Merge
authorAlpar Juttner <alpar@cs.elte.hu>
Tue, 02 Dec 2008 15:33:22 +0000
changeset 434ad483acf1654
parent 429 d8b87e9b90c3
parent 433 6ff53afe98b5
child 435 9afe81e4c543
child 437 6a2a33ad261b
child 451 09e416d35896
child 469 d369e885d196
child 522 7f8560cb9d65
Merge
doc/groups.dox
lemon/Makefile.am
test/Makefile.am
     1.1 --- a/doc/groups.dox	Tue Dec 02 11:01:48 2008 +0000
     1.2 +++ b/doc/groups.dox	Tue Dec 02 15:33:22 2008 +0000
     1.3 @@ -62,6 +62,79 @@
     1.4  */
     1.5  
     1.6  /**
     1.7 +@defgroup graph_adaptors Adaptor Classes for graphs
     1.8 +@ingroup graphs
     1.9 +\brief This group contains several adaptor classes for digraphs and graphs
    1.10 +
    1.11 +The main parts of LEMON are the different graph structures, generic
    1.12 +graph algorithms, graph concepts which couple these, and graph
    1.13 +adaptors. While the previous notions are more or less clear, the
    1.14 +latter one needs further explanation. Graph adaptors are graph classes
    1.15 +which serve for considering graph structures in different ways.
    1.16 +
    1.17 +A short example makes this much clearer.  Suppose that we have an
    1.18 +instance \c g of a directed graph type say ListDigraph and an algorithm
    1.19 +\code
    1.20 +template <typename Digraph>
    1.21 +int algorithm(const Digraph&);
    1.22 +\endcode
    1.23 +is needed to run on the reverse oriented graph.  It may be expensive
    1.24 +(in time or in memory usage) to copy \c g with the reversed
    1.25 +arcs.  In this case, an adaptor class is used, which (according
    1.26 +to LEMON digraph concepts) works as a digraph.  The adaptor uses the
    1.27 +original digraph structure and digraph operations when methods of the
    1.28 +reversed oriented graph are called.  This means that the adaptor have
    1.29 +minor memory usage, and do not perform sophisticated algorithmic
    1.30 +actions.  The purpose of it is to give a tool for the cases when a
    1.31 +graph have to be used in a specific alteration.  If this alteration is
    1.32 +obtained by a usual construction like filtering the arc-set or
    1.33 +considering a new orientation, then an adaptor is worthwhile to use.
    1.34 +To come back to the reverse oriented graph, in this situation
    1.35 +\code
    1.36 +template<typename Digraph> class ReverseDigraph;
    1.37 +\endcode
    1.38 +template class can be used. The code looks as follows
    1.39 +\code
    1.40 +ListDigraph g;
    1.41 +ReverseDigraph<ListGraph> rg(g);
    1.42 +int result = algorithm(rg);
    1.43 +\endcode
    1.44 +After running the algorithm, the original graph \c g is untouched.
    1.45 +This techniques gives rise to an elegant code, and based on stable
    1.46 +graph adaptors, complex algorithms can be implemented easily.
    1.47 +
    1.48 +In flow, circulation and bipartite matching problems, the residual
    1.49 +graph is of particular importance. Combining an adaptor implementing
    1.50 +this, shortest path algorithms and minimum mean cycle algorithms,
    1.51 +a range of weighted and cardinality optimization algorithms can be
    1.52 +obtained. For other examples, the interested user is referred to the
    1.53 +detailed documentation of particular adaptors.
    1.54 +
    1.55 +The behavior of graph adaptors can be very different. Some of them keep
    1.56 +capabilities of the original graph while in other cases this would be
    1.57 +meaningless. This means that the concepts that they are models of depend
    1.58 +on the graph adaptor, and the wrapped graph(s).
    1.59 +If an arc of \c rg is deleted, this is carried out by deleting the
    1.60 +corresponding arc of \c g, thus the adaptor modifies the original graph.
    1.61 +
    1.62 +But for a residual graph, this operation has no sense.
    1.63 +Let us stand one more example here to simplify your work.
    1.64 +RevGraphAdaptor has constructor
    1.65 +\code
    1.66 +ReverseDigraph(Digraph& digraph);
    1.67 +\endcode
    1.68 +This means that in a situation, when a <tt>const ListDigraph&</tt>
    1.69 +reference to a graph is given, then it have to be instantiated with
    1.70 +<tt>Digraph=const ListDigraph</tt>.
    1.71 +\code
    1.72 +int algorithm1(const ListDigraph& g) {
    1.73 +  RevGraphAdaptor<const ListDigraph> rg(g);
    1.74 +  return algorithm2(rg);
    1.75 +}
    1.76 +\endcode
    1.77 +*/
    1.78 +
    1.79 +/**
    1.80  @defgroup semi_adaptors Semi-Adaptor Classes for Graphs
    1.81  @ingroup graphs
    1.82  \brief Graph types between real graphs and graph adaptors.
     2.1 --- a/lemon/Makefile.am	Tue Dec 02 11:01:48 2008 +0000
     2.2 +++ b/lemon/Makefile.am	Tue Dec 02 15:33:22 2008 +0000
     2.3 @@ -16,6 +16,7 @@
     2.4  #lemon_libemon_la_LDFLAGS = $(GLPK_LIBS) $(CPLEX_LIBS) $(SOPLEX_LIBS)
     2.5  
     2.6  lemon_HEADERS += \
     2.7 +	lemon/adaptors.h \
     2.8          lemon/arg_parser.h \
     2.9  	lemon/assert.h \
    2.10          lemon/bfs.h \
    2.11 @@ -60,10 +61,12 @@
    2.12          lemon/bits/bezier.h \
    2.13  	lemon/bits/default_map.h \
    2.14          lemon/bits/enable_if.h \
    2.15 +	lemon/bits/graph_adaptor_extender.h \
    2.16  	lemon/bits/graph_extender.h \
    2.17  	lemon/bits/map_extender.h \
    2.18  	lemon/bits/path_dump.h \
    2.19  	lemon/bits/traits.h \
    2.20 +	lemon/bits/variant.h \
    2.21  	lemon/bits/vector_map.h
    2.22  
    2.23  concept_HEADERS += \
     3.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     3.2 +++ b/lemon/adaptors.h	Tue Dec 02 15:33:22 2008 +0000
     3.3 @@ -0,0 +1,3347 @@
     3.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     3.5 + *
     3.6 + * This file is a part of LEMON, a generic C++ optimization library.
     3.7 + *
     3.8 + * Copyright (C) 2003-2008
     3.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    3.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    3.11 + *
    3.12 + * Permission to use, modify and distribute this software is granted
    3.13 + * provided that this copyright notice appears in all copies. For
    3.14 + * precise terms see the accompanying LICENSE file.
    3.15 + *
    3.16 + * This software is provided "AS IS" with no warranty of any kind,
    3.17 + * express or implied, and with no claim as to its suitability for any
    3.18 + * purpose.
    3.19 + *
    3.20 + */
    3.21 +
    3.22 +#ifndef LEMON_ADAPTORS_H
    3.23 +#define LEMON_ADAPTORS_H
    3.24 +
    3.25 +/// \ingroup graph_adaptors
    3.26 +/// \file
    3.27 +/// \brief Several graph adaptors
    3.28 +///
    3.29 +/// This file contains several useful adaptors for digraphs and graphs.
    3.30 +
    3.31 +#include <lemon/core.h>
    3.32 +#include <lemon/maps.h>
    3.33 +#include <lemon/bits/variant.h>
    3.34 +
    3.35 +#include <lemon/bits/graph_adaptor_extender.h>
    3.36 +#include <lemon/tolerance.h>
    3.37 +
    3.38 +#include <algorithm>
    3.39 +
    3.40 +namespace lemon {
    3.41 +
    3.42 +  template<typename _Digraph>
    3.43 +  class DigraphAdaptorBase {
    3.44 +  public:
    3.45 +    typedef _Digraph Digraph;
    3.46 +    typedef DigraphAdaptorBase Adaptor;
    3.47 +    typedef Digraph ParentDigraph;
    3.48 +
    3.49 +  protected:
    3.50 +    Digraph* _digraph;
    3.51 +    DigraphAdaptorBase() : _digraph(0) { }
    3.52 +    void setDigraph(Digraph& digraph) { _digraph = &digraph; }
    3.53 +
    3.54 +  public:
    3.55 +    DigraphAdaptorBase(Digraph& digraph) : _digraph(&digraph) { }
    3.56 +
    3.57 +    typedef typename Digraph::Node Node;
    3.58 +    typedef typename Digraph::Arc Arc;
    3.59 +
    3.60 +    void first(Node& i) const { _digraph->first(i); }
    3.61 +    void first(Arc& i) const { _digraph->first(i); }
    3.62 +    void firstIn(Arc& i, const Node& n) const { _digraph->firstIn(i, n); }
    3.63 +    void firstOut(Arc& i, const Node& n ) const { _digraph->firstOut(i, n); }
    3.64 +
    3.65 +    void next(Node& i) const { _digraph->next(i); }
    3.66 +    void next(Arc& i) const { _digraph->next(i); }
    3.67 +    void nextIn(Arc& i) const { _digraph->nextIn(i); }
    3.68 +    void nextOut(Arc& i) const { _digraph->nextOut(i); }
    3.69 +
    3.70 +    Node source(const Arc& a) const { return _digraph->source(a); }
    3.71 +    Node target(const Arc& a) const { return _digraph->target(a); }
    3.72 +
    3.73 +    typedef NodeNumTagIndicator<Digraph> NodeNumTag;
    3.74 +    int nodeNum() const { return _digraph->nodeNum(); }
    3.75 +
    3.76 +    typedef EdgeNumTagIndicator<Digraph> EdgeNumTag;
    3.77 +    int arcNum() const { return _digraph->arcNum(); }
    3.78 +
    3.79 +    typedef FindEdgeTagIndicator<Digraph> FindEdgeTag;
    3.80 +    Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) {
    3.81 +      return _digraph->findArc(u, v, prev);
    3.82 +    }
    3.83 +
    3.84 +    Node addNode() { return _digraph->addNode(); }
    3.85 +    Arc addArc(const Node& u, const Node& v) { return _digraph->addArc(u, v); }
    3.86 +
    3.87 +    void erase(const Node& n) const { _digraph->erase(n); }
    3.88 +    void erase(const Arc& a) const { _digraph->erase(a); }
    3.89 +
    3.90 +    void clear() const { _digraph->clear(); }
    3.91 +
    3.92 +    int id(const Node& n) const { return _digraph->id(n); }
    3.93 +    int id(const Arc& a) const { return _digraph->id(a); }
    3.94 +
    3.95 +    Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
    3.96 +    Arc arcFromId(int ix) const { return _digraph->arcFromId(ix); }
    3.97 +
    3.98 +    int maxNodeId() const { return _digraph->maxNodeId(); }
    3.99 +    int maxArcId() const { return _digraph->maxArcId(); }
   3.100 +
   3.101 +    typedef typename ItemSetTraits<Digraph, Node>::ItemNotifier NodeNotifier;
   3.102 +    NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
   3.103 +
   3.104 +    typedef typename ItemSetTraits<Digraph, Arc>::ItemNotifier ArcNotifier;
   3.105 +    ArcNotifier& notifier(Arc) const { return _digraph->notifier(Arc()); }
   3.106 +
   3.107 +    template <typename _Value>
   3.108 +    class NodeMap : public Digraph::template NodeMap<_Value> {
   3.109 +    public:
   3.110 +
   3.111 +      typedef typename Digraph::template NodeMap<_Value> Parent;
   3.112 +
   3.113 +      explicit NodeMap(const Adaptor& adaptor)
   3.114 +        : Parent(*adaptor._digraph) {}
   3.115 +
   3.116 +      NodeMap(const Adaptor& adaptor, const _Value& value)
   3.117 +        : Parent(*adaptor._digraph, value) { }
   3.118 +
   3.119 +    private:
   3.120 +      NodeMap& operator=(const NodeMap& cmap) {
   3.121 +        return operator=<NodeMap>(cmap);
   3.122 +      }
   3.123 +
   3.124 +      template <typename CMap>
   3.125 +      NodeMap& operator=(const CMap& cmap) {
   3.126 +        Parent::operator=(cmap);
   3.127 +        return *this;
   3.128 +      }
   3.129 +
   3.130 +    };
   3.131 +
   3.132 +    template <typename _Value>
   3.133 +    class ArcMap : public Digraph::template ArcMap<_Value> {
   3.134 +    public:
   3.135 +
   3.136 +      typedef typename Digraph::template ArcMap<_Value> Parent;
   3.137 +
   3.138 +      explicit ArcMap(const Adaptor& adaptor)
   3.139 +        : Parent(*adaptor._digraph) {}
   3.140 +
   3.141 +      ArcMap(const Adaptor& adaptor, const _Value& value)
   3.142 +        : Parent(*adaptor._digraph, value) {}
   3.143 +
   3.144 +    private:
   3.145 +      ArcMap& operator=(const ArcMap& cmap) {
   3.146 +        return operator=<ArcMap>(cmap);
   3.147 +      }
   3.148 +
   3.149 +      template <typename CMap>
   3.150 +      ArcMap& operator=(const CMap& cmap) {
   3.151 +        Parent::operator=(cmap);
   3.152 +        return *this;
   3.153 +      }
   3.154 +
   3.155 +    };
   3.156 +
   3.157 +  };
   3.158 +
   3.159 +  template<typename _Graph>
   3.160 +  class GraphAdaptorBase {
   3.161 +  public:
   3.162 +    typedef _Graph Graph;
   3.163 +    typedef Graph ParentGraph;
   3.164 +
   3.165 +  protected:
   3.166 +    Graph* _graph;
   3.167 +
   3.168 +    GraphAdaptorBase() : _graph(0) {}
   3.169 +
   3.170 +    void setGraph(Graph& graph) { _graph = &graph; }
   3.171 +
   3.172 +  public:
   3.173 +    GraphAdaptorBase(Graph& graph) : _graph(&graph) {}
   3.174 +
   3.175 +    typedef typename Graph::Node Node;
   3.176 +    typedef typename Graph::Arc Arc;
   3.177 +    typedef typename Graph::Edge Edge;
   3.178 +
   3.179 +    void first(Node& i) const { _graph->first(i); }
   3.180 +    void first(Arc& i) const { _graph->first(i); }
   3.181 +    void first(Edge& i) const { _graph->first(i); }
   3.182 +    void firstIn(Arc& i, const Node& n) const { _graph->firstIn(i, n); }
   3.183 +    void firstOut(Arc& i, const Node& n ) const { _graph->firstOut(i, n); }
   3.184 +    void firstInc(Edge &i, bool &d, const Node &n) const {
   3.185 +      _graph->firstInc(i, d, n);
   3.186 +    }
   3.187 +
   3.188 +    void next(Node& i) const { _graph->next(i); }
   3.189 +    void next(Arc& i) const { _graph->next(i); }
   3.190 +    void next(Edge& i) const { _graph->next(i); }
   3.191 +    void nextIn(Arc& i) const { _graph->nextIn(i); }
   3.192 +    void nextOut(Arc& i) const { _graph->nextOut(i); }
   3.193 +    void nextInc(Edge &i, bool &d) const { _graph->nextInc(i, d); }
   3.194 +
   3.195 +    Node u(const Edge& e) const { return _graph->u(e); }
   3.196 +    Node v(const Edge& e) const { return _graph->v(e); }
   3.197 +
   3.198 +    Node source(const Arc& a) const { return _graph->source(a); }
   3.199 +    Node target(const Arc& a) const { return _graph->target(a); }
   3.200 +
   3.201 +    typedef NodeNumTagIndicator<Graph> NodeNumTag;
   3.202 +    int nodeNum() const { return _graph->nodeNum(); }
   3.203 +
   3.204 +    typedef EdgeNumTagIndicator<Graph> EdgeNumTag;
   3.205 +    int arcNum() const { return _graph->arcNum(); }
   3.206 +    int edgeNum() const { return _graph->edgeNum(); }
   3.207 +
   3.208 +    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
   3.209 +    Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) {
   3.210 +      return _graph->findArc(u, v, prev);
   3.211 +    }
   3.212 +    Edge findEdge(const Node& u, const Node& v, const Edge& prev = INVALID) {
   3.213 +      return _graph->findEdge(u, v, prev);
   3.214 +    }
   3.215 +
   3.216 +    Node addNode() { return _graph->addNode(); }
   3.217 +    Edge addEdge(const Node& u, const Node& v) { return _graph->addEdge(u, v); }
   3.218 +
   3.219 +    void erase(const Node& i) { _graph->erase(i); }
   3.220 +    void erase(const Edge& i) { _graph->erase(i); }
   3.221 +
   3.222 +    void clear() { _graph->clear(); }
   3.223 +
   3.224 +    bool direction(const Arc& a) const { return _graph->direction(a); }
   3.225 +    Arc direct(const Edge& e, bool d) const { return _graph->direct(e, d); }
   3.226 +
   3.227 +    int id(const Node& v) const { return _graph->id(v); }
   3.228 +    int id(const Arc& a) const { return _graph->id(a); }
   3.229 +    int id(const Edge& e) const { return _graph->id(e); }
   3.230 +
   3.231 +    Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); }
   3.232 +    Arc arcFromId(int ix) const { return _graph->arcFromId(ix); }
   3.233 +    Edge edgeFromId(int ix) const { return _graph->edgeFromId(ix); }
   3.234 +
   3.235 +    int maxNodeId() const { return _graph->maxNodeId(); }
   3.236 +    int maxArcId() const { return _graph->maxArcId(); }
   3.237 +    int maxEdgeId() const { return _graph->maxEdgeId(); }
   3.238 +
   3.239 +    typedef typename ItemSetTraits<Graph, Node>::ItemNotifier NodeNotifier;
   3.240 +    NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
   3.241 +
   3.242 +    typedef typename ItemSetTraits<Graph, Arc>::ItemNotifier ArcNotifier;
   3.243 +    ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
   3.244 +
   3.245 +    typedef typename ItemSetTraits<Graph, Edge>::ItemNotifier EdgeNotifier;
   3.246 +    EdgeNotifier& notifier(Edge) const { return _graph->notifier(Edge()); }
   3.247 +
   3.248 +    template <typename _Value>
   3.249 +    class NodeMap : public Graph::template NodeMap<_Value> {
   3.250 +    public:
   3.251 +      typedef typename Graph::template NodeMap<_Value> Parent;
   3.252 +      explicit NodeMap(const GraphAdaptorBase<Graph>& adapter)
   3.253 +        : Parent(*adapter._graph) {}
   3.254 +      NodeMap(const GraphAdaptorBase<Graph>& adapter, const _Value& value)
   3.255 +        : Parent(*adapter._graph, value) {}
   3.256 +
   3.257 +    private:
   3.258 +      NodeMap& operator=(const NodeMap& cmap) {
   3.259 +        return operator=<NodeMap>(cmap);
   3.260 +      }
   3.261 +
   3.262 +      template <typename CMap>
   3.263 +      NodeMap& operator=(const CMap& cmap) {
   3.264 +        Parent::operator=(cmap);
   3.265 +        return *this;
   3.266 +      }
   3.267 +
   3.268 +    };
   3.269 +
   3.270 +    template <typename _Value>
   3.271 +    class ArcMap : public Graph::template ArcMap<_Value> {
   3.272 +    public:
   3.273 +      typedef typename Graph::template ArcMap<_Value> Parent;
   3.274 +      explicit ArcMap(const GraphAdaptorBase<Graph>& adapter)
   3.275 +        : Parent(*adapter._graph) {}
   3.276 +      ArcMap(const GraphAdaptorBase<Graph>& adapter, const _Value& value)
   3.277 +        : Parent(*adapter._graph, value) {}
   3.278 +
   3.279 +    private:
   3.280 +      ArcMap& operator=(const ArcMap& cmap) {
   3.281 +        return operator=<ArcMap>(cmap);
   3.282 +      }
   3.283 +
   3.284 +      template <typename CMap>
   3.285 +      ArcMap& operator=(const CMap& cmap) {
   3.286 +        Parent::operator=(cmap);
   3.287 +        return *this;
   3.288 +      }
   3.289 +    };
   3.290 +
   3.291 +    template <typename _Value>
   3.292 +    class EdgeMap : public Graph::template EdgeMap<_Value> {
   3.293 +    public:
   3.294 +      typedef typename Graph::template EdgeMap<_Value> Parent;
   3.295 +      explicit EdgeMap(const GraphAdaptorBase<Graph>& adapter)
   3.296 +        : Parent(*adapter._graph) {}
   3.297 +      EdgeMap(const GraphAdaptorBase<Graph>& adapter, const _Value& value)
   3.298 +        : Parent(*adapter._graph, value) {}
   3.299 +
   3.300 +    private:
   3.301 +      EdgeMap& operator=(const EdgeMap& cmap) {
   3.302 +        return operator=<EdgeMap>(cmap);
   3.303 +      }
   3.304 +
   3.305 +      template <typename CMap>
   3.306 +      EdgeMap& operator=(const CMap& cmap) {
   3.307 +        Parent::operator=(cmap);
   3.308 +        return *this;
   3.309 +      }
   3.310 +    };
   3.311 +
   3.312 +  };
   3.313 +
   3.314 +  template <typename _Digraph>
   3.315 +  class ReverseDigraphBase : public DigraphAdaptorBase<_Digraph> {
   3.316 +  public:
   3.317 +    typedef _Digraph Digraph;
   3.318 +    typedef DigraphAdaptorBase<_Digraph> Parent;
   3.319 +  protected:
   3.320 +    ReverseDigraphBase() : Parent() { }
   3.321 +  public:
   3.322 +    typedef typename Parent::Node Node;
   3.323 +    typedef typename Parent::Arc Arc;
   3.324 +
   3.325 +    void firstIn(Arc& a, const Node& n) const { Parent::firstOut(a, n); }
   3.326 +    void firstOut(Arc& a, const Node& n ) const { Parent::firstIn(a, n); }
   3.327 +
   3.328 +    void nextIn(Arc& a) const { Parent::nextOut(a); }
   3.329 +    void nextOut(Arc& a) const { Parent::nextIn(a); }
   3.330 +
   3.331 +    Node source(const Arc& a) const { return Parent::target(a); }
   3.332 +    Node target(const Arc& a) const { return Parent::source(a); }
   3.333 +
   3.334 +    Arc addArc(const Node& u, const Node& v) { return Parent::addArc(v, u); }
   3.335 +
   3.336 +    typedef FindEdgeTagIndicator<Digraph> FindEdgeTag;
   3.337 +    Arc findArc(const Node& u, const Node& v,
   3.338 +                const Arc& prev = INVALID) {
   3.339 +      return Parent::findArc(v, u, prev);
   3.340 +    }
   3.341 +
   3.342 +  };
   3.343 +
   3.344 +  /// \ingroup graph_adaptors
   3.345 +  ///
   3.346 +  /// \brief A digraph adaptor which reverses the orientation of the arcs.
   3.347 +  ///
   3.348 +  /// ReverseDigraph reverses the arcs in the adapted digraph. The
   3.349 +  /// SubDigraph is conform to the \ref concepts::Digraph
   3.350 +  /// "Digraph concept".
   3.351 +  ///
   3.352 +  /// \tparam _Digraph It must be conform to the \ref concepts::Digraph
   3.353 +  /// "Digraph concept". The type can be specified to be const.
   3.354 +  template<typename _Digraph>
   3.355 +  class ReverseDigraph :
   3.356 +    public DigraphAdaptorExtender<ReverseDigraphBase<_Digraph> > {
   3.357 +  public:
   3.358 +    typedef _Digraph Digraph;
   3.359 +    typedef DigraphAdaptorExtender<
   3.360 +      ReverseDigraphBase<_Digraph> > Parent;
   3.361 +  protected:
   3.362 +    ReverseDigraph() { }
   3.363 +  public:
   3.364 +
   3.365 +    /// \brief Constructor
   3.366 +    ///
   3.367 +    /// Creates a reverse digraph adaptor for the given digraph
   3.368 +    explicit ReverseDigraph(Digraph& digraph) {
   3.369 +      Parent::setDigraph(digraph);
   3.370 +    }
   3.371 +  };
   3.372 +
   3.373 +  /// \brief Just gives back a reverse digraph adaptor
   3.374 +  ///
   3.375 +  /// Just gives back a reverse digraph adaptor
   3.376 +  template<typename Digraph>
   3.377 +  ReverseDigraph<const Digraph> reverseDigraph(const Digraph& digraph) {
   3.378 +    return ReverseDigraph<const Digraph>(digraph);
   3.379 +  }
   3.380 +
   3.381 +  template <typename _Digraph, typename _NodeFilterMap,
   3.382 +            typename _ArcFilterMap, bool _checked = true>
   3.383 +  class SubDigraphBase : public DigraphAdaptorBase<_Digraph> {
   3.384 +  public:
   3.385 +    typedef _Digraph Digraph;
   3.386 +    typedef _NodeFilterMap NodeFilterMap;
   3.387 +    typedef _ArcFilterMap ArcFilterMap;
   3.388 +
   3.389 +    typedef SubDigraphBase Adaptor;
   3.390 +    typedef DigraphAdaptorBase<_Digraph> Parent;
   3.391 +  protected:
   3.392 +    NodeFilterMap* _node_filter;
   3.393 +    ArcFilterMap* _arc_filter;
   3.394 +    SubDigraphBase()
   3.395 +      : Parent(), _node_filter(0), _arc_filter(0) { }
   3.396 +
   3.397 +    void setNodeFilterMap(NodeFilterMap& node_filter) {
   3.398 +      _node_filter = &node_filter;
   3.399 +    }
   3.400 +    void setArcFilterMap(ArcFilterMap& arc_filter) {
   3.401 +      _arc_filter = &arc_filter;
   3.402 +    }
   3.403 +
   3.404 +  public:
   3.405 +
   3.406 +    typedef typename Parent::Node Node;
   3.407 +    typedef typename Parent::Arc Arc;
   3.408 +
   3.409 +    void first(Node& i) const {
   3.410 +      Parent::first(i);
   3.411 +      while (i != INVALID && !(*_node_filter)[i]) Parent::next(i);
   3.412 +    }
   3.413 +
   3.414 +    void first(Arc& i) const {
   3.415 +      Parent::first(i);
   3.416 +      while (i != INVALID && (!(*_arc_filter)[i]
   3.417 +                              || !(*_node_filter)[Parent::source(i)]
   3.418 +                              || !(*_node_filter)[Parent::target(i)]))
   3.419 +        Parent::next(i);
   3.420 +    }
   3.421 +
   3.422 +    void firstIn(Arc& i, const Node& n) const {
   3.423 +      Parent::firstIn(i, n);
   3.424 +      while (i != INVALID && (!(*_arc_filter)[i]
   3.425 +                              || !(*_node_filter)[Parent::source(i)]))
   3.426 +        Parent::nextIn(i);
   3.427 +    }
   3.428 +
   3.429 +    void firstOut(Arc& i, const Node& n) const {
   3.430 +      Parent::firstOut(i, n);
   3.431 +      while (i != INVALID && (!(*_arc_filter)[i]
   3.432 +                              || !(*_node_filter)[Parent::target(i)]))
   3.433 +        Parent::nextOut(i);
   3.434 +    }
   3.435 +
   3.436 +    void next(Node& i) const {
   3.437 +      Parent::next(i);
   3.438 +      while (i != INVALID && !(*_node_filter)[i]) Parent::next(i);
   3.439 +    }
   3.440 +
   3.441 +    void next(Arc& i) const {
   3.442 +      Parent::next(i);
   3.443 +      while (i != INVALID && (!(*_arc_filter)[i]
   3.444 +                              || !(*_node_filter)[Parent::source(i)]
   3.445 +                              || !(*_node_filter)[Parent::target(i)]))
   3.446 +        Parent::next(i);
   3.447 +    }
   3.448 +
   3.449 +    void nextIn(Arc& i) const {
   3.450 +      Parent::nextIn(i);
   3.451 +      while (i != INVALID && (!(*_arc_filter)[i]
   3.452 +                              || !(*_node_filter)[Parent::source(i)]))
   3.453 +        Parent::nextIn(i);
   3.454 +    }
   3.455 +
   3.456 +    void nextOut(Arc& i) const {
   3.457 +      Parent::nextOut(i);
   3.458 +      while (i != INVALID && (!(*_arc_filter)[i]
   3.459 +                              || !(*_node_filter)[Parent::target(i)]))
   3.460 +        Parent::nextOut(i);
   3.461 +    }
   3.462 +
   3.463 +    void hide(const Node& n) const { _node_filter->set(n, false); }
   3.464 +    void hide(const Arc& a) const { _arc_filter->set(a, false); }
   3.465 +
   3.466 +    void unHide(const Node& n) const { _node_filter->set(n, true); }
   3.467 +    void unHide(const Arc& a) const { _arc_filter->set(a, true); }
   3.468 +
   3.469 +    bool hidden(const Node& n) const { return !(*_node_filter)[n]; }
   3.470 +    bool hidden(const Arc& a) const { return !(*_arc_filter)[a]; }
   3.471 +
   3.472 +    typedef False NodeNumTag;
   3.473 +    typedef False EdgeNumTag;
   3.474 +
   3.475 +    typedef FindEdgeTagIndicator<Digraph> FindEdgeTag;
   3.476 +    Arc findArc(const Node& source, const Node& target,
   3.477 +                const Arc& prev = INVALID) {
   3.478 +      if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
   3.479 +        return INVALID;
   3.480 +      }
   3.481 +      Arc arc = Parent::findArc(source, target, prev);
   3.482 +      while (arc != INVALID && !(*_arc_filter)[arc]) {
   3.483 +        arc = Parent::findArc(source, target, arc);
   3.484 +      }
   3.485 +      return arc;
   3.486 +    }
   3.487 +
   3.488 +    template <typename _Value>
   3.489 +    class NodeMap : public SubMapExtender<Adaptor,
   3.490 +      typename Parent::template NodeMap<_Value> > {
   3.491 +    public:
   3.492 +      typedef _Value Value;
   3.493 +      typedef SubMapExtender<Adaptor, typename Parent::
   3.494 +                             template NodeMap<Value> > MapParent;
   3.495 +
   3.496 +      NodeMap(const Adaptor& adaptor)
   3.497 +        : MapParent(adaptor) {}
   3.498 +      NodeMap(const Adaptor& adaptor, const Value& value)
   3.499 +        : MapParent(adaptor, value) {}
   3.500 +
   3.501 +    private:
   3.502 +      NodeMap& operator=(const NodeMap& cmap) {
   3.503 +        return operator=<NodeMap>(cmap);
   3.504 +      }
   3.505 +
   3.506 +      template <typename CMap>
   3.507 +      NodeMap& operator=(const CMap& cmap) {
   3.508 +        MapParent::operator=(cmap);
   3.509 +        return *this;
   3.510 +      }
   3.511 +    };
   3.512 +
   3.513 +    template <typename _Value>
   3.514 +    class ArcMap : public SubMapExtender<Adaptor,
   3.515 +      typename Parent::template ArcMap<_Value> > {
   3.516 +    public:
   3.517 +      typedef _Value Value;
   3.518 +      typedef SubMapExtender<Adaptor, typename Parent::
   3.519 +                             template ArcMap<Value> > MapParent;
   3.520 +
   3.521 +      ArcMap(const Adaptor& adaptor)
   3.522 +        : MapParent(adaptor) {}
   3.523 +      ArcMap(const Adaptor& adaptor, const Value& value)
   3.524 +        : MapParent(adaptor, value) {}
   3.525 +
   3.526 +    private:
   3.527 +      ArcMap& operator=(const ArcMap& cmap) {
   3.528 +        return operator=<ArcMap>(cmap);
   3.529 +      }
   3.530 +
   3.531 +      template <typename CMap>
   3.532 +      ArcMap& operator=(const CMap& cmap) {
   3.533 +        MapParent::operator=(cmap);
   3.534 +        return *this;
   3.535 +      }
   3.536 +    };
   3.537 +
   3.538 +  };
   3.539 +
   3.540 +  template <typename _Digraph, typename _NodeFilterMap, typename _ArcFilterMap>
   3.541 +  class SubDigraphBase<_Digraph, _NodeFilterMap, _ArcFilterMap, false>
   3.542 +    : public DigraphAdaptorBase<_Digraph> {
   3.543 +  public:
   3.544 +    typedef _Digraph Digraph;
   3.545 +    typedef _NodeFilterMap NodeFilterMap;
   3.546 +    typedef _ArcFilterMap ArcFilterMap;
   3.547 +
   3.548 +    typedef SubDigraphBase Adaptor;
   3.549 +    typedef DigraphAdaptorBase<Digraph> Parent;
   3.550 +  protected:
   3.551 +    NodeFilterMap* _node_filter;
   3.552 +    ArcFilterMap* _arc_filter;
   3.553 +    SubDigraphBase()
   3.554 +      : Parent(), _node_filter(0), _arc_filter(0) { }
   3.555 +
   3.556 +    void setNodeFilterMap(NodeFilterMap& node_filter) {
   3.557 +      _node_filter = &node_filter;
   3.558 +    }
   3.559 +    void setArcFilterMap(ArcFilterMap& arc_filter) {
   3.560 +      _arc_filter = &arc_filter;
   3.561 +    }
   3.562 +
   3.563 +  public:
   3.564 +
   3.565 +    typedef typename Parent::Node Node;
   3.566 +    typedef typename Parent::Arc Arc;
   3.567 +
   3.568 +    void first(Node& i) const {
   3.569 +      Parent::first(i);
   3.570 +      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
   3.571 +    }
   3.572 +
   3.573 +    void first(Arc& i) const {
   3.574 +      Parent::first(i);
   3.575 +      while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i);
   3.576 +    }
   3.577 +
   3.578 +    void firstIn(Arc& i, const Node& n) const {
   3.579 +      Parent::firstIn(i, n);
   3.580 +      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i);
   3.581 +    }
   3.582 +
   3.583 +    void firstOut(Arc& i, const Node& n) const {
   3.584 +      Parent::firstOut(i, n);
   3.585 +      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i);
   3.586 +    }
   3.587 +
   3.588 +    void next(Node& i) const {
   3.589 +      Parent::next(i);
   3.590 +      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
   3.591 +    }
   3.592 +    void next(Arc& i) const {
   3.593 +      Parent::next(i);
   3.594 +      while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i);
   3.595 +    }
   3.596 +    void nextIn(Arc& i) const {
   3.597 +      Parent::nextIn(i);
   3.598 +      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i);
   3.599 +    }
   3.600 +
   3.601 +    void nextOut(Arc& i) const {
   3.602 +      Parent::nextOut(i);
   3.603 +      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i);
   3.604 +    }
   3.605 +
   3.606 +    void hide(const Node& n) const { _node_filter->set(n, false); }
   3.607 +    void hide(const Arc& e) const { _arc_filter->set(e, false); }
   3.608 +
   3.609 +    void unHide(const Node& n) const { _node_filter->set(n, true); }
   3.610 +    void unHide(const Arc& e) const { _arc_filter->set(e, true); }
   3.611 +
   3.612 +    bool hidden(const Node& n) const { return !(*_node_filter)[n]; }
   3.613 +    bool hidden(const Arc& e) const { return !(*_arc_filter)[e]; }
   3.614 +
   3.615 +    typedef False NodeNumTag;
   3.616 +    typedef False EdgeNumTag;
   3.617 +
   3.618 +    typedef FindEdgeTagIndicator<Digraph> FindEdgeTag;
   3.619 +    Arc findArc(const Node& source, const Node& target,
   3.620 +                const Arc& prev = INVALID) {
   3.621 +      if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
   3.622 +        return INVALID;
   3.623 +      }
   3.624 +      Arc arc = Parent::findArc(source, target, prev);
   3.625 +      while (arc != INVALID && !(*_arc_filter)[arc]) {
   3.626 +        arc = Parent::findArc(source, target, arc);
   3.627 +      }
   3.628 +      return arc;
   3.629 +    }
   3.630 +
   3.631 +    template <typename _Value>
   3.632 +    class NodeMap : public SubMapExtender<Adaptor,
   3.633 +      typename Parent::template NodeMap<_Value> > {
   3.634 +    public:
   3.635 +      typedef _Value Value;
   3.636 +      typedef SubMapExtender<Adaptor, typename Parent::
   3.637 +                             template NodeMap<Value> > MapParent;
   3.638 +
   3.639 +      NodeMap(const Adaptor& adaptor)
   3.640 +        : MapParent(adaptor) {}
   3.641 +      NodeMap(const Adaptor& adaptor, const Value& value)
   3.642 +        : MapParent(adaptor, value) {}
   3.643 +
   3.644 +    private:
   3.645 +      NodeMap& operator=(const NodeMap& cmap) {
   3.646 +        return operator=<NodeMap>(cmap);
   3.647 +      }
   3.648 +
   3.649 +      template <typename CMap>
   3.650 +      NodeMap& operator=(const CMap& cmap) {
   3.651 +        MapParent::operator=(cmap);
   3.652 +        return *this;
   3.653 +      }
   3.654 +    };
   3.655 +
   3.656 +    template <typename _Value>
   3.657 +    class ArcMap : public SubMapExtender<Adaptor,
   3.658 +      typename Parent::template ArcMap<_Value> > {
   3.659 +    public:
   3.660 +      typedef _Value Value;
   3.661 +      typedef SubMapExtender<Adaptor, typename Parent::
   3.662 +                             template ArcMap<Value> > MapParent;
   3.663 +
   3.664 +      ArcMap(const Adaptor& adaptor)
   3.665 +        : MapParent(adaptor) {}
   3.666 +      ArcMap(const Adaptor& adaptor, const Value& value)
   3.667 +        : MapParent(adaptor, value) {}
   3.668 +
   3.669 +    private:
   3.670 +      ArcMap& operator=(const ArcMap& cmap) {
   3.671 +        return operator=<ArcMap>(cmap);
   3.672 +      }
   3.673 +
   3.674 +      template <typename CMap>
   3.675 +      ArcMap& operator=(const CMap& cmap) {
   3.676 +        MapParent::operator=(cmap);
   3.677 +        return *this;
   3.678 +      }
   3.679 +    };
   3.680 +
   3.681 +  };
   3.682 +
   3.683 +  /// \ingroup graph_adaptors
   3.684 +  ///
   3.685 +  /// \brief An adaptor for hiding nodes and arcs in a digraph
   3.686 +  ///
   3.687 +  /// SubDigraph hides nodes and arcs in a digraph. A bool node map
   3.688 +  /// and a bool arc map must be specified, which define the filters
   3.689 +  /// for nodes and arcs. Just the nodes and arcs with true value are
   3.690 +  /// shown in the subdigraph. The SubDigraph is conform to the \ref
   3.691 +  /// concepts::Digraph "Digraph concept". If the \c _checked parameter
   3.692 +  /// is true, then the arcs incident to filtered nodes are also
   3.693 +  /// filtered out.
