on the
1.291 + /// keys which mapped to false.
1.292 + /// \param map The IterableIntMap
1.293 + /// \param value Which elements should be iterated.
1.294 + ItemIt(const IterableBoolMap& map, bool value)
1.295 + : Parent(value ?
1.296 + (map._sep > 0 ?
1.297 + map._array[map._sep - 1] : INVALID) :
1.298 + (map._sep < int(map._array.size()) ?
1.299 + map._array.back() : INVALID)), _map(&map) {}
1.300 +
1.301 + /// \brief Invalid constructor \& conversion.
1.302 + ///
1.303 + /// This constructor initializes the key to be invalid.
1.304 + /// \sa Invalid for more details.
1.305 + ItemIt(Invalid) : Parent(INVALID), _map(0) {}
1.306 +
1.307 + /// \brief Increment operator.
1.308 + ///
1.309 + /// Increment Operator.
1.310 + ItemIt& operator++() {
1.311 + int pos = _map->position(*this);
1.312 + int _sep = pos >= _map->_sep ? _map->_sep : 0;
1.313 + Parent::operator=(pos > _sep ? _map->_array[pos - 1] : INVALID);
1.314 + return *this;
1.315 + }
1.316 +
1.317 + private:
1.318 + const IterableBoolMap* _map;
1.319 + };
1.320 +
1.321 + protected:
1.322 +
1.323 + virtual void add(const Key& key) {
1.324 + Parent::add(key);
1.325 + Parent::set(key, _array.size());
1.326 + _array.push_back(key);
1.327 + }
1.328 +
1.329 + virtual void add(const std::vector<Key>& keys) {
1.330 + Parent::add(keys);
1.331 + for (int i = 0; i < int(keys.size()); ++i) {
1.332 + Parent::set(keys[i], _array.size());
1.333 + _array.push_back(keys[i]);
1.334 + }
1.335 + }
1.336 +
1.337 + virtual void erase(const Key& key) {
1.338 + int pos = position(key);
1.339 + if (pos < _sep) {
1.340 + --_sep;
1.341 + Parent::set(_array[_sep], pos);
1.342 + _array[pos] = _array[_sep];
1.343 + Parent::set(_array.back(), _sep);
1.344 + _array[_sep] = _array.back();
1.345 + _array.pop_back();
1.346 + } else {
1.347 + Parent::set(_array.back(), pos);
1.348 + _array[pos] = _array.back();
1.349 + _array.pop_back();
1.350 + }
1.351 + Parent::erase(key);
1.352 + }
1.353 +
1.354 + virtual void erase(const std::vector<Key>& keys) {
1.355 + for (int i = 0; i < int(keys.size()); ++i) {
1.356 + int pos = position(keys[i]);
1.357 + if (pos < _sep) {
1.358 + --_sep;
1.359 + Parent::set(_array[_sep], pos);
1.360 + _array[pos] = _array[_sep];
1.361 + Parent::set(_array.back(), _sep);
1.362 + _array[_sep] = _array.back();
1.363 + _array.pop_back();
1.364 + } else {
1.365 + Parent::set(_array.back(), pos);
1.366 + _array[pos] = _array.back();
1.367 + _array.pop_back();
1.368 + }
1.369 + }
1.370 + Parent::erase(keys);
1.371 + }
1.372 +
1.373 + virtual void build() {
1.374 + Parent::build();
1.375 + typename Parent::Notifier* nf = Parent::notifier();
1.376 + Key it;
1.377 + for (nf->first(it); it != INVALID; nf->next(it)) {
1.378 + Parent::set(it, _array.size());
1.379 + _array.push_back(it);
1.380 + }
1.381 + _sep = 0;
1.382 + }
1.383 +
1.384 + virtual void clear() {
1.385 + _array.clear();
1.386 + _sep = 0;
1.387 + Parent::clear();
1.388 + }
1.389 +
1.390 + };
1.391 +
1.392 +
1.393 + namespace _maps_bits {
1.394 + template <typename Item>
1.395 + struct IterableIntMapNode {
1.396 + IterableIntMapNode() : value(-1) {}
1.397 + IterableIntMapNode(int _value) : value(_value) {}
1.398 + Item prev, next;
1.399 + int value;
1.400 + };
1.401 + }
1.402 +
1.403 + ///\ingroup graph_maps
1.404 + ///
1.405 + /// \brief Dynamic iterable integer map.