   3.694 +  ///
   3.695 +  /// \tparam _Digraph It must be conform to the \ref
   3.696 +  /// concepts::Digraph "Digraph concept". The type can be specified
   3.697 +  /// to const.
   3.698 +  /// \tparam _NodeFilterMap A bool valued node map of the the adapted digraph.
   3.699 +  /// \tparam _ArcFilterMap A bool valued arc map of the the adapted digraph.
   3.700 +  /// \tparam _checked If the parameter is false then the arc filtering
   3.701 +  /// is not checked with respect to node filter. Otherwise, each arc
   3.702 +  /// is automatically filtered, which is incident to a filtered node.
   3.703 +  ///
   3.704 +  /// \see FilterNodes
   3.705 +  /// \see FilterArcs
   3.706 +  template<typename _Digraph,
   3.707 +           typename _NodeFilterMap = typename _Digraph::template NodeMap<bool>,
   3.708 +           typename _ArcFilterMap = typename _Digraph::template ArcMap<bool>,
   3.709 +           bool _checked = true>
   3.710 +  class SubDigraph
   3.711 +    : public DigraphAdaptorExtender<
   3.712 +      SubDigraphBase<_Digraph, _NodeFilterMap, _ArcFilterMap, _checked> > {
   3.713 +  public:
   3.714 +    typedef _Digraph Digraph;
   3.715 +    typedef _NodeFilterMap NodeFilterMap;
   3.716 +    typedef _ArcFilterMap ArcFilterMap;
   3.717 +
   3.718 +    typedef DigraphAdaptorExtender<
   3.719 +      SubDigraphBase<Digraph, NodeFilterMap, ArcFilterMap, _checked> >
   3.720 +    Parent;
   3.721 +
   3.722 +    typedef typename Parent::Node Node;
   3.723 +    typedef typename Parent::Arc Arc;
   3.724 +
   3.725 +  protected:
   3.726 +    SubDigraph() { }
   3.727 +  public:
   3.728 +
   3.729 +    /// \brief Constructor
   3.730 +    ///
   3.731 +    /// Creates a subdigraph for the given digraph with
   3.732 +    /// given node and arc map filters.
   3.733 +    SubDigraph(Digraph& digraph, NodeFilterMap& node_filter,
   3.734 +               ArcFilterMap& arc_filter) {
   3.735 +      setDigraph(digraph);
   3.736 +      setNodeFilterMap(node_filter);
   3.737 +      setArcFilterMap(arc_filter);
   3.738 +    }
   3.739 +
   3.740 +    /// \brief Hides the node of the graph
   3.741 +    ///
   3.742 +    /// This function hides \c n in the digraph, i.e. the iteration
   3.743 +    /// jumps over it. This is done by simply setting the value of \c n
   3.744 +    /// to be false in the corresponding node-map.
   3.745 +    void hide(const Node& n) const { Parent::hide(n); }
   3.746 +
   3.747 +    /// \brief Hides the arc of the graph
   3.748 +    ///
   3.749 +    /// This function hides \c a in the digraph, i.e. the iteration
   3.750 +    /// jumps over it. This is done by simply setting the value of \c a
   3.751 +    /// to be false in the corresponding arc-map.
   3.752 +    void hide(const Arc& a) const { Parent::hide(a); }
   3.753 +
   3.754 +    /// \brief Unhides the node of the graph
   3.755 +    ///
   3.756 +    /// The value of \c n is set to be true in the node-map which stores
   3.757 +    /// hide information. If \c n was hidden previuosly, then it is shown
   3.758 +    /// again
   3.759 +    void unHide(const Node& n) const { Parent::unHide(n); }
   3.760 +
   3.761 +    /// \brief Unhides the arc of the graph
   3.762 +    ///
   3.763 +    /// The value of \c a is set to be true in the arc-map which stores
   3.764 +    /// hide information. If \c a was hidden previuosly, then it is shown
   3.765 +    /// again
   3.766 +    void unHide(const Arc& a) const { Parent::unHide(a); }
   3.767 +
   3.768 +    /// \brief Returns true if \c n is hidden.
   3.769 +    ///
   3.770 +    /// Returns true if \c n is hidden.
   3.771 +    ///
   3.772 +    bool hidden(const Node& n) const { return Parent::hidden(n); }
   3.773 +
   3.774 +    /// \brief Returns true if \c a is hidden.
   3.775 +    ///
   3.776 +    /// Returns true if \c a is hidden.
   3.777 +    ///
   3.778 +    bool hidden(const Arc& a) const { return Parent::hidden(a); }
   3.779 +
   3.780 +  };
   3.781 +
   3.782 +  /// \brief Just gives back a subdigraph
   3.783 +  ///
   3.784 +  /// Just gives back a subdigraph
   3.785 +  template<typename Digraph, typename NodeFilterMap, typename ArcFilterMap>
   3.786 +  SubDigraph<const Digraph, NodeFilterMap, ArcFilterMap>
   3.787 +  subDigraph(const Digraph& digraph, NodeFilterMap& nfm, ArcFilterMap& afm) {
   3.788 +    return SubDigraph<const Digraph, NodeFilterMap, ArcFilterMap>
   3.789 +      (digraph, nfm, afm);
   3.790 +  }
   3.791 +
   3.792 +  template<typename Digraph, typename NodeFilterMap, typename ArcFilterMap>
   3.793 +  SubDigraph<const Digraph, const NodeFilterMap, ArcFilterMap>
   3.794 +  subDigraph(const Digraph& digraph,
   3.795 +             const NodeFilterMap& nfm, ArcFilterMap& afm) {
   3.796 +    return SubDigraph<const Digraph, const NodeFilterMap, ArcFilterMap>
   3.797 +      (digraph, nfm, afm);
   3.798 +  }
   3.799 +
   3.800 +  template<typename Digraph, typename NodeFilterMap, typename ArcFilterMap>
   3.801 +  SubDigraph<const Digraph, NodeFilterMap, const ArcFilterMap>
   3.802 +  subDigraph(const Digraph& digraph,
   3.803 +             NodeFilterMap& nfm, const ArcFilterMap& afm) {
   3.804 +    return SubDigraph<const Digraph, NodeFilterMap, const ArcFilterMap>
   3.805 +      (digraph, nfm, afm);
   3.806 +  }
   3.807 +
   3.808 +  template<typename Digraph, typename NodeFilterMap, typename ArcFilterMap>
   3.809 +  SubDigraph<const Digraph, const NodeFilterMap, const ArcFilterMap>
   3.810 +  subDigraph(const Digraph& digraph,
   3.811 +             const NodeFilterMap& nfm, const ArcFilterMap& afm) {
   3.812 +    return SubDigraph<const Digraph, const NodeFilterMap,
   3.813 +      const ArcFilterMap>(digraph, nfm, afm);
   3.814 +  }
   3.815 +
   3.816 +
   3.817 +  template <typename _Graph, typename NodeFilterMap,
   3.818 +            typename EdgeFilterMap, bool _checked = true>
   3.819 +  class SubGraphBase : public GraphAdaptorBase<_Graph> {
   3.820 +  public:
   3.821 +    typedef _Graph Graph;
   3.822 +    typedef SubGraphBase Adaptor;
   3.823 +    typedef GraphAdaptorBase<_Graph> Parent;
   3.824 +  protected:
   3.825 +
   3.826 +    NodeFilterMap* _node_filter_map;
   3.827 +    EdgeFilterMap* _edge_filter_map;
   3.828 +
   3.829 +    SubGraphBase()
   3.830 +      : Parent(), _node_filter_map(0), _edge_filter_map(0) { }
   3.831 +
   3.832 +    void setNodeFilterMap(NodeFilterMap& node_filter_map) {
   3.833 +      _node_filter_map=&node_filter_map;
   3.834 +    }
   3.835 +    void setEdgeFilterMap(EdgeFilterMap& edge_filter_map) {
   3.836 +      _edge_filter_map=&edge_filter_map;
   3.837 +    }
   3.838 +
   3.839 +  public:
   3.840 +
   3.841 +    typedef typename Parent::Node Node;
   3.842 +    typedef typename Parent::Arc Arc;
   3.843 +    typedef typename Parent::Edge Edge;
   3.844 +
   3.845 +    void first(Node& i) const {
   3.846 +      Parent::first(i);
   3.847 +      while (i!=INVALID && !(*_node_filter_map)[i]) Parent::next(i);
   3.848 +    }
   3.849 +
   3.850 +    void first(Arc& i) const {
   3.851 +      Parent::first(i);
   3.852 +      while (i!=INVALID && (!(*_edge_filter_map)[i]
   3.853 +                            || !(*_node_filter_map)[Parent::source(i)]
   3.854 +                            || !(*_node_filter_map)[Parent::target(i)]))
   3.855 +        Parent::next(i);
   3.856 +    }
   3.857 +
   3.858 +    void first(Edge& i) const {
   3.859 +      Parent::first(i);
   3.860 +      while (i!=INVALID && (!(*_edge_filter_map)[i]
   3.861 +                            || !(*_node_filter_map)[Parent::u(i)]
   3.862 +                            || !(*_node_filter_map)[Parent::v(i)]))
   3.863 +        Parent::next(i);
   3.864 +    }
   3.865 +
   3.866 +    void firstIn(Arc& i, const Node& n) const {
   3.867 +      Parent::firstIn(i, n);
   3.868 +      while (i!=INVALID && (!(*_edge_filter_map)[i]
   3.869 +                            || !(*_node_filter_map)[Parent::source(i)]))
   3.870 +        Parent::nextIn(i);
   3.871 +    }
   3.872 +
   3.873 +    void firstOut(Arc& i, const Node& n) const {
   3.874 +      Parent::firstOut(i, n);
   3.875 +      while (i!=INVALID && (!(*_edge_filter_map)[i]
   3.876 +                            || !(*_node_filter_map)[Parent::target(i)]))
   3.877 +        Parent::nextOut(i);
   3.878 +    }
   3.879 +
   3.880 +    void firstInc(Edge& i, bool& d, const Node& n) const {
   3.881 +      Parent::firstInc(i, d, n);
   3.882 +      while (i!=INVALID && (!(*_edge_filter_map)[i]
   3.883 +                            || !(*_node_filter_map)[Parent::u(i)]
   3.884 +                            || !(*_node_filter_map)[Parent::v(i)]))
   3.885 +        Parent::nextInc(i, d);
   3.886 +    }
   3.887 +
   3.888 +    void next(Node& i) const {
   3.889 +      Parent::next(i);
   3.890 +      while (i!=INVALID && !(*_node_filter_map)[i]) Parent::next(i);
   3.891 +    }
   3.892 +
   3.893 +    void next(Arc& i) const {
   3.894 +      Parent::next(i);
   3.895 +      while (i!=INVALID && (!(*_edge_filter_map)[i]
   3.896 +                            || !(*_node_filter_map)[Parent::source(i)]
   3.897 +                            || !(*_node_filter_map)[Parent::target(i)]))
   3.898 +        Parent::next(i);
   3.899 +    }
   3.900 +
   3.901 +    void next(Edge& i) const {
   3.902 +      Parent::next(i);
   3.903 +      while (i!=INVALID && (!(*_edge_filter_map)[i]
   3.904 +                            || !(*_node_filter_map)[Parent::u(i)]
   3.905 +                            || !(*_node_filter_map)[Parent::v(i)]))
   3.906 +        Parent::next(i);
   3.907 +    }
   3.908 +
   3.909 +    void nextIn(Arc& i) const {
   3.910 +      Parent::nextIn(i);
   3.911 +      while (i!=INVALID && (!(*_edge_filter_map)[i]
   3.912 +                            || !(*_node_filter_map)[Parent::source(i)]))
   3.913 +        Parent::nextIn(i);
   3.914 +    }
   3.915 +
   3.916 +    void nextOut(Arc& i) const {
   3.917 +      Parent::nextOut(i);
   3.918 +      while (i!=INVALID && (!(*_edge_filter_map)[i]
   3.919 +                            || !(*_node_filter_map)[Parent::target(i)]))
   3.920 +        Parent::nextOut(i);
   3.921 +    }
   3.922 +
   3.923 +    void nextInc(Edge& i, bool& d) const {
   3.924 +      Parent::nextInc(i, d);
   3.925 +      while (i!=INVALID && (!(*_edge_filter_map)[i]
   3.926 +                            || !(*_node_filter_map)[Parent::u(i)]
   3.927 +                            || !(*_node_filter_map)[Parent::v(i)]))
   3.928 +        Parent::nextInc(i, d);
   3.929 +    }
   3.930 +
   3.931 +    void hide(const Node& n) const { _node_filter_map->set(n, false); }
   3.932 +    void hide(const Edge& e) const { _edge_filter_map->set(e, false); }
   3.933 +
   3.934 +    void unHide(const Node& n) const { _node_filter_map->set(n, true); }
   3.935 +    void unHide(const Edge& e) const { _edge_filter_map->set(e, true); }
   3.936 +
   3.937 +    bool hidden(const Node& n) const { return !(*_node_filter_map)[n]; }
   3.938 +    bool hidden(const Edge& e) const { return !(*_edge_filter_map)[e]; }
   3.939 +
   3.940 +    typedef False NodeNumTag;
   3.941 +    typedef False EdgeNumTag;
   3.942 +
   3.943 +    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
   3.944 +    Arc findArc(const Node& u, const Node& v,
   3.945 +                const Arc& prev = INVALID) {
   3.946 +      if (!(*_node_filter_map)[u] || !(*_node_filter_map)[v]) {
   3.947 +        return INVALID;
   3.948 +      }
   3.949 +      Arc arc = Parent::findArc(u, v, prev);
   3.950 +      while (arc != INVALID && !(*_edge_filter_map)[arc]) {
   3.951 +        arc = Parent::findArc(u, v, arc);
   3.952 +      }
   3.953 +      return arc;
   3.954 +    }
   3.955 +    Edge findEdge(const Node& u, const Node& v,
   3.956 +                  const Edge& prev = INVALID) {
   3.957 +      if (!(*_node_filter_map)[u] || !(*_node_filter_map)[v]) {
   3.958 +        return INVALID;
   3.959 +      }
   3.960 +      Edge edge = Parent::findEdge(u, v, prev);
   3.961 +      while (edge != INVALID && !(*_edge_filter_map)[edge]) {
   3.962 +        edge = Parent::findEdge(u, v, edge);
   3.963 +      }
   3.964 +      return edge;
   3.965 +    }
   3.966 +
   3.967 +    template <typename _Value>
   3.968 +    class NodeMap : public SubMapExtender<Adaptor,
   3.969 +      typename Parent::template NodeMap<_Value> > {
   3.970 +    public:
   3.971 +      typedef _Value Value;
   3.972 +      typedef SubMapExtender<Adaptor, typename Parent::
   3.973 +                             template NodeMap<Value> > MapParent;
   3.974 +
   3.975 +      NodeMap(const Adaptor& adaptor)
   3.976 +        : MapParent(adaptor) {}
   3.977 +      NodeMap(const Adaptor& adaptor, const Value& value)
   3.978 +        : MapParent(adaptor, value) {}
   3.979 +
   3.980 +    private:
   3.981 +      NodeMap& operator=(const NodeMap& cmap) {
   3.982 +        return operator=<NodeMap>(cmap);
   3.983 +      }
   3.984 +
   3.985 +      template <typename CMap>
   3.986 +      NodeMap& operator=(const CMap& cmap) {
   3.987 +        MapParent::operator=(cmap);
   3.988 +        return *this;
   3.989 +      }
   3.990 +    };
   3.991 +
   3.992 +    template <typename _Value>
   3.993 +    class ArcMap : public SubMapExtender<Adaptor,
   3.994 +      typename Parent::template ArcMap<_Value> > {
   3.995 +    public:
   3.996 +      typedef _Value Value;
   3.997 +      typedef SubMapExtender<Adaptor, typename Parent::
   3.998 +                             template ArcMap<Value> > MapParent;
   3.999 +
  3.1000 +      ArcMap(const Adaptor& adaptor)
  3.1001 +        : MapParent(adaptor) {}
  3.1002 +      ArcMap(const Adaptor& adaptor, const Value& value)
  3.1003 +        : MapParent(adaptor, value) {}
  3.1004 +
  3.1005 +    private:
  3.1006 +      ArcMap& operator=(const ArcMap& cmap) {
  3.1007 +        return operator=<ArcMap>(cmap);
  3.1008 +      }
  3.1009 +
  3.1010 +      template <typename CMap>
  3.1011 +      ArcMap& operator=(const CMap& cmap) {
  3.1012 +        MapParent::operator=(cmap);
  3.1013 +        return *this;
  3.1014 +      }
  3.1015 +    };
  3.1016 +
  3.1017 +    template <typename _Value>
  3.1018 +    class EdgeMap : public SubMapExtender<Adaptor,
  3.1019 +      typename Parent::template EdgeMap<_Value> > {
  3.1020 +    public:
  3.1021 +      typedef _Value Value;
  3.1022 +      typedef SubMapExtender<Adaptor, typename Parent::
  3.1023 +                             template EdgeMap<Value> > MapParent;
  3.1024 +
  3.1025 +      EdgeMap(const Adaptor& adaptor)
  3.1026 +        : MapParent(adaptor) {}
  3.1027 +
  3.1028 +      EdgeMap(const Adaptor& adaptor, const Value& value)
  3.1029 +        : MapParent(adaptor, value) {}
  3.1030 +
  3.1031 +    private:
  3.1032 +      EdgeMap& operator=(const EdgeMap& cmap) {
  3.1033 +        return operator=<EdgeMap>(cmap);
  3.1034 +      }
  3.1035 +
  3.1036 +      template <typename CMap>
  3.1037 +      EdgeMap& operator=(const CMap& cmap) {
  3.1038 +        MapParent::operator=(cmap);
  3.1039 +        return *this;
  3.1040 +      }
  3.1041 +    };
  3.1042 +
  3.1043 +  };
  3.1044 +
  3.1045 +  template <typename _Graph, typename NodeFilterMap, typename EdgeFilterMap>
  3.1046 +  class SubGraphBase<_Graph, NodeFilterMap, EdgeFilterMap, false>
  3.1047 +    : public GraphAdaptorBase<_Graph> {
  3.1048 +  public:
  3.1049 +    typedef _Graph Graph;
  3.1050 +    typedef SubGraphBase Adaptor;
  3.1051 +    typedef GraphAdaptorBase<_Graph> Parent;
  3.1052 +  protected:
  3.1053 +    NodeFilterMap* _node_filter_map;
  3.1054 +    EdgeFilterMap* _edge_filter_map;
  3.1055 +    SubGraphBase() : Parent(),
  3.1056 +                     _node_filter_map(0), _edge_filter_map(0) { }
  3.1057 +
  3.1058 +    void setNodeFilterMap(NodeFilterMap& node_filter_map) {
  3.1059 +      _node_filter_map=&node_filter_map;
  3.1060 +    }
  3.1061 +    void setEdgeFilterMap(EdgeFilterMap& edge_filter_map) {
  3.1062 +      _edge_filter_map=&edge_filter_map;
  3.1063 +    }
  3.1064 +
  3.1065 +  public:
  3.1066 +
  3.1067 +    typedef typename Parent::Node Node;
  3.1068 +    typedef typename Parent::Arc Arc;
  3.1069 +    typedef typename Parent::Edge Edge;
  3.1070 +
  3.1071 +    void first(Node& i) const {
  3.1072 +      Parent::first(i);
  3.1073 +      while (i!=INVALID && !(*_node_filter_map)[i]) Parent::next(i);
  3.1074 +    }
  3.1075 +
  3.1076 +    void first(Arc& i) const {
  3.1077 +      Parent::first(i);
  3.1078 +      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::next(i);
  3.1079 +    }
  3.1080 +
  3.1081 +    void first(Edge& i) const {
  3.1082 +      Parent::first(i);
  3.1083 +      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::next(i);
  3.1084 +    }
  3.1085 +
  3.1086 +    void firstIn(Arc& i, const Node& n) const {
  3.1087 +      Parent::firstIn(i, n);
  3.1088 +      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextIn(i);
  3.1089 +    }
  3.1090 +
  3.1091 +    void firstOut(Arc& i, const Node& n) const {
  3.1092 +      Parent::firstOut(i, n);
  3.1093 +      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextOut(i);
  3.1094 +    }
  3.1095 +
  3.1096 +    void firstInc(Edge& i, bool& d, const Node& n) const {
  3.1097 +      Parent::firstInc(i, d, n);
  3.1098 +      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextInc(i, d);
  3.1099 +    }
  3.1100 +
  3.1101 +    void next(Node& i) const {
  3.1102 +      Parent::next(i);
  3.1103 +      while (i!=INVALID && !(*_node_filter_map)[i]) Parent::next(i);
  3.1104 +    }
  3.1105 +    void next(Arc& i) const {
  3.1106 +      Parent::next(i);
  3.1107 +      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::next(i);
  3.1108 +    }
  3.1109 +    void next(Edge& i) const {
  3.1110 +      Parent::next(i);
  3.1111 +      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::next(i);
  3.1112 +    }
  3.1113 +    void nextIn(Arc& i) const {
  3.1114 +      Parent::nextIn(i);
  3.1115 +      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextIn(i);
  3.1116 +    }
  3.1117 +
  3.1118 +    void nextOut(Arc& i) const {
  3.1119 +      Parent::nextOut(i);
  3.1120 +      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextOut(i);
  3.1121 +    }
  3.1122 +    void nextInc(Edge& i, bool& d) const {
  3.1123 +      Parent::nextInc(i, d);
  3.1124 +      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextInc(i, d);
  3.1125 +    }
  3.1126 +
  3.1127 +    void hide(const Node& n) const { _node_filter_map->set(n, false); }
  3.1128 +    void hide(const Edge& e) const { _edge_filter_map->set(e, false); }
  3.1129 +
  3.1130 +    void unHide(const Node& n) const { _node_filter_map->set(n, true); }
  3.1131 +    void unHide(const Edge& e) const { _edge_filter_map->set(e, true); }
  3.1132 +
  3.1133 +    bool hidden(const Node& n) const { return !(*_node_filter_map)[n]; }
  3.1134 +    bool hidden(const Edge& e) const { return !(*_edge_filter_map)[e]; }
  3.1135 +
  3.1136 +    typedef False NodeNumTag;
  3.1137 +    typedef False EdgeNumTag;
  3.1138 +
  3.1139 +    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
  3.1140 +    Arc findArc(const Node& u, const Node& v,
  3.1141 +                const Arc& prev = INVALID) {
  3.1142 +      Arc arc = Parent::findArc(u, v, prev);
  3.1143 +      while (arc != INVALID && !(*_edge_filter_map)[arc]) {
  3.1144 +        arc = Parent::findArc(u, v, arc);
  3.1145 +      }
  3.1146 +      return arc;
  3.1147 +    }
  3.1148 +    Edge findEdge(const Node& u, const Node& v,
  3.1149 +                  const Edge& prev = INVALID) {
  3.1150 +      Edge edge = Parent::findEdge(u, v, prev);
  3.1151 +      while (edge != INVALID && !(*_edge_filter_map)[edge]) {
  3.1152 +        edge = Parent::findEdge(u, v, edge);
  3.1153 +      }
  3.1154 +      return edge;
  3.1155 +    }
  3.1156 +
  3.1157 +    template <typename _Value>
  3.1158 +    class NodeMap : public SubMapExtender<Adaptor,
  3.1159 +      typename Parent::template NodeMap<_Value> > {
  3.1160 +    public:
  3.1161 +      typedef _Value Value;
  3.1162 +      typedef SubMapExtender<Adaptor, typename Parent::
  3.1163 +                             template NodeMap<Value> > MapParent;
  3.1164 +
  3.1165 +      NodeMap(const Adaptor& adaptor)
  3.1166 +        : MapParent(adaptor) {}
  3.1167 +      NodeMap(const Adaptor& adaptor, const Value& value)
  3.1168 +        : MapParent(adaptor, value) {}
  3.1169 +
  3.1170 +    private:
  3.1171 +      NodeMap& operator=(const NodeMap& cmap) {
  3.1172 +        return operator=<NodeMap>(cmap);
  3.1173 +      }
  3.1174 +
  3.1175 +      template <typename CMap>
  3.1176 +      NodeMap& operator=(const CMap& cmap) {
  3.1177 +        MapParent::operator=(cmap);
  3.1178 +        return *this;
  3.1179 +      }
  3.1180 +    };
  3.1181 +
  3.1182 +    template <typename _Value>
  3.1183 +    class ArcMap : public SubMapExtender<Adaptor,
  3.1184 +      typename Parent::template ArcMap<_Value> > {
  3.1185 +    public:
  3.1186 +      typedef _Value Value;
  3.1187 +      typedef SubMapExtender<Adaptor, typename Parent::
  3.1188 +                             template ArcMap<Value> > MapParent;
  3.1189 +
  3.1190 +      ArcMap(const Adaptor& adaptor)
  3.1191 +        : MapParent(adaptor) {}
  3.1192 +      ArcMap(const Adaptor& adaptor, const Value& value)
  3.1193 +        : MapParent(adaptor, value) {}
  3.1194 +
  3.1195 +    private:
  3.1196 +      ArcMap& operator=(const ArcMap& cmap) {
  3.1197 +        return operator=<ArcMap>(cmap);
  3.1198 +      }
  3.1199 +
  3.1200 +      template <typename CMap>
  3.1201 +      ArcMap& operator=(const CMap& cmap) {
  3.1202 +        MapParent::operator=(cmap);
  3.1203 +        return *this;
  3.1204 +      }
  3.1205 +    };
  3.1206 +
  3.1207 +    template <typename _Value>
  3.1208 +    class EdgeMap : public SubMapExtender<Adaptor,
  3.1209 +      typename Parent::template EdgeMap<_Value> > {
  3.1210 +    public:
  3.1211 +      typedef _Value Value;
  3.1212 +      typedef SubMapExtender<Adaptor, typename Parent::
  3.1213 +                             template EdgeMap<Value> > MapParent;
  3.1214 +
  3.1215 +      EdgeMap(const Adaptor& adaptor)
  3.1216 +        : MapParent(adaptor) {}
  3.1217 +
  3.1218 +      EdgeMap(const Adaptor& adaptor, const _Value& value)
  3.1219 +        : MapParent(adaptor, value) {}
  3.1220 +
  3.1221 +    private:
  3.1222 +      EdgeMap& operator=(const EdgeMap& cmap) {
  3.1223 +        return operator=<EdgeMap>(cmap);
  3.1224 +      }
  3.1225 +
  3.1226 +      template <typename CMap>
  3.1227 +      EdgeMap& operator=(const CMap& cmap) {
  3.1228 +        MapParent::operator=(cmap);
  3.1229 +        return *this;
  3.1230 +      }
  3.1231 +    };
  3.1232 +
  3.1233 +  };
  3.1234 +
  3.1235 +  /// \ingroup graph_adaptors
  3.1236 +  ///
  3.1237 +  /// \brief A graph adaptor for hiding nodes and edges in an
  3.1238 +  /// undirected graph.
  3.1239 +  ///
  3.1240 +  /// SubGraph hides nodes and edges in a graph. A bool node map and a
  3.1241 +  /// bool edge map must be specified, which define the filters for
  3.1242 +  /// nodes and edges. Just the nodes and edges with true value are
  3.1243 +  /// shown in the subgraph. The SubGraph is conform to the \ref
  3.1244 +  /// concepts::Graph "Graph concept". If the \c _checked parameter is
  3.1245 +  /// true, then the edges incident to filtered nodes are also
  3.1246 +  /// filtered out.
  3.1247 +  ///
  3.1248 +  /// \tparam _Graph It must be conform to the \ref
  3.1249 +  /// concepts::Graph "Graph concept". The type can be specified
  3.1250 +  /// to const.
  3.1251 +  /// \tparam _NodeFilterMap A bool valued node map of the the adapted graph.
  3.1252 +  /// \tparam _EdgeFilterMap A bool valued edge map of the the adapted graph.
  3.1253 +  /// \tparam _checked If the parameter is false then the edge filtering
  3.1254 +  /// is not checked with respect to node filter. Otherwise, each edge
  3.1255 +  /// is automatically filtered, which is incident to a filtered node.
  3.1256 +  ///
  3.1257 +  /// \see FilterNodes
  3.1258 +  /// \see FilterEdges
  3.1259 +  template<typename _Graph, typename NodeFilterMap,
  3.1260 +           typename EdgeFilterMap, bool _checked = true>
  3.1261 +  class SubGraph
  3.1262 +    : public GraphAdaptorExtender<
  3.1263 +      SubGraphBase<_Graph, NodeFilterMap, EdgeFilterMap, _checked> > {
  3.1264 +  public:
  3.1265 +    typedef _Graph Graph;
  3.1266 +    typedef GraphAdaptorExtender<
  3.1267 +      SubGraphBase<_Graph, NodeFilterMap, EdgeFilterMap> > Parent;
  3.1268 +
  3.1269 +    typedef typename Parent::Node Node;
  3.1270 +    typedef typename Parent::Edge Edge;
  3.1271 +
  3.1272 +  protected:
  3.1273 +    SubGraph() { }
  3.1274 +  public:
  3.1275 +
  3.1276 +    /// \brief Constructor
  3.1277 +    ///
  3.1278 +    /// Creates a subgraph for the given graph with given node and
  3.1279 +    /// edge map filters.
  3.1280 +    SubGraph(Graph& _graph, NodeFilterMap& node_filter_map,
  3.1281 +             EdgeFilterMap& edge_filter_map) {
  3.1282 +      setGraph(_graph);
  3.1283 +      setNodeFilterMap(node_filter_map);
  3.1284 +      setEdgeFilterMap(edge_filter_map);
  3.1285 +    }
  3.1286 +
  3.1287 +    /// \brief Hides the node of the graph
  3.1288 +    ///
  3.1289 +    /// This function hides \c n in the graph, i.e. the iteration
  3.1290 +    /// jumps over it. This is done by simply setting the value of \c n
  3.1291 +    /// to be false in the corresponding node-map.
  3.1292 +    void hide(const Node& n) const { Parent::hide(n); }
  3.1293 +
  3.1294 +    /// \brief Hides the edge of the graph
  3.1295 +    ///
  3.1296 +    /// This function hides \c e in the graph, i.e. the iteration
  3.1297 +    /// jumps over it. This is done by simply setting the value of \c e
  3.1298 +    /// to be false in the corresponding edge-map.
  3.1299 +    void hide(const Edge& e) const { Parent::hide(e); }
  3.1300 +
  3.1301 +    /// \brief Unhides the node of the graph
  3.1302 +    ///
  3.1303 +    /// The value of \c n is set to be true in the node-map which stores
  3.1304 +    /// hide information. If \c n was hidden previuosly, then it is shown
  3.1305 +    /// again
  3.1306 +    void unHide(const Node& n) const { Parent::unHide(n); }
  3.1307 +
  3.1308 +    /// \brief Unhides the edge of the graph
  3.1309 +    ///
  3.1310 +    /// The value of \c e is set to be true in the edge-map which stores
  3.1311 +    /// hide information. If \c e was hidden previuosly, then it is shown
  3.1312 +    /// again
  3.1313 +    void unHide(const Edge& e) const { Parent::unHide(e); }
  3.1314 +
  3.1315 +    /// \brief Returns true if \c n is hidden.
  3.1316 +    ///
  3.1317 +    /// Returns true if \c n is hidden.
  3.1318 +    ///
  3.1319 +    bool hidden(const Node& n) const { return Parent::hidden(n); }
  3.1320 +
  3.1321 +    /// \brief Returns true if \c e is hidden.
  3.1322 +    ///
  3.1323 +    /// Returns true if \c e is hidden.
  3.1324 +    ///
  3.1325 +    bool hidden(const Edge& e) const { return Parent::hidden(e); }
  3.1326 +  };
  3.1327 +
  3.1328 +  /// \brief Just gives back a subgraph
  3.1329 +  ///
  3.1330 +  /// Just gives back a subgraph
  3.1331 +  template<typename Graph, typename NodeFilterMap, typename ArcFilterMap>
  3.1332 +  SubGraph<const Graph, NodeFilterMap, ArcFilterMap>
  3.1333 +  subGraph(const Graph& graph, NodeFilterMap& nfm, ArcFilterMap& efm) {
  3.1334 +    return SubGraph<const Graph, NodeFilterMap, ArcFilterMap>(graph, nfm, efm);
  3.1335 +  }
  3.1336 +
  3.1337 +  template<typename Graph, typename NodeFilterMap, typename ArcFilterMap>
  3.1338 +  SubGraph<const Graph, const NodeFilterMap, ArcFilterMap>
  3.1339 +  subGraph(const Graph& graph,
  3.1340 +           const NodeFilterMap& nfm, ArcFilterMap& efm) {
  3.1341 +    return SubGraph<const Graph, const NodeFilterMap, ArcFilterMap>
  3.1342 +      (graph, nfm, efm);
  3.1343 +  }
  3.1344 +
  3.1345 +  template<typename Graph, typename NodeFilterMap, typename ArcFilterMap>
  3.1346 +  SubGraph<const Graph, NodeFilterMap, const ArcFilterMap>
  3.1347 +  subGraph(const Graph& graph,
  3.1348 +           NodeFilterMap& nfm, const ArcFilterMap& efm) {
  3.1349 +    return SubGraph<const Graph, NodeFilterMap, const ArcFilterMap>
  3.1350 +      (graph, nfm, efm);
  3.1351 +  }
  3.1352 +
  3.1353 +  template<typename Graph, typename NodeFilterMap, typename ArcFilterMap>
  3.1354 +  SubGraph<const Graph, const NodeFilterMap, const ArcFilterMap>
  3.1355 +  subGraph(const Graph& graph,
  3.1356 +           const NodeFilterMap& nfm, const ArcFilterMap& efm) {
  3.1357 +    return SubGraph<const Graph, const NodeFilterMap, const ArcFilterMap>
  3.1358 +      (graph, nfm, efm);
  3.1359 +  }
  3.1360 +
  3.1361 +  /// \ingroup graph_adaptors
  3.1362 +  ///
  3.1363 +  /// \brief An adaptor for hiding nodes from a digraph or a graph.
  3.1364 +  ///
  3.1365 +  /// FilterNodes adaptor hides nodes in a graph or a digraph. A bool
  3.1366 +  /// node map must be specified, which defines the filters for
  3.1367 +  /// nodes. Just the unfiltered nodes and the arcs or edges incident
  3.1368 +  /// to unfiltered nodes are shown in the subdigraph or subgraph. The
  3.1369 +  /// FilterNodes is conform to the \ref concepts::Digraph
  3.1370 +  /// "Digraph concept" or \ref concepts::Graph "Graph concept" depending
  3.1371 +  /// on the \c _Digraph template parameter. If the \c _checked
  3.1372 +  /// parameter is true, then the arc or edges incident to filtered nodes
  3.1373 +  /// are also filtered out.
  3.1374 +  ///
  3.1375 +  /// \tparam _Digraph It must be conform to the \ref
  3.1376 +  /// concepts::Digraph "Digraph concept" or \ref concepts::Graph
  3.1377 +  /// "Graph concept". The type can be specified to be const.
  3.1378 +  /// \tparam _NodeFilterMap A bool valued node map of the the adapted graph.
  3.1379 +  /// \tparam _checked If the parameter is false then the arc or edge
  3.1380 +  /// filtering is not checked with respect to node filter. In this
  3.1381 +  /// case just isolated nodes can be filtered out from the
  3.1382 +  /// graph.
  3.1383 +#ifdef DOXYGEN
  3.1384 +  template<typename _Digraph,
  3.1385 +           typename _NodeFilterMap = typename _Digraph::template NodeMap<bool>,
  3.1386 +           bool _checked = true>
  3.1387 +#else
  3.1388 +  template<typename _Digraph,
  3.1389 +           typename _NodeFilterMap = typename _Digraph::template NodeMap<bool>,
  3.1390 +           bool _checked = true,
  3.1391 +           typename Enable = void>
  3.1392 +#endif
  3.1393 +  class FilterNodes
  3.1394 +    : public SubDigraph<_Digraph, _NodeFilterMap,
  3.1395 +                        ConstMap<typename _Digraph::Arc, bool>, _checked> {
  3.1396 +  public:
  3.1397 +
  3.1398 +    typedef _Digraph Digraph;
  3.1399 +    typedef _NodeFilterMap NodeFilterMap;
  3.1400 +
  3.1401 +    typedef SubDigraph<Digraph, NodeFilterMap,
  3.1402 +                       ConstMap<typename Digraph::Arc, bool>, _checked>
  3.1403 +    Parent;
  3.1404 +
  3.1405 +    typedef typename Parent::Node Node;
  3.1406 +
  3.1407 +  protected:
  3.1408 +    ConstMap<typename Digraph::Arc, bool> const_true_map;
  3.1409 +
  3.1410 +    FilterNodes() : const_true_map(true) {
  3.1411 +      Parent::setArcFilterMap(const_true_map);
  3.1412 +    }
  3.1413 +
  3.1414 +  public:
  3.1415 +
  3.1416 +    /// \brief Constructor
  3.1417 +    ///
  3.1418 +    /// Creates an adaptor for the given digraph or graph with
  3.1419 +    /// given node filter map.
  3.1420 +    FilterNodes(Digraph& _digraph, NodeFilterMap& node_filter) :
  3.1421 +      Parent(), const_true_map(true) {
  3.1422 +      Parent::setDigraph(_digraph);
  3.1423 +      Parent::setNodeFilterMap(node_filter);
  3.1424 +      Parent::setArcFilterMap(const_true_map);
  3.1425 +    }
  3.1426 +
  3.1427 +    /// \brief Hides the node of the graph
  3.1428 +    ///
  3.1429 +    /// This function hides \c n in the digraph or graph, i.e. the iteration
  3.1430 +    /// jumps over it. This is done by simply setting the value of \c n
  3.1431 +    /// to be false in the corresponding node map.
  3.1432 +    void hide(const Node& n) const { Parent::hide(n); }
  3.1433 +
  3.1434 +    /// \brief Unhides the node of the graph
  3.1435 +    ///
  3.1436 +    /// The value of \c n is set to be true in the node-map which stores
  3.1437 +    /// hide information. If \c n was hidden previuosly, then it is shown
  3.1438 +    /// again
  3.1439 +    void unHide(const Node& n) const { Parent::unHide(n); }
  3.1440 +
  3.1441 +    /// \brief Returns true if \c n is hidden.
  3.1442 +    ///
  3.1443 +    /// Returns true if \c n is hidden.
  3.1444 +    ///
  3.1445 +    bool hidden(const Node& n) const { return Parent::hidden(n); }
  3.1446 +
  3.1447 +  };
  3.1448 +
  3.1449 +  template<typename _Graph, typename _NodeFilterMap, bool _checked>
  3.1450 +  class FilterNodes<_Graph, _NodeFilterMap, _checked,
  3.1451 +                    typename enable_if<UndirectedTagIndicator<_Graph> >::type>
  3.1452 +    : public SubGraph<_Graph, _NodeFilterMap,
  3.1453 +                      ConstMap<typename _Graph::Edge, bool>, _checked> {
  3.1454 +  public:
  3.1455 +    typedef _Graph Graph;
  3.1456 +    typedef _NodeFilterMap NodeFilterMap;
  3.1457 +    typedef SubGraph<Graph, NodeFilterMap,
  3.1458 +                     ConstMap<typename Graph::Edge, bool> > Parent;
  3.1459 +
  3.1460 +    typedef typename Parent::Node Node;
  3.1461 +  protected:
  3.1462 +    ConstMap<typename Graph::Edge, bool> const_true_map;
  3.1463 +
  3.1464 +    FilterNodes() : const_true_map(true) {
  3.1465 +      Parent::setEdgeFilterMap(const_true_map);
  3.1466 +    }
  3.1467 +
  3.1468 +  public:
  3.1469 +
  3.1470 +    FilterNodes(Graph& _graph, NodeFilterMap& node_filter_map) :
  3.1471 +      Parent(), const_true_map(true) {
  3.1472 +      Parent::setGraph(_graph);
  3.1473 +      Parent::setNodeFilterMap(node_filter_map);
  3.1474 +      Parent::setEdgeFilterMap(const_true_map);
  3.1475 +    }
  3.1476 +
  3.1477 +    void hide(const Node& n) const { Parent::hide(n); }
  3.1478 +    void unHide(const Node& n) const { Parent::unHide(n); }
  3.1479 +    bool hidden(const Node& n) const { return Parent::hidden(n); }
  3.1480 +
  3.1481 +  };
  3.1482 +
  3.1483 +
  3.1484 +  /// \brief Just gives back a FilterNodes adaptor
  3.1485 +  ///
  3.1486 +  /// Just gives back a FilterNodes adaptor
  3.1487 +  template<typename Digraph, typename NodeFilterMap>
  3.1488 +  FilterNodes<const Digraph, NodeFilterMap>
  3.1489 +  filterNodes(const Digraph& digraph, NodeFilterMap& nfm) {
  3.1490 +    return FilterNodes<const Digraph, NodeFilterMap>(digraph, nfm);
  3.1491 +  }
  3.1492 +
  3.1493 +  template<typename Digraph, typename NodeFilterMap>
  3.1494 +  FilterNodes<const Digraph, const NodeFilterMap>
  3.1495 +  filterNodes(const Digraph& digraph, const NodeFilterMap& nfm) {
  3.1496 +    return FilterNodes<const Digraph, const NodeFilterMap>(digraph, nfm);
  3.1497 +  }
  3.1498 +
  3.1499 +  /// \ingroup graph_adaptors
  3.1500 +  ///
  3.1501 +  /// \brief An adaptor for hiding arcs from a digraph.
  3.1502 +  ///
  3.1503 +  /// FilterArcs adaptor hides arcs in a digraph. A bool arc map must
  3.1504 +  /// be specified, which defines the filters for arcs. Just the
  3.1505 +  /// unfiltered arcs are shown in the subdigraph. The FilterArcs is
  3.1506 +  /// conform to the \ref concepts::Digraph "Digraph concept".
  3.1507 +  ///
  3.1508 +  /// \tparam _Digraph It must be conform to the \ref concepts::Digraph
  3.1509 +  /// "Digraph concept". The type can be specified to be const.
  3.1510 +  /// \tparam _ArcFilterMap A bool valued arc map of the the adapted
  3.1511 +  /// graph.
  3.1512 +  template<typename _Digraph, typename _ArcFilterMap>
  3.1513 +  class FilterArcs :
  3.1514 +    public SubDigraph<_Digraph, ConstMap<typename _Digraph::Node, bool>,
  3.1515 +                      _ArcFilterMap, false> {
  3.1516 +  public:
  3.1517 +    typedef _Digraph Digraph;
  3.1518 +    typedef _ArcFilterMap ArcFilterMap;
  3.1519 +
  3.1520 +    typedef SubDigraph<Digraph, ConstMap<typename Digraph::Node, bool>,
  3.1521 +                       ArcFilterMap, false> Parent;
  3.1522 +
  3.1523 +    typedef typename Parent::Arc Arc;
  3.1524 +
  3.1525 +  protected:
  3.1526 +    ConstMap<typename Digraph::Node, bool> const_true_map;
  3.1527 +
  3.1528 +    FilterArcs() : const_true_map(true) {
  3.1529 +      Parent::setNodeFilterMap(const_true_map);
  3.1530 +    }
  3.1531 +
  3.1532 +  public:
  3.1533 +
  3.1534 +    /// \brief Constructor
  3.1535 +    ///
  3.1536 +    /// Creates a FilterArcs adaptor for the given graph with
  3.1537 +    /// given arc map filter.
  3.1538 +    FilterArcs(Digraph& digraph, ArcFilterMap& arc_filter)
  3.1539 +      : Parent(), const_true_map(true) {
  3.1540 +      Parent::setDigraph(digraph);
  3.1541 +      Parent::setNodeFilterMap(const_true_map);
  3.1542 +      Parent::setArcFilterMap(arc_filter);
  3.1543 +    }
  3.1544 +
  3.1545 +    /// \brief Hides the arc of the graph
  3.1546 +    ///
  3.1547 +    /// This function hides \c a in the graph, i.e. the iteration
  3.1548 +    /// jumps over it. This is done by simply setting the value of \c a
  3.1549 +    /// to be false in the corresponding arc map.
  3.1550 +    void hide(const Arc& a) const { Parent::hide(a); }
  3.1551 +
  3.1552 +    /// \brief Unhides the arc of the graph
  3.1553 +    ///
  3.1554 +    /// The value of \c a is set to be true in the arc-map which stores
  3.1555 +    /// hide information. If \c a was hidden previuosly, then it is shown
  3.1556 +    /// again
  3.1557 +    void unHide(const Arc& a) const { Parent::unHide(a); }
  3.1558 +
  3.1559 +    /// \brief Returns true if \c a is hidden.
  3.1560 +    ///
  3.1561 +    /// Returns true if \c a is hidden.
  3.1562 +    ///
  3.1563 +    bool hidden(const Arc& a) const { return Parent::hidden(a); }
  3.1564 +
  3.1565 +  };
  3.1566 +
  3.1567 +  /// \brief Just gives back an FilterArcs adaptor
  3.1568 +  ///
  3.1569 +  /// Just gives back an FilterArcs adaptor
  3.1570 +  template<typename Digraph, typename ArcFilterMap>
  3.1571 +  FilterArcs<const Digraph, ArcFilterMap>
  3.1572 +  filterArcs(const Digraph& digraph, ArcFilterMap& afm) {
  3.1573 +    return FilterArcs<const Digraph, ArcFilterMap>(digraph, afm);
  3.1574 +  }
  3.1575 +
  3.1576 +  template<typename Digraph, typename ArcFilterMap>
  3.1577 +  FilterArcs<const Digraph, const ArcFilterMap>
  3.1578 +  filterArcs(const Digraph& digraph, const ArcFilterMap& afm) {
  3.1579 +    return FilterArcs<const Digraph, const ArcFilterMap>(digraph, afm);
  3.1580 +  }
  3.1581 +
  3.1582 +  /// \ingroup graph_adaptors
  3.1583 +  ///
  3.1584 +  /// \brief An adaptor for hiding edges from a graph.
  3.1585 +  ///
  3.1586 +  /// FilterEdges adaptor hides edges in a digraph. A bool edge map must
  3.1587 +  /// be specified, which defines the filters for edges. Just the
  3.1588 +  /// unfiltered edges are shown in the subdigraph. The FilterEdges is
  3.1589 +  /// conform to the \ref concepts::Graph "Graph concept".
  3.1590 +  ///
  3.1591 +  /// \tparam _Graph It must be conform to the \ref concepts::Graph
  3.1592 +  /// "Graph concept". The type can be specified to be const.
  3.1593 +  /// \tparam _EdgeFilterMap A bool valued edge map of the the adapted
  3.1594 +  /// graph.
  3.1595 +  template<typename _Graph, typename _EdgeFilterMap>
  3.1596 +  class FilterEdges :
  3.1597 +    public SubGraph<_Graph, ConstMap<typename _Graph::Node,bool>,
  3.1598 +                    _EdgeFilterMap, false> {
  3.1599 +  public:
  3.1600 +    typedef _Graph Graph;
  3.1601 +    typedef _EdgeFilterMap EdgeFilterMap;
  3.1602 +    typedef SubGraph<Graph, ConstMap<typename Graph::Node,bool>,
  3.1603 +                     EdgeFilterMap, false> Parent;
  3.1604 +    typedef typename Parent::Edge Edge;
  3.1605 +  protected:
  3.1606 +    ConstMap<typename Graph::Node, bool> const_true_map;
  3.1607 +
  3.1608 +    FilterEdges() : const_true_map(true) {
  3.1609 +      Parent::setNodeFilterMap(const_true_map);
  3.1610 +    }
  3.1611 +
  3.1612 +  public:
  3.1613 +
  3.1614 +    /// \brief Constructor
  3.1615 +    ///
  3.1616 +    /// Creates a FilterEdges adaptor for the given graph with
  3.1617 +    /// given edge map filters.
  3.1618 +    FilterEdges(Graph& _graph, EdgeFilterMap& edge_filter_map) :
  3.1619 +      Parent(), const_true_map(true) {
  3.1620 +      Parent::setGraph(_graph);
  3.1621 +      Parent::setNodeFilterMap(const_true_map);
  3.1622 +      Parent::setEdgeFilterMap(edge_filter_map);
  3.1623 +    }
  3.1624 +
  3.1625 +    /// \brief Hides the edge of the graph
  3.1626 +    ///
  3.1627 +    /// This function hides \c e in the graph, i.e. the iteration
  3.1628 +    /// jumps over it. This is done by simply setting the value of \c e
  3.1629 +    /// to be false in the corresponding edge-map.
  3.1630 +    void hide(const Edge& e) const { Parent::hide(e); }
  3.1631 +
  3.1632 +    /// \brief Unhides the edge of the graph
  3.1633 +    ///
  3.1634 +    /// The value of \c e is set to be true in the edge-map which stores
  3.1635 +    /// hide information. If \c e was hidden previuosly, then it is shown
  3.1636 +    /// again
  3.1637 +    void unHide(const Edge& e) const { Parent::unHide(e); }
  3.1638 +
  3.1639 +    /// \brief Returns true if \c e is hidden.
  3.1640 +    ///
  3.1641 +    /// Returns true if \c e is hidden.
  3.1642 +    ///
  3.1643 +    bool hidden(const Edge& e) const { return Parent::hidden(e); }
  3.1644 +
  3.1645 +  };
  3.1646 +
  3.1647 +  /// \brief Just gives back a FilterEdges adaptor
  3.1648 +  ///
  3.1649 +  /// Just gives back a FilterEdges adaptor
  3.1650 +  template<typename Graph, typename EdgeFilterMap>
  3.1651 +  FilterEdges<const Graph, EdgeFilterMap>
  3.1652 +  filterEdges(const Graph& graph, EdgeFilterMap& efm) {
  3.1653 +    return FilterEdges<const Graph, EdgeFilterMap>(graph, efm);
  3.1654 +  }
  3.1655 +
  3.1656 +  template<typename Graph, typename EdgeFilterMap>
  3.1657 +  FilterEdges<const Graph, const EdgeFilterMap>
  3.1658 +  filterEdges(const Graph& graph, const EdgeFilterMap& efm) {
  3.1659 +    return FilterEdges<const Graph, const EdgeFilterMap>(graph, efm);
  3.1660 +  }
  3.1661 +
  3.1662 +  template <typename _Digraph>
  3.1663 +  class UndirectorBase {
  3.1664 +  public:
  3.1665 +    typedef _Digraph Digraph;
  3.1666 +    typedef UndirectorBase Adaptor;
  3.1667 +
  3.1668 +    typedef True UndirectedTag;
  3.1669 +
  3.1670 +    typedef typename Digraph::Arc Edge;
  3.1671 +    typedef typename Digraph::Node Node;
  3.1672 +
  3.1673 +    class Arc : public Edge {
  3.1674 +      friend class UndirectorBase;
  3.1675 +    protected:
  3.1676 +      bool _forward;
  3.1677 +
  3.1678 +      Arc(const Edge& edge, bool forward) :
  3.1679 +        Edge(edge), _forward(forward) {}
  3.1680 +
  3.1681 +    public:
  3.1682 +      Arc() {}
  3.1683 +
  3.1684 +      Arc(Invalid) : Edge(INVALID), _forward(true) {}
  3.1685 +
  3.1686 +      bool operator==(const Arc &other) const {
  3.1687 +        return _forward == other._forward &&
  3.1688 +          static_cast<const Edge&>(*this) == static_cast<const Edge&>(other);
  3.1689 +      }
  3.1690 +      bool operator!=(const Arc &other) const {
  3.1691 +        return _forward != other._forward ||
  3.1692 +          static_cast<const Edge&>(*this) != static_cast<const Edge&>(other);
  3.1693 +      }
  3.1694 +      bool operator<(const Arc &other) const {
  3.1695 +        return _forward < other._forward ||
  3.1696 +          (_forward == other._forward &&
  3.1697 +           static_cast<const Edge&>(*this) < static_cast<const Edge&>(other));
  3.1698 +      }
  3.1699 +    };
  3.1700 +
  3.1701 +
  3.1702 +
  3.1703 +    void first(Node& n) const {
  3.1704 +      _digraph->first(n);
  3.1705 +    }
  3.1706 +
  3.1707 +    void next(Node& n) const {
  3.1708 +      _digraph->next(n);
  3.1709 +    }
  3.1710 +
  3.1711 +    void first(Arc& a) const {
  3.1712 +      _digraph->first(a);
  3.1713 +      a._forward = true;
  3.1714 +    }
  3.1715 +
  3.1716 +    void next(Arc& a) const {
  3.1717 +      if (a._forward) {
  3.1718 +        a._forward = false;
  3.1719 +      } else {
  3.1720 +        _digraph->next(a);
  3.1721 +        a._forward = true;
  3.1722 +      }
  3.1723 +    }
  3.1724 +
  3.1725 +    void first(Edge& e) const {
  3.1726 +      _digraph->first(e);
  3.1727 +    }
  3.1728 +
  3.1729 +    void next(Edge& e) const {
  3.1730 +      _digraph->next(e);
  3.1731 +    }
  3.1732 +
  3.1733 +    void firstOut(Arc& a, const Node& n) const {
  3.1734 +      _digraph->firstIn(a, n);
  3.1735 +      if( static_cast<const Edge&>(a) != INVALID ) {
  3.1736 +        a._forward = false;
  3.1737 +      } else {
  3.1738 +        _digraph->firstOut(a, n);
  3.1739 +        a._forward = true;
  3.1740 +      }
  3.1741 +    }
  3.1742 +    void nextOut(Arc &a) const {
  3.1743 +      if (!a._forward) {
  3.1744 +        Node n = _digraph->target(a);
  3.1745 +        _digraph->nextIn(a);
  3.1746 +        if (static_cast<const Edge&>(a) == INVALID ) {
  3.1747 +          _digraph->firstOut(a, n);
  3.1748 +          a._forward = true;
  3.1749 +        }
  3.1750 +      }
  3.1751 +      else {
  3.1752 +        _digraph->nextOut(a);
  3.1753 +      }
  3.1754 +    }
  3.1755 +
  3.1756 +    void firstIn(Arc &a, const Node &n) const {
  3.1757 +      _digraph->firstOut(a, n);
  3.1758 +      if (static_cast<const Edge&>(a) != INVALID ) {
  3.1759 +        a._forward = false;
  3.1760 +      } else {
  3.1761 +        _digraph->firstIn(a, n);
  3.1762 +        a._forward = true;
  3.1763 +      }
  3.1764 +    }
  3.1765 +    void nextIn(Arc &a) const {
  3.1766 +      if (!a._forward) {
  3.1767 +        Node n = _digraph->source(a);
  3.1768 +        _digraph->nextOut(a);
  3.1769 +        if( static_cast<const Edge&>(a) == INVALID ) {
  3.1770 +          _digraph->firstIn(a, n);
  3.1771 +          a._forward = true;
  3.1772 +        }
  3.1773 +      }
  3.1774 +      else {
  3.1775 +        _digraph->nextIn(a);
  3.1776 +      }
  3.1777 +    }
  3.1778 +
  3.1779 +    void firstInc(Edge &e, bool &d, const Node &n) const {
  3.1780 +      d = true;
  3.1781 +      _digraph->firstOut(e, n);
  3.1782 +      if (e != INVALID) return;
  3.1783 +      d = false;
  3.1784 +      _digraph->firstIn(e, n);
  3.1785 +    }
  3.1786 +
  3.1787 +    void nextInc(Edge &e, bool &d) const {
  3.1788 +      if (d) {
  3.1789 +        Node s = _digraph->source(e);
  3.1790 +        _digraph->nextOut(e);
  3.1791 +        if (e != INVALID) return;
  3.1792 +        d = false;
  3.1793 +        _digraph->firstIn(e, s);
  3.1794 +      } else {
  3.1795 +        _digraph->nextIn(e);
  3.1796 +      }
  3.1797 +    }
  3.1798 +
  3.1799 +    Node u(const Edge& e) const {
  3.1800 +      return _digraph->source(e);
  3.1801 +    }
  3.1802 +
  3.1803 +    Node v(const Edge& e) const {
  3.1804 +      return _digraph->target(e);
  3.1805 +    }
  3.1806 +
  3.1807 +    Node source(const Arc &a) const {
  3.1808 +      return a._forward ? _digraph->source(a) : _digraph->target(a);
  3.1809 +    }
  3.1810 +
  3.1811 +    Node target(const Arc &a) const {
  3.1812 +      return a._forward ? _digraph->target(a) : _digraph->source(a);
  3.1813 +    }
  3.1814 +
  3.1815 +    static Arc direct(const Edge &e, bool d) {
  3.1816 +      return Arc(e, d);
  3.1817 +    }
  3.1818 +    Arc direct(const Edge &e, const Node& n) const {
  3.1819 +      return Arc(e, _digraph->source(e) == n);
  3.1820 +    }
  3.1821 +
  3.1822 +    static bool direction(const Arc &a) { return a._forward; }
  3.1823 +
  3.1824 +    Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
  3.1825 +    Arc arcFromId(int ix) const {
  3.1826 +      return direct(_digraph->arcFromId(ix >> 1), bool(ix & 1));
  3.1827 +    }
  3.1828 +    Edge edgeFromId(int ix) const { return _digraph->arcFromId(ix); }
  3.1829 +
  3.1830 +    int id(const Node &n) const { return _digraph->id(n); }
  3.1831 +    int id(const Arc &a) const {
  3.1832 +      return  (_digraph->id(a) << 1) | (a._forward ? 1 : 0);
  3.1833 +    }
  3.1834 +    int id(const Edge &e) const { return _digraph->id(e); }
  3.1835 +
  3.1836 +    int maxNodeId() const { return _digraph->maxNodeId(); }
  3.1837 +    int maxArcId() const { return (_digraph->maxArcId() << 1) | 1; }
  3.1838 +    int maxEdgeId() const { return _digraph->maxArcId(); }
  3.1839 +
  3.1840 +    Node addNode() { return _digraph->addNode(); }
  3.1841 +    Edge addEdge(const Node& u, const Node& v) {
  3.1842 +      return _digraph->addArc(u, v);
  3.1843 +    }
  3.1844 +
  3.1845 +    void erase(const Node& i) { _digraph->erase(i); }
  3.1846 +    void erase(const Edge& i) { _digraph->erase(i); }
  3.1847 +
  3.1848 +    void clear() { _digraph->clear(); }
  3.1849 +
  3.1850 +    typedef NodeNumTagIndicator<Digraph> NodeNumTag;
  3.1851 +    int nodeNum() const { return 2 * _digraph->arcNum(); }
  3.1852 +    typedef EdgeNumTagIndicator<Digraph> EdgeNumTag;
  3.1853 +    int arcNum() const { return 2 * _digraph->arcNum(); }
  3.1854 +    int edgeNum() const { return _digraph->arcNum(); }
  3.1855 +
  3.1856 +    typedef FindEdgeTagIndicator<Digraph> FindEdgeTag;
  3.1857 +    Arc findArc(Node s, Node t, Arc p = INVALID) const {
  3.1858 +      if (p == INVALID) {
  3.1859 +        Edge arc = _digraph->findArc(s, t);
  3.1860 +        if (arc != INVALID) return direct(arc, true);
  3.1861 +        arc = _digraph->findArc(t, s);
  3.1862 +        if (arc != INVALID) return direct(arc, false);
  3.1863 +      } else if (direction(p)) {
  3.1864 +        Edge arc = _digraph->findArc(s, t, p);
  3.1865 +        if (arc != INVALID) return direct(arc, true);
  3.1866 +        arc = _digraph->findArc(t, s);
  3.1867 +        if (arc != INVALID) return direct(arc, false);
  3.1868 +      } else {
  3.1869 +        Edge arc = _digraph->findArc(t, s, p);
  3.1870 +        if (arc != INVALID) return direct(arc, false);
  3.1871 +      }
  3.1872 +      return INVALID;
  3.1873 +    }
  3.1874 +
  3.1875 +    Edge findEdge(Node s, Node t, Edge p = INVALID) const {
  3.1876 +      if (s != t) {
  3.1877 +        if (p == INVALID) {
  3.1878 +          Edge arc = _digraph->findArc(s, t);
  3.1879 +          if (arc != INVALID) return arc;
  3.1880 +          arc = _digraph->findArc(t, s);
  3.1881 +          if (arc != INVALID) return arc;
  3.1882 +        } else if (_digraph->s(p) == s) {
  3.1883 +          Edge arc = _digraph->findArc(s, t, p);
  3.1884 +          if (arc != INVALID) return arc;
  3.1885 +          arc = _digraph->findArc(t, s);
  3.1886 +          if (arc != INVALID) return arc;
  3.1887 +        } else {
  3.1888 +          Edge arc = _digraph->findArc(t, s, p);
  3.1889 +          if (arc != INVALID) return arc;
  3.1890 +        }
  3.1891 +      } else {
  3.1892 +        return _digraph->findArc(s, t, p);
  3.1893 +      }
  3.1894 +      return INVALID;
  3.1895 +    }
  3.1896 +
  3.1897 +  private:
  3.1898 +
  3.1899 +    template <typename _Value>
  3.1900 +    class ArcMapBase {
  3.1901 +    private:
  3.1902 +
  3.1903 +      typedef typename Digraph::template ArcMap<_Value> MapImpl;
  3.1904 +
  3.1905 +    public:
  3.1906 +
  3.1907 +      typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag;
  3.1908 +
  3.1909 +      typedef _Value Value;
  3.1910 +      typedef Arc Key;
  3.1911 +
  3.1912 +      ArcMapBase(const Adaptor& adaptor) :
  3.1913 +        _forward(*adaptor._digraph), _backward(*adaptor._digraph) {}
  3.1914 +
  3.1915 +      ArcMapBase(const Adaptor& adaptor, const Value& v)
  3.1916 +        : _forward(*adaptor._digraph, v), _backward(*adaptor._digraph, v) {}
  3.1917 +
  3.1918 +      void set(const Arc& a, const Value& v) {
  3.1919 +        if (direction(a)) {
  3.1920 +          _forward.set(a, v);
  3.1921 +        } else {
  3.1922 +          _backward.set(a, v);
  3.1923 +        }
  3.1924 +      }
  3.1925 +
  3.1926 +      typename MapTraits<MapImpl>::ConstReturnValue
  3.1927 +      operator[](const Arc& a) const {
  3.1928 +        if (direction(a)) {
  3.1929 +          return _forward[a];
  3.1930 +        } else {
  3.1931 +          return _backward[a];
  3.1932 +        }
  3.1933 +      }
  3.1934 +
  3.1935 +      typename MapTraits<MapImpl>::ReturnValue
  3.1936 +      operator[](const Arc& a) {
  3.1937 +        if (direction(a)) {
  3.1938 +          return _forward[a];
  3.1939 +        } else {
  3.1940 +          return _backward[a];
  3.1941 +        }
  3.1942 +      }
  3.1943 +
  3.1944 +    protected:
  3.1945 +
  3.1946 +      MapImpl _forward, _backward;
  3.1947 +
  3.1948 +    };
  3.1949 +
  3.1950 +  public:
  3.1951 +
  3.1952 +    template <typename _Value>
  3.1953 +    class NodeMap : public Digraph::template NodeMap<_Value> {
  3.1954 +    public:
  3.1955 +
  3.1956 +      typedef _Value Value;
  3.1957 +      typedef typename Digraph::template NodeMap<Value> Parent;
  3.1958 +
  3.1959 +      explicit NodeMap(const Adaptor& adaptor)
  3.1960 +        : Parent(*adaptor._digraph) {}
  3.1961 +
  3.1962 +      NodeMap(const Adaptor& adaptor, const _Value& value)
  3.1963 +        : Parent(*adaptor._digraph, value) { }
  3.1964 +
  3.1965 +    private:
  3.1966 +      NodeMap& operator=(const NodeMap& cmap) {
  3.1967 +        return operator=<NodeMap>(cmap);
  3.1968 +      }
  3.1969 +
  3.1970 +      template <typename CMap>
  3.1971 +      NodeMap& operator=(const CMap& cmap) {
  3.1972 +        Parent::operator=(cmap);
  3.1973 +        return *this;
  3.1974 +      }
  3.1975 +
  3.1976 +    };
  3.1977 +
  3.1978 +    template <typename _Value>
  3.1979 +    class ArcMap
  3.1980 +      : public SubMapExtender<Adaptor, ArcMapBase<_Value> >
  3.1981 +    {
  3.1982 +    public:
  3.1983 +      typedef _Value Value;
  3.1984 +      typedef SubMapExtender<Adaptor, ArcMapBase<Value> > Parent;
  3.1985 +
  3.1986 +      ArcMap(const Adaptor& adaptor)
  3.1987 +        : Parent(adaptor) {}
  3.1988 +
  3.1989 +      ArcMap(const Adaptor& adaptor, const Value& value)
  3.1990 +        : Parent(adaptor, value) {}
  3.1991 +
  3.1992 +    private:
  3.1993 +      ArcMap& operator=(const ArcMap& cmap) {
  3.1994 +        return operator=<ArcMap>(cmap);
  3.1995 +      }
  3.1996 +
  3.1997 +      template <typename CMap>
  3.1998 +      ArcMap& operator=(const CMap& cmap) {
  3.1999 +        Parent::operator=(cmap);
  3.2000 +        return *this;
  3.2001 +      }
  3.2002 +    };
  3.2003 +
  3.2004 +    template <typename _Value>
  3.2005 +    class EdgeMap : public Digraph::template ArcMap<_Value> {
  3.2006 +    public:
  3.2007 +
  3.2008 +      typedef _Value Value;
  3.2009 +      typedef typename Digraph::template ArcMap<Value> Parent;
  3.2010 +
  3.2011 +      explicit EdgeMap(const Adaptor& adaptor)
  3.2012 +        : Parent(*adaptor._digraph) {}
  3.2013 +
  3.2014 +      EdgeMap(const Adaptor& adaptor, const Value& value)
  3.2015 +        : Parent(*adaptor._digraph, value) {}
  3.2016 +
  3.2017 +    private:
  3.2018 +      EdgeMap& operator=(const EdgeMap& cmap) {
  3.2019 +        return operator=<EdgeMap>(cmap);
  3.2020 +      }
  3.2021 +
  3.2022 +      template <typename CMap>
  3.2023 +      EdgeMap& operator=(const CMap& cmap) {
  3.2024 +        Parent::operator=(cmap);
  3.2025 +        return *this;
  3.2026 +      }
  3.2027 +
  3.2028 +    };
  3.2029 +
  3.2030 +    typedef typename ItemSetTraits<Digraph, Node>::ItemNotifier NodeNotifier;
  3.2031 +    NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
  3.2032 +
  3.2033 +  protected:
  3.2034 +
  3.2035 +    UndirectorBase() : _digraph(0) {}
  3.2036 +
  3.2037 +    Digraph* _digraph;
  3.2038 +
  3.2039 +    void setDigraph(Digraph& digraph) {
  3.2040 +      _digraph = &digraph;
  3.2041 +    }
  3.2042 +
  3.2043 +  };
  3.2044 +
  3.2045 +  /// \ingroup graph_adaptors
  3.2046 +  ///
  3.2047 +  /// \brief Undirect the graph
  3.2048 +  ///
  3.2049 +  /// This adaptor makes an undirected graph from a directed
  3.2050 +  /// graph. All arcs of the underlying digraph will be showed in the
  3.2051 +  /// adaptor as an edge. The Orienter adaptor is conform to the \ref
  3.2052 +  /// concepts::Graph "Graph concept".
  3.2053 +  ///
  3.2054 +  /// \tparam _Digraph It must be conform to the \ref
  3.2055 +  /// concepts::Digraph "Digraph concept". The type can be specified
  3.2056 +  /// to const.