1.406 + ///
1.407 + /// This class provides a special graph map type which can store
1.408 + /// for each graph item(node, edge, etc.) an integer value. For each
1.409 + /// non negative value it is possible to iterate on the keys which
1.410 + /// mapped to the given value.
1.411 + ///
1.412 + /// \note The size of the data structure depends on the highest
1.413 + /// value in the map.
1.414 + ///
1.415 + /// \param GR The graph type.
1.416 + /// \param ITEM One of the graph's item type, the key of the map.
1.417 + template <typename GR, typename ITEM>
1.418 + class IterableIntMap
1.419 + : protected ItemSetTraits<GR, ITEM>::
1.420 + template Map<_maps_bits::IterableIntMapNode<ITEM> >::Type {
1.421 + public:
1.422 + typedef typename ItemSetTraits<GR, ITEM>::
1.423 + template Map<_maps_bits::IterableIntMapNode<ITEM> >::Type Parent;
1.424 +
1.425 + /// The key type
1.426 + typedef ITEM Key;
1.427 + /// The value type
1.428 + typedef int Value;
1.429 + /// The graph type
1.430 + typedef GR Graph;
1.431 +
1.432 + /// \brief Constructor of the map.
1.433 + ///
1.434 + /// Constructor of the map. It set all values to -1.
1.435 + explicit IterableIntMap(const Graph& graph)
1.436 + : Parent(graph) {}
1.437 +
1.438 + /// \brief Constructor of the map with a given value.
1.439 + ///
1.440 + /// Constructor of the map with a given value.
1.441 + explicit IterableIntMap(const Graph& graph, int value)
1.442 + : Parent(graph, _maps_bits::IterableIntMapNode<ITEM>(value)) {
1.443 + if (value >= 0) {
1.444 + for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
1.445 + lace(it);
1.446 + }
1.447 + }
1.448 + }
1.449 +
1.450 + private:
1.451 +
1.452 + void unlace(const Key& key) {
1.453 + typename Parent::Value& node = Parent::operator[](key);
1.454 + if (node.value < 0) return;
1.455 + if (node.prev != INVALID) {
1.456 + Parent::operator[](node.prev).next = node.next;
1.457 + } else {
1.458 + _first[node.value] = node.next;
1.459 + }
1.460 + if (node.next != INVALID) {
1.461 + Parent::operator[](node.next).prev = node.prev;
1.462 + }
1.463 + while (!_first.empty() && _first.back() == INVALID) {
1.464 + _first.pop_back();
1.465 + }
1.466 + }
1.467 +
1.468 + void lace(const Key& key) {
1.469 + typename Parent::Value& node = Parent::operator[](key);
1.470 + if (node.value < 0) return;
1.471 + if (node.value >= int(_first.size())) {
1.472 + _first.resize(node.value + 1, INVALID);
1.473 + }
1.474 + node.prev = INVALID;
1.475 + node.next = _first[node.value];
1.476 + if (node.next != INVALID) {
1.477 + Parent::operator[](node.next).prev = key;
1.478 + }
1.479 + _first[node.value] = key;
1.480 + }
1.481 +
1.482 + public:
1.483 +
1.484 + /// Indicates that the map if reference map.
1.485 + typedef True ReferenceMapTag;
1.486 +
1.487 + /// \brief Refernce to the value of the map.
1.488 + ///
1.489 + /// This class is similar to the int type. It can
1.490 + /// be converted to int and it has the same operators.