  3.2057 +  template<typename _Digraph>
  3.2058 +  class Undirector
  3.2059 +    : public GraphAdaptorExtender<UndirectorBase<_Digraph> > {
  3.2060 +  public:
  3.2061 +    typedef _Digraph Digraph;
  3.2062 +    typedef GraphAdaptorExtender<UndirectorBase<Digraph> > Parent;
  3.2063 +  protected:
  3.2064 +    Undirector() { }
  3.2065 +  public:
  3.2066 +
  3.2067 +    /// \brief Constructor
  3.2068 +    ///
  3.2069 +    /// Creates a undirected graph from the given digraph
  3.2070 +    Undirector(_Digraph& digraph) {
  3.2071 +      setDigraph(digraph);
  3.2072 +    }
  3.2073 +
  3.2074 +    /// \brief ArcMap combined from two original ArcMap
  3.2075 +    ///
  3.2076 +    /// This class adapts two original digraph ArcMap to
  3.2077 +    /// get an arc map on the undirected graph.
  3.2078 +    template <typename _ForwardMap, typename _BackwardMap>
  3.2079 +    class CombinedArcMap {
  3.2080 +    public:
  3.2081 +
  3.2082 +      typedef _ForwardMap ForwardMap;
  3.2083 +      typedef _BackwardMap BackwardMap;
  3.2084 +
  3.2085 +      typedef typename MapTraits<ForwardMap>::ReferenceMapTag ReferenceMapTag;
  3.2086 +
  3.2087 +      typedef typename ForwardMap::Value Value;
  3.2088 +      typedef typename Parent::Arc Key;
  3.2089 +
  3.2090 +      /// \brief Constructor
  3.2091 +      ///
  3.2092 +      /// Constructor
  3.2093 +      CombinedArcMap(ForwardMap& forward, BackwardMap& backward)
  3.2094 +        : _forward(&forward), _backward(&backward) {}
  3.2095 +
  3.2096 +
  3.2097 +      /// \brief Sets the value associated with a key.
  3.2098 +      ///
  3.2099 +      /// Sets the value associated with a key.
  3.2100 +      void set(const Key& e, const Value& a) {
  3.2101 +        if (Parent::direction(e)) {
  3.2102 +          _forward->set(e, a);
  3.2103 +        } else {
  3.2104 +          _backward->set(e, a);
  3.2105 +        }
  3.2106 +      }
  3.2107 +
  3.2108 +      /// \brief Returns the value associated with a key.
  3.2109 +      ///
  3.2110 +      /// Returns the value associated with a key.
  3.2111 +      typename MapTraits<ForwardMap>::ConstReturnValue
  3.2112 +      operator[](const Key& e) const {
  3.2113 +        if (Parent::direction(e)) {
  3.2114 +          return (*_forward)[e];
  3.2115 +        } else {
  3.2116 +          return (*_backward)[e];
  3.2117 +        }
  3.2118 +      }
  3.2119 +
  3.2120 +      /// \brief Returns the value associated with a key.
  3.2121 +      ///
  3.2122 +      /// Returns the value associated with a key.
  3.2123 +      typename MapTraits<ForwardMap>::ReturnValue
  3.2124 +      operator[](const Key& e) {
  3.2125 +        if (Parent::direction(e)) {
  3.2126 +          return (*_forward)[e];
  3.2127 +        } else {
  3.2128 +          return (*_backward)[e];
  3.2129 +        }
  3.2130 +      }
  3.2131 +
  3.2132 +    protected:
  3.2133 +
  3.2134 +      ForwardMap* _forward;
  3.2135 +      BackwardMap* _backward;
  3.2136 +
  3.2137 +    };
  3.2138 +
  3.2139 +    /// \brief Just gives back a combined arc map
  3.2140 +    ///
  3.2141 +    /// Just gives back a combined arc map
  3.2142 +    template <typename ForwardMap, typename BackwardMap>
  3.2143 +    static CombinedArcMap<ForwardMap, BackwardMap>
  3.2144 +    combinedArcMap(ForwardMap& forward, BackwardMap& backward) {
  3.2145 +      return CombinedArcMap<ForwardMap, BackwardMap>(forward, backward);
  3.2146 +    }
  3.2147 +
  3.2148 +    template <typename ForwardMap, typename BackwardMap>
  3.2149 +    static CombinedArcMap<const ForwardMap, BackwardMap>
  3.2150 +    combinedArcMap(const ForwardMap& forward, BackwardMap& backward) {
  3.2151 +      return CombinedArcMap<const ForwardMap,
  3.2152 +        BackwardMap>(forward, backward);
  3.2153 +    }
  3.2154 +
  3.2155 +    template <typename ForwardMap, typename BackwardMap>
  3.2156 +    static CombinedArcMap<ForwardMap, const BackwardMap>
  3.2157 +    combinedArcMap(ForwardMap& forward, const BackwardMap& backward) {
  3.2158 +      return CombinedArcMap<ForwardMap,
  3.2159 +        const BackwardMap>(forward, backward);
  3.2160 +    }
  3.2161 +
  3.2162 +    template <typename ForwardMap, typename BackwardMap>
  3.2163 +    static CombinedArcMap<const ForwardMap, const BackwardMap>
  3.2164 +    combinedArcMap(const ForwardMap& forward, const BackwardMap& backward) {
  3.2165 +      return CombinedArcMap<const ForwardMap,
  3.2166 +        const BackwardMap>(forward, backward);
  3.2167 +    }
  3.2168 +
  3.2169 +  };
  3.2170 +
  3.2171 +  /// \brief Just gives back an undirected view of the given digraph
  3.2172 +  ///
  3.2173 +  /// Just gives back an undirected view of the given digraph
  3.2174 +  template<typename Digraph>
  3.2175 +  Undirector<const Digraph>
  3.2176 +  undirector(const Digraph& digraph) {
  3.2177 +    return Undirector<const Digraph>(digraph);
  3.2178 +  }
  3.2179 +
  3.2180 +  template <typename _Graph, typename _DirectionMap>
  3.2181 +  class OrienterBase {
  3.2182 +  public:
  3.2183 +
  3.2184 +    typedef _Graph Graph;
  3.2185 +    typedef _DirectionMap DirectionMap;
  3.2186 +
  3.2187 +    typedef typename Graph::Node Node;
  3.2188 +    typedef typename Graph::Edge Arc;
  3.2189 +
  3.2190 +    void reverseArc(const Arc& arc) {
  3.2191 +      _direction->set(arc, !(*_direction)[arc]);
  3.2192 +    }
  3.2193 +
  3.2194 +    void first(Node& i) const { _graph->first(i); }
  3.2195 +    void first(Arc& i) const { _graph->first(i); }
  3.2196 +    void firstIn(Arc& i, const Node& n) const {
  3.2197 +      bool d;
  3.2198 +      _graph->firstInc(i, d, n);
  3.2199 +      while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
  3.2200 +    }
  3.2201 +    void firstOut(Arc& i, const Node& n ) const {
  3.2202 +      bool d;
  3.2203 +      _graph->firstInc(i, d, n);
  3.2204 +      while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
  3.2205 +    }
  3.2206 +
  3.2207 +    void next(Node& i) const { _graph->next(i); }
  3.2208 +    void next(Arc& i) const { _graph->next(i); }
  3.2209 +    void nextIn(Arc& i) const {
  3.2210 +      bool d = !(*_direction)[i];
  3.2211 +      _graph->nextInc(i, d);
  3.2212 +      while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
  3.2213 +    }
  3.2214 +    void nextOut(Arc& i) const {
  3.2215 +      bool d = (*_direction)[i];
  3.2216 +      _graph->nextInc(i, d);
  3.2217 +      while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
  3.2218 +    }
  3.2219 +
  3.2220 +    Node source(const Arc& e) const {
  3.2221 +      return (*_direction)[e] ? _graph->u(e) : _graph->v(e);
  3.2222 +    }
  3.2223 +    Node target(const Arc& e) const {
  3.2224 +      return (*_direction)[e] ? _graph->v(e) : _graph->u(e);
  3.2225 +    }
  3.2226 +
  3.2227 +    typedef NodeNumTagIndicator<Graph> NodeNumTag;
  3.2228 +    int nodeNum() const { return _graph->nodeNum(); }
  3.2229 +
  3.2230 +    typedef EdgeNumTagIndicator<Graph> EdgeNumTag;
  3.2231 +    int arcNum() const { return _graph->edgeNum(); }
  3.2232 +
  3.2233 +    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
  3.2234 +    Arc findArc(const Node& u, const Node& v,
  3.2235 +                const Arc& prev = INVALID) {
  3.2236 +      Arc arc = prev;
  3.2237 +      bool d = arc == INVALID ? true : (*_direction)[arc];
  3.2238 +      if (d) {
  3.2239 +        arc = _graph->findEdge(u, v, arc);
  3.2240 +        while (arc != INVALID && !(*_direction)[arc]) {
  3.2241 +          _graph->findEdge(u, v, arc);
  3.2242 +        }
  3.2243 +        if (arc != INVALID) return arc;
  3.2244 +      }
  3.2245 +      _graph->findEdge(v, u, arc);
  3.2246 +      while (arc != INVALID && (*_direction)[arc]) {
  3.2247 +        _graph->findEdge(u, v, arc);
  3.2248 +      }
  3.2249 +      return arc;
  3.2250 +    }
  3.2251 +
  3.2252 +    Node addNode() {
  3.2253 +      return Node(_graph->addNode());
  3.2254 +    }
  3.2255 +
  3.2256 +    Arc addArc(const Node& u, const Node& v) {
  3.2257 +      Arc arc = _graph->addArc(u, v);
  3.2258 +      _direction->set(arc, _graph->source(arc) == u);
  3.2259 +      return arc;
  3.2260 +    }
  3.2261 +
  3.2262 +    void erase(const Node& i) { _graph->erase(i); }
  3.2263 +    void erase(const Arc& i) { _graph->erase(i); }
  3.2264 +
  3.2265 +    void clear() { _graph->clear(); }
  3.2266 +
  3.2267 +    int id(const Node& v) const { return _graph->id(v); }
  3.2268 +    int id(const Arc& e) const { return _graph->id(e); }
  3.2269 +
  3.2270 +    Node nodeFromId(int idx) const { return _graph->nodeFromId(idx); }
  3.2271 +    Arc arcFromId(int idx) const { return _graph->edgeFromId(idx); }
  3.2272 +
  3.2273 +    int maxNodeId() const { return _graph->maxNodeId(); }
  3.2274 +    int maxArcId() const { return _graph->maxEdgeId(); }
  3.2275 +
  3.2276 +    typedef typename ItemSetTraits<Graph, Node>::ItemNotifier NodeNotifier;
  3.2277 +    NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
  3.2278 +
  3.2279 +    typedef typename ItemSetTraits<Graph, Arc>::ItemNotifier ArcNotifier;
  3.2280 +    ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
  3.2281 +
  3.2282 +    template <typename _Value>
  3.2283 +    class NodeMap : public _Graph::template NodeMap<_Value> {
  3.2284 +    public:
  3.2285 +
  3.2286 +      typedef typename _Graph::template NodeMap<_Value> Parent;
  3.2287 +
  3.2288 +      explicit NodeMap(const OrienterBase& adapter)
  3.2289 +        : Parent(*adapter._graph) {}
  3.2290 +
  3.2291 +      NodeMap(const OrienterBase& adapter, const _Value& value)
  3.2292 +        : Parent(*adapter._graph, value) {}
  3.2293 +
  3.2294 +    private:
  3.2295 +      NodeMap& operator=(const NodeMap& cmap) {
  3.2296 +        return operator=<NodeMap>(cmap);
  3.2297 +      }
  3.2298 +
  3.2299 +      template <typename CMap>
  3.2300 +      NodeMap& operator=(const CMap& cmap) {
  3.2301 +        Parent::operator=(cmap);
  3.2302 +        return *this;
  3.2303 +      }
  3.2304 +
  3.2305 +    };
  3.2306 +
  3.2307 +    template <typename _Value>
  3.2308 +    class ArcMap : public _Graph::template EdgeMap<_Value> {
  3.2309 +    public:
  3.2310 +
  3.2311 +      typedef typename Graph::template EdgeMap<_Value> Parent;
  3.2312 +
  3.2313 +      explicit ArcMap(const OrienterBase& adapter)
  3.2314 +        : Parent(*adapter._graph) { }
  3.2315 +
  3.2316 +      ArcMap(const OrienterBase& adapter, const _Value& value)
  3.2317 +        : Parent(*adapter._graph, value) { }
  3.2318 +
  3.2319 +    private:
  3.2320 +      ArcMap& operator=(const ArcMap& cmap) {
  3.2321 +        return operator=<ArcMap>(cmap);
  3.2322 +      }
  3.2323 +
  3.2324 +      template <typename CMap>
  3.2325 +      ArcMap& operator=(const CMap& cmap) {
  3.2326 +        Parent::operator=(cmap);
  3.2327 +        return *this;
  3.2328 +      }
  3.2329 +    };
  3.2330 +
  3.2331 +
  3.2332 +
  3.2333 +  protected:
  3.2334 +    Graph* _graph;
  3.2335 +    DirectionMap* _direction;
  3.2336 +
  3.2337 +    void setDirectionMap(DirectionMap& direction) {
  3.2338 +      _direction = &direction;
  3.2339 +    }
  3.2340 +
  3.2341 +    void setGraph(Graph& graph) {
  3.2342 +      _graph = &graph;
  3.2343 +    }
  3.2344 +
  3.2345 +  };
  3.2346 +
  3.2347 +  /// \ingroup graph_adaptors
  3.2348 +  ///
  3.2349 +  /// \brief Orients the edges of the graph to get a digraph
  3.2350 +  ///
  3.2351 +  /// This adaptor orients each edge in the undirected graph. The
  3.2352 +  /// direction of the arcs stored in an edge node map.  The arcs can
  3.2353 +  /// be easily reverted by the \c reverseArc() member function in the
  3.2354 +  /// adaptor. The Orienter adaptor is conform to the \ref
  3.2355 +  /// concepts::Digraph "Digraph concept".
  3.2356 +  ///
  3.2357 +  /// \tparam _Graph It must be conform to the \ref concepts::Graph
  3.2358 +  /// "Graph concept". The type can be specified to be const.
  3.2359 +  /// \tparam _DirectionMap A bool valued edge map of the the adapted
  3.2360 +  /// graph.
  3.2361 +  ///
  3.2362 +  /// \sa orienter
  3.2363 +  template<typename _Graph,
  3.2364 +           typename DirectionMap = typename _Graph::template EdgeMap<bool> >
  3.2365 +  class Orienter :
  3.2366 +    public DigraphAdaptorExtender<OrienterBase<_Graph, DirectionMap> > {
  3.2367 +  public:
  3.2368 +    typedef _Graph Graph;
  3.2369 +    typedef DigraphAdaptorExtender<
  3.2370 +      OrienterBase<_Graph, DirectionMap> > Parent;
  3.2371 +    typedef typename Parent::Arc Arc;
  3.2372 +  protected:
  3.2373 +    Orienter() { }
  3.2374 +  public:
  3.2375 +
  3.2376 +    /// \brief Constructor of the adaptor
  3.2377 +    ///
  3.2378 +    /// Constructor of the adaptor
  3.2379 +    Orienter(Graph& graph, DirectionMap& direction) {
  3.2380 +      setGraph(graph);
  3.2381 +      setDirectionMap(direction);
  3.2382 +    }
  3.2383 +
  3.2384 +    /// \brief Reverse arc
  3.2385 +    ///
  3.2386 +    /// It reverse the given arc. It simply negate the direction in the map.
  3.2387 +    void reverseArc(const Arc& a) {
  3.2388 +      Parent::reverseArc(a);
  3.2389 +    }
  3.2390 +  };
  3.2391 +
  3.2392 +  /// \brief Just gives back a Orienter
  3.2393 +  ///
  3.2394 +  /// Just gives back a Orienter
  3.2395 +  template<typename Graph, typename DirectionMap>
  3.2396 +  Orienter<const Graph, DirectionMap>
  3.2397 +  orienter(const Graph& graph, DirectionMap& dm) {
  3.2398 +    return Orienter<const Graph, DirectionMap>(graph, dm);
  3.2399 +  }
  3.2400 +
  3.2401 +  template<typename Graph, typename DirectionMap>
  3.2402 +  Orienter<const Graph, const DirectionMap>
  3.2403 +  orienter(const Graph& graph, const DirectionMap& dm) {
  3.2404 +    return Orienter<const Graph, const DirectionMap>(graph, dm);
  3.2405 +  }
  3.2406 +
  3.2407 +  namespace _adaptor_bits {
  3.2408 +
  3.2409 +    template<typename _Digraph,
  3.2410 +             typename _CapacityMap = typename _Digraph::template ArcMap<int>,
  3.2411 +             typename _FlowMap = _CapacityMap,
  3.2412 +             typename _Tolerance = Tolerance<typename _CapacityMap::Value> >
  3.2413 +    class ResForwardFilter {
  3.2414 +    public:
  3.2415 +
  3.2416 +      typedef _Digraph Digraph;
  3.2417 +      typedef _CapacityMap CapacityMap;
  3.2418 +      typedef _FlowMap FlowMap;
  3.2419 +      typedef _Tolerance Tolerance;
  3.2420 +
  3.2421 +      typedef typename Digraph::Arc Key;
  3.2422 +      typedef bool Value;
  3.2423 +
  3.2424 +    private:
  3.2425 +
  3.2426 +      const CapacityMap* _capacity;
  3.2427 +      const FlowMap* _flow;
  3.2428 +      Tolerance _tolerance;
  3.2429 +    public:
  3.2430 +
  3.2431 +      ResForwardFilter(const CapacityMap& capacity, const FlowMap& flow,
  3.2432 +                       const Tolerance& tolerance = Tolerance())
  3.2433 +        : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
  3.2434 +
  3.2435 +      bool operator[](const typename Digraph::Arc& a) const {
  3.2436 +        return _tolerance.positive((*_capacity)[a] - (*_flow)[a]);
  3.2437 +      }
  3.2438 +    };
  3.2439 +
  3.2440 +    template<typename _Digraph,
  3.2441 +             typename _CapacityMap = typename _Digraph::template ArcMap<int>,
  3.2442 +             typename _FlowMap = _CapacityMap,
  3.2443 +             typename _Tolerance = Tolerance<typename _CapacityMap::Value> >
  3.2444 +    class ResBackwardFilter {
  3.2445 +    public:
  3.2446 +
  3.2447 +      typedef _Digraph Digraph;
  3.2448 +      typedef _CapacityMap CapacityMap;
  3.2449 +      typedef _FlowMap FlowMap;
  3.2450 +      typedef _Tolerance Tolerance;
  3.2451 +
  3.2452 +      typedef typename Digraph::Arc Key;
  3.2453 +      typedef bool Value;
  3.2454 +
  3.2455 +    private:
  3.2456 +
  3.2457 +      const CapacityMap* _capacity;
  3.2458 +      const FlowMap* _flow;
  3.2459 +      Tolerance _tolerance;
  3.2460 +
  3.2461 +    public:
  3.2462 +
  3.2463 +      ResBackwardFilter(const CapacityMap& capacity, const FlowMap& flow,
  3.2464 +                        const Tolerance& tolerance = Tolerance())
  3.2465 +        : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
  3.2466 +
  3.2467 +      bool operator[](const typename Digraph::Arc& a) const {
  3.2468 +        return _tolerance.positive((*_flow)[a]);
  3.2469 +      }
  3.2470 +    };
  3.2471 +
  3.2472 +  }
  3.2473 +
  3.2474 +  /// \ingroup graph_adaptors
  3.2475 +  ///
  3.2476 +  /// \brief An adaptor for composing the residual graph for directed
  3.2477 +  /// flow and circulation problems.
  3.2478 +  ///
  3.2479 +  /// An adaptor for composing the residual graph for directed flow and
  3.2480 +  /// circulation problems.  Let \f$ G=(V, A) \f$ be a directed graph
  3.2481 +  /// and let \f$ F \f$ be a number type. Let moreover \f$ f,c:A\to F \f$,
  3.2482 +  /// be functions on the arc-set.
  3.2483 +  ///
  3.2484 +  /// Then Residual implements the digraph structure with
  3.2485 +  /// node-set \f$ V \f$ and arc-set \f$ A_{forward}\cup A_{backward} \f$,
  3.2486 +  /// where \f$ A_{forward}=\{uv : uv\in A, f(uv)<c(uv)\} \f$ and
  3.2487 +  /// \f$ A_{backward}=\{vu : uv\in A, f(uv)>0\} \f$, i.e. the so
  3.2488 +  /// called residual graph.  When we take the union
  3.2489 +  /// \f$ A_{forward}\cup A_{backward} \f$, multiplicities are counted,
  3.2490 +  /// i.e.  if an arc is in both \f$ A_{forward} \f$ and
  3.2491 +  /// \f$ A_{backward} \f$, then in the adaptor it appears in both
  3.2492 +  /// orientation.
  3.2493 +  ///
  3.2494 +  /// \tparam _Digraph It must be conform to the \ref concepts::Digraph
  3.2495 +  /// "Digraph concept". The type is implicitly const.
  3.2496 +  /// \tparam _CapacityMap An arc map of some numeric type, it defines
  3.2497 +  /// the capacities in the flow problem. The map is implicitly const.
  3.2498 +  /// \tparam _FlowMap An arc map of some numeric type, it defines
  3.2499 +  /// the capacities in the flow problem.
  3.2500 +  /// \tparam _Tolerance Handler for inexact computation.
  3.2501 +  template<typename _Digraph,
  3.2502 +           typename _CapacityMap = typename _Digraph::template ArcMap<int>,
  3.2503 +           typename _FlowMap = _CapacityMap,
  3.2504 +           typename _Tolerance = Tolerance<typename _CapacityMap::Value> >
  3.2505 +  class Residual :
  3.2506 +    public FilterArcs<
  3.2507 +    Undirector<const _Digraph>,
  3.2508 +    typename Undirector<const _Digraph>::template CombinedArcMap<
  3.2509 +      _adaptor_bits::ResForwardFilter<const _Digraph, _CapacityMap,
  3.2510 +                                      _FlowMap, _Tolerance>,
  3.2511 +      _adaptor_bits::ResBackwardFilter<const _Digraph, _CapacityMap,
  3.2512 +                                       _FlowMap, _Tolerance> > >
  3.2513 +  {
  3.2514 +  public:
  3.2515 +
  3.2516 +    typedef _Digraph Digraph;
  3.2517 +    typedef _CapacityMap CapacityMap;
  3.2518 +    typedef _FlowMap FlowMap;
  3.2519 +    typedef _Tolerance Tolerance;
  3.2520 +
  3.2521 +    typedef typename CapacityMap::Value Value;
  3.2522 +    typedef Residual Adaptor;
  3.2523 +
  3.2524 +  protected:
  3.2525 +
  3.2526 +    typedef Undirector<const Digraph> Undirected;
  3.2527 +
  3.2528 +    typedef _adaptor_bits::ResForwardFilter<const Digraph, CapacityMap,
  3.2529 +                                            FlowMap, Tolerance> ForwardFilter;
  3.2530 +
  3.2531 +    typedef _adaptor_bits::ResBackwardFilter<const Digraph, CapacityMap,
  3.2532 +                                             FlowMap, Tolerance> BackwardFilter;
  3.2533 +
  3.2534 +    typedef typename Undirected::
  3.2535 +    template CombinedArcMap<ForwardFilter, BackwardFilter> ArcFilter;
  3.2536 +
  3.2537 +    typedef FilterArcs<Undirected, ArcFilter> Parent;
  3.2538 +
  3.2539 +    const CapacityMap* _capacity;
  3.2540 +    FlowMap* _flow;
  3.2541 +
  3.2542 +    Undirected _graph;
  3.2543 +    ForwardFilter _forward_filter;
  3.2544 +    BackwardFilter _backward_filter;
  3.2545 +    ArcFilter _arc_filter;
  3.2546 +
  3.2547 +  public:
  3.2548 +
  3.2549 +    /// \brief Constructor of the residual digraph.
  3.2550 +    ///
  3.2551 +    /// Constructor of the residual graph. The parameters are the digraph,
  3.2552 +    /// the flow map, the capacity map and a tolerance object.
  3.2553 +    Residual(const Digraph& digraph, const CapacityMap& capacity,
  3.2554 +             FlowMap& flow, const Tolerance& tolerance = Tolerance())
  3.2555 +      : Parent(), _capacity(&capacity), _flow(&flow), _graph(digraph),
  3.2556 +        _forward_filter(capacity, flow, tolerance),
  3.2557 +        _backward_filter(capacity, flow, tolerance),
  3.2558 +        _arc_filter(_forward_filter, _backward_filter)
  3.2559 +    {
  3.2560 +      Parent::setDigraph(_graph);
  3.2561 +      Parent::setArcFilterMap(_arc_filter);
  3.2562 +    }
  3.2563 +
  3.2564 +    typedef typename Parent::Arc Arc;
  3.2565 +
  3.2566 +    /// \brief Gives back the residual capacity of the arc.
  3.2567 +    ///
  3.2568 +    /// Gives back the residual capacity of the arc.
  3.2569 +    Value residualCapacity(const Arc& a) const {
  3.2570 +      if (Undirected::direction(a)) {
  3.2571 +        return (*_capacity)[a] - (*_flow)[a];
  3.2572 +      } else {
  3.2573 +        return (*_flow)[a];
  3.2574 +      }
  3.2575 +    }
  3.2576 +
  3.2577 +    /// \brief Augment on the given arc in the residual graph.
  3.2578 +    ///
  3.2579 +    /// Augment on the given arc in the residual graph. It increase
  3.2580 +    /// or decrease the flow on the original arc depend on the direction
  3.2581 +    /// of the residual arc.
  3.2582 +    void augment(const Arc& a, const Value& v) const {
  3.2583 +      if (Undirected::direction(a)) {
  3.2584 +        _flow->set(a, (*_flow)[a] + v);
  3.2585 +      } else {
  3.2586 +        _flow->set(a, (*_flow)[a] - v);
  3.2587 +      }
  3.2588 +    }
  3.2589 +
  3.2590 +    /// \brief Returns the direction of the arc.
  3.2591 +    ///
  3.2592 +    /// Returns true when the arc is same oriented as the original arc.
  3.2593 +    static bool forward(const Arc& a) {
  3.2594 +      return Undirected::direction(a);
  3.2595 +    }
  3.2596 +
  3.2597 +    /// \brief Returns the direction of the arc.
  3.2598 +    ///
  3.2599 +    /// Returns true when the arc is opposite oriented as the original arc.
  3.2600 +    static bool backward(const Arc& a) {
  3.2601 +      return !Undirected::direction(a);
  3.2602 +    }
  3.2603 +
  3.2604 +    /// \brief Gives back the forward oriented residual arc.
  3.2605 +    ///
  3.2606 +    /// Gives back the forward oriented residual arc.
  3.2607 +    static Arc forward(const typename Digraph::Arc& a) {
  3.2608 +      return Undirected::direct(a, true);
  3.2609 +    }
  3.2610 +
  3.2611 +    /// \brief Gives back the backward oriented residual arc.
  3.2612 +    ///
  3.2613 +    /// Gives back the backward oriented residual arc.
  3.2614 +    static Arc backward(const typename Digraph::Arc& a) {
  3.2615 +      return Undirected::direct(a, false);
  3.2616 +    }
  3.2617 +
  3.2618 +    /// \brief Residual capacity map.
  3.2619 +    ///
  3.2620 +    /// In generic residual graph the residual capacity can be obtained
  3.2621 +    /// as a map.