1.491 + class Reference {
1.492 + friend class IterableIntMap;
1.493 + private:
1.494 + Reference(IterableIntMap& map, const Key& key)
1.495 + : _key(key), _map(map) {}
1.496 + public:
1.497 +
1.498 + Reference& operator=(const Reference& value) {
1.499 + _map.set(_key, static_cast<const int&>(value));
1.500 + return *this;
1.501 + }
1.502 +
1.503 + operator const int&() const {
1.504 + return static_cast<const IterableIntMap&>(_map)[_key];
1.505 + }
1.506 +
1.507 + Reference& operator=(int value) {
1.508 + _map.set(_key, value);
1.509 + return *this;
1.510 + }
1.511 + Reference& operator++() {
1.512 + _map.set(_key, _map[_key] + 1);
1.513 + return *this;
1.514 + }
1.515 + int operator++(int) {
1.516 + int value = _map[_key];
1.517 + _map.set(_key, value + 1);
1.518 + return value;
1.519 + }
1.520 + Reference& operator--() {
1.521 + _map.set(_key, _map[_key] - 1);
1.522 + return *this;
1.523 + }
1.524 + int operator--(int) {
1.525 + int value = _map[_key];
1.526 + _map.set(_key, value - 1);
1.527 + return value;
1.528 + }
1.529 + Reference& operator+=(int value) {
1.530 + _map.set(_key, _map[_key] + value);
1.531 + return *this;
1.532 + }
1.533 + Reference& operator-=(int value) {
1.534 + _map.set(_key, _map[_key] - value);
1.535 + return *this;
1.536 + }
1.537 + Reference& operator*=(int value) {
1.538 + _map.set(_key, _map[_key] * value);
1.539 + return *this;
1.540 + }
1.541 + Reference& operator/=(int value) {
1.542 + _map.set(_key, _map[_key] / value);
1.543 + return *this;
1.544 + }
1.545 + Reference& operator%=(int value) {
1.546 + _map.set(_key, _map[_key] % value);
1.547 + return *this;
1.548 + }
1.549 + Reference& operator&=(int value) {
1.550 + _map.set(_key, _map[_key] & value);
1.551 + return *this;
1.552 + }
1.553 + Reference& operator|=(int value) {
1.554 + _map.set(_key, _map[_key] | value);
1.555 + return *this;
1.556 + }
1.557 + Reference& operator^=(int value) {
1.558 + _map.set(_key, _map[_key] ^ value);
1.559 + return *this;
1.560 + }
1.561 + Reference& operator<<=(int value) {
1.562 + _map.set(_key, _map[_key] << value);
1.563 + return *this;
1.564 + }
1.565 + Reference& operator>>=(int value) {
1.566 + _map.set(_key, _map[_key] >> value);
1.567 + return *this;
1.568 + }
1.569 +
1.570 + private:
1.571 + Key _key;
1.572 + IterableIntMap& _map;
1.573 + };
1.574 +
1.575 + /// The const reference type.
1.576 + typedef const Value& ConstReference;
1.577 +
1.578 + /// \brief Gives back the maximal value plus one.
1.579 + ///
1.580 + /// Gives back the maximal value plus one.
1.581 + int size() const {
1.582 + return _first.size();
1.583 + }
1.584 +
1.585 + /// \brief Set operation of the map.
1.586 + ///
1.587 + /// Set operation of the map.
1.588 + void set(const Key& key, const Value& value) {
1.589 + unlace(key);
1.590 + Parent::operator[](key).value = value;
1.591 + lace(key);
1.592 + }
1.593 +
1.594 + /// \brief Const subscript operator of the map.
1.595 + ///
1.596 + /// Const subscript operator of the map.
1.597 + const Value& operator[](const Key& key) const {
1.598 + return Parent::operator[](key).value;
1.599 + }
1.600 +
1.601 + /// \brief Subscript operator of the map.
1.602 + ///
1.603 + /// Subscript operator of the map.
1.604 + Reference operator[](const Key& key) {
1.605 + return Reference(*this, key);
1.606 + }
1.607 +
1.608 + /// \brief Iterator for the keys with the same value.
1.609 + ///
1.610 + /// Iterator for the keys with the same value. It works
1.611 + /// like a graph item iterator in the map, it can be converted
1.612 + /// the item type of the map, incremented with \c ++ operator, and
1.613 + /// if the iterator leave the last valid item it will be equal to
1.614 + /// \c INVALID.
1.615 + class ItemIt : public ITEM {
1.616 + public:
1.617 + typedef ITEM Parent;
1.618 +
1.619 + /// \brief Invalid constructor \& conversion.
1.620 + ///
1.621 + /// This constructor initializes the item to be invalid.
1.622 + /// \sa Invalid for more details.
1.623 + ItemIt(Invalid) : Parent(INVALID), _map(0) {}
1.624 +
1.625 + /// \brief Creates an iterator with a value.
1.626 + ///
1.627 + /// Creates an iterator with a value. It iterates on the
1.628 + /// keys which have the given value.
1.629 + /// \param map The IterableIntMap
1.630 + /// \param value The value
1.631 + ItemIt(const IterableIntMap& map, int value) : _map(&map) {
1.632 + if (value < 0 || value >= int(_map->_first.size())) {
1.633 + Parent::operator=(INVALID);
1.634 + } else {
1.635 + Parent::operator=(_map->_first[value]);
1.636 + }
1.637 + }
1.638 +
1.639 + /// \brief Increment operator.
1.640 + ///
1.641 + /// Increment Operator.
1.642 + ItemIt& operator++() {
1.643 + Parent::operator=(_map->IterableIntMap::Parent::
1.644 + operator[](static_cast<Parent&>(*this)).next);
1.645 + return *this;
1.646 + }
1.647 +
1.648 +
1.649 + private:
1.650 + const IterableIntMap* _map;
1.651 + };
1.652 +
1.653 + protected:
1.654 +
1.655 + virtual void erase(const Key& key) {
1.656 + unlace(key);
1.657 + Parent::erase(key);
1.658 + }
1.659 +
1.660 + virtual void erase(const std::vector<Key>& keys) {
1.661 + for (int i = 0; i < int(keys.size()); ++i) {
1.662 + unlace(keys[i]);
1.663 + }
1.664 + Parent::erase(keys);
1.665 + }
1.666 +
1.667 + virtual void clear() {
1.668 + _first.clear();
1.669 + Parent::clear();
1.670 + }
1.671 +
1.672 + private:
1.673 + std::vector<ITEM> _first;
1.674 + };
1.675 +
1.676 + namespace _maps_bits {
1.677 + template <typename Item, typename Value>
1.678 + struct IterableValueMapNode {
1.679 + IterableValueMapNode(Value _value = Value()) : value(_value) {}
1.680 + Item prev, next;
1.681 + Value value;
1.682 + };
1.683 + }
1.684 +
1.685 + ///\ingroup graph_maps
1.686 + ///
1.687 + /// \brief Dynamic iterable map for comparable values.
1.688 + ///
1.689 + /// This class provides a special graph map type which can store
1.690 + /// for each graph item(node, edge, etc.) a value. For each
1.691 + /// value it is possible to iterate on the keys which mapped to the
1.692 + /// given value. The type stores for each value a linked list with
1.693 + /// the items which mapped to the value, and the values are stored
1.694 + /// in balanced binary tree. The values of the map can be accessed
1.695 + /// with stl compatible forward iterator.
1.696 + ///
1.697 + /// This type is not reference map so it cannot be modified with
1.698 + /// the subscription operator.
1.699 + ///
1.700 + /// \see InvertableMap
1.701 + ///
1.702 + /// \param GR The graph type.
1.703 + /// \param ITEM One of the graph's item type, the key of the map.
1.704 + /// \param VAL Any comparable value type.
1.705 + template <typename GR, typename ITEM, typename VAL>
1.706 + class IterableValueMap
1.707 + : protected ItemSetTraits<GR, ITEM>::
1.708 + template Map<_maps_bits::IterableValueMapNode<ITEM, VAL> >::Type {
1.709 + public:
1.710 + typedef typename ItemSetTraits<GR, ITEM>::
1.711 + template Map<_maps_bits::IterableValueMapNode<ITEM, VAL> >::Type Parent;
1.712 +
1.713 + /// The key type
1.714 + typedef ITEM Key;
1.715 + /// The value type
1.716 + typedef VAL Value;
1.717 + /// The graph type
1.718 + typedef GR Graph;
1.719 +
1.720 + public:
1.721 +
1.722 + /// \brief Constructor of the Map with a given value.
1.723 + ///
1.724 + /// Constructor of the Map with a given value.