  3.2622 +    class ResidualCapacity {
  3.2623 +    protected:
  3.2624 +      const Adaptor* _adaptor;
  3.2625 +    public:
  3.2626 +      /// The Key type
  3.2627 +      typedef Arc Key;
  3.2628 +      /// The Value type
  3.2629 +      typedef typename _CapacityMap::Value Value;
  3.2630 +
  3.2631 +      /// Constructor
  3.2632 +      ResidualCapacity(const Adaptor& adaptor) : _adaptor(&adaptor) {}
  3.2633 +
  3.2634 +      /// \e
  3.2635 +      Value operator[](const Arc& a) const {
  3.2636 +        return _adaptor->residualCapacity(a);
  3.2637 +      }
  3.2638 +
  3.2639 +    };
  3.2640 +
  3.2641 +  };
  3.2642 +
  3.2643 +  template <typename _Digraph>
  3.2644 +  class SplitNodesBase {
  3.2645 +  public:
  3.2646 +
  3.2647 +    typedef _Digraph Digraph;
  3.2648 +    typedef DigraphAdaptorBase<const _Digraph> Parent;
  3.2649 +    typedef SplitNodesBase Adaptor;
  3.2650 +
  3.2651 +    typedef typename Digraph::Node DigraphNode;
  3.2652 +    typedef typename Digraph::Arc DigraphArc;
  3.2653 +
  3.2654 +    class Node;
  3.2655 +    class Arc;
  3.2656 +
  3.2657 +  private:
  3.2658 +
  3.2659 +    template <typename T> class NodeMapBase;
  3.2660 +    template <typename T> class ArcMapBase;
  3.2661 +
  3.2662 +  public:
  3.2663 +
  3.2664 +    class Node : public DigraphNode {
  3.2665 +      friend class SplitNodesBase;
  3.2666 +      template <typename T> friend class NodeMapBase;
  3.2667 +    private:
  3.2668 +
  3.2669 +      bool _in;
  3.2670 +      Node(DigraphNode node, bool in)
  3.2671 +        : DigraphNode(node), _in(in) {}
  3.2672 +
  3.2673 +    public:
  3.2674 +
  3.2675 +      Node() {}
  3.2676 +      Node(Invalid) : DigraphNode(INVALID), _in(true) {}
  3.2677 +
  3.2678 +      bool operator==(const Node& node) const {
  3.2679 +        return DigraphNode::operator==(node) && _in == node._in;
  3.2680 +      }
  3.2681 +
  3.2682 +      bool operator!=(const Node& node) const {
  3.2683 +        return !(*this == node);
  3.2684 +      }
  3.2685 +
  3.2686 +      bool operator<(const Node& node) const {
  3.2687 +        return DigraphNode::operator<(node) ||
  3.2688 +          (DigraphNode::operator==(node) && _in < node._in);
  3.2689 +      }
  3.2690 +    };
  3.2691 +
  3.2692 +    class Arc {
  3.2693 +      friend class SplitNodesBase;
  3.2694 +      template <typename T> friend class ArcMapBase;
  3.2695 +    private:
  3.2696 +      typedef BiVariant<DigraphArc, DigraphNode> ArcImpl;
  3.2697 +
  3.2698 +      explicit Arc(const DigraphArc& arc) : _item(arc) {}
  3.2699 +      explicit Arc(const DigraphNode& node) : _item(node) {}
  3.2700 +
  3.2701 +      ArcImpl _item;
  3.2702 +
  3.2703 +    public:
  3.2704 +      Arc() {}
  3.2705 +      Arc(Invalid) : _item(DigraphArc(INVALID)) {}
  3.2706 +
  3.2707 +      bool operator==(const Arc& arc) const {
  3.2708 +        if (_item.firstState()) {
  3.2709 +          if (arc._item.firstState()) {
  3.2710 +            return _item.first() == arc._item.first();
  3.2711 +          }
  3.2712 +        } else {
  3.2713 +          if (arc._item.secondState()) {
  3.2714 +            return _item.second() == arc._item.second();
  3.2715 +          }
  3.2716 +        }
  3.2717 +        return false;
  3.2718 +      }
  3.2719 +
  3.2720 +      bool operator!=(const Arc& arc) const {
  3.2721 +        return !(*this == arc);
  3.2722 +      }
  3.2723 +
  3.2724 +      bool operator<(const Arc& arc) const {
  3.2725 +        if (_item.firstState()) {
  3.2726 +          if (arc._item.firstState()) {
  3.2727 +            return _item.first() < arc._item.first();
  3.2728 +          }
  3.2729 +          return false;
  3.2730 +        } else {
  3.2731 +          if (arc._item.secondState()) {
  3.2732 +            return _item.second() < arc._item.second();
  3.2733 +          }
  3.2734 +          return true;
  3.2735 +        }
  3.2736 +      }
  3.2737 +
  3.2738 +      operator DigraphArc() const { return _item.first(); }
  3.2739 +      operator DigraphNode() const { return _item.second(); }
  3.2740 +
  3.2741 +    };
  3.2742 +
  3.2743 +    void first(Node& n) const {
  3.2744 +      _digraph->first(n);
  3.2745 +      n._in = true;
  3.2746 +    }
  3.2747 +
  3.2748 +    void next(Node& n) const {
  3.2749 +      if (n._in) {
  3.2750 +        n._in = false;
  3.2751 +      } else {
  3.2752 +        n._in = true;
  3.2753 +        _digraph->next(n);
  3.2754 +      }
  3.2755 +    }
  3.2756 +
  3.2757 +    void first(Arc& e) const {
  3.2758 +      e._item.setSecond();
  3.2759 +      _digraph->first(e._item.second());
  3.2760 +      if (e._item.second() == INVALID) {
  3.2761 +        e._item.setFirst();
  3.2762 +        _digraph->first(e._item.first());
  3.2763 +      }
  3.2764 +    }
  3.2765 +
  3.2766 +    void next(Arc& e) const {
  3.2767 +      if (e._item.secondState()) {
  3.2768 +        _digraph->next(e._item.second());
  3.2769 +        if (e._item.second() == INVALID) {
  3.2770 +          e._item.setFirst();
  3.2771 +          _digraph->first(e._item.first());
  3.2772 +        }
  3.2773 +      } else {
  3.2774 +        _digraph->next(e._item.first());
  3.2775 +      }
  3.2776 +    }
  3.2777 +
  3.2778 +    void firstOut(Arc& e, const Node& n) const {
  3.2779 +      if (n._in) {
  3.2780 +        e._item.setSecond(n);
  3.2781 +      } else {
  3.2782 +        e._item.setFirst();
  3.2783 +        _digraph->firstOut(e._item.first(), n);
  3.2784 +      }
  3.2785 +    }
  3.2786 +
  3.2787 +    void nextOut(Arc& e) const {
  3.2788 +      if (!e._item.firstState()) {
  3.2789 +        e._item.setFirst(INVALID);
  3.2790 +      } else {
  3.2791 +        _digraph->nextOut(e._item.first());
  3.2792 +      }
  3.2793 +    }
  3.2794 +
  3.2795 +    void firstIn(Arc& e, const Node& n) const {
  3.2796 +      if (!n._in) {
  3.2797 +        e._item.setSecond(n);
  3.2798 +      } else {
  3.2799 +        e._item.setFirst();
  3.2800 +        _digraph->firstIn(e._item.first(), n);
  3.2801 +      }
  3.2802 +    }
  3.2803 +
  3.2804 +    void nextIn(Arc& e) const {
  3.2805 +      if (!e._item.firstState()) {
  3.2806 +        e._item.setFirst(INVALID);
  3.2807 +      } else {
  3.2808 +        _digraph->nextIn(e._item.first());
  3.2809 +      }
  3.2810 +    }
  3.2811 +
  3.2812 +    Node source(const Arc& e) const {
  3.2813 +      if (e._item.firstState()) {
  3.2814 +        return Node(_digraph->source(e._item.first()), false);
  3.2815 +      } else {
  3.2816 +        return Node(e._item.second(), true);
  3.2817 +      }
  3.2818 +    }
  3.2819 +
  3.2820 +    Node target(const Arc& e) const {
  3.2821 +      if (e._item.firstState()) {
  3.2822 +        return Node(_digraph->target(e._item.first()), true);
  3.2823 +      } else {
  3.2824 +        return Node(e._item.second(), false);
  3.2825 +      }
  3.2826 +    }
  3.2827 +
  3.2828 +    int id(const Node& n) const {
  3.2829 +      return (_digraph->id(n) << 1) | (n._in ? 0 : 1);
  3.2830 +    }
  3.2831 +    Node nodeFromId(int ix) const {
  3.2832 +      return Node(_digraph->nodeFromId(ix >> 1), (ix & 1) == 0);
  3.2833 +    }
  3.2834 +    int maxNodeId() const {
  3.2835 +      return 2 * _digraph->maxNodeId() + 1;
  3.2836 +    }
  3.2837 +
  3.2838 +    int id(const Arc& e) const {
  3.2839 +      if (e._item.firstState()) {
  3.2840 +        return _digraph->id(e._item.first()) << 1;
  3.2841 +      } else {
  3.2842 +        return (_digraph->id(e._item.second()) << 1) | 1;
  3.2843 +      }
  3.2844 +    }
  3.2845 +    Arc arcFromId(int ix) const {
  3.2846 +      if ((ix & 1) == 0) {
  3.2847 +        return Arc(_digraph->arcFromId(ix >> 1));
  3.2848 +      } else {
  3.2849 +        return Arc(_digraph->nodeFromId(ix >> 1));
  3.2850 +      }
  3.2851 +    }
  3.2852 +    int maxArcId() const {
  3.2853 +      return std::max(_digraph->maxNodeId() << 1,
  3.2854 +                      (_digraph->maxArcId() << 1) | 1);
  3.2855 +    }
  3.2856 +
  3.2857 +    static bool inNode(const Node& n) {
  3.2858 +      return n._in;
  3.2859 +    }
  3.2860 +
  3.2861 +    static bool outNode(const Node& n) {
  3.2862 +      return !n._in;
  3.2863 +    }
  3.2864 +
  3.2865 +    static bool origArc(const Arc& e) {
  3.2866 +      return e._item.firstState();
  3.2867 +    }
  3.2868 +
  3.2869 +    static bool bindArc(const Arc& e) {
  3.2870 +      return e._item.secondState();
  3.2871 +    }
  3.2872 +
  3.2873 +    static Node inNode(const DigraphNode& n) {
  3.2874 +      return Node(n, true);
  3.2875 +    }
  3.2876 +
  3.2877 +    static Node outNode(const DigraphNode& n) {
  3.2878 +      return Node(n, false);
  3.2879 +    }
  3.2880 +
  3.2881 +    static Arc arc(const DigraphNode& n) {
  3.2882 +      return Arc(n);
  3.2883 +    }
  3.2884 +
  3.2885 +    static Arc arc(const DigraphArc& e) {
  3.2886 +      return Arc(e);
  3.2887 +    }
  3.2888 +
  3.2889 +    typedef True NodeNumTag;
  3.2890 +
  3.2891 +    int nodeNum() const {
  3.2892 +      return  2 * countNodes(*_digraph);
  3.2893 +    }
  3.2894 +
  3.2895 +    typedef True EdgeNumTag;
  3.2896 +    int arcNum() const {
  3.2897 +      return countArcs(*_digraph) + countNodes(*_digraph);
  3.2898 +    }
  3.2899 +
  3.2900 +    typedef True FindEdgeTag;
  3.2901 +    Arc findArc(const Node& u, const Node& v,
  3.2902 +                const Arc& prev = INVALID) const {
  3.2903 +      if (inNode(u)) {
  3.2904 +        if (outNode(v)) {
  3.2905 +          if (static_cast<const DigraphNode&>(u) ==
  3.2906 +              static_cast<const DigraphNode&>(v) && prev == INVALID) {
  3.2907 +            return Arc(u);
  3.2908 +          }
  3.2909 +        }
  3.2910 +      } else {
  3.2911 +        if (inNode(v)) {
  3.2912 +          return Arc(::lemon::findArc(*_digraph, u, v, prev));
  3.2913 +        }
  3.2914 +      }
  3.2915 +      return INVALID;
  3.2916 +    }
  3.2917 +
  3.2918 +  private:
  3.2919 +
  3.2920 +    template <typename _Value>
  3.2921 +    class NodeMapBase
  3.2922 +      : public MapTraits<typename Parent::template NodeMap<_Value> > {
  3.2923 +      typedef typename Parent::template NodeMap<_Value> NodeImpl;
  3.2924 +    public:
  3.2925 +      typedef Node Key;
  3.2926 +      typedef _Value Value;
  3.2927 +
  3.2928 +      NodeMapBase(const Adaptor& adaptor)
  3.2929 +        : _in_map(*adaptor._digraph), _out_map(*adaptor._digraph) {}
  3.2930 +      NodeMapBase(const Adaptor& adaptor, const Value& value)
  3.2931 +        : _in_map(*adaptor._digraph, value),
  3.2932 +          _out_map(*adaptor._digraph, value) {}
  3.2933 +
  3.2934 +      void set(const Node& key, const Value& val) {
  3.2935 +        if (Adaptor::inNode(key)) { _in_map.set(key, val); }
  3.2936 +        else {_out_map.set(key, val); }
  3.2937 +      }
  3.2938 +
  3.2939 +      typename MapTraits<NodeImpl>::ReturnValue
  3.2940 +      operator[](const Node& key) {
  3.2941 +        if (Adaptor::inNode(key)) { return _in_map[key]; }
  3.2942 +        else { return _out_map[key]; }
  3.2943 +      }
  3.2944 +
  3.2945 +      typename MapTraits<NodeImpl>::ConstReturnValue
  3.2946 +      operator[](const Node& key) const {
  3.2947 +        if (Adaptor::inNode(key)) { return _in_map[key]; }
  3.2948 +        else { return _out_map[key]; }
  3.2949 +      }
  3.2950 +
  3.2951 +    private:
  3.2952 +      NodeImpl _in_map, _out_map;
  3.2953 +    };
  3.2954 +
  3.2955 +    template <typename _Value>
  3.2956 +    class ArcMapBase
  3.2957 +      : public MapTraits<typename Parent::template ArcMap<_Value> > {
  3.2958 +      typedef typename Parent::template ArcMap<_Value> ArcImpl;
  3.2959 +      typedef typename Parent::template NodeMap<_Value> NodeImpl;
  3.2960 +    public:
  3.2961 +      typedef Arc Key;
  3.2962 +      typedef _Value Value;
  3.2963 +
  3.2964 +      ArcMapBase(const Adaptor& adaptor)
  3.2965 +        : _arc_map(*adaptor._digraph), _node_map(*adaptor._digraph) {}
  3.2966 +      ArcMapBase(const Adaptor& adaptor, const Value& value)
  3.2967 +        : _arc_map(*adaptor._digraph, value),
  3.2968 +          _node_map(*adaptor._digraph, value) {}
  3.2969 +
  3.2970 +      void set(const Arc& key, const Value& val) {
  3.2971 +        if (Adaptor::origArc(key)) {
  3.2972 +          _arc_map.set(key._item.first(), val);
  3.2973 +        } else {
  3.2974 +          _node_map.set(key._item.second(), val);
  3.2975 +        }
  3.2976 +      }
  3.2977 +
  3.2978 +      typename MapTraits<ArcImpl>::ReturnValue
  3.2979 +      operator[](const Arc& key) {
  3.2980 +        if (Adaptor::origArc(key)) {
  3.2981 +          return _arc_map[key._item.first()];
  3.2982 +        } else {
  3.2983 +          return _node_map[key._item.second()];
  3.2984 +        }
  3.2985 +      }
  3.2986 +
  3.2987 +      typename MapTraits<ArcImpl>::ConstReturnValue
  3.2988 +      operator[](const Arc& key) const {
  3.2989 +        if (Adaptor::origArc(key)) {
  3.2990 +          return _arc_map[key._item.first()];
  3.2991 +        } else {
  3.2992 +          return _node_map[key._item.second()];
  3.2993 +        }
  3.2994 +      }
  3.2995 +
  3.2996 +    private:
  3.2997 +      ArcImpl _arc_map;
  3.2998 +      NodeImpl _node_map;
  3.2999 +    };
  3.3000 +
  3.3001 +  public:
  3.3002 +
  3.3003 +    template <typename _Value>
  3.3004 +    class NodeMap
  3.3005 +      : public SubMapExtender<Adaptor, NodeMapBase<_Value> >
  3.3006 +    {
  3.3007 +    public:
  3.3008 +      typedef _Value Value;
  3.3009 +      typedef SubMapExtender<Adaptor, NodeMapBase<Value> > Parent;
  3.3010 +
  3.3011 +      NodeMap(const Adaptor& adaptor)
  3.3012 +        : Parent(adaptor) {}
  3.3013 +
  3.3014 +      NodeMap(const Adaptor& adaptor, const Value& value)
  3.3015 +        : Parent(adaptor, value) {}
  3.3016 +
  3.3017 +    private:
  3.3018 +      NodeMap& operator=(const NodeMap& cmap) {
  3.3019 +        return operator=<NodeMap>(cmap);
  3.3020 +      }
  3.3021 +
  3.3022 +      template <typename CMap>
  3.3023 +      NodeMap& operator=(const CMap& cmap) {
  3.3024 +        Parent::operator=(cmap);
  3.3025 +        return *this;
  3.3026 +      }
  3.3027 +    };
  3.3028 +
  3.3029 +    template <typename _Value>
  3.3030 +    class ArcMap
  3.3031 +      : public SubMapExtender<Adaptor, ArcMapBase<_Value> >
  3.3032 +    {
  3.3033 +    public:
  3.3034 +      typedef _Value Value;
  3.3035 +      typedef SubMapExtender<Adaptor, ArcMapBase<Value> > Parent;
  3.3036 +
  3.3037 +      ArcMap(const Adaptor& adaptor)
  3.3038 +        : Parent(adaptor) {}
  3.3039 +
  3.3040 +      ArcMap(const Adaptor& adaptor, const Value& value)
  3.3041 +        : Parent(adaptor, value) {}
  3.3042 +
  3.3043 +    private:
  3.3044 +      ArcMap& operator=(const ArcMap& cmap) {
  3.3045 +        return operator=<ArcMap>(cmap);
  3.3046 +      }
  3.3047 +
  3.3048 +      template <typename CMap>
  3.3049 +      ArcMap& operator=(const CMap& cmap) {
  3.3050 +        Parent::operator=(cmap);
  3.3051 +        return *this;
  3.3052 +      }
  3.3053 +    };
  3.3054 +
  3.3055 +  protected:
  3.3056 +
  3.3057 +    SplitNodesBase() : _digraph(0) {}
  3.3058 +
  3.3059 +    Digraph* _digraph;
  3.3060 +
  3.3061 +    void setDigraph(Digraph& digraph) {
  3.3062 +      _digraph = &digraph;
  3.3063 +    }
  3.3064 +
  3.3065 +  };
  3.3066 +
  3.3067 +  /// \ingroup graph_adaptors
  3.3068 +  ///
  3.3069 +  /// \brief Split the nodes of a directed graph
  3.3070 +  ///
  3.3071 +  /// The SplitNodes adaptor splits each node into an in-node and an
  3.3072 +  /// out-node. Formaly, the adaptor replaces each \f$ u \f$ node in
  3.3073 +  /// the digraph with two nodes(namely node \f$ u_{in} \f$ and node
  3.3074 +  /// \f$ u_{out} \f$). If there is a \f$ (v, u) \f$ arc in the
  3.3075 +  /// original digraph the new target of the arc will be \f$ u_{in} \f$
  3.3076 +  /// and similarly the source of the original \f$ (u, v) \f$ arc
  3.3077 +  /// will be \f$ u_{out} \f$.  The adaptor will add for each node in
  3.3078 +  /// the original digraph an additional arc which connects
  3.3079 +  /// \f$ (u_{in}, u_{out}) \f$.
  3.3080 +  ///
  3.3081 +  /// The aim of this class is to run algorithm with node costs if the
  3.3082 +  /// algorithm can use directly just arc costs. In this case we should use
  3.3083 +  /// a \c SplitNodes and set the node cost of the graph to the
  3.3084 +  /// bind arc in the adapted graph.
  3.3085 +  ///
  3.3086 +  /// \tparam _Digraph It must be conform to the \ref concepts::Digraph
  3.3087 +  /// "Digraph concept". The type can be specified to be const.
  3.3088 +  template <typename _Digraph>
  3.3089 +  class SplitNodes
  3.3090 +    : public DigraphAdaptorExtender<SplitNodesBase<_Digraph> > {
  3.3091 +  public:
  3.3092 +    typedef _Digraph Digraph;
  3.3093 +    typedef DigraphAdaptorExtender<SplitNodesBase<Digraph> > Parent;
  3.3094 +
  3.3095 +    typedef typename Digraph::Node DigraphNode;
  3.3096 +    typedef typename Digraph::Arc DigraphArc;
  3.3097 +
  3.3098 +    typedef typename Parent::Node Node;
  3.3099 +    typedef typename Parent::Arc Arc;
  3.3100 +
  3.3101 +    /// \brief Constructor of the adaptor.
  3.3102 +    ///
  3.3103 +    /// Constructor of the adaptor.
  3.3104 +    SplitNodes(Digraph& g) {
  3.3105 +      Parent::setDigraph(g);
  3.3106 +    }
  3.3107 +
  3.3108 +    /// \brief Returns true when the node is in-node.
  3.3109 +    ///
  3.3110 +    /// Returns true when the node is in-node.
  3.3111 +    static bool inNode(const Node& n) {
  3.3112 +      return Parent::inNode(n);
  3.3113 +    }
  3.3114 +
  3.3115 +    /// \brief Returns true when the node is out-node.
  3.3116 +    ///
  3.3117 +    /// Returns true when the node is out-node.
  3.3118 +    static bool outNode(const Node& n) {
  3.3119 +      return Parent::outNode(n);
  3.3120 +    }
  3.3121 +
  3.3122 +    /// \brief Returns true when the arc is arc in the original digraph.
  3.3123 +    ///
  3.3124 +    /// Returns true when the arc is arc in the original digraph.
  3.3125 +    static bool origArc(const Arc& a) {
  3.3126 +      return Parent::origArc(a);
  3.3127 +    }
  3.3128 +
  3.3129 +    /// \brief Returns true when the arc binds an in-node and an out-node.
  3.3130 +    ///
  3.3131 +    /// Returns true when the arc binds an in-node and an out-node.
  3.3132 +    static bool bindArc(const Arc& a) {
  3.3133 +      return Parent::bindArc(a);
  3.3134 +    }
  3.3135 +
  3.3136 +    /// \brief Gives back the in-node created from the \c node.
  3.3137 +    ///
  3.3138 +    /// Gives back the in-node created from the \c node.
  3.3139 +    static Node inNode(const DigraphNode& n) {
  3.3140 +      return Parent::inNode(n);
  3.3141 +    }
  3.3142 +
  3.3143 +    /// \brief Gives back the out-node created from the \c node.
  3.3144 +    ///
  3.3145 +    /// Gives back the out-node created from the \c node.
  3.3146 +    static Node outNode(const DigraphNode& n) {
  3.3147 +      return Parent::outNode(n);
  3.3148 +    }
  3.3149 +
  3.3150 +    /// \brief Gives back the arc binds the two part of the node.
  3.3151 +    ///
  3.3152 +    /// Gives back the arc binds the two part of the node.
  3.3153 +    static Arc arc(const DigraphNode& n) {
  3.3154 +      return Parent::arc(n);
  3.3155 +    }
  3.3156 +
  3.3157 +    /// \brief Gives back the arc of the original arc.
  3.3158 +    ///
  3.3159 +    /// Gives back the arc of the original arc.
  3.3160 +    static Arc arc(const DigraphArc& a) {
  3.3161 +      return Parent::arc(a);
  3.3162 +    }
  3.3163 +
  3.3164 +    /// \brief NodeMap combined from two original NodeMap
  3.3165 +    ///
  3.3166 +    /// This class adapt two of the original digraph NodeMap to
  3.3167 +    /// get a node map on the adapted digraph.
  3.3168 +    template <typename InNodeMap, typename OutNodeMap>
  3.3169 +    class CombinedNodeMap {
  3.3170 +    public:
  3.3171 +
  3.3172 +      typedef Node Key;
  3.3173 +      typedef typename InNodeMap::Value Value;
  3.3174 +
  3.3175 +      /// \brief Constructor
  3.3176 +      ///
  3.3177 +      /// Constructor.
  3.3178 +      CombinedNodeMap(InNodeMap& in_map, OutNodeMap& out_map)
  3.3179 +        : _in_map(in_map), _out_map(out_map) {}
  3.3180 +
  3.3181 +      /// \brief The subscript operator.
  3.3182 +      ///
  3.3183 +      /// The subscript operator.
  3.3184 +      Value& operator[](const Key& key) {
  3.3185 +        if (Parent::inNode(key)) {
  3.3186 +          return _in_map[key];
  3.3187 +        } else {
  3.3188 +          return _out_map[key];
  3.3189 +        }
  3.3190 +      }
  3.3191 +
  3.3192 +      /// \brief The const subscript operator.
  3.3193 +      ///
  3.3194 +      /// The const subscript operator.
  3.3195 +      Value operator[](const Key& key) const {
  3.3196 +        if (Parent::inNode(key)) {
  3.3197 +          return _in_map[key];
  3.3198 +        } else {
  3.3199 +          return _out_map[key];
  3.3200 +        }
  3.3201 +      }
  3.3202 +
  3.3203 +      /// \brief The setter function of the map.
  3.3204 +      ///
  3.3205 +      /// The setter function of the map.
  3.3206 +      void set(const Key& key, const Value& value) {
  3.3207 +        if (Parent::inNode(key)) {
  3.3208 +          _in_map.set(key, value);
  3.3209 +        } else {
  3.3210 +          _out_map.set(key, value);
  3.3211 +        }
  3.3212 +      }
  3.3213 +
  3.3214 +    private:
  3.3215 +
  3.3216 +      InNodeMap& _in_map;
  3.3217 +      OutNodeMap& _out_map;
  3.3218 +
  3.3219 +    };
  3.3220 +
  3.3221 +
  3.3222 +    /// \brief Just gives back a combined node map
  3.3223 +    ///
  3.3224 +    /// Just gives back a combined node map
  3.3225 +    template <typename InNodeMap, typename OutNodeMap>
  3.3226 +    static CombinedNodeMap<InNodeMap, OutNodeMap>
  3.3227 +    combinedNodeMap(InNodeMap& in_map, OutNodeMap& out_map) {
  3.3228 +      return CombinedNodeMap<InNodeMap, OutNodeMap>(in_map, out_map);
  3.3229 +    }
  3.3230 +
  3.3231 +    template <typename InNodeMap, typename OutNodeMap>
  3.3232 +    static CombinedNodeMap<const InNodeMap, OutNodeMap>
  3.3233 +    combinedNodeMap(const InNodeMap& in_map, OutNodeMap& out_map) {
  3.3234 +      return CombinedNodeMap<const InNodeMap, OutNodeMap>(in_map, out_map);
  3.3235 +    }
  3.3236 +
  3.3237 +    template <typename InNodeMap, typename OutNodeMap>
  3.3238 +    static CombinedNodeMap<InNodeMap, const OutNodeMap>
  3.3239 +    combinedNodeMap(InNodeMap& in_map, const OutNodeMap& out_map) {
  3.3240 +      return CombinedNodeMap<InNodeMap, const OutNodeMap>(in_map, out_map);
  3.3241 +    }
  3.3242 +
  3.3243 +    template <typename InNodeMap, typename OutNodeMap>
  3.3244 +    static CombinedNodeMap<const InNodeMap, const OutNodeMap>
  3.3245 +    combinedNodeMap(const InNodeMap& in_map, const OutNodeMap& out_map) {
  3.3246 +      return CombinedNodeMap<const InNodeMap,
  3.3247 +        const OutNodeMap>(in_map, out_map);
  3.3248 +    }
  3.3249 +
  3.3250 +    /// \brief ArcMap combined from an original ArcMap and a NodeMap
  3.3251 +    ///
  3.3252 +    /// This class adapt an original ArcMap and a NodeMap to get an
  3.3253 +    /// arc map on the adapted digraph
  3.3254 +    template <typename DigraphArcMap, typename DigraphNodeMap>
  3.3255 +    class CombinedArcMap {
  3.3256 +    public:
  3.3257 +
  3.3258 +      typedef Arc Key;
  3.3259 +      typedef typename DigraphArcMap::Value Value;
  3.3260 +
  3.3261 +      /// \brief Constructor
  3.3262 +      ///
  3.3263 +      /// Constructor.
  3.3264 +      CombinedArcMap(DigraphArcMap& arc_map, DigraphNodeMap& node_map)
  3.3265 +        : _arc_map(arc_map), _node_map(node_map) {}
  3.3266 +
  3.3267 +      /// \brief The subscript operator.
  3.3268 +      ///
  3.3269 +      /// The subscript operator.
  3.3270 +      void set(const Arc& arc, const Value& val) {
  3.3271 +        if (Parent::origArc(arc)) {
  3.3272 +          _arc_map.set(arc, val);
  3.3273 +        } else {
  3.3274 +          _node_map.set(arc, val);
  3.3275 +        }
  3.3276 +      }
  3.3277 +
  3.3278 +      /// \brief The const subscript operator.
  3.3279 +      ///
  3.3280 +      /// The const subscript operator.
  3.3281 +      Value operator[](const Key& arc) const {
  3.3282 +        if (Parent::origArc(arc)) {
  3.3283 +          return _arc_map[arc];
  3.3284 +        } else {
  3.3285 +          return _node_map[arc];
  3.3286 +        }
  3.3287 +      }
  3.3288 +
  3.3289 +      /// \brief The const subscript operator.
  3.3290 +      ///
  3.3291 +      /// The const subscript operator.
  3.3292 +      Value& operator[](const Key& arc) {
  3.3293 +        if (Parent::origArc(arc)) {
  3.3294 +          return _arc_map[arc];
  3.3295 +        } else {
  3.3296 +          return _node_map[arc];
  3.3297 +        }
  3.3298 +      }
  3.3299 +
  3.3300 +    private:
  3.3301 +      DigraphArcMap& _arc_map;
  3.3302 +      DigraphNodeMap& _node_map;
  3.3303 +    };
  3.3304 +
  3.3305 +    /// \brief Just gives back a combined arc map
  3.3306 +    ///
  3.3307 +    /// Just gives back a combined arc map
  3.3308 +    template <typename DigraphArcMap, typename DigraphNodeMap>
  3.3309 +    static CombinedArcMap<DigraphArcMap, DigraphNodeMap>
  3.3310 +    combinedArcMap(DigraphArcMap& arc_map, DigraphNodeMap& node_map) {
  3.3311 +      return CombinedArcMap<DigraphArcMap, DigraphNodeMap>(arc_map, node_map);
  3.3312 +    }
  3.3313 +
  3.3314 +    template <typename DigraphArcMap, typename DigraphNodeMap>
  3.3315 +    static CombinedArcMap<const DigraphArcMap, DigraphNodeMap>
  3.3316 +    combinedArcMap(const DigraphArcMap& arc_map, DigraphNodeMap& node_map) {
  3.3317 +      return CombinedArcMap<const DigraphArcMap,
  3.3318 +        DigraphNodeMap>(arc_map, node_map);
  3.3319 +    }
  3.3320 +
  3.3321 +    template <typename DigraphArcMap, typename DigraphNodeMap>
  3.3322 +    static CombinedArcMap<DigraphArcMap, const DigraphNodeMap>
  3.3323 +    combinedArcMap(DigraphArcMap& arc_map, const DigraphNodeMap& node_map) {
  3.3324 +      return CombinedArcMap<DigraphArcMap,
  3.3325 +        const DigraphNodeMap>(arc_map, node_map);
  3.3326 +    }
  3.3327 +
  3.3328 +    template <typename DigraphArcMap, typename DigraphNodeMap>
  3.3329 +    static CombinedArcMap<const DigraphArcMap, const DigraphNodeMap>
  3.3330 +    combinedArcMap(const DigraphArcMap& arc_map,
  3.3331 +                   const DigraphNodeMap& node_map) {
  3.3332 +      return CombinedArcMap<const DigraphArcMap,
  3.3333 +        const DigraphNodeMap>(arc_map, node_map);
  3.3334 +    }
  3.3335 +
  3.3336 +  };
  3.3337 +
  3.3338 +  /// \brief Just gives back a node splitter
  3.3339 +  ///
  3.3340 +  /// Just gives back a node splitter
  3.3341 +  template<typename Digraph>
  3.3342 +  SplitNodes<Digraph>
  3.3343 +  splitNodes(const Digraph& digraph) {
  3.3344 +    return SplitNodes<Digraph>(digraph);
  3.3345 +  }
  3.3346 +
  3.3347 +
  3.3348 +} //namespace lemon
  3.3349 +
  3.3350 +#endif //LEMON_ADAPTORS_H
     4.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     4.2 +++ b/lemon/bits/graph_adaptor_extender.h	Tue Dec 02 15:33:22 2008 +0000
     4.3 @@ -0,0 +1,403 @@
     4.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     4.5 + *
     4.6 + * This file is a part of LEMON, a generic C++ optimization library.
     4.7 + *
     4.8 + * Copyright (C) 2003-2008
     4.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    4.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    4.11 + *
    4.12 + * Permission to use, modify and distribute this software is granted
    4.13 + * provided that this copyright notice appears in all copies. For
    4.14 + * precise terms see the accompanying LICENSE file.
    4.15 + *
    4.16 + * This software is provided "AS IS" with no warranty of any kind,
    4.17 + * express or implied, and with no claim as to its suitability for any
    4.18 + * purpose.
    4.19 + *
    4.20 + */
    4.21 +
    4.22 +#ifndef LEMON_BITS_GRAPH_ADAPTOR_EXTENDER_H
    4.23 +#define LEMON_BITS_GRAPH_ADAPTOR_EXTENDER_H
    4.24 +
    4.25 +#include <lemon/core.h>
    4.26 +#include <lemon/error.h>
    4.27 +
    4.28 +#include <lemon/bits/default_map.h>
    4.29 +
    4.30 +namespace lemon {
    4.31 +
    4.32 +  template <typename _Digraph>
    4.33 +  class DigraphAdaptorExtender : public _Digraph {
    4.34 +  public:
    4.35 +
    4.36 +    typedef _Digraph Parent;
    4.37 +    typedef _Digraph Digraph;
    4.38 +    typedef DigraphAdaptorExtender Adaptor;
    4.39 +
    4.40 +    // Base extensions
    4.41 +
    4.42 +    typedef typename Parent::Node Node;
    4.43 +    typedef typename Parent::Arc Arc;
    4.44 +
    4.45 +    int maxId(Node) const {
    4.46 +      return Parent::maxNodeId();
    4.47 +    }
    4.48 +
    4.49 +    int maxId(Arc) const {
    4.50 +      return Parent::maxArcId();
    4.51 +    }
    4.52 +
    4.53 +    Node fromId(int id, Node) const {
    4.54 +      return Parent::nodeFromId(id);
    4.55 +    }
    4.56 +
    4.57 +    Arc fromId(int id, Arc) const {
    4.58 +      return Parent::arcFromId(id);
    4.59 +    }
    4.60 +
    4.61 +    Node oppositeNode(const Node &n, const Arc &e) const {
    4.62 +      if (n == Parent::source(e))
    4.63 +        return Parent::target(e);
    4.64 +      else if(n==Parent::target(e))
    4.65 +        return Parent::source(e);
    4.66 +      else
    4.67 +        return INVALID;
    4.68 +    }
    4.69 +
    4.70 +    class NodeIt : public Node {
    4.71 +      const Adaptor* _adaptor;
    4.72 +    public:
    4.73 +
    4.74 +      NodeIt() {}
    4.75 +
    4.76 +      NodeIt(Invalid i) : Node(i) { }
    4.77 +
    4.78 +      explicit NodeIt(const Adaptor& adaptor) : _adaptor(&adaptor) {
    4.79 +        _adaptor->first(static_cast<Node&>(*this));
    4.80 +      }
    4.81 +
    4.82 +      NodeIt(const Adaptor& adaptor, const Node& node)
    4.83 +        : Node(node), _adaptor(&adaptor) {}
    4.84 +
    4.85 +      NodeIt& operator++() {
    4.86 +        _adaptor->next(*this);
    4.87 +        return *this;
    4.88 +      }
    4.89 +
    4.90 +    };
    4.91 +
    4.92 +
    4.93 +    class ArcIt : public Arc {
    4.94 +      const Adaptor* _adaptor;
    4.95 +    public:
    4.96 +
    4.97 +      ArcIt() { }
    4.98 +
    4.99 +      ArcIt(Invalid i) : Arc(i) { }
   4.100 +
   4.101 +      explicit ArcIt(const Adaptor& adaptor) : _adaptor(&adaptor) {
   4.102 +        _adaptor->first(static_cast<Arc&>(*this));
   4.103 +      }
   4.104 +
   4.105 +      ArcIt(const Adaptor& adaptor, const Arc& e) :
   4.106 +        Arc(e), _adaptor(&adaptor) { }
   4.107 +
   4.108 +      ArcIt& operator++() {
   4.109 +        _adaptor->next(*this);
   4.110 +        return *this;
   4.111 +      }
   4.112 +
   4.113 +    };
   4.114 +
   4.115 +
   4.116 +    class OutArcIt : public Arc {
   4.117 +      const Adaptor* _adaptor;
   4.118 +    public:
   4.119 +
   4.120 +      OutArcIt() { }
   4.121 +
   4.122 +      OutArcIt(Invalid i) : Arc(i) { }
   4.123 +
   4.124 +      OutArcIt(const Adaptor& adaptor, const Node& node)
   4.125 +        : _adaptor(&adaptor) {
   4.126 +        _adaptor->firstOut(*this, node);
   4.127 +      }
   4.128 +
   4.129 +      OutArcIt(const Adaptor& adaptor, const Arc& arc)
   4.130 +        : Arc(arc), _adaptor(&adaptor) {}
   4.131 +
   4.132 +      OutArcIt& operator++() {
   4.133 +        _adaptor->nextOut(*this);
   4.134 +        return *this;
   4.135 +      }
   4.136 +
   4.137 +    };
   4.138 +
   4.139 +
   4.140 +    class InArcIt : public Arc {
   4.141 +      const Adaptor* _adaptor;
   4.142 +    public:
   4.143 +
   4.144 +      InArcIt() { }
   4.145 +
   4.146 +      InArcIt(Invalid i) : Arc(i) { }
   4.147 +
   4.148 +      InArcIt(const Adaptor& adaptor, const Node& node)
   4.149 +        : _adaptor(&adaptor) {
   4.150 +        _adaptor->firstIn(*this, node);
   4.151 +      }
   4.152 +
   4.153 +      InArcIt(const Adaptor& adaptor, const Arc& arc) :
   4.154 +        Arc(arc), _adaptor(&adaptor) {}
   4.155 +
   4.156 +      InArcIt& operator++() {
   4.157 +        _adaptor->nextIn(*this);
   4.158 +        return *this;
   4.159 +      }
   4.160 +
   4.161 +    };
   4.162 +
   4.163 +    Node baseNode(const OutArcIt &e) const {
   4.164 +      return Parent::source(e);
   4.165 +    }
   4.166 +    Node runningNode(const OutArcIt &e) const {
   4.167 +      return Parent::target(e);
   4.168 +    }
   4.169 +
   4.170 +    Node baseNode(const InArcIt &e) const {
   4.171 +      return Parent::target(e);
   4.172 +    }
   4.173 +    Node runningNode(const InArcIt &e) const {
   4.174 +      return Parent::source(e);
   4.175 +    }
   4.176 +
   4.177 +  };
   4.178 +
   4.179 +
   4.180 +  /// \ingroup digraphbits
   4.181 +  ///
   4.182 +  /// \brief Extender for the GraphAdaptors
   4.183 +  template <typename _Graph>
   4.184 +  class GraphAdaptorExtender : public _Graph {
   4.185 +  public:
   4.186 +
   4.187 +    typedef _Graph Parent;
   4.188 +    typedef _Graph Graph;
   4.189 +    typedef GraphAdaptorExtender Adaptor;
   4.190 +
   4.191 +    typedef typename Parent::Node Node;
   4.192 +    typedef typename Parent::Arc Arc;
   4.193 +    typedef typename Parent::Edge Edge;
   4.194 +
   4.195 +    // Graph extension
   4.196 +
   4.197 +    int maxId(Node) const {
   4.198 +      return Parent::maxNodeId();
   4.199 +    }
   4.200 +
   4.201 +    int maxId(Arc) const {
   4.202 +      return Parent::maxArcId();
   4.203 +    }
   4.204 +
   4.205 +    int maxId(Edge) const {
   4.206 +      return Parent::maxEdgeId();
   4.207 +    }
   4.208 +
   4.209 +    Node fromId(int id, Node) const {
   4.210 +      return Parent::nodeFromId(id);
   4.211 +    }
   4.212 +
   4.213 +    Arc fromId(int id, Arc) const {
   4.214 +      return Parent::arcFromId(id);
   4.215 +    }
   4.216 +
   4.217 +    Edge fromId(int id, Edge) const {
   4.218 +      return Parent::edgeFromId(id);
   4.219 +    }
   4.220 +
   4.221 +    Node oppositeNode(const Node &n, const Edge &e) const {
   4.222 +      if( n == Parent::u(e))
   4.223 +        return Parent::v(e);
   4.224 +      else if( n == Parent::v(e))
   4.225 +        return Parent::u(e);
   4.226 +      else
   4.227 +        return INVALID;
   4.228 +    }
   4.229 +
   4.230 +    Arc oppositeArc(const Arc &a) const {
   4.231 +      return Parent::direct(a, !Parent::direction(a));
   4.232 +    }
   4.233 +
   4.234 +    using Parent::direct;
   4.235 +    Arc direct(const Edge &e, const Node &s) const {
   4.236 +      return Parent::direct(e, Parent::u(e) == s);
   4.237 +    }
   4.238 +
   4.239 +
   4.240 +    class NodeIt : public Node {
   4.241 +      const Adaptor* _adaptor;
   4.242 +    public:
   4.243 +
   4.244 +      NodeIt() {}
   4.245 +
   4.246 +      NodeIt(Invalid i) : Node(i) { }
   4.247 +
   4.248 +      explicit NodeIt(const Adaptor& adaptor) : _adaptor(&adaptor) {
   4.249 +        _adaptor->first(static_cast<Node&>(*this));
   4.250 +      }
   4.251 +
   4.252 +      NodeIt(const Adaptor& adaptor, const Node& node)
   4.253 +        : Node(node), _adaptor(&adaptor) {}
   4.254 +
   4.255 +      NodeIt& operator++() {
   4.256 +        _adaptor->next(*this);
   4.257 +        return *this;
   4.258 +      }
   4.259 +
   4.260 +    };
   4.261 +
   4.262 +
   4.263 +    class ArcIt : public Arc {
   4.264 +      const Adaptor* _adaptor;
   4.265 +    public:
   4.266 +
   4.267 +      ArcIt() { }
   4.268 +
   4.269 +      ArcIt(Invalid i) : Arc(i) { }
   4.270 +
   4.271 +      explicit ArcIt(const Adaptor& adaptor) : _adaptor(&adaptor) {
   4.272 +        _adaptor->first(static_cast<Arc&>(*this));
   4.273 +      }
   4.274 +
   4.275 +      ArcIt(const Adaptor& adaptor, const Arc& e) :
   4.276 +        Arc(e), _adaptor(&adaptor) { }
   4.277 +
   4.278 +      ArcIt& operator++() {
   4.279 +        _adaptor->next(*this);
   4.280 +        return *this;
   4.281 +      }
   4.282 +
   4.283 +    };
   4.284 +
   4.285 +
   4.286 +    class OutArcIt : public Arc {
   4.287 +      const Adaptor* _adaptor;
   4.288 +    public:
   4.289 +
   4.290 +      OutArcIt() { }
   4.291 +
   4.292 +      OutArcIt(Invalid i) : Arc(i) { }
   4.293 +
   4.294 +      OutArcIt(const Adaptor& adaptor, const Node& node)
   4.295 +        : _adaptor(&adaptor) {
   4.296 +        _adaptor->firstOut(*this, node);
   4.297 +      }
   4.298 +
   4.299 +      OutArcIt(const Adaptor& adaptor, const Arc& arc)
   4.300 +        : Arc(arc), _adaptor(&adaptor) {}
   4.301 +
   4.302 +      OutArcIt& operator++() {
   4.303 +        _adaptor->nextOut(*this);
   4.304 +        return *this;
   4.305 +      }
   4.306 +
   4.307 +    };
   4.308 +
   4.309 +
   4.310 +    class InArcIt : public Arc {
   4.311 +      const Adaptor* _adaptor;
   4.312 +    public:
   4.313 +
   4.314 +      InArcIt() { }
   4.315 +
   4.316 +      InArcIt(Invalid i) : Arc(i) { }
   4.317 +
   4.318 +      InArcIt(const Adaptor& adaptor, const Node& node)
   4.319 +        : _adaptor(&adaptor) {
   4.320 +        _adaptor->firstIn(*this, node);
   4.321 +      }
   4.322 +
   4.323 +      InArcIt(const Adaptor& adaptor, const Arc& arc) :
   4.324 +        Arc(arc), _adaptor(&adaptor) {}
   4.325 +
   4.326 +      InArcIt& operator++() {
   4.327 +        _adaptor->nextIn(*this);
   4.328 +        return *this;
   4.329 +      }
   4.330 +
   4.331 +    };
   4.332 +
   4.333 +    class EdgeIt : public Parent::Edge {
   4.334 +      const Adaptor* _adaptor;
   4.335 +    public:
   4.336 +
   4.337 +      EdgeIt() { }
   4.338 +
   4.339 +      EdgeIt(Invalid i) : Edge(i) { }
   4.340 +
   4.341 +      explicit EdgeIt(const Adaptor& adaptor) : _adaptor(&adaptor) {
   4.342 +        _adaptor->first(static_cast<Edge&>(*this));
   4.343 +      }
   4.344 +
   4.345 +      EdgeIt(const Adaptor& adaptor, const Edge& e) :
   4.346 +        Edge(e), _adaptor(&adaptor) { }
   4.347 +
   4.348 +      EdgeIt& operator++() {
   4.349 +        _adaptor->next(*this);
   4.350 +        return *this;
   4.351 +      }
   4.352 +
   4.353 +    };
   4.354 +
   4.355 +    class IncEdgeIt : public Edge {
   4.356 +      friend class GraphAdaptorExtender;
   4.357 +      const Adaptor* _adaptor;
   4.358 +      bool direction;
   4.359 +    public:
   4.360 +
   4.361 +      IncEdgeIt() { }
   4.362 +
   4.363 +      IncEdgeIt(Invalid i) : Edge(i), direction(false) { }
   4.364 +
   4.365 +      IncEdgeIt(const Adaptor& adaptor, const Node &n) : _adaptor(&adaptor) {
   4.366 +        _adaptor->firstInc(static_cast<Edge&>(*this), direction, n);
   4.367 +      }
   4.368 +
   4.369 +      IncEdgeIt(const Adaptor& adaptor, const Edge &e, const Node &n)
   4.370 +        : _adaptor(&adaptor), Edge(e) {
   4.371 +        direction = (_adaptor->u(e) == n);
   4.372 +      }
   4.373 +
   4.374 +      IncEdgeIt& operator++() {
   4.375 +        _adaptor->nextInc(*this, direction);
   4.376 +        return *this;
   4.377 +      }
   4.378 +    };
   4.379 +
   4.380 +    Node baseNode(const OutArcIt &a) const {
   4.381 +      return Parent::source(a);
   4.382 +    }
   4.383 +    Node runningNode(const OutArcIt &a) const {
   4.384 +      return Parent::target(a);
   4.385 +    }
   4.386 +
   4.387 +    Node baseNode(const InArcIt &a) const {
   4.388 +      return Parent::target(a);
   4.389 +    }
   4.390 +    Node runningNode(const InArcIt &a) const {
   4.391 +      return Parent::source(a);
   4.392 +    }
   4.393 +
   4.394 +    Node baseNode(const IncEdgeIt &e) const {
   4.395 +      return e.direction ? Parent::u(e) : Parent::v(e);
   4.396 +    }
   4.397 +    Node runningNode(const IncEdgeIt &e) const {
   4.398 +      return e.direction ? Parent::v(e) : Parent::u(e);
   4.399 +    }
   4.400 +
   4.401 +  };
   4.402 +
   4.403 +}
   4.404 +
   4.405 +
   4.406 +#endif
     5.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     5.2 +++ b/lemon/bits/variant.h	Tue Dec 02 15:33:22 2008 +0000
     5.3 @@ -0,0 +1,494 @@
     5.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     5.5 + *
     5.6 + * This file is a part of LEMON, a generic C++ optimization library.
     5.7 + *
     5.8 + * Copyright (C) 2003-2008
     5.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    5.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    5.11 + *
    5.12 + * Permission to use, modify and distribute this software is granted
    5.13 + * provided that this copyright notice appears in all copies. For
    5.14 + * precise terms see the accompanying LICENSE file.
    5.15 + *
    5.16 + * This software is provided "AS IS" with no warranty of any kind,
    5.17 + * express or implied, and with no claim as to its suitability for any
    5.18 + * purpose.
    5.19 + *
    5.20 + */
    5.21 +
    5.22 +#ifndef LEMON_BITS_VARIANT_H
    5.23 +#define LEMON_BITS_VARIANT_H
    5.24 +
    5.25 +#include <lemon/assert.h>
    5.26 +
    5.27 +/// \file
    5.28 +/// \brief Variant types
    5.29 +
    5.30 +namespace lemon {
    5.31 +
    5.32 +  namespace _variant_bits {
    5.33 +
    5.34 +    template <int left, int right>
    5.35 +    struct CTMax {
    5.36 +      static const int value = left < right ? right : left;
    5.37 +    };
    5.38 +
    5.39 +  }
    5.40 +
    5.41 +
    5.42 +  /// \brief Simple Variant type for two types
    5.43 +  ///
    5.44 +  /// Simple Variant type for two types. The Variant type is a type
    5.45 +  /// safe union. The C++ has strong limitations for using unions, by
    5.46 +  /// example we can not store type with non default constructor or
    5.47 +  /// destructor in an union. This class always knowns the current
    5.48 +  /// state of the variant and it cares for the proper construction
    5.49 +  /// and destruction.
    5.50 +  template <typename _First, typename _Second>
    5.51 +  class BiVariant {
    5.52 +  public:
    5.53 +
    5.54 +    /// \brief The \c First type.
    5.55 +    typedef _First First;
    5.56 +    /// \brief The \c Second type.
    5.57 +    typedef _Second Second;
    5.58 +
    5.59 +    /// \brief Constructor
    5.60 +    ///
    5.61 +    /// This constructor initalizes to the default value of the \c First
    5.62 +    /// type.
    5.63 +    BiVariant() {
    5.64 +      flag = true;
    5.65 +      new(reinterpret_cast<First*>(data)) First();
    5.66 +    }
    5.67 +
    5.68 +    /// \brief Constructor
    5.69 +    ///
    5.70 +    /// This constructor initalizes to the given value of the \c First
    5.71 +    /// type.
    5.72 +    BiVariant(const First& f) {
    5.73 +      flag = true;
    5.74 +      new(reinterpret_cast<First*>(data)) First(f);
    5.75 +    }
    5.76 +
    5.77 +    /// \brief Constructor
    5.78 +    ///
    5.79 +    /// This constructor initalizes to the given value of the \c
    5.80 +    /// Second type.
    5.81 +    BiVariant(const Second& s) {
    5.82 +      flag = false;
    5.83 +      new(reinterpret_cast<Second*>(data)) Second(s);
    5.84 +    }
    5.85 +
    5.86 +    /// \brief Copy constructor
    5.87 +    ///
    5.88 +    /// Copy constructor
    5.89 +    BiVariant(const BiVariant& bivariant) {
    5.90 +      flag = bivariant.flag;
    5.91 +      if (flag) {
    5.92 +        new(reinterpret_cast<First*>(data)) First(bivariant.first());
    5.93 +      } else {
    5.94 +        new(reinterpret_cast<Second*>(data)) Second(bivariant.second());
    5.95 +      }
    5.96 +    }
    5.97 +
    5.98 +    /// \brief Destrcutor
    5.99 +    ///
   5.100 +    /// Destructor
   5.101 +    ~BiVariant() {
   5.102 +      destroy();
   5.103 +    }
   5.104 +
   5.105 +    /// \brief Set to the default value of the \c First type.
   5.106 +    ///
   5.107 +    /// This function sets the variant to the default value of the \c
   5.108 +    /// First type.
   5.109 +    BiVariant& setFirst() {
   5.110 +      destroy();
   5.111 +      flag = true;
   5.112 +      new(reinterpret_cast<First*>(data)) First();
   5.113 +      return *this;
   5.114 +    }
   5.115 +
   5.116 +    /// \brief Set to the given value of the \c First type.
   5.117 +    ///
   5.118 +    /// This function sets the variant to the given value of the \c
   5.119 +    /// First type.
   5.120 +    BiVariant& setFirst(const First& f) {
   5.121 +      destroy();
   5.122 +      flag = true;
   5.123 +      new(reinterpret_cast<First*>(data)) First(f);
   5.124 +      return *this;
   5.125 +    }
   5.126 +
   5.127 +    /// \brief Set to the default value of the \c Second type.
   5.128 +    ///
   5.129 +    /// This function sets the variant to the default value of the \c
   5.130 +    /// Second type.
   5.131 +    BiVariant& setSecond() {
   5.132 +      destroy();
   5.133 +      flag = false;
   5.134 +      new(reinterpret_cast<Second*>(data)) Second();
   5.135 +      return *this;
   5.136 +    }
   5.137 +
   5.138 +    /// \brief Set to the given value of the \c Second type.
   5.139 +    ///
   5.140 +    /// This function sets the variant to the given value of the \c
   5.141 +    /// Second type.
   5.142 +    BiVariant& setSecond(const Second& s) {
   5.143 +      destroy();
   5.144 +      flag = false;
   5.145 +      new(reinterpret_cast<Second*>(data)) Second(s);
   5.146 +      return *this;
   5.147 +    }
   5.148 +
   5.149 +    /// \brief Operator form of the \c setFirst()
   5.150 +    BiVariant& operator=(const First& f) {
   5.151 +      return setFirst(f);
   5.152 +    }
   5.153 +
   5.154 +    /// \brief Operator form of the \c setSecond()
   5.155 +    BiVariant& operator=(const Second& s) {
   5.156 +      return setSecond(s);
   5.157 +    }
   5.158 +
   5.159 +    /// \brief Assign operator
   5.160 +    BiVariant& operator=(const BiVariant& bivariant) {
   5.161 +      if (this == &bivariant) return *this;
   5.162 +      destroy();
   5.163 +      flag = bivariant.flag;
   5.164 +      if (flag) {
   5.165 +        new(reinterpret_cast<First*>(data)) First(bivariant.first());
   5.166 +      } else {
   5.167 +        new(reinterpret_cast<Second*>(data)) Second(bivariant.second());
   5.168 +      }
   5.169 +      return *this;
   5.170 +    }
   5.171 +
   5.172 +    /// \brief Reference to the value
   5.173 +    ///
   5.174 +    /// Reference to the value of the \c First type.
   5.175 +    /// \pre The BiVariant should store value of \c First type.
   5.176 +    First& first() {
   5.177 +      LEMON_DEBUG(flag, "Variant wrong state");
   5.178 +      return *reinterpret_cast<First*>(data); 
   5.179 +    }
   5.180 +
   5.181 +    /// \brief Const reference to the value
   5.182 +    ///
   5.183 +    /// Const reference to the value of the \c First type.
   5.184 +    /// \pre The BiVariant should store value of \c First type.
   5.185 +    const First& first() const { 
   5.186 +      LEMON_DEBUG(flag, "Variant wrong state");
   5.187 +      return *reinterpret_cast<const First*>(data); 
   5.188 +    }
   5.189 +
   5.190 +    /// \brief Operator form of the \c first()
   5.191 +    operator First&() { return first(); }
   5.192 +    /// \brief Operator form of the const \c first()
   5.193 +    operator const First&() const { return first(); }
   5.194 +
   5.195 +    /// \brief Reference to the value
   5.196 +    ///
   5.197 +    /// Reference to the value of the \c Second type.
   5.198 +    /// \pre The BiVariant should store value of \c Second type.
   5.199 +    Second& second() { 
   5.200 +      LEMON_DEBUG(!flag, "Variant wrong state");
   5.201 +      return *reinterpret_cast<Second*>(data); 
   5.202 +    }
   5.203 +
   5.204 +    /// \brief Const reference to the value
   5.205 +    ///
   5.206 +    /// Const reference to the value of the \c Second type.
   5.207 +    /// \pre The BiVariant should store value of \c Second type.
   5.208 +    const Second& second() const { 
   5.209 +      LEMON_DEBUG(!flag, "Variant wrong state");
   5.210 +      return *reinterpret_cast<const Second*>(data); 
   5.211 +    }
   5.212 +
   5.213 +    /// \brief Operator form of the \c second()
   5.214 +    operator Second&() { return second(); }
   5.215 +    /// \brief Operator form of the const \c second()
   5.216 +    operator const Second&() const { return second(); }
   5.217 +
   5.218 +    /// \brief %True when the variant is in the first state
   5.219 +    ///
   5.220 +    /// %True when the variant stores value of the \c First type.
   5.221 +    bool firstState() const { return flag; }
   5.222 +
   5.223 +    /// \brief %True when the variant is in the second state
   5.224 +    ///
   5.225 +    /// %True when the variant stores value of the \c Second type.
   5.226 +    bool secondState() const { return !flag; }
   5.227 +
   5.228 +  private:
   5.229 +
   5.230 +    void destroy() {
   5.231 +      if (flag) {
   5.232 +        reinterpret_cast<First*>(data)->~First();
   5.233 +      } else {
   5.234 +        reinterpret_cast<Second*>(data)->~Second();
   5.235 +      }
   5.236 +    }
   5.237 +
   5.238 +    char data[_variant_bits::CTMax<sizeof(First), sizeof(Second)>::value];
   5.239 +    bool flag;
   5.240 +  };
   5.241 +
   5.242 +  namespace _variant_bits {
   5.243 +
   5.244 +    template <int _idx, typename _TypeMap>
   5.245 +    struct Memory {
   5.246 +
   5.247 +      typedef typename _TypeMap::template Map<_idx>::Type Current;
   5.248 +
   5.249 +      static void destroy(int index, char* place) {
   5.250 +        if (index == _idx) {
   5.251 +          reinterpret_cast<Current*>(place)->~Current();
   5.252 +        } else {
   5.253 +          Memory<_idx - 1, _TypeMap>::destroy(index, place);
   5.254 +        }
   5.255 +      }
   5.256 +
   5.257 +      static void copy(int index, char* to, const char* from) {
   5.258 +        if (index == _idx) {
   5.259 +          new (reinterpret_cast<Current*>(to))
   5.260 +            Current(reinterpret_cast<const Current*>(from));
   5.261 +        } else {
   5.262 +          Memory<_idx - 1, _TypeMap>::copy(index, to, from);
   5.263 +        }
   5.264 +      }
   5.265 +
   5.266 +    };
   5.267 +
   5.268 +    template <typename _TypeMap>
   5.269 +    struct Memory<-1, _TypeMap> {
   5.270 +
   5.271 +      static void destroy(int, char*) {
   5.272 +        LEMON_DEBUG(false, "Variant wrong index.");
   5.273 +      }
   5.274 +
   5.275 +      static void copy(int, char*, const char*) {
   5.276 +        LEMON_DEBUG(false, "Variant wrong index.");
   5.277 +      }
   5.278 +    };
   5.279 +
   5.280 +    template <int _idx, typename _TypeMap>
   5.281 +    struct Size {
   5.282 +      static const int value =
   5.283 +      CTMax<sizeof(typename _TypeMap::template Map<_idx>::Type),
   5.284 +            Size<_idx - 1, _TypeMap>::value>::value;
   5.285 +    };
   5.286 +
   5.287 +    template <typename _TypeMap>
   5.288 +    struct Size<0, _TypeMap> {
   5.289 +      static const int value =
   5.290 +      sizeof(typename _TypeMap::template Map<0>::Type);
   5.291 +    };
   5.292 +
   5.293 +  }
   5.294 +
   5.295 +  /// \brief Variant type
   5.296 +  ///
   5.297 +  /// Simple Variant type. The Variant type is a type safe union. The
   5.298 +  /// C++ has strong limitations for using unions, for example we
   5.299 +  /// cannot store type with non default constructor or destructor in
   5.300 +  /// a union. This class always knowns the current state of the
   5.301 +  /// variant and it cares for the proper construction and
   5.302 +  /// destruction.
   5.303 +  ///
   5.304 +  /// \param _num The number of the types which can be stored in the
   5.305 +  /// variant type.
   5.306 +  /// \param _TypeMap This class describes the types of the Variant. The
   5.307 +  /// _TypeMap::Map<index>::Type should be a valid type for each index
   5.308 +  /// in the range {0, 1, ..., _num - 1}. The \c VariantTypeMap is helper
   5.309 +  /// class to define such type mappings up to 10 types.
   5.310 +  ///
   5.311 +  /// And the usage of the class:
   5.312 +  ///\code
   5.313 +  /// typedef Variant<3, VariantTypeMap<int, std::string, double> > MyVariant;
   5.314 +  /// MyVariant var;
   5.315 +  /// var.set<0>(12);
   5.316 +  /// std::cout << var.get<0>() << std::endl;
   5.317 +  /// var.set<1>("alpha");
   5.318 +  /// std::cout << var.get<1>() << std::endl;
   5.319 +  /// var.set<2>(0.75);
   5.320 +  /// std::cout << var.get<2>() << std::endl;
   5.321 +  ///\endcode
   5.322 +  ///
   5.323 +  /// The result of course:
   5.324 +  ///\code
   5.325 +  /// 12
   5.326 +  /// alpha
   5.327 +  /// 0.75
   5.328 +  ///\endcode
   5.329 +  template <int _num, typename _TypeMap>
   5.330 +  class Variant {
   5.331 +  public:
   5.332 +
   5.333 +    static const int num = _num;
   5.334 +
   5.335 +    typedef _TypeMap TypeMap;
   5.336 +
   5.337 +    /// \brief Constructor
   5.338 +    ///
   5.339 +    /// This constructor initalizes to the default value of the \c type
   5.340 +    /// with 0 index.
   5.341 +    Variant() {
   5.342 +      flag = 0;
   5.343 +      new(reinterpret_cast<typename TypeMap::template Map<0>::Type*>(data))
   5.344 +        typename TypeMap::template Map<0>::Type();
   5.345 +    }
   5.346 +
   5.347 +
   5.348 +    /// \brief Copy constructor
   5.349 +    ///
   5.350 +    /// Copy constructor
   5.351 +    Variant(const Variant& variant) {
   5.352 +      flag = variant.flag;
   5.353 +      _variant_bits::Memory<num - 1, TypeMap>::copy(flag, data, variant.data);
   5.354 +    }
   5.355 +
   5.356 +    /// \brief Assign operator
   5.357 +    ///
   5.358 +    /// Assign operator
   5.359 +    Variant& operator=(const Variant& variant) {
   5.360 +      if (this == &variant) return *this;
   5.361 +      _variant_bits::Memory<num - 1, TypeMap>::
   5.362 +        destroy(flag, data);
   5.363 +      flag = variant.flag;
   5.364 +      _variant_bits::Memory<num - 1, TypeMap>::
   5.365 +        copy(flag, data, variant.data);
   5.366 +      return *this;
   5.367 +    }
   5.368 +
   5.369 +    /// \brief Destrcutor
   5.370 +    ///
   5.371 +    /// Destructor
   5.372 +    ~Variant() {
   5.373 +      _variant_bits::Memory<num - 1, TypeMap>::destroy(flag, data);
   5.374 +    }
   5.375 +
   5.376 +    /// \brief Set to the default value of the type with \c _idx index.
   5.377 +    ///
   5.378 +    /// This function sets the variant to the default value of the
   5.379 +    /// type with \c _idx index.
   5.380 +    template <int _idx>
   5.381 +    Variant& set() {
   5.382 +      _variant_bits::Memory<num - 1, TypeMap>::destroy(flag, data);
   5.383 +      flag = _idx;
   5.384 +      new(reinterpret_cast<typename TypeMap::template Map<_idx>::Type*>(data))
   5.385 +        typename TypeMap::template Map<_idx>::Type();
   5.386 +      return *this;
   5.387 +    }
   5.388 +
   5.389 +    /// \brief Set to the given value of the type with \c _idx index.
   5.390 +    ///
   5.391 +    /// This function sets the variant to the given value of the type
   5.392 +    /// with \c _idx index.
   5.393 +    template <int _idx>
   5.394 +    Variant& set(const typename _TypeMap::template Map<_idx>::Type& init) {
   5.395 +      _variant_bits::Memory<num - 1, TypeMap>::destroy(flag, data);
   5.396 +      flag = _idx;
   5.397 +      new(reinterpret_cast<typename TypeMap::template Map<_idx>::Type*>(data))
   5.398 +        typename TypeMap::template Map<_idx>::Type(init);
   5.399 +      return *this;
   5.400 +    }
   5.401 +
   5.402 +    /// \brief Gets the current value of the type with \c _idx index.
   5.403 +    ///
   5.404 +    /// Gets the current value of the type with \c _idx index.
   5.405 +    template <int _idx>
   5.406 +    const typename TypeMap::template Map<_idx>::Type& get() const {
   5.407 +      LEMON_DEBUG(_idx == flag, "Variant wrong index");
   5.408 +      return *reinterpret_cast<const typename TypeMap::
   5.409 +        template Map<_idx>::Type*>(data);
   5.410 +    }
   5.411 +
   5.412 +    /// \brief Gets the current value of the type with \c _idx index.
   5.413 +    ///
   5.414 +    /// Gets the current value of the type with \c _idx index.
   5.415 +    template <int _idx>
   5.416 +    typename _TypeMap::template Map<_idx>::Type& get() {
   5.417 +      LEMON_DEBUG(_idx == flag, "Variant wrong index");
   5.418 +      return *reinterpret_cast<typename TypeMap::template Map<_idx>::Type*>
   5.419 +        (data);
   5.420 +    }
   5.421 +
   5.422 +    /// \brief Returns the current state of the variant.
   5.423 +    ///
   5.424 +    /// Returns the current state of the variant.
   5.425 +    int state() const {
   5.426 +      return flag;
   5.427 +    }
   5.428 +
   5.429 +  private:
   5.430 +
   5.431 +    char data[_variant_bits::Size<num - 1, TypeMap>::value];
   5.432 +    int flag;
   5.433 +  };
   5.434 +
   5.435 +  namespace _variant_bits {
   5.436 +
   5.437 +    template <int _index, typename _List>
   5.438 +    struct Get {
   5.439 +      typedef typename Get<_index - 1, typename _List::Next>::Type Type;
   5.440 +    };
   5.441 +
   5.442 +    template <typename _List>
   5.443 +    struct Get<0, _List> {
   5.444 +      typedef typename _List::Type Type;
   5.445 +    };
   5.446 +
   5.447 +    struct List {};
   5.448 +
   5.449 +    template <typename _Type, typename _List>
   5.450 +    struct Insert {
   5.451 +      typedef _List Next;
   5.452 +      typedef _Type Type;
   5.453 +    };
   5.454 +
   5.455 +    template <int _idx, typename _T0, typename _T1, typename _T2,
   5.456 +              typename _T3, typename _T5, typename _T4, typename _T6,
   5.457 +              typename _T7, typename _T8, typename _T9>
   5.458 +    struct Mapper {
   5.459 +      typedef List L10;
   5.460 +      typedef Insert<_T9, L10> L9;
   5.461 +      typedef Insert<_T8, L9> L8;
   5.462 +      typedef Insert<_T7, L8> L7;
   5.463 +      typedef Insert<_T6, L7> L6;
   5.464 +      typedef Insert<_T5, L6> L5;
   5.465 +      typedef Insert<_T4, L5> L4;
   5.466 +      typedef Insert<_T3, L4> L3;
   5.467 +      typedef Insert<_T2, L3> L2;
   5.468 +      typedef Insert<_T1, L2> L1;
   5.469 +      typedef Insert<_T0, L1> L0;
   5.470 +      typedef typename Get<_idx, L0>::Type Type;
   5.471 +    };
   5.472 +
   5.473 +  }
   5.474 +
   5.475 +  /// \brief Helper class for Variant
   5.476 +  ///
   5.477 +  /// Helper class to define type mappings for Variant. This class
   5.478 +  /// converts the template parameters to be mappable by integer.
   5.479 +  /// \see Variant
   5.480 +  template <
   5.481 +    typename _T0,
   5.482 +    typename _T1 = void, typename _T2 = void, typename _T3 = void,
   5.483 +    typename _T5 = void, typename _T4 = void, typename _T6 = void,
   5.484 +    typename _T7 = void, typename _T8 = void, typename _T9 = void>
   5.485 +  struct VariantTypeMap {
   5.486 +    template <int _idx>
   5.487 +    struct Map {
   5.488 +      typedef typename _variant_bits::
   5.489 +      Mapper<_idx, _T0, _T1, _T2, _T3, _T4, _T5, _T6, _T7, _T8, _T9>::Type
   5.490 +      Type;
   5.491 +    };
   5.492 +  };
   5.493 +
   5.494 +}
   5.495 +
   5.496 +
   5.497 +#endif
     6.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     6.2 +++ b/lemon/connectivity.h	Tue Dec 02 15:33:22 2008 +0000
     6.3 @@ -0,0 +1,1572 @@
     6.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     6.5 + *
     6.6 + * This file is a part of LEMON, a generic C++ optimization library.
     6.7 + *
     6.8 + * Copyright (C) 2003-2008
     6.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    6.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    6.11 + *
    6.12 + * Permission to use, modify and distribute this software is granted
    6.13 + * provided that this copyright notice appears in all copies. For
    6.14 + * precise terms see the accompanying LICENSE file.
    6.15 + *
    6.16 + * This software is provided "AS IS" with no warranty of any kind,
    6.17 + * express or implied, and with no claim as to its suitability for any
    6.18 + * purpose.
    6.19 + *
    6.20 + */
    6.21 +
    6.22 +#ifndef LEMON_TOPOLOGY_H
    6.23 +#define LEMON_TOPOLOGY_H
    6.24 +
    6.25 +#include <lemon/dfs.h>
    6.26 +#include <lemon/bfs.h>
    6.27 +#include <lemon/core.h>
    6.28 +#include <lemon/maps.h>
    6.29 +#include <lemon/adaptors.h>
    6.30 +
    6.31 +#include <lemon/concepts/digraph.h>
    6.32 +#include <lemon/concepts/graph.h>
    6.33 +#include <lemon/concept_check.h>
    6.34 +
    6.35 +#include <stack>
    6.36 +#include <functional>
    6.37 +
    6.38 +/// \ingroup connectivity
    6.39 +/// \file
    6.40 +/// \brief Connectivity algorithms
    6.41 +///
    6.42 +/// Connectivity algorithms
    6.43 +
    6.44 +namespace lemon {
    6.45 +
    6.46 +  /// \ingroup connectivity
    6.47 +  ///
    6.48 +  /// \brief Check whether the given undirected graph is connected.
    6.49 +  ///
    6.50 +  /// Check whether the given undirected graph is connected.
    6.51 +  /// \param graph The undirected graph.
    6.52 +  /// \return %True when there is path between any two nodes in the graph.
    6.53 +  /// \note By definition, the empty graph is connected.
    6.54 +  template <typename Graph>
    6.55 +  bool connected(const Graph& graph) {
    6.56 +    checkConcept<concepts::Graph, Graph>();
    6.57 +    typedef typename Graph::NodeIt NodeIt;
    6.58 +    if (NodeIt(graph) == INVALID) return true;
    6.59 +    Dfs<Graph> dfs(graph);
    6.60 +    dfs.run(NodeIt(graph));
    6.61 +    for (NodeIt it(graph); it != INVALID; ++it) {
    6.62 +      if (!dfs.reached(it)) {
    6.63 +        return false;
    6.64 +      }
    6.65 +    }
    6.66 +    return true;
    6.67 +  }
    6.68 +
    6.69 +  /// \ingroup connectivity
    6.70 +  ///
    6.71 +  /// \brief Count the number of connected components of an undirected graph
    6.72 +  ///
    6.73 +  /// Count the number of connected components of an undirected graph
    6.74 +  ///
    6.75 +  /// \param graph The graph. It must be undirected.
    6.76 +  /// \return The number of components
    6.77 +  /// \note By definition, the empty graph consists
    6.78 +  /// of zero connected components.
    6.79 +  template <typename Graph>
    6.80 +  int countConnectedComponents(const Graph &graph) {
    6.81 +    checkConcept<concepts::Graph, Graph>();
    6.82 +    typedef typename Graph::Node Node;
    6.83 +    typedef typename Graph::Arc Arc;
    6.84 +
    6.85 +    typedef NullMap<Node, Arc> PredMap;
    6.86 +    typedef NullMap<Node, int> DistMap;
    6.87 +
    6.88 +    int compNum = 0;
    6.89 +    typename Bfs<Graph>::
    6.90 +      template SetPredMap<PredMap>::
    6.91 +      template SetDistMap<DistMap>::
    6.92 +      Create bfs(graph);
    6.93 +
    6.94 +    PredMap predMap;
    6.95 +    bfs.predMap(predMap);
    6.96 +
    6.97 +    DistMap distMap;
    6.98 +    bfs.distMap(distMap);
    6.99 +
   6.100 +    bfs.init();
   6.101 +    for(typename Graph::NodeIt n(graph); n != INVALID; ++n) {
   6.102 +      if (!bfs.reached(n)) {
   6.103 +        bfs.addSource(n);
   6.104 +        bfs.start();
   6.105 +        ++compNum;
   6.106 +      }
   6.107 +    }
   6.108 +    return compNum;
   6.109 +  }
   6.110 +
   6.111 +  /// \ingroup connectivity
   6.112 +  ///
   6.113 +  /// \brief Find the connected components of an undirected graph
   6.114 +  ///
   6.115 +  /// Find the connected components of an undirected graph.
   6.116 +  ///
   6.117 +  /// \param graph The graph. It must be undirected.
   6.118 +  /// \retval compMap A writable node map. The values will be set from 0 to
   6.119 +  /// the number of the connected components minus one. Each values of the map
   6.120 +  /// will be set exactly once, the values of a certain component will be
   6.121 +  /// set continuously.
   6.122 +  /// \return The number of components
   6.123 +  ///
   6.124 +  template <class Graph, class NodeMap>
   6.125 +  int connectedComponents(const Graph &graph, NodeMap &compMap) {
   6.126 +    checkConcept<concepts::Graph, Graph>();
   6.127 +    typedef typename Graph::Node Node;
   6.128 +    typedef typename Graph::Arc Arc;
   6.129 +    checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
   6.130 +
   6.131 +    typedef NullMap<Node, Arc> PredMap;
   6.132 +    typedef NullMap<Node, int> DistMap;
   6.133 +
   6.134 +    int compNum = 0;
   6.135 +    typename Bfs<Graph>::
   6.136 +      template SetPredMap<PredMap>::
   6.137 +      template SetDistMap<DistMap>::
   6.138 +      Create bfs(graph);
   6.139 +
   6.140 +    PredMap predMap;
   6.141 +    bfs.predMap(predMap);
   6.142 +
   6.143 +    DistMap distMap;
   6.144 +    bfs.distMap(distMap);
   6.145 +
   6.146 +    bfs.init();
   6.147 +    for(typename Graph::NodeIt n(graph); n != INVALID; ++n) {
   6.148 +      if(!bfs.reached(n)) {
   6.149 +        bfs.addSource(n);
   6.150 +        while (!bfs.emptyQueue()) {
   6.151 +          compMap.set(bfs.nextNode(), compNum);
   6.152 +          bfs.processNextNode();
   6.153 +        }
   6.154 +        ++compNum;
   6.155 +      }
   6.156 +    }
   6.157 +    return compNum;
   6.158 +  }
   6.159 +
   6.160 +  namespace _topology_bits {
   6.161 +
   6.162 +    template <typename Digraph, typename Iterator >
   6.163 +    struct LeaveOrderVisitor : public DfsVisitor<Digraph> {
   6.164 +    public:
   6.165 +      typedef typename Digraph::Node Node;
   6.166 +      LeaveOrderVisitor(Iterator it) : _it(it) {}
   6.167 +
   6.168 +      void leave(const Node& node) {
   6.169 +        *(_it++) = node;
   6.170 +      }
   6.171 +
   6.172 +    private:
   6.173 +      Iterator _it;
   6.174 +    };
   6.175 +
   6.176 +    template <typename Digraph, typename Map>
   6.177 +    struct FillMapVisitor : public DfsVisitor<Digraph> {
   6.178 +    public:
   6.179 +      typedef typename Digraph::Node Node;
   6.180 +      typedef typename Map::Value Value;
   6.181 +
   6.182 +      FillMapVisitor(Map& map, Value& value)
   6.183 +        : _map(map), _value(value) {}
   6.184 +
   6.185 +      void reach(const Node& node) {
   6.186 +        _map.set(node, _value);
   6.187 +      }
   6.188 +    private:
   6.189 +      Map& _map;
   6.190 +      Value& _value;
   6.191 +    };
   6.192 +
   6.193 +    template <typename Digraph, typename ArcMap>
   6.194 +    struct StronglyConnectedCutEdgesVisitor : public DfsVisitor<Digraph> {
   6.195 +    public:
   6.196 +      typedef typename Digraph::Node Node;
   6.197 +      typedef typename Digraph::Arc Arc;
   6.198 +
   6.199 +      StronglyConnectedCutEdgesVisitor(const Digraph& digraph,
   6.200 +                                       ArcMap& cutMap,
   6.201 +                                       int& cutNum)
   6.202 +        : _digraph(digraph), _cutMap(cutMap), _cutNum(cutNum),
   6.203 +          _compMap(digraph), _num(0) {
   6.204 +      }
   6.205 +
   6.206 +      void stop(const Node&) {
   6.207 +        ++_num;
   6.208 +      }
   6.209 +
   6.210 +      void reach(const Node& node) {
   6.211 +        _compMap.set(node, _num);
   6.212 +      }
   6.213 +
   6.214 +      void examine(const Arc& arc) {
   6.215 +         if (_compMap[_digraph.source(arc)] !=
   6.216 +             _compMap[_digraph.target(arc)]) {
   6.217 +           _cutMap.set(arc, true);
   6.218 +           ++_cutNum;
   6.219 +         }
   6.220 +      }
   6.221 +    private:
   6.222 +      const Digraph& _digraph;
   6.223 +      ArcMap& _cutMap;
   6.224 +      int& _cutNum;
   6.225 +
   6.226 +      typename Digraph::template NodeMap<int> _compMap;
   6.227 +      int _num;
   6.228 +    };
   6.229 +
   6.230 +  }
   6.231 +
   6.232 +
   6.233 +  /// \ingroup connectivity
   6.234 +  ///
   6.235 +  /// \brief Check whether the given directed graph is strongly connected.