1.725 + explicit IterableValueMap(const Graph& graph,
1.726 + const Value& value = Value())
1.727 + : Parent(graph, _maps_bits::IterableValueMapNode<ITEM, VAL>(value)) {
1.728 + for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
1.729 + lace(it);
1.730 + }
1.731 + }
1.732 +
1.733 + protected:
1.734 +
1.735 + void unlace(const Key& key) {
1.736 + typename Parent::Value& node = Parent::operator[](key);
1.737 + if (node.prev != INVALID) {
1.738 + Parent::operator[](node.prev).next = node.next;
1.739 + } else {
1.740 + if (node.next != INVALID) {
1.741 + _first[node.value] = node.next;
1.742 + } else {
1.743 + _first.erase(node.value);
1.744 + }
1.745 + }
1.746 + if (node.next != INVALID) {
1.747 + Parent::operator[](node.next).prev = node.prev;
1.748 + }
1.749 + }
1.750 +
1.751 + void lace(const Key& key) {
1.752 + typename Parent::Value& node = Parent::operator[](key);
1.753 + typename std::map<Value, Key>::iterator it = _first.find(node.value);
1.754 + if (it == _first.end()) {
1.755 + node.prev = node.next = INVALID;
1.756 + if (node.next != INVALID) {
1.757 + Parent::operator[](node.next).prev = key;
1.758 + }
1.759 + _first.insert(std::make_pair(node.value, key));
1.760 + } else {
1.761 + node.prev = INVALID;
1.762 + node.next = it->second;
1.763 + if (node.next != INVALID) {
1.764 + Parent::operator[](node.next).prev = key;
1.765 + }
1.766 + it->second = key;
1.767 + }
1.768 + }
1.769 +
1.770 + public:
1.771 +
1.772 + /// \brief Forward iterator for values.
1.773 + ///
1.774 + /// This iterator is an stl compatible forward
1.775 + /// iterator on the values of the map. The values can
1.776 + /// be accessed in the [beginValue, endValue) range.
1.777 + ///
1.778 + class ValueIterator
1.779 + : public std::iterator<std::forward_iterator_tag, Value> {
1.780 + friend class IterableValueMap;
1.781 + private:
1.782 + ValueIterator(typename std::map<Value, Key>::const_iterator _it)
1.783 + : it(_it) {}
1.784 + public:
1.785 +
1.786 + ValueIterator() {}
1.787 +
1.788 + ValueIterator& operator++() { ++it; return *this; }
1.789 + ValueIterator operator++(int) {
1.790 + ValueIterator tmp(*this);
1.791 + operator++();
1.792 + return tmp;
1.793 + }
1.794 +
1.795 + const Value& operator*() const { return it->first; }
1.796 + const Value* operator->() const { return &(it->first); }
1.797 +
1.798 + bool operator==(ValueIterator jt) const { return it == jt.it; }
1.799 + bool operator!=(ValueIterator jt) const { return it != jt.it; }
1.800 +
1.801 + private:
1.802 + typename std::map<Value, Key>::const_iterator it;
1.803 + };
1.804 +
1.805 + /// \brief Returns an iterator to the first value.
1.806 + ///
1.807 + /// Returns an stl compatible iterator to the
1.808 + /// first value of the map. The values of the
1.809 + /// map can be accessed in the [beginValue, endValue)
1.810 + /// range.
1.811 + ValueIterator beginValue() const {
1.812 + return ValueIterator(_first.begin());
1.813 + }
1.814 +
1.815 + /// \brief Returns an iterator after the last value.
1.816 + ///
1.817 + /// Returns an stl compatible iterator after the
1.818 + /// last value of the map. The values of the
1.819 + /// map can be accessed in the [beginValue, endValue)
1.820 + /// range.
1.821 + ValueIterator endValue() const {
1.822 + return ValueIterator(_first.end());
1.823 + }
1.824 +
1.825 + /// \brief Set operation of the map.
1.826 + ///
1.827 + /// Set operation of the map.
1.828 + void set(const Key& key, const Value& value) {
1.829 + unlace(key);
1.830 + Parent::operator[](key).value = value;
1.831 + lace(key);
1.832 + }
1.833 +
1.834 + /// \brief Const subscript operator of the map.
1.835 + ///
1.836 + /// Const subscript operator of the map.
1.837 + const Value& operator[](const Key& key) const {
1.838 + return Parent::operator[](key).value;
1.839 + }
1.840 +
1.841 + /// \brief Iterator for the keys with the same value.
1.842 + ///
1.843 + /// Iterator for the keys with the same value. It works
1.844 + /// like a graph item iterator in the map, it can be converted
1.845 + /// the item type of the map, incremented with \c ++ operator, and
1.846 + /// if the iterator leave the last valid item it will be equal to
1.847 + /// \c INVALID.
1.848 + class ItemIt : public ITEM {
1.849 + public:
1.850 + typedef ITEM Parent;
1.851 +
1.852 + /// \brief Invalid constructor \& conversion.