   6.236 +  ///
   6.237 +  /// Check whether the given directed graph is strongly connected. The
   6.238 +  /// graph is strongly connected when any two nodes of the graph are
   6.239 +  /// connected with directed paths in both direction.
   6.240 +  /// \return %False when the graph is not strongly connected.
   6.241 +  /// \see connected
   6.242 +  ///
   6.243 +  /// \note By definition, the empty graph is strongly connected.
   6.244 +  template <typename Digraph>
   6.245 +  bool stronglyConnected(const Digraph& digraph) {
   6.246 +    checkConcept<concepts::Digraph, Digraph>();
   6.247 +
   6.248 +    typedef typename Digraph::Node Node;
   6.249 +    typedef typename Digraph::NodeIt NodeIt;
   6.250 +
   6.251 +    typename Digraph::Node source = NodeIt(digraph);
   6.252 +    if (source == INVALID) return true;
   6.253 +
   6.254 +    using namespace _topology_bits;
   6.255 +
   6.256 +    typedef DfsVisitor<Digraph> Visitor;
   6.257 +    Visitor visitor;
   6.258 +
   6.259 +    DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
   6.260 +    dfs.init();
   6.261 +    dfs.addSource(source);
   6.262 +    dfs.start();
   6.263 +
   6.264 +    for (NodeIt it(digraph); it != INVALID; ++it) {
   6.265 +      if (!dfs.reached(it)) {
   6.266 +        return false;
   6.267 +      }
   6.268 +    }
   6.269 +
   6.270 +    typedef ReverseDigraph<const Digraph> RDigraph;
   6.271 +    RDigraph rdigraph(digraph);
   6.272 +
   6.273 +    typedef DfsVisitor<Digraph> RVisitor;
   6.274 +    RVisitor rvisitor;
   6.275 +
   6.276 +    DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
   6.277 +    rdfs.init();
   6.278 +    rdfs.addSource(source);
   6.279 +    rdfs.start();
   6.280 +
   6.281 +    for (NodeIt it(rdigraph); it != INVALID; ++it) {
   6.282 +      if (!rdfs.reached(it)) {
   6.283 +        return false;
   6.284 +      }
   6.285 +    }
   6.286 +
   6.287 +    return true;
   6.288 +  }
   6.289 +
   6.290 +  /// \ingroup connectivity
   6.291 +  ///
   6.292 +  /// \brief Count the strongly connected components of a directed graph
   6.293 +  ///
   6.294 +  /// Count the strongly connected components of a directed graph.
   6.295 +  /// The strongly connected components are the classes of an
   6.296 +  /// equivalence relation on the nodes of the graph. Two nodes are in
   6.297 +  /// the same class if they are connected with directed paths in both
   6.298 +  /// direction.
   6.299 +  ///
   6.300 +  /// \param graph The graph.
   6.301 +  /// \return The number of components
   6.302 +  /// \note By definition, the empty graph has zero
   6.303 +  /// strongly connected components.
   6.304 +  template <typename Digraph>
   6.305 +  int countStronglyConnectedComponents(const Digraph& digraph) {
   6.306 +    checkConcept<concepts::Digraph, Digraph>();
   6.307 +
   6.308 +    using namespace _topology_bits;
   6.309 +
   6.310 +    typedef typename Digraph::Node Node;
   6.311 +    typedef typename Digraph::Arc Arc;
   6.312 +    typedef typename Digraph::NodeIt NodeIt;
   6.313 +    typedef typename Digraph::ArcIt ArcIt;
   6.314 +
   6.315 +    typedef std::vector<Node> Container;
   6.316 +    typedef typename Container::iterator Iterator;
   6.317 +
   6.318 +    Container nodes(countNodes(digraph));
   6.319 +    typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
   6.320 +    Visitor visitor(nodes.begin());
   6.321 +
   6.322 +    DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
   6.323 +    dfs.init();
   6.324 +    for (NodeIt it(digraph); it != INVALID; ++it) {
   6.325 +      if (!dfs.reached(it)) {
   6.326 +        dfs.addSource(it);
   6.327 +        dfs.start();
   6.328 +      }
   6.329 +    }
   6.330 +
   6.331 +    typedef typename Container::reverse_iterator RIterator;
   6.332 +    typedef ReverseDigraph<const Digraph> RDigraph;
   6.333 +
   6.334 +    RDigraph rdigraph(digraph);
   6.335 +
   6.336 +    typedef DfsVisitor<Digraph> RVisitor;
   6.337 +    RVisitor rvisitor;
   6.338 +
   6.339 +    DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
   6.340 +
   6.341 +    int compNum = 0;
   6.342 +
   6.343 +    rdfs.init();
   6.344 +    for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
   6.345 +      if (!rdfs.reached(*it)) {
   6.346 +        rdfs.addSource(*it);
   6.347 +        rdfs.start();
   6.348 +        ++compNum;
   6.349 +      }
   6.350 +    }
   6.351 +    return compNum;
   6.352 +  }
   6.353 +
   6.354 +  /// \ingroup connectivity
   6.355 +  ///
   6.356 +  /// \brief Find the strongly connected components of a directed graph
   6.357 +  ///
   6.358 +  /// Find the strongly connected components of a directed graph.  The
   6.359 +  /// strongly connected components are the classes of an equivalence
   6.360 +  /// relation on the nodes of the graph. Two nodes are in
   6.361 +  /// relationship when there are directed paths between them in both
   6.362 +  /// direction. In addition, the numbering of components will satisfy
   6.363 +  /// that there is no arc going from a higher numbered component to
   6.364 +  /// a lower.
   6.365 +  ///
   6.366 +  /// \param digraph The digraph.
   6.367 +  /// \retval compMap A writable node map. The values will be set from 0 to
   6.368 +  /// the number of the strongly connected components minus one. Each value
   6.369 +  /// of the map will be set exactly once, the values of a certain component
   6.370 +  /// will be set continuously.
   6.371 +  /// \return The number of components
   6.372 +  ///
   6.373 +  template <typename Digraph, typename NodeMap>
   6.374 +  int stronglyConnectedComponents(const Digraph& digraph, NodeMap& compMap) {
   6.375 +    checkConcept<concepts::Digraph, Digraph>();
   6.376 +    typedef typename Digraph::Node Node;
   6.377 +    typedef typename Digraph::NodeIt NodeIt;
   6.378 +    checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
   6.379 +
   6.380 +    using namespace _topology_bits;
   6.381 +
   6.382 +    typedef std::vector<Node> Container;
   6.383 +    typedef typename Container::iterator Iterator;
   6.384 +
   6.385 +    Container nodes(countNodes(digraph));
   6.386 +    typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
   6.387 +    Visitor visitor(nodes.begin());
   6.388 +
   6.389 +    DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
   6.390 +    dfs.init();
   6.391 +    for (NodeIt it(digraph); it != INVALID; ++it) {
   6.392 +      if (!dfs.reached(it)) {
   6.393 +        dfs.addSource(it);
   6.394 +        dfs.start();
   6.395 +      }
   6.396 +    }
   6.397 +
   6.398 +    typedef typename Container::reverse_iterator RIterator;
   6.399 +    typedef ReverseDigraph<const Digraph> RDigraph;
   6.400 +
   6.401 +    RDigraph rdigraph(digraph);
   6.402 +
   6.403 +    int compNum = 0;
   6.404 +
   6.405 +    typedef FillMapVisitor<RDigraph, NodeMap> RVisitor;
   6.406 +    RVisitor rvisitor(compMap, compNum);
   6.407 +
   6.408 +    DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
   6.409 +
   6.410 +    rdfs.init();
   6.411 +    for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
   6.412 +      if (!rdfs.reached(*it)) {
   6.413 +        rdfs.addSource(*it);
   6.414 +        rdfs.start();
   6.415 +        ++compNum;
   6.416 +      }
   6.417 +    }
   6.418 +    return compNum;
   6.419 +  }
   6.420 +
   6.421 +  /// \ingroup connectivity
   6.422 +  ///
   6.423 +  /// \brief Find the cut arcs of the strongly connected components.
   6.424 +  ///
   6.425 +  /// Find the cut arcs of the strongly connected components.
   6.426 +  /// The strongly connected components are the classes of an equivalence
   6.427 +  /// relation on the nodes of the graph. Two nodes are in relationship
   6.428 +  /// when there are directed paths between them in both direction.
   6.429 +  /// The strongly connected components are separated by the cut arcs.
   6.430 +  ///
   6.431 +  /// \param graph The graph.
   6.432 +  /// \retval cutMap A writable node map. The values will be set true when the
   6.433 +  /// arc is a cut arc.
   6.434 +  ///
   6.435 +  /// \return The number of cut arcs
   6.436 +  template <typename Digraph, typename ArcMap>
   6.437 +  int stronglyConnectedCutArcs(const Digraph& graph, ArcMap& cutMap) {
   6.438 +    checkConcept<concepts::Digraph, Digraph>();
   6.439 +    typedef typename Digraph::Node Node;
   6.440 +    typedef typename Digraph::Arc Arc;
   6.441 +    typedef typename Digraph::NodeIt NodeIt;
   6.442 +    checkConcept<concepts::WriteMap<Arc, bool>, ArcMap>();
   6.443 +
   6.444 +    using namespace _topology_bits;
   6.445 +
   6.446 +    typedef std::vector<Node> Container;
   6.447 +    typedef typename Container::iterator Iterator;
   6.448 +
   6.449 +    Container nodes(countNodes(graph));
   6.450 +    typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
   6.451 +    Visitor visitor(nodes.begin());
   6.452 +
   6.453 +    DfsVisit<Digraph, Visitor> dfs(graph, visitor);
   6.454 +    dfs.init();
   6.455 +    for (NodeIt it(graph); it != INVALID; ++it) {
   6.456 +      if (!dfs.reached(it)) {
   6.457 +        dfs.addSource(it);
   6.458 +        dfs.start();
   6.459 +      }
   6.460 +    }
   6.461 +
   6.462 +    typedef typename Container::reverse_iterator RIterator;
   6.463 +    typedef ReverseDigraph<const Digraph> RDigraph;
   6.464 +
   6.465 +    RDigraph rgraph(graph);
   6.466 +
   6.467 +    int cutNum = 0;
   6.468 +
   6.469 +    typedef StronglyConnectedCutEdgesVisitor<RDigraph, ArcMap> RVisitor;
   6.470 +    RVisitor rvisitor(rgraph, cutMap, cutNum);
   6.471 +
   6.472 +    DfsVisit<RDigraph, RVisitor> rdfs(rgraph, rvisitor);
   6.473 +
   6.474 +    rdfs.init();
   6.475 +    for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
   6.476 +      if (!rdfs.reached(*it)) {
   6.477 +        rdfs.addSource(*it);
   6.478 +        rdfs.start();
   6.479 +      }
   6.480 +    }
   6.481 +    return cutNum;
   6.482 +  }
   6.483 +
   6.484 +  namespace _topology_bits {
   6.485 +
   6.486 +    template <typename Digraph>
   6.487 +    class CountBiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
   6.488 +    public:
   6.489 +      typedef typename Digraph::Node Node;
   6.490 +      typedef typename Digraph::Arc Arc;
   6.491 +      typedef typename Digraph::Edge Edge;
   6.492 +
   6.493 +      CountBiNodeConnectedComponentsVisitor(const Digraph& graph, int &compNum)
   6.494 +        : _graph(graph), _compNum(compNum),
   6.495 +          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   6.496 +
   6.497 +      void start(const Node& node) {
   6.498 +        _predMap.set(node, INVALID);
   6.499 +      }
   6.500 +
   6.501 +      void reach(const Node& node) {
   6.502 +        _numMap.set(node, _num);
   6.503 +        _retMap.set(node, _num);
   6.504 +        ++_num;
   6.505 +      }
   6.506 +
   6.507 +      void discover(const Arc& edge) {
   6.508 +        _predMap.set(_graph.target(edge), _graph.source(edge));
   6.509 +      }
   6.510 +
   6.511 +      void examine(const Arc& edge) {
   6.512 +        if (_graph.source(edge) == _graph.target(edge) &&
   6.513 +            _graph.direction(edge)) {
   6.514 +          ++_compNum;
   6.515 +          return;
   6.516 +        }
   6.517 +        if (_predMap[_graph.source(edge)] == _graph.target(edge)) {
   6.518 +          return;
   6.519 +        }
   6.520 +        if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
   6.521 +          _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]);
   6.522 +        }
   6.523 +      }
   6.524 +
   6.525 +      void backtrack(const Arc& edge) {
   6.526 +        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   6.527 +          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   6.528 +        }
   6.529 +        if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
   6.530 +          ++_compNum;
   6.531 +        }
   6.532 +      }
   6.533 +
   6.534 +    private:
   6.535 +      const Digraph& _graph;
   6.536 +      int& _compNum;
   6.537 +
   6.538 +      typename Digraph::template NodeMap<int> _numMap;
   6.539 +      typename Digraph::template NodeMap<int> _retMap;
   6.540 +      typename Digraph::template NodeMap<Node> _predMap;
   6.541 +      int _num;
   6.542 +    };
   6.543 +
   6.544 +    template <typename Digraph, typename ArcMap>
   6.545 +    class BiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
   6.546 +    public:
   6.547 +      typedef typename Digraph::Node Node;
   6.548 +      typedef typename Digraph::Arc Arc;
   6.549 +      typedef typename Digraph::Edge Edge;
   6.550 +
   6.551 +      BiNodeConnectedComponentsVisitor(const Digraph& graph,
   6.552 +                                       ArcMap& compMap, int &compNum)
   6.553 +        : _graph(graph), _compMap(compMap), _compNum(compNum),
   6.554 +          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   6.555 +
   6.556 +      void start(const Node& node) {
   6.557 +        _predMap.set(node, INVALID);
   6.558 +      }
   6.559 +
   6.560 +      void reach(const Node& node) {
   6.561 +        _numMap.set(node, _num);
   6.562 +        _retMap.set(node, _num);
   6.563 +        ++_num;
   6.564 +      }
   6.565 +
   6.566 +      void discover(const Arc& edge) {
   6.567 +        Node target = _graph.target(edge);
   6.568 +        _predMap.set(target, edge);
   6.569 +        _edgeStack.push(edge);
   6.570 +      }
   6.571 +
   6.572 +      void examine(const Arc& edge) {
   6.573 +        Node source = _graph.source(edge);
   6.574 +        Node target = _graph.target(edge);
   6.575 +        if (source == target && _graph.direction(edge)) {
   6.576 +          _compMap.set(edge, _compNum);
   6.577 +          ++_compNum;
   6.578 +          return;
   6.579 +        }
   6.580 +        if (_numMap[target] < _numMap[source]) {
   6.581 +          if (_predMap[source] != _graph.oppositeArc(edge)) {
   6.582 +            _edgeStack.push(edge);
   6.583 +          }
   6.584 +        }
   6.585 +        if (_predMap[source] != INVALID &&
   6.586 +            target == _graph.source(_predMap[source])) {
   6.587 +          return;
   6.588 +        }
   6.589 +        if (_retMap[source] > _numMap[target]) {
   6.590 +          _retMap.set(source, _numMap[target]);
   6.591 +        }
   6.592 +      }
   6.593 +
   6.594 +      void backtrack(const Arc& edge) {
   6.595 +        Node source = _graph.source(edge);
   6.596 +        Node target = _graph.target(edge);
   6.597 +        if (_retMap[source] > _retMap[target]) {
   6.598 +          _retMap.set(source, _retMap[target]);
   6.599 +        }
   6.600 +        if (_numMap[source] <= _retMap[target]) {
   6.601 +          while (_edgeStack.top() != edge) {
   6.602 +            _compMap.set(_edgeStack.top(), _compNum);
   6.603 +            _edgeStack.pop();
   6.604 +          }
   6.605 +          _compMap.set(edge, _compNum);
   6.606 +          _edgeStack.pop();
   6.607 +          ++_compNum;
   6.608 +        }
   6.609 +      }
   6.610 +
   6.611 +    private:
   6.612 +      const Digraph& _graph;
   6.613 +      ArcMap& _compMap;
   6.614 +      int& _compNum;
   6.615 +
   6.616 +      typename Digraph::template NodeMap<int> _numMap;
   6.617 +      typename Digraph::template NodeMap<int> _retMap;
   6.618 +      typename Digraph::template NodeMap<Arc> _predMap;
   6.619 +      std::stack<Edge> _edgeStack;
   6.620 +      int _num;
   6.621 +    };
   6.622 +
   6.623 +
   6.624 +    template <typename Digraph, typename NodeMap>
   6.625 +    class BiNodeConnectedCutNodesVisitor : public DfsVisitor<Digraph> {
   6.626 +    public:
   6.627 +      typedef typename Digraph::Node Node;
   6.628 +      typedef typename Digraph::Arc Arc;
   6.629 +      typedef typename Digraph::Edge Edge;
   6.630 +
   6.631 +      BiNodeConnectedCutNodesVisitor(const Digraph& graph, NodeMap& cutMap,
   6.632 +                                     int& cutNum)
   6.633 +        : _graph(graph), _cutMap(cutMap), _cutNum(cutNum),
   6.634 +          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   6.635 +
   6.636 +      void start(const Node& node) {
   6.637 +        _predMap.set(node, INVALID);
   6.638 +        rootCut = false;
   6.639 +      }
   6.640 +
   6.641 +      void reach(const Node& node) {
   6.642 +        _numMap.set(node, _num);
   6.643 +        _retMap.set(node, _num);
   6.644 +        ++_num;
   6.645 +      }
   6.646 +
   6.647 +      void discover(const Arc& edge) {
   6.648 +        _predMap.set(_graph.target(edge), _graph.source(edge));
   6.649 +      }
   6.650 +
   6.651 +      void examine(const Arc& edge) {
   6.652 +        if (_graph.source(edge) == _graph.target(edge) &&
   6.653 +            _graph.direction(edge)) {
   6.654 +          if (!_cutMap[_graph.source(edge)]) {
   6.655 +            _cutMap.set(_graph.source(edge), true);
   6.656 +            ++_cutNum;
   6.657 +          }
   6.658 +          return;
   6.659 +        }
   6.660 +        if (_predMap[_graph.source(edge)] == _graph.target(edge)) return;
   6.661 +        if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
   6.662 +          _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]);
   6.663 +        }
   6.664 +      }
   6.665 +
   6.666 +      void backtrack(const Arc& edge) {
   6.667 +        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   6.668 +          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   6.669 +        }
   6.670 +        if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
   6.671 +          if (_predMap[_graph.source(edge)] != INVALID) {
   6.672 +            if (!_cutMap[_graph.source(edge)]) {
   6.673 +              _cutMap.set(_graph.source(edge), true);
   6.674 +              ++_cutNum;
   6.675 +            }
   6.676 +          } else if (rootCut) {
   6.677 +            if (!_cutMap[_graph.source(edge)]) {
   6.678 +              _cutMap.set(_graph.source(edge), true);
   6.679 +              ++_cutNum;
   6.680 +            }
   6.681 +          } else {
   6.682 +            rootCut = true;
   6.683 +          }
   6.684 +        }
   6.685 +      }
   6.686 +
   6.687 +    private:
   6.688 +      const Digraph& _graph;
   6.689 +      NodeMap& _cutMap;
   6.690 +      int& _cutNum;
   6.691 +
   6.692 +      typename Digraph::template NodeMap<int> _numMap;
   6.693 +      typename Digraph::template NodeMap<int> _retMap;
   6.694 +      typename Digraph::template NodeMap<Node> _predMap;
   6.695 +      std::stack<Edge> _edgeStack;
   6.696 +      int _num;
   6.697 +      bool rootCut;
   6.698 +    };
   6.699 +
   6.700 +  }
   6.701 +
   6.702 +  template <typename Graph>
   6.703 +  int countBiNodeConnectedComponents(const Graph& graph);
   6.704 +
   6.705 +  /// \ingroup connectivity
   6.706 +  ///
   6.707 +  /// \brief Checks the graph is bi-node-connected.
   6.708 +  ///
   6.709 +  /// This function checks that the undirected graph is bi-node-connected
   6.710 +  /// graph. The graph is bi-node-connected if any two undirected edge is
   6.711 +  /// on same circle.
   6.712 +  ///
   6.713 +  /// \param graph The graph.
   6.714 +  /// \return %True when the graph bi-node-connected.
   6.715 +  template <typename Graph>
   6.716 +  bool biNodeConnected(const Graph& graph) {
   6.717 +    return countBiNodeConnectedComponents(graph) <= 1;
   6.718 +  }
   6.719 +
   6.720 +  /// \ingroup connectivity
   6.721 +  ///
   6.722 +  /// \brief Count the biconnected components.
   6.723 +  ///
   6.724 +  /// This function finds the bi-node-connected components in an undirected
   6.725 +  /// graph. The biconnected components are the classes of an equivalence
   6.726 +  /// relation on the undirected edges. Two undirected edge is in relationship
   6.727 +  /// when they are on same circle.
   6.728 +  ///
   6.729 +  /// \param graph The graph.
   6.730 +  /// \return The number of components.
   6.731 +  template <typename Graph>
   6.732 +  int countBiNodeConnectedComponents(const Graph& graph) {
   6.733 +    checkConcept<concepts::Graph, Graph>();
   6.734 +    typedef typename Graph::NodeIt NodeIt;
   6.735 +
   6.736 +    using namespace _topology_bits;
   6.737 +
   6.738 +    typedef CountBiNodeConnectedComponentsVisitor<Graph> Visitor;
   6.739 +
   6.740 +    int compNum = 0;
   6.741 +    Visitor visitor(graph, compNum);
   6.742 +
   6.743 +    DfsVisit<Graph, Visitor> dfs(graph, visitor);
   6.744 +    dfs.init();
   6.745 +
   6.746 +    for (NodeIt it(graph); it != INVALID; ++it) {
   6.747 +      if (!dfs.reached(it)) {
   6.748 +        dfs.addSource(it);
   6.749 +        dfs.start();
   6.750 +      }
   6.751 +    }
   6.752 +    return compNum;
   6.753 +  }
   6.754 +
   6.755 +  /// \ingroup connectivity
   6.756 +  ///
   6.757 +  /// \brief Find the bi-node-connected components.
   6.758 +  ///
   6.759 +  /// This function finds the bi-node-connected components in an undirected
   6.760 +  /// graph. The bi-node-connected components are the classes of an equivalence
   6.761 +  /// relation on the undirected edges. Two undirected edge are in relationship
   6.762 +  /// when they are on same circle.
   6.763 +  ///
   6.764 +  /// \param graph The graph.
   6.765 +  /// \retval compMap A writable uedge map. The values will be set from 0
   6.766 +  /// to the number of the biconnected components minus one. Each values
   6.767 +  /// of the map will be set exactly once, the values of a certain component
   6.768 +  /// will be set continuously.
   6.769 +  /// \return The number of components.
   6.770 +  ///
   6.771 +  template <typename Graph, typename EdgeMap>
   6.772 +  int biNodeConnectedComponents(const Graph& graph,
   6.773 +                                EdgeMap& compMap) {
   6.774 +    checkConcept<concepts::Graph, Graph>();
   6.775 +    typedef typename Graph::NodeIt NodeIt;
   6.776 +    typedef typename Graph::Edge Edge;
   6.777 +    checkConcept<concepts::WriteMap<Edge, int>, EdgeMap>();
   6.778 +
   6.779 +    using namespace _topology_bits;
   6.780 +
   6.781 +    typedef BiNodeConnectedComponentsVisitor<Graph, EdgeMap> Visitor;
   6.782 +
   6.783 +    int compNum = 0;
   6.784 +    Visitor visitor(graph, compMap, compNum);
   6.785 +
   6.786 +    DfsVisit<Graph, Visitor> dfs(graph, visitor);
   6.787 +    dfs.init();
   6.788 +
   6.789 +    for (NodeIt it(graph); it != INVALID; ++it) {
   6.790 +      if (!dfs.reached(it)) {
   6.791 +        dfs.addSource(it);
   6.792 +        dfs.start();
   6.793 +      }
   6.794 +    }
   6.795 +    return compNum;
   6.796 +  }
   6.797 +
   6.798 +  /// \ingroup connectivity
   6.799 +  ///
   6.800 +  /// \brief Find the bi-node-connected cut nodes.
   6.801 +  ///
   6.802 +  /// This function finds the bi-node-connected cut nodes in an undirected
   6.803 +  /// graph. The bi-node-connected components are the classes of an equivalence
   6.804 +  /// relation on the undirected edges. Two undirected edges are in
   6.805 +  /// relationship when they are on same circle. The biconnected components
   6.806 +  /// are separted by nodes which are the cut nodes of the components.
   6.807 +  ///
   6.808 +  /// \param graph The graph.
   6.809 +  /// \retval cutMap A writable edge map. The values will be set true when
   6.810 +  /// the node separate two or more components.
   6.811 +  /// \return The number of the cut nodes.
   6.812 +  template <typename Graph, typename NodeMap>
   6.813 +  int biNodeConnectedCutNodes(const Graph& graph, NodeMap& cutMap) {
   6.814 +    checkConcept<concepts::Graph, Graph>();
   6.815 +    typedef typename Graph::Node Node;
   6.816 +    typedef typename Graph::NodeIt NodeIt;
   6.817 +    checkConcept<concepts::WriteMap<Node, bool>, NodeMap>();
   6.818 +
   6.819 +    using namespace _topology_bits;
   6.820 +
   6.821 +    typedef BiNodeConnectedCutNodesVisitor<Graph, NodeMap> Visitor;
   6.822 +
   6.823 +    int cutNum = 0;
   6.824 +    Visitor visitor(graph, cutMap, cutNum);
   6.825 +
   6.826 +    DfsVisit<Graph, Visitor> dfs(graph, visitor);
   6.827 +    dfs.init();
   6.828 +
   6.829 +    for (NodeIt it(graph); it != INVALID; ++it) {
   6.830 +      if (!dfs.reached(it)) {
   6.831 +        dfs.addSource(it);
   6.832 +        dfs.start();
   6.833 +      }
   6.834 +    }
   6.835 +    return cutNum;
   6.836 +  }
   6.837 +
   6.838 +  namespace _topology_bits {
   6.839 +
   6.840 +    template <typename Digraph>
   6.841 +    class CountBiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
   6.842 +    public:
   6.843 +      typedef typename Digraph::Node Node;
   6.844 +      typedef typename Digraph::Arc Arc;
   6.845 +      typedef typename Digraph::Edge Edge;
   6.846 +
   6.847 +      CountBiEdgeConnectedComponentsVisitor(const Digraph& graph, int &compNum)
   6.848 +        : _graph(graph), _compNum(compNum),
   6.849 +          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   6.850 +
   6.851 +      void start(const Node& node) {
   6.852 +        _predMap.set(node, INVALID);
   6.853 +      }
   6.854 +
   6.855 +      void reach(const Node& node) {
   6.856 +        _numMap.set(node, _num);
   6.857 +        _retMap.set(node, _num);
   6.858 +        ++_num;
   6.859 +      }
   6.860 +
   6.861 +      void leave(const Node& node) {
   6.862 +        if (_numMap[node] <= _retMap[node]) {
   6.863 +          ++_compNum;
   6.864 +        }
   6.865 +      }
   6.866 +
   6.867 +      void discover(const Arc& edge) {
   6.868 +        _predMap.set(_graph.target(edge), edge);
   6.869 +      }
   6.870 +
   6.871 +      void examine(const Arc& edge) {
   6.872 +        if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
   6.873 +          return;
   6.874 +        }
   6.875 +        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   6.876 +          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   6.877 +        }
   6.878 +      }
   6.879 +
   6.880 +      void backtrack(const Arc& edge) {
   6.881 +        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   6.882 +          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   6.883 +        }
   6.884 +      }
   6.885 +
   6.886 +    private:
   6.887 +      const Digraph& _graph;
   6.888 +      int& _compNum;
   6.889 +
   6.890 +      typename Digraph::template NodeMap<int> _numMap;
   6.891 +      typename Digraph::template NodeMap<int> _retMap;
   6.892 +      typename Digraph::template NodeMap<Arc> _predMap;
   6.893 +      int _num;
   6.894 +    };
   6.895 +
   6.896 +    template <typename Digraph, typename NodeMap>
   6.897 +    class BiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
   6.898 +    public:
   6.899 +      typedef typename Digraph::Node Node;
   6.900 +      typedef typename Digraph::Arc Arc;
   6.901 +      typedef typename Digraph::Edge Edge;
   6.902 +
   6.903 +      BiEdgeConnectedComponentsVisitor(const Digraph& graph,
   6.904 +                                       NodeMap& compMap, int &compNum)
   6.905 +        : _graph(graph), _compMap(compMap), _compNum(compNum),
   6.906 +          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   6.907 +
   6.908 +      void start(const Node& node) {
   6.909 +        _predMap.set(node, INVALID);
   6.910 +      }
   6.911 +
   6.912 +      void reach(const Node& node) {
   6.913 +        _numMap.set(node, _num);
   6.914 +        _retMap.set(node, _num);
   6.915 +        _nodeStack.push(node);
   6.916 +        ++_num;
   6.917 +      }
   6.918 +
   6.919 +      void leave(const Node& node) {
   6.920 +        if (_numMap[node] <= _retMap[node]) {
   6.921 +          while (_nodeStack.top() != node) {
   6.922 +            _compMap.set(_nodeStack.top(), _compNum);
   6.923 +            _nodeStack.pop();
   6.924 +          }
   6.925 +          _compMap.set(node, _compNum);
   6.926 +          _nodeStack.pop();
   6.927 +          ++_compNum;
   6.928 +        }
   6.929 +      }
   6.930 +
   6.931 +      void discover(const Arc& edge) {
   6.932 +        _predMap.set(_graph.target(edge), edge);
   6.933 +      }
   6.934 +
   6.935 +      void examine(const Arc& edge) {
   6.936 +        if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
   6.937 +          return;
   6.938 +        }
   6.939 +        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   6.940 +          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   6.941 +        }
   6.942 +      }
   6.943 +
   6.944 +      void backtrack(const Arc& edge) {
   6.945 +        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   6.946 +          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   6.947 +        }
   6.948 +      }
   6.949 +
   6.950 +    private:
   6.951 +      const Digraph& _graph;
   6.952 +      NodeMap& _compMap;
   6.953 +      int& _compNum;
   6.954 +
   6.955 +      typename Digraph::template NodeMap<int> _numMap;
   6.956 +      typename Digraph::template NodeMap<int> _retMap;
   6.957 +      typename Digraph::template NodeMap<Arc> _predMap;
   6.958 +      std::stack<Node> _nodeStack;
   6.959 +      int _num;
   6.960 +    };
   6.961 +
   6.962 +
   6.963 +    template <typename Digraph, typename ArcMap>
   6.964 +    class BiEdgeConnectedCutEdgesVisitor : public DfsVisitor<Digraph> {
   6.965 +    public:
   6.966 +      typedef typename Digraph::Node Node;
   6.967 +      typedef typename Digraph::Arc Arc;
   6.968 +      typedef typename Digraph::Edge Edge;
   6.969 +
   6.970 +      BiEdgeConnectedCutEdgesVisitor(const Digraph& graph,
   6.971 +                                     ArcMap& cutMap, int &cutNum)
   6.972 +        : _graph(graph), _cutMap(cutMap), _cutNum(cutNum),
   6.973 +          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   6.974 +
   6.975 +      void start(const Node& node) {
   6.976 +        _predMap[node] = INVALID;
   6.977 +      }
   6.978 +
   6.979 +      void reach(const Node& node) {
   6.980 +        _numMap.set(node, _num);
   6.981 +        _retMap.set(node, _num);
   6.982 +        ++_num;
   6.983 +      }
   6.984 +
   6.985 +      void leave(const Node& node) {
   6.986 +        if (_numMap[node] <= _retMap[node]) {
   6.987 +          if (_predMap[node] != INVALID) {
   6.988 +            _cutMap.set(_predMap[node], true);
   6.989 +            ++_cutNum;
   6.990 +          }
   6.991 +        }
   6.992 +      }
   6.993 +
   6.994 +      void discover(const Arc& edge) {
   6.995 +        _predMap.set(_graph.target(edge), edge);
   6.996 +      }
   6.997 +
   6.998 +      void examine(const Arc& edge) {
   6.999 +        if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
  6.1000 +          return;
  6.1001 +        }
  6.1002 +        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
  6.1003 +          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
  6.1004 +        }
  6.1005 +      }
  6.1006 +
  6.1007 +      void backtrack(const Arc& edge) {
  6.1008 +        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
  6.1009 +          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
  6.1010 +        }
  6.1011 +      }
  6.1012 +
  6.1013 +    private:
  6.1014 +      const Digraph& _graph;
  6.1015 +      ArcMap& _cutMap;
  6.1016 +      int& _cutNum;
  6.1017 +
  6.1018 +      typename Digraph::template NodeMap<int> _numMap;
  6.1019 +      typename Digraph::template NodeMap<int> _retMap;
  6.1020 +      typename Digraph::template NodeMap<Arc> _predMap;
  6.1021 +      int _num;
  6.1022 +    };
  6.1023 +  }
  6.1024 +
  6.1025 +  template <typename Graph>
  6.1026 +  int countBiEdgeConnectedComponents(const Graph& graph);
  6.1027 +
  6.1028 +  /// \ingroup connectivity
  6.1029 +  ///
  6.1030 +  /// \brief Checks that the graph is bi-edge-connected.
  6.1031 +  ///
  6.1032 +  /// This function checks that the graph is bi-edge-connected. The undirected
  6.1033 +  /// graph is bi-edge-connected when any two nodes are connected with two
  6.1034 +  /// edge-disjoint paths.
  6.1035 +  ///
  6.1036 +  /// \param graph The undirected graph.
  6.1037 +  /// \return The number of components.
  6.1038 +  template <typename Graph>
  6.1039 +  bool biEdgeConnected(const Graph& graph) {
  6.1040 +    return countBiEdgeConnectedComponents(graph) <= 1;
  6.1041 +  }
  6.1042 +
  6.1043 +  /// \ingroup connectivity
  6.1044 +  ///
  6.1045 +  /// \brief Count the bi-edge-connected components.
  6.1046 +  ///
  6.1047 +  /// This function count the bi-edge-connected components in an undirected
  6.1048 +  /// graph. The bi-edge-connected components are the classes of an equivalence
  6.1049 +  /// relation on the nodes. Two nodes are in relationship when they are
  6.1050 +  /// connected with at least two edge-disjoint paths.
  6.1051 +  ///
  6.1052 +  /// \param graph The undirected graph.
  6.1053 +  /// \return The number of components.
  6.1054 +  template <typename Graph>
  6.1055 +  int countBiEdgeConnectedComponents(const Graph& graph) {
  6.1056 +    checkConcept<concepts::Graph, Graph>();
  6.1057 +    typedef typename Graph::NodeIt NodeIt;
  6.1058 +
  6.1059 +    using namespace _topology_bits;
  6.1060 +
  6.1061 +    typedef CountBiEdgeConnectedComponentsVisitor<Graph> Visitor;
  6.1062 +
  6.1063 +    int compNum = 0;
  6.1064 +    Visitor visitor(graph, compNum);
  6.1065 +
  6.1066 +    DfsVisit<Graph, Visitor> dfs(graph, visitor);
  6.1067 +    dfs.init();
  6.1068 +
  6.1069 +    for (NodeIt it(graph); it != INVALID; ++it) {
  6.1070 +      if (!dfs.reached(it)) {
  6.1071 +        dfs.addSource(it);
  6.1072 +        dfs.start();
  6.1073 +      }
  6.1074 +    }
  6.1075 +    return compNum;
  6.1076 +  }
  6.1077 +
  6.1078 +  /// \ingroup connectivity
  6.1079 +  ///
  6.1080 +  /// \brief Find the bi-edge-connected components.