1.853 + ///
1.854 + /// This constructor initializes the item to be invalid.
1.855 + /// \sa Invalid for more details.
1.856 + ItemIt(Invalid) : Parent(INVALID), _map(0) {}
1.857 +
1.858 + /// \brief Creates an iterator with a value.
1.859 + ///
1.860 + /// Creates an iterator with a value. It iterates on the
1.861 + /// keys which have the given value.
1.862 + /// \param map The IterableValueMap
1.863 + /// \param value The value
1.864 + ItemIt(const IterableValueMap& map, const Value& value) : _map(&map) {
1.865 + typename std::map<Value, Key>::const_iterator it =
1.866 + map._first.find(value);
1.867 + if (it == map._first.end()) {
1.868 + Parent::operator=(INVALID);
1.869 + } else {
1.870 + Parent::operator=(it->second);
1.871 + }
1.872 + }
1.873 +
1.874 + /// \brief Increment operator.
1.875 + ///
1.876 + /// Increment Operator.
1.877 + ItemIt& operator++() {
1.878 + Parent::operator=(_map->IterableValueMap::Parent::
1.879 + operator[](static_cast<Parent&>(*this)).next);
1.880 + return *this;
1.881 + }
1.882 +
1.883 +
1.884 + private:
1.885 + const IterableValueMap* _map;
1.886 + };
1.887 +
1.888 + protected:
1.889 +
1.890 + virtual void add(const Key& key) {
1.891 + Parent::add(key);
1.892 + unlace(key);
1.893 + }
1.894 +
1.895 + virtual void add(const std::vector<Key>& keys) {
1.896 + Parent::add(keys);
1.897 + for (int i = 0; i < int(keys.size()); ++i) {
1.898 + lace(keys[i]);
1.899 + }
1.900 + }
1.901 +
1.902 + virtual void erase(const Key& key) {
1.903 + unlace(key);
1.904 + Parent::erase(key);
1.905 + }
1.906 +
1.907 + virtual void erase(const std::vector<Key>& keys) {
1.908 + for (int i = 0; i < int(keys.size()); ++i) {
1.909 + unlace(keys[i]);
1.910 + }
1.911 + Parent::erase(keys);
1.912 + }
1.913 +
1.914 + virtual void build() {
1.915 + Parent::build();
1.916 + for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
1.917 + lace(it);
1.918 + }
1.919 + }
1.920 +
1.921 + virtual void clear() {
1.922 + _first.clear();
1.923 + Parent::clear();
1.924 + }
1.925 +
1.926 + private:
1.927 + std::map<Value, Key> _first;
1.928 + };
1.929 +
1.930 /// \brief Map of the source nodes of arcs in a digraph.
1.931 ///
1.932 /// SourceMap provides access for the source node of each arc in a digraph,
1.933 @@ -2480,7 +3369,7 @@
1.934 /// in constant time. On the other hand, the values are updated automatically
1.935 /// whenever the digraph changes.
1.936 ///
1.937 - /// \warning Besides \c addNode() and \c addArc(), a digraph structure
1.938 + /// \warning Besides \c addNode() and \c addArc(), a digraph structure
1.939 /// may provide alternative ways to modify the digraph.
1.940 /// The correct behavior of InDegMap is not guarantied if these additional
1.941 /// features are used. For example the functions
1.942 @@ -2496,7 +3385,7 @@
1.943 ::ItemNotifier::ObserverBase {
1.944
1.945 public:
1.946 -
1.947 +
1.948 /// The graph type of InDegMap
1.949 typedef GR Graph;
1.950 typedef GR Digraph;
1.951 @@ -2610,7 +3499,7 @@
1.952 /// in constant time. On the other hand, the values are updated automatically
1.953 /// whenever the digraph changes.
1.954 ///
1.955 - /// \warning Besides \c addNode() and \c addArc(), a digraph structure
1.956 + /// \warning Besides \c addNode() and \c addArc(), a digraph structure
1.957 /// may provide alternative ways to modify the digraph.
1.958 /// The correct behavior of OutDegMap is not guarantied if these additional
1.959 /// features are used. For example the functions
2.1 --- a/test/maps_test.cc Thu Jun 11 23:13:24 2009 +0200
2.2 +++ b/test/maps_test.cc Sat Jun 27 13:07:26 2009 +0200
2.3 @@ -349,5 +349,192 @@
2.4 check(v1[i++] == *it, "Something is wrong with LoggerBoolMap");
2.5 }
2.6
2.7 + // Iterable bool map
2.8 + {
2.9 + typedef SmartGraph Graph;
2.10 + typedef SmartGraph::Node Item;
2.11 +
2.12 + typedef IterableBoolMap<SmartGraph, SmartGraph::Node> Ibm;
2.13 + checkConcept<ReadWriteMap<Item, int>, Ibm>();
2.14 +
2.15 + const int num = 10;
2.16 + Graph g;
2.17 + std::vector<Item> items;
2.18 + for (int i = 0; i < num; ++i) {
2.19 + items.push_back(g.addNode());
2.20 + }
2.21 +
2.22 + Ibm map1(g, true);
2.23 + int n = 0;
2.24 + for (Ibm::TrueIt it(map1); it != INVALID; ++it) {
2.25 + check(map1[static_cast<Item>(it)], "Wrong TrueIt");
2.26 + ++n;
2.27 + }
2.28 + check(n == num, "Wrong number");
2.29 +
2.30 + n = 0;
2.31 + for (Ibm::ItemIt it(map1, true); it != INVALID; ++it) {
2.32 + check(map1[static_cast<Item>(it)], "Wrong ItemIt for true");
2.33 + ++n;
2.34 + }
2.35 + check(n == num, "Wrong number");
2.36 + check(Ibm::FalseIt(map1) == INVALID, "Wrong FalseIt");
2.37 + check(Ibm::ItemIt(map1, false) == INVALID, "Wrong ItemIt for false");
2.38 +
2.39 + map1[items[5]] = true;
2.40 +
2.41 + n = 0;
2.42 + for (Ibm::ItemIt it(map1, true); it != INVALID; ++it) {
2.43 + check(map1[static_cast<Item>(it)], "Wrong ItemIt for true");
2.44 + ++n;
2.45 + }
2.46 + check(n == num, "Wrong number");
2.47 +
2.48 + map1[items[num / 2]] = false;
2.49 + check(map1[items[num / 2]] == false, "Wrong map value");
2.50 +
2.51 + n = 0;
2.52 + for (Ibm::TrueIt it(map1); it != INVALID; ++it) {
2.53 + check(map1[static_cast<Item>(it)], "Wrong TrueIt for true");
2.54 + ++n;
2.55 + }
2.56 + check(n == num - 1, "Wrong number");
2.57 +
2.58 + n = 0;
2.59 + for (Ibm::FalseIt it(map1); it != INVALID; ++it) {
2.60 + check(!map1[static_cast<Item>(it)], "Wrong FalseIt for true");
2.61 + ++n;
2.62 + }
2.63 + check(n == 1, "Wrong number");
2.64 +
2.65 + map1[items[0]] = false;
2.66 + check(map1[items[0]] == false, "Wrong map value");
2.67 +
2.68 + map1[items[num - 1]] = false;
2.69 + check(map1[items[num - 1]] == false, "Wrong map value");
2.70 +
2.71 + n = 0;
2.72 + for (Ibm::TrueIt it(map1); it != INVALID; ++it) {
2.73 + check(map1[static_cast<Item>(it)], "Wrong TrueIt for true");
2.74 + ++n;
2.75 + }
2.76 + check(n == num - 3, "Wrong number");
2.77 + check(map1.trueNum() == num - 3, "Wrong number");
2.78 +
2.79 + n = 0;
2.80 + for (Ibm::FalseIt it(map1); it != INVALID; ++it) {
2.81 + check(!map1[static_cast<Item>(it)], "Wrong FalseIt for true");
2.82 + ++n;
2.83 + }
2.84 + check(n == 3, "Wrong number");
2.85 + check(map1.falseNum() == 3, "Wrong number");
2.86 + }
2.87 +
2.88 + // Iterable int map
2.89 + {
2.90 + typedef SmartGraph Graph;
2.91 + typedef SmartGraph::Node Item;
2.92 + typedef IterableIntMap<SmartGraph, SmartGraph::Node> Iim;
2.93 +
2.94 + checkConcept<ReadWriteMap<Item, int>, Iim>();
2.95 +
2.96 + const int num = 10;
2.97 + Graph g;
2.98 + std::vector<Item> items;
2.99 + for (int i = 0; i < num; ++i) {
2.100 + items.push_back(g.addNode());
2.101 + }
2.102 +
2.103 + Iim map1(g);
2.104 + check(map1.size() == 0, "Wrong size");
2.105 +
2.106 + for (int i = 0; i < num; ++i) {
2.107 + map1[items[i]] = i;
2.108 + }
2.109 + check(map1.size() == num, "Wrong size");
2.110 +
2.111 + for (int i = 0; i < num; ++i) {
2.112 + Iim::ItemIt it(map1, i);
2.113 + check(static_cast<Item>(it) == items[i], "Wrong value");
2.114 + ++it;
2.115 + check(static_cast<Item>(it) == INVALID, "Wrong value");
2.116 + }
2.117 +
2.118 + for (int i = 0; i < num; ++i) {
2.119 + map1[items[i]] = i % 2;
2.120 + }
2.121 + check(map1.size() == 2, "Wrong size");
2.122 +
2.123 + int n = 0;
2.124 + for (Iim::ItemIt it(map1, 0); it != INVALID; ++it) {
2.125 + check(map1[static_cast<Item>(it)] == 0, "Wrong Value");
2.126 + ++n;
2.127 + }
2.128 + check(n == (num + 1) / 2, "Wrong number");
2.129 +
2.130 + for (Iim::ItemIt it(map1, 1); it != INVALID; ++it) {
2.131 + check(map1[static_cast<Item>(it)] == 1, "Wrong Value");
2.132 + ++n;
2.133 + }
2.134 + check(n == num, "Wrong number");
2.135 +
2.136 + }
2.137 +
2.138 + // Iterable value map
2.139 + {
2.140 + typedef SmartGraph Graph;
2.141 + typedef SmartGraph::Node Item;
2.142 + typedef IterableValueMap<SmartGraph, SmartGraph::Node, double> Ivm;
2.143 +
2.144 + checkConcept<ReadWriteMap<Item, double>, Ivm>();
2.145 +
2.146 + const int num = 10;
2.147 + Graph g;
2.148 + std::vector<Item> items;
2.149 + for (int i = 0; i < num; ++i) {
2.150 + items.push_back(g.addNode());
2.151 + }
2.152 +
2.153 + Ivm map1(g, 0.0);
2.154 + check(distance(map1.beginValue(), map1.endValue()) == 1, "Wrong size");
2.155 + check(*map1.beginValue() == 0.0, "Wrong value");
2.156 +
2.157 + for (int i = 0; i < num; ++i) {
2.158 + map1.set(items[i], static_cast<double>(i));
2.159 + }
2.160 + check(distance(map1.beginValue(), map1.endValue()) == num, "Wrong size");
2.161 +
2.162 + for (int i = 0; i < num; ++i) {
2.163 + Ivm::ItemIt it(map1, static_cast<double>(i));
2.164 + check(static_cast<Item>(it) == items[i], "Wrong value");
2.165 + ++it;
2.166 + check(static_cast<Item>(it) == INVALID, "Wrong value");
2.167 + }
2.168 +
2.169 + for (Ivm::ValueIterator vit = map1.beginValue();
2.170 + vit != map1.endValue(); ++vit) {
2.171 + check(map1[static_cast<Item>(Ivm::ItemIt(map1, *vit))] == *vit,
2.172 + "Wrong ValueIterator");
2.173 + }
2.174 +
2.175 + for (int i = 0; i < num; ++i) {
2.176 + map1.set(items[i], static_cast<double>(i % 2));
2.177 + }
2.178 + check(distance(map1.beginValue(), map1.endValue()) == 2, "Wrong size");
2.179 +
2.180 + int n = 0;
2.181 + for (Ivm::ItemIt it(map1, 0.0); it != INVALID; ++it) {
2.182 + check(map1[static_cast<Item>(it)] == 0.0, "Wrong Value");
2.183 + ++n;
2.184 + }
2.185 + check(n == (num + 1) / 2, "Wrong number");
2.186 +
2.187 + for (Ivm::ItemIt it(map1, 1.0); it != INVALID; ++it) {
2.188 + check(map1[static_cast<Item>(it)] == 1.0, "Wrong Value");
2.189 + ++n;
2.190 + }
2.191 + check(n == num, "Wrong number");
2.192 +
2.193 + }
2.194 return 0;
2.195 }