  6.1081 +  ///
  6.1082 +  /// This function finds the bi-edge-connected components in an undirected
  6.1083 +  /// graph. The bi-edge-connected components are the classes of an equivalence
  6.1084 +  /// relation on the nodes. Two nodes are in relationship when they are
  6.1085 +  /// connected at least two edge-disjoint paths.
  6.1086 +  ///
  6.1087 +  /// \param graph The graph.
  6.1088 +  /// \retval compMap A writable node map. The values will be set from 0 to
  6.1089 +  /// the number of the biconnected components minus one. Each values
  6.1090 +  /// of the map will be set exactly once, the values of a certain component
  6.1091 +  /// will be set continuously.
  6.1092 +  /// \return The number of components.
  6.1093 +  ///
  6.1094 +  template <typename Graph, typename NodeMap>
  6.1095 +  int biEdgeConnectedComponents(const Graph& graph, NodeMap& compMap) {
  6.1096 +    checkConcept<concepts::Graph, Graph>();
  6.1097 +    typedef typename Graph::NodeIt NodeIt;
  6.1098 +    typedef typename Graph::Node Node;
  6.1099 +    checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
  6.1100 +
  6.1101 +    using namespace _topology_bits;
  6.1102 +
  6.1103 +    typedef BiEdgeConnectedComponentsVisitor<Graph, NodeMap> Visitor;
  6.1104 +
  6.1105 +    int compNum = 0;
  6.1106 +    Visitor visitor(graph, compMap, compNum);
  6.1107 +
  6.1108 +    DfsVisit<Graph, Visitor> dfs(graph, visitor);
  6.1109 +    dfs.init();
  6.1110 +
  6.1111 +    for (NodeIt it(graph); it != INVALID; ++it) {
  6.1112 +      if (!dfs.reached(it)) {
  6.1113 +        dfs.addSource(it);
  6.1114 +        dfs.start();
  6.1115 +      }
  6.1116 +    }
  6.1117 +    return compNum;
  6.1118 +  }
  6.1119 +
  6.1120 +  /// \ingroup connectivity
  6.1121 +  ///
  6.1122 +  /// \brief Find the bi-edge-connected cut edges.
  6.1123 +  ///
  6.1124 +  /// This function finds the bi-edge-connected components in an undirected
  6.1125 +  /// graph. The bi-edge-connected components are the classes of an equivalence
  6.1126 +  /// relation on the nodes. Two nodes are in relationship when they are
  6.1127 +  /// connected with at least two edge-disjoint paths. The bi-edge-connected
  6.1128 +  /// components are separted by edges which are the cut edges of the
  6.1129 +  /// components.
  6.1130 +  ///
  6.1131 +  /// \param graph The graph.
  6.1132 +  /// \retval cutMap A writable node map. The values will be set true when the
  6.1133 +  /// edge is a cut edge.
  6.1134 +  /// \return The number of cut edges.
  6.1135 +  template <typename Graph, typename EdgeMap>
  6.1136 +  int biEdgeConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) {
  6.1137 +    checkConcept<concepts::Graph, Graph>();
  6.1138 +    typedef typename Graph::NodeIt NodeIt;
  6.1139 +    typedef typename Graph::Edge Edge;
  6.1140 +    checkConcept<concepts::WriteMap<Edge, bool>, EdgeMap>();
  6.1141 +
  6.1142 +    using namespace _topology_bits;
  6.1143 +
  6.1144 +    typedef BiEdgeConnectedCutEdgesVisitor<Graph, EdgeMap> Visitor;
  6.1145 +
  6.1146 +    int cutNum = 0;
  6.1147 +    Visitor visitor(graph, cutMap, cutNum);
  6.1148 +
  6.1149 +    DfsVisit<Graph, Visitor> dfs(graph, visitor);
  6.1150 +    dfs.init();
  6.1151 +
  6.1152 +    for (NodeIt it(graph); it != INVALID; ++it) {
  6.1153 +      if (!dfs.reached(it)) {
  6.1154 +        dfs.addSource(it);
  6.1155 +        dfs.start();
  6.1156 +      }
  6.1157 +    }
  6.1158 +    return cutNum;
  6.1159 +  }
  6.1160 +
  6.1161 +
  6.1162 +  namespace _topology_bits {
  6.1163 +
  6.1164 +    template <typename Digraph, typename IntNodeMap>
  6.1165 +    class TopologicalSortVisitor : public DfsVisitor<Digraph> {
  6.1166 +    public:
  6.1167 +      typedef typename Digraph::Node Node;
  6.1168 +      typedef typename Digraph::Arc edge;
  6.1169 +
  6.1170 +      TopologicalSortVisitor(IntNodeMap& order, int num)
  6.1171 +        : _order(order), _num(num) {}
  6.1172 +
  6.1173 +      void leave(const Node& node) {
  6.1174 +        _order.set(node, --_num);
  6.1175 +      }
  6.1176 +
  6.1177 +    private:
  6.1178 +      IntNodeMap& _order;
  6.1179 +      int _num;
  6.1180 +    };
  6.1181 +
  6.1182 +  }
  6.1183 +
  6.1184 +  /// \ingroup connectivity
  6.1185 +  ///
  6.1186 +  /// \brief Sort the nodes of a DAG into topolgical order.
  6.1187 +  ///
  6.1188 +  /// Sort the nodes of a DAG into topolgical order.
  6.1189 +  ///
  6.1190 +  /// \param graph The graph. It must be directed and acyclic.
  6.1191 +  /// \retval order A writable node map. The values will be set from 0 to
  6.1192 +  /// the number of the nodes in the graph minus one. Each values of the map
  6.1193 +  /// will be set exactly once, the values  will be set descending order.
  6.1194 +  ///
  6.1195 +  /// \see checkedTopologicalSort
  6.1196 +  /// \see dag
  6.1197 +  template <typename Digraph, typename NodeMap>
  6.1198 +  void topologicalSort(const Digraph& graph, NodeMap& order) {
  6.1199 +    using namespace _topology_bits;
  6.1200 +
  6.1201 +    checkConcept<concepts::Digraph, Digraph>();
  6.1202 +    checkConcept<concepts::WriteMap<typename Digraph::Node, int>, NodeMap>();
  6.1203 +
  6.1204 +    typedef typename Digraph::Node Node;
  6.1205 +    typedef typename Digraph::NodeIt NodeIt;
  6.1206 +    typedef typename Digraph::Arc Arc;
  6.1207 +
  6.1208 +    TopologicalSortVisitor<Digraph, NodeMap>
  6.1209 +      visitor(order, countNodes(graph));
  6.1210 +
  6.1211 +    DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> >
  6.1212 +      dfs(graph, visitor);
  6.1213 +
  6.1214 +    dfs.init();
  6.1215 +    for (NodeIt it(graph); it != INVALID; ++it) {
  6.1216 +      if (!dfs.reached(it)) {
  6.1217 +        dfs.addSource(it);
  6.1218 +        dfs.start();
  6.1219 +      }
  6.1220 +    }
  6.1221 +  }
  6.1222 +
  6.1223 +  /// \ingroup connectivity
  6.1224 +  ///
  6.1225 +  /// \brief Sort the nodes of a DAG into topolgical order.
  6.1226 +  ///
  6.1227 +  /// Sort the nodes of a DAG into topolgical order. It also checks
  6.1228 +  /// that the given graph is DAG.
  6.1229 +  ///
  6.1230 +  /// \param graph The graph. It must be directed and acyclic.
  6.1231 +  /// \retval order A readable - writable node map. The values will be set
  6.1232 +  /// from 0 to the number of the nodes in the graph minus one. Each values
  6.1233 +  /// of the map will be set exactly once, the values will be set descending
  6.1234 +  /// order.
  6.1235 +  /// \return %False when the graph is not DAG.
  6.1236 +  ///
  6.1237 +  /// \see topologicalSort
  6.1238 +  /// \see dag
  6.1239 +  template <typename Digraph, typename NodeMap>
  6.1240 +  bool checkedTopologicalSort(const Digraph& graph, NodeMap& order) {
  6.1241 +    using namespace _topology_bits;
  6.1242 +
  6.1243 +    checkConcept<concepts::Digraph, Digraph>();
  6.1244 +    checkConcept<concepts::ReadWriteMap<typename Digraph::Node, int>,
  6.1245 +      NodeMap>();
  6.1246 +
  6.1247 +    typedef typename Digraph::Node Node;
  6.1248 +    typedef typename Digraph::NodeIt NodeIt;
  6.1249 +    typedef typename Digraph::Arc Arc;
  6.1250 +
  6.1251 +    order = constMap<Node, int, -1>();
  6.1252 +
  6.1253 +    TopologicalSortVisitor<Digraph, NodeMap>
  6.1254 +      visitor(order, countNodes(graph));
  6.1255 +
  6.1256 +    DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> >
  6.1257 +      dfs(graph, visitor);
  6.1258 +
  6.1259 +    dfs.init();
  6.1260 +    for (NodeIt it(graph); it != INVALID; ++it) {
  6.1261 +      if (!dfs.reached(it)) {
  6.1262 +        dfs.addSource(it);
  6.1263 +        while (!dfs.emptyQueue()) {
  6.1264 +           Arc edge = dfs.nextArc();
  6.1265 +           Node target = graph.target(edge);
  6.1266 +           if (dfs.reached(target) && order[target] == -1) {
  6.1267 +             return false;
  6.1268 +           }
  6.1269 +           dfs.processNextArc();
  6.1270 +         }
  6.1271 +      }
  6.1272 +    }
  6.1273 +    return true;
  6.1274 +  }
  6.1275 +
  6.1276 +  /// \ingroup connectivity
  6.1277 +  ///
  6.1278 +  /// \brief Check that the given directed graph is a DAG.
  6.1279 +  ///
  6.1280 +  /// Check that the given directed graph is a DAG. The DAG is
  6.1281 +  /// an Directed Acyclic Digraph.
  6.1282 +  /// \return %False when the graph is not DAG.
  6.1283 +  /// \see acyclic
  6.1284 +  template <typename Digraph>
  6.1285 +  bool dag(const Digraph& graph) {
  6.1286 +
  6.1287 +    checkConcept<concepts::Digraph, Digraph>();
  6.1288 +
  6.1289 +    typedef typename Digraph::Node Node;
  6.1290 +    typedef typename Digraph::NodeIt NodeIt;
  6.1291 +    typedef typename Digraph::Arc Arc;
  6.1292 +
  6.1293 +    typedef typename Digraph::template NodeMap<bool> ProcessedMap;
  6.1294 +
  6.1295 +    typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>::
  6.1296 +      Create dfs(graph);
  6.1297 +
  6.1298 +    ProcessedMap processed(graph);
  6.1299 +    dfs.processedMap(processed);
  6.1300 +
  6.1301 +    dfs.init();
  6.1302 +    for (NodeIt it(graph); it != INVALID; ++it) {
  6.1303 +      if (!dfs.reached(it)) {
  6.1304 +        dfs.addSource(it);
  6.1305 +        while (!dfs.emptyQueue()) {
  6.1306 +          Arc edge = dfs.nextArc();
  6.1307 +          Node target = graph.target(edge);
  6.1308 +          if (dfs.reached(target) && !processed[target]) {
  6.1309 +            return false;
  6.1310 +          }
  6.1311 +          dfs.processNextArc();
  6.1312 +        }
  6.1313 +      }
  6.1314 +    }
  6.1315 +    return true;
  6.1316 +  }
  6.1317 +
  6.1318 +  /// \ingroup connectivity
  6.1319 +  ///
  6.1320 +  /// \brief Check that the given undirected graph is acyclic.
  6.1321 +  ///
  6.1322 +  /// Check that the given undirected graph acyclic.
  6.1323 +  /// \param graph The undirected graph.
  6.1324 +  /// \return %True when there is no circle in the graph.
  6.1325 +  /// \see dag
  6.1326 +  template <typename Graph>
  6.1327 +  bool acyclic(const Graph& graph) {
  6.1328 +    checkConcept<concepts::Graph, Graph>();
  6.1329 +    typedef typename Graph::Node Node;
  6.1330 +    typedef typename Graph::NodeIt NodeIt;
  6.1331 +    typedef typename Graph::Arc Arc;
  6.1332 +    Dfs<Graph> dfs(graph);
  6.1333 +    dfs.init();
  6.1334 +    for (NodeIt it(graph); it != INVALID; ++it) {
  6.1335 +      if (!dfs.reached(it)) {
  6.1336 +        dfs.addSource(it);
  6.1337 +        while (!dfs.emptyQueue()) {
  6.1338 +          Arc edge = dfs.nextArc();
  6.1339 +          Node source = graph.source(edge);
  6.1340 +          Node target = graph.target(edge);
  6.1341 +          if (dfs.reached(target) &&
  6.1342 +              dfs.predArc(source) != graph.oppositeArc(edge)) {
  6.1343 +            return false;
  6.1344 +          }
  6.1345 +          dfs.processNextArc();
  6.1346 +        }
  6.1347 +      }
  6.1348 +    }
  6.1349 +    return true;
  6.1350 +  }
  6.1351 +
  6.1352 +  /// \ingroup connectivity
  6.1353 +  ///
  6.1354 +  /// \brief Check that the given undirected graph is tree.
  6.1355 +  ///
  6.1356 +  /// Check that the given undirected graph is tree.
  6.1357 +  /// \param graph The undirected graph.
  6.1358 +  /// \return %True when the graph is acyclic and connected.
  6.1359 +  template <typename Graph>
  6.1360 +  bool tree(const Graph& graph) {
  6.1361 +    checkConcept<concepts::Graph, Graph>();
  6.1362 +    typedef typename Graph::Node Node;
  6.1363 +    typedef typename Graph::NodeIt NodeIt;
  6.1364 +    typedef typename Graph::Arc Arc;
  6.1365 +    Dfs<Graph> dfs(graph);
  6.1366 +    dfs.init();
  6.1367 +    dfs.addSource(NodeIt(graph));
  6.1368 +    while (!dfs.emptyQueue()) {
  6.1369 +      Arc edge = dfs.nextArc();
  6.1370 +      Node source = graph.source(edge);
  6.1371 +      Node target = graph.target(edge);
  6.1372 +      if (dfs.reached(target) &&
  6.1373 +          dfs.predArc(source) != graph.oppositeArc(edge)) {
  6.1374 +        return false;
  6.1375 +      }
  6.1376 +      dfs.processNextArc();
  6.1377 +    }
  6.1378 +    for (NodeIt it(graph); it != INVALID; ++it) {
  6.1379 +      if (!dfs.reached(it)) {
  6.1380 +        return false;
  6.1381 +      }
  6.1382 +    }
  6.1383 +    return true;
  6.1384 +  }
  6.1385 +
  6.1386 +  namespace _topology_bits {
  6.1387 +
  6.1388 +    template <typename Digraph>
  6.1389 +    class BipartiteVisitor : public BfsVisitor<Digraph> {
  6.1390 +    public:
  6.1391 +      typedef typename Digraph::Arc Arc;
  6.1392 +      typedef typename Digraph::Node Node;
  6.1393 +
  6.1394 +      BipartiteVisitor(const Digraph& graph, bool& bipartite)
  6.1395 +        : _graph(graph), _part(graph), _bipartite(bipartite) {}
  6.1396 +
  6.1397 +      void start(const Node& node) {
  6.1398 +        _part[node] = true;
  6.1399 +      }
  6.1400 +      void discover(const Arc& edge) {
  6.1401 +        _part.set(_graph.target(edge), !_part[_graph.source(edge)]);
  6.1402 +      }
  6.1403 +      void examine(const Arc& edge) {
  6.1404 +        _bipartite = _bipartite &&
  6.1405 +          _part[_graph.target(edge)] != _part[_graph.source(edge)];
  6.1406 +      }
  6.1407 +
  6.1408 +    private:
  6.1409 +
  6.1410 +      const Digraph& _graph;
  6.1411 +      typename Digraph::template NodeMap<bool> _part;
  6.1412 +      bool& _bipartite;
  6.1413 +    };
  6.1414 +
  6.1415 +    template <typename Digraph, typename PartMap>
  6.1416 +    class BipartitePartitionsVisitor : public BfsVisitor<Digraph> {
  6.1417 +    public:
  6.1418 +      typedef typename Digraph::Arc Arc;
  6.1419 +      typedef typename Digraph::Node Node;
  6.1420 +
  6.1421 +      BipartitePartitionsVisitor(const Digraph& graph,
  6.1422 +                                 PartMap& part, bool& bipartite)
  6.1423 +        : _graph(graph), _part(part), _bipartite(bipartite) {}
  6.1424 +
  6.1425 +      void start(const Node& node) {
  6.1426 +        _part.set(node, true);
  6.1427 +      }
  6.1428 +      void discover(const Arc& edge) {
  6.1429 +        _part.set(_graph.target(edge), !_part[_graph.source(edge)]);
  6.1430 +      }
  6.1431 +      void examine(const Arc& edge) {
  6.1432 +        _bipartite = _bipartite &&
  6.1433 +          _part[_graph.target(edge)] != _part[_graph.source(edge)];
  6.1434 +      }
  6.1435 +
  6.1436 +    private:
  6.1437 +
  6.1438 +      const Digraph& _graph;
  6.1439 +      PartMap& _part;
  6.1440 +      bool& _bipartite;
  6.1441 +    };
  6.1442 +  }
  6.1443 +
  6.1444 +  /// \ingroup connectivity
  6.1445 +  ///
  6.1446 +  /// \brief Check if the given undirected graph is bipartite or not
  6.1447 +  ///
  6.1448 +  /// The function checks if the given undirected \c graph graph is bipartite
  6.1449 +  /// or not. The \ref Bfs algorithm is used to calculate the result.
  6.1450 +  /// \param graph The undirected graph.
  6.1451 +  /// \return %True if \c graph is bipartite, %false otherwise.
  6.1452 +  /// \sa bipartitePartitions
  6.1453 +  template<typename Graph>
  6.1454 +  inline bool bipartite(const Graph &graph){
  6.1455 +    using namespace _topology_bits;
  6.1456 +
  6.1457 +    checkConcept<concepts::Graph, Graph>();
  6.1458 +
  6.1459 +    typedef typename Graph::NodeIt NodeIt;
  6.1460 +    typedef typename Graph::ArcIt ArcIt;
  6.1461 +
  6.1462 +    bool bipartite = true;
  6.1463 +
  6.1464 +    BipartiteVisitor<Graph>
  6.1465 +      visitor(graph, bipartite);
  6.1466 +    BfsVisit<Graph, BipartiteVisitor<Graph> >
  6.1467 +      bfs(graph, visitor);
  6.1468 +    bfs.init();
  6.1469 +    for(NodeIt it(graph); it != INVALID; ++it) {
  6.1470 +      if(!bfs.reached(it)){
  6.1471 +        bfs.addSource(it);
  6.1472 +        while (!bfs.emptyQueue()) {
  6.1473 +          bfs.processNextNode();
  6.1474 +          if (!bipartite) return false;
  6.1475 +        }
  6.1476 +      }
  6.1477 +    }
  6.1478 +    return true;
  6.1479 +  }
  6.1480 +
  6.1481 +  /// \ingroup connectivity
  6.1482 +  ///
  6.1483 +  /// \brief Check if the given undirected graph is bipartite or not
  6.1484 +  ///
  6.1485 +  /// The function checks if the given undirected graph is bipartite
  6.1486 +  /// or not. The  \ref  Bfs  algorithm  is   used  to  calculate the result.
  6.1487 +  /// During the execution, the \c partMap will be set as the two
  6.1488 +  /// partitions of the graph.
  6.1489 +  /// \param graph The undirected graph.
  6.1490 +  /// \retval partMap A writable bool map of nodes. It will be set as the
  6.1491 +  /// two partitions of the graph.
  6.1492 +  /// \return %True if \c graph is bipartite, %false otherwise.
  6.1493 +  template<typename Graph, typename NodeMap>
  6.1494 +  inline bool bipartitePartitions(const Graph &graph, NodeMap &partMap){
  6.1495 +    using namespace _topology_bits;
  6.1496 +
  6.1497 +    checkConcept<concepts::Graph, Graph>();
  6.1498 +
  6.1499 +    typedef typename Graph::Node Node;
  6.1500 +    typedef typename Graph::NodeIt NodeIt;
  6.1501 +    typedef typename Graph::ArcIt ArcIt;
  6.1502 +
  6.1503 +    bool bipartite = true;
  6.1504 +
  6.1505 +    BipartitePartitionsVisitor<Graph, NodeMap>
  6.1506 +      visitor(graph, partMap, bipartite);
  6.1507 +    BfsVisit<Graph, BipartitePartitionsVisitor<Graph, NodeMap> >
  6.1508 +      bfs(graph, visitor);
  6.1509 +    bfs.init();
  6.1510 +    for(NodeIt it(graph); it != INVALID; ++it) {
  6.1511 +      if(!bfs.reached(it)){
  6.1512 +        bfs.addSource(it);
  6.1513 +        while (!bfs.emptyQueue()) {
  6.1514 +          bfs.processNextNode();
  6.1515 +          if (!bipartite) return false;
  6.1516 +        }
  6.1517 +      }
  6.1518 +    }
  6.1519 +    return true;
  6.1520 +  }
  6.1521 +
  6.1522 +  /// \brief Returns true when there are not loop edges in the graph.
  6.1523 +  ///
  6.1524 +  /// Returns true when there are not loop edges in the graph.
  6.1525 +  template <typename Digraph>
  6.1526 +  bool loopFree(const Digraph& graph) {
  6.1527 +    for (typename Digraph::ArcIt it(graph); it != INVALID; ++it) {
  6.1528 +      if (graph.source(it) == graph.target(it)) return false;
  6.1529 +    }
  6.1530 +    return true;
  6.1531 +  }
  6.1532 +
  6.1533 +  /// \brief Returns true when there are not parallel edges in the graph.
  6.1534 +  ///
  6.1535 +  /// Returns true when there are not parallel edges in the graph.
  6.1536 +  template <typename Digraph>
  6.1537 +  bool parallelFree(const Digraph& graph) {
  6.1538 +    typename Digraph::template NodeMap<bool> reached(graph, false);
  6.1539 +    for (typename Digraph::NodeIt n(graph); n != INVALID; ++n) {
  6.1540 +      for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) {
  6.1541 +        if (reached[graph.target(e)]) return false;
  6.1542 +        reached.set(graph.target(e), true);
  6.1543 +      }
  6.1544 +      for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) {
  6.1545 +        reached.set(graph.target(e), false);
  6.1546 +      }
  6.1547 +    }
  6.1548 +    return true;
  6.1549 +  }
  6.1550 +
  6.1551 +  /// \brief Returns true when there are not loop edges and parallel
  6.1552 +  /// edges in the graph.
  6.1553 +  ///
  6.1554 +  /// Returns true when there are not loop edges and parallel edges in
  6.1555 +  /// the graph.
  6.1556 +  template <typename Digraph>
  6.1557 +  bool simpleDigraph(const Digraph& graph) {
  6.1558 +    typename Digraph::template NodeMap<bool> reached(graph, false);
  6.1559 +    for (typename Digraph::NodeIt n(graph); n != INVALID; ++n) {
  6.1560 +      reached.set(n, true);
  6.1561 +      for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) {
  6.1562 +        if (reached[graph.target(e)]) return false;
  6.1563 +        reached.set(graph.target(e), true);
  6.1564 +      }
  6.1565 +      for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) {
  6.1566 +        reached.set(graph.target(e), false);
  6.1567 +      }
  6.1568 +      reached.set(n, false);
  6.1569 +    }
  6.1570 +    return true;
  6.1571 +  }
  6.1572 +
  6.1573 +} //namespace lemon
  6.1574 +
  6.1575 +#endif //LEMON_TOPOLOGY_H
     7.1 --- a/test/Makefile.am	Tue Dec 02 11:01:48 2008 +0000
     7.2 +++ b/test/Makefile.am	Tue Dec 02 15:33:22 2008 +0000
     7.3 @@ -16,6 +16,7 @@
     7.4  	test/dijkstra_test \
     7.5          test/dim_test \
     7.6  	test/error_test \
     7.7 +	test/graph_adaptor_test \
     7.8  	test/graph_copy_test \
     7.9  	test/graph_test \
    7.10  	test/graph_utils_test \
    7.11 @@ -44,6 +45,7 @@
    7.12  test_dijkstra_test_SOURCES = test/dijkstra_test.cc
    7.13  test_dim_test_SOURCES = test/dim_test.cc
    7.14  test_error_test_SOURCES = test/error_test.cc
    7.15 +test_graph_adaptor_test_SOURCES = test/graph_adaptor_test.cc
    7.16  test_graph_copy_test_SOURCES = test/graph_copy_test.cc
    7.17  test_graph_test_SOURCES = test/graph_test.cc
    7.18  test_graph_utils_test_SOURCES = test/graph_utils_test.cc
     8.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     8.2 +++ b/test/graph_adaptor_test.cc	Tue Dec 02 15:33:22 2008 +0000
     8.3 @@ -0,0 +1,984 @@
     8.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     8.5 + *
     8.6 + * This file is a part of LEMON, a generic C++ optimization library.
     8.7 + *
     8.8 + * Copyright (C) 2003-2008
     8.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    8.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    8.11 + *
    8.12 + * Permission to use, modify and distribute this software is granted
    8.13 + * provided that this copyright notice appears in all copies. For
    8.14 + * precise terms see the accompanying LICENSE file.
    8.15 + *
    8.16 + * This software is provided "AS IS" with no warranty of any kind,
    8.17 + * express or implied, and with no claim as to its suitability for any
    8.18 + * purpose.
    8.19 + *
    8.20 + */
    8.21 +
    8.22 +#include<iostream>
    8.23 +#include<lemon/concept_check.h>
    8.24 +
    8.25 +#include<lemon/list_graph.h>
    8.26 +#include<lemon/smart_graph.h>
    8.27 +
    8.28 +#include<lemon/concepts/digraph.h>
    8.29 +#include<lemon/concepts/graph.h>
    8.30 +
    8.31 +#include<lemon/adaptors.h>
    8.32 +
    8.33 +#include <limits>
    8.34 +#include <lemon/bfs.h>
    8.35 +#include <lemon/path.h>
    8.36 +
    8.37 +#include"test/test_tools.h"
    8.38 +#include"test/graph_test.h"
    8.39 +
    8.40 +using namespace lemon;
    8.41 +
    8.42 +void checkReverseDigraph() {
    8.43 +  checkConcept<concepts::Digraph, ReverseDigraph<concepts::Digraph> >();
    8.44 +
    8.45 +  typedef ListDigraph Digraph;
    8.46 +  typedef ReverseDigraph<Digraph> Adaptor;
    8.47 +
    8.48 +  Digraph digraph;
    8.49 +  Adaptor adaptor(digraph);
    8.50 +
    8.51 +  Digraph::Node n1 = digraph.addNode();
    8.52 +  Digraph::Node n2 = digraph.addNode();
    8.53 +  Digraph::Node n3 = digraph.addNode();
    8.54 +
    8.55 +  Digraph::Arc a1 = digraph.addArc(n1, n2);
    8.56 +  Digraph::Arc a2 = digraph.addArc(n1, n3);
    8.57 +  Digraph::Arc a3 = digraph.addArc(n2, n3);
    8.58 +
    8.59 +  checkGraphNodeList(adaptor, 3);
    8.60 +  checkGraphArcList(adaptor, 3);
    8.61 +  checkGraphConArcList(adaptor, 3);
    8.62 +
    8.63 +  checkGraphOutArcList(adaptor, n1, 0);
    8.64 +  checkGraphOutArcList(adaptor, n2, 1);
    8.65 +  checkGraphOutArcList(adaptor, n3, 2);
    8.66 +
    8.67 +  checkGraphInArcList(adaptor, n1, 2);
    8.68 +  checkGraphInArcList(adaptor, n2, 1);
    8.69 +  checkGraphInArcList(adaptor, n3, 0);
    8.70 +
    8.71 +  checkNodeIds(adaptor);
    8.72 +  checkArcIds(adaptor);
    8.73 +
    8.74 +  checkGraphNodeMap(adaptor);
    8.75 +  checkGraphArcMap(adaptor);
    8.76 +
    8.77 +  for (Adaptor::ArcIt a(adaptor); a != INVALID; ++a) {
    8.78 +    check(adaptor.source(a) == digraph.target(a), "Wrong reverse");
    8.79 +    check(adaptor.target(a) == digraph.source(a), "Wrong reverse");
    8.80 +  }
    8.81 +}
    8.82 +
    8.83 +void checkSubDigraph() {
    8.84 +  checkConcept<concepts::Digraph,
    8.85 +    SubDigraph<concepts::Digraph,
    8.86 +    concepts::Digraph::NodeMap<bool>,
    8.87 +    concepts::Digraph::ArcMap<bool> > >();
    8.88 +
    8.89 +  typedef ListDigraph Digraph;
    8.90 +  typedef Digraph::NodeMap<bool> NodeFilter;
    8.91 +  typedef Digraph::ArcMap<bool> ArcFilter;
    8.92 +  typedef SubDigraph<Digraph, NodeFilter, ArcFilter> Adaptor;
    8.93 +
    8.94 +  Digraph digraph;
    8.95 +  NodeFilter node_filter(digraph);
    8.96 +  ArcFilter arc_filter(digraph);
    8.97 +  Adaptor adaptor(digraph, node_filter, arc_filter);
    8.98 +
    8.99 +  Digraph::Node n1 = digraph.addNode();
   8.100 +  Digraph::Node n2 = digraph.addNode();
   8.101 +  Digraph::Node n3 = digraph.addNode();
   8.102 +
   8.103 +  Digraph::Arc a1 = digraph.addArc(n1, n2);
   8.104 +  Digraph::Arc a2 = digraph.addArc(n1, n3);
   8.105 +  Digraph::Arc a3 = digraph.addArc(n2, n3);
   8.106 +
   8.107 +  node_filter[n1] = node_filter[n2] = node_filter[n3] = true;
   8.108 +  arc_filter[a1] = arc_filter[a2] = arc_filter[a3] = true;
   8.109 +  
   8.110 +  checkGraphNodeList(adaptor, 3);
   8.111 +  checkGraphArcList(adaptor, 3);
   8.112 +  checkGraphConArcList(adaptor, 3);
   8.113 +
   8.114 +  checkGraphOutArcList(adaptor, n1, 2);
   8.115 +  checkGraphOutArcList(adaptor, n2, 1);
   8.116 +  checkGraphOutArcList(adaptor, n3, 0);
   8.117 +
   8.118 +  checkGraphInArcList(adaptor, n1, 0);
   8.119 +  checkGraphInArcList(adaptor, n2, 1);
   8.120 +  checkGraphInArcList(adaptor, n3, 2);
   8.121 +
   8.122 +  checkNodeIds(adaptor);
   8.123 +  checkArcIds(adaptor);
   8.124 +
   8.125 +  checkGraphNodeMap(adaptor);
   8.126 +  checkGraphArcMap(adaptor);
   8.127 +
   8.128 +  arc_filter[a2] = false;
   8.129 +
   8.130 +  checkGraphNodeList(adaptor, 3);
   8.131 +  checkGraphArcList(adaptor, 2);
   8.132 +  checkGraphConArcList(adaptor, 2);
   8.133 +
   8.134 +  checkGraphOutArcList(adaptor, n1, 1);
   8.135 +  checkGraphOutArcList(adaptor, n2, 1);
   8.136 +  checkGraphOutArcList(adaptor, n3, 0);
   8.137 +
   8.138 +  checkGraphInArcList(adaptor, n1, 0);
   8.139 +  checkGraphInArcList(adaptor, n2, 1);
   8.140 +  checkGraphInArcList(adaptor, n3, 1);
   8.141 +
   8.142 +  checkNodeIds(adaptor);
   8.143 +  checkArcIds(adaptor);
   8.144 +
   8.145 +  checkGraphNodeMap(adaptor);
   8.146 +  checkGraphArcMap(adaptor);
   8.147 +
   8.148 +  node_filter[n1] = false;
   8.149 +
   8.150 +  checkGraphNodeList(adaptor, 2);
   8.151 +  checkGraphArcList(adaptor, 1);
   8.152 +  checkGraphConArcList(adaptor, 1);
   8.153 +
   8.154 +  checkGraphOutArcList(adaptor, n2, 1);
   8.155 +  checkGraphOutArcList(adaptor, n3, 0);
   8.156 +
   8.157 +  checkGraphInArcList(adaptor, n2, 0);
   8.158 +  checkGraphInArcList(adaptor, n3, 1);
   8.159 +
   8.160 +  checkNodeIds(adaptor);
   8.161 +  checkArcIds(adaptor);
   8.162 +
   8.163 +  checkGraphNodeMap(adaptor);
   8.164 +  checkGraphArcMap(adaptor);
   8.165 +
   8.166 +  node_filter[n1] = node_filter[n2] = node_filter[n3] = false;
   8.167 +  arc_filter[a1] = arc_filter[a2] = arc_filter[a3] = false;
   8.168 +
   8.169 +  checkGraphNodeList(adaptor, 0);
   8.170 +  checkGraphArcList(adaptor, 0);
   8.171 +  checkGraphConArcList(adaptor, 0);
   8.172 +
   8.173 +  checkNodeIds(adaptor);
   8.174 +  checkArcIds(adaptor);
   8.175 +
   8.176 +  checkGraphNodeMap(adaptor);
   8.177 +  checkGraphArcMap(adaptor);
   8.178 +}
   8.179 +
   8.180 +void checkFilterNodes1() {
   8.181 +  checkConcept<concepts::Digraph,
   8.182 +    FilterNodes<concepts::Digraph,
   8.183 +      concepts::Digraph::NodeMap<bool> > >();
   8.184 +
   8.185 +  typedef ListDigraph Digraph;
   8.186 +  typedef Digraph::NodeMap<bool> NodeFilter;
   8.187 +  typedef FilterNodes<Digraph, NodeFilter> Adaptor;
   8.188 +
   8.189 +  Digraph digraph;
   8.190 +  NodeFilter node_filter(digraph);
   8.191 +  Adaptor adaptor(digraph, node_filter);
   8.192 +
   8.193 +  Digraph::Node n1 = digraph.addNode();
   8.194 +  Digraph::Node n2 = digraph.addNode();
   8.195 +  Digraph::Node n3 = digraph.addNode();
   8.196 +
   8.197 +  Digraph::Arc a1 = digraph.addArc(n1, n2);
   8.198 +  Digraph::Arc a2 = digraph.addArc(n1, n3);
   8.199 +  Digraph::Arc a3 = digraph.addArc(n2, n3);
   8.200 +
   8.201 +  node_filter[n1] = node_filter[n2] = node_filter[n3] = true;
   8.202 +  
   8.203 +  checkGraphNodeList(adaptor, 3);
   8.204 +  checkGraphArcList(adaptor, 3);
   8.205 +  checkGraphConArcList(adaptor, 3);
   8.206 +
   8.207 +  checkGraphOutArcList(adaptor, n1, 2);
   8.208 +  checkGraphOutArcList(adaptor, n2, 1);
   8.209 +  checkGraphOutArcList(adaptor, n3, 0);
   8.210 +
   8.211 +  checkGraphInArcList(adaptor, n1, 0);
   8.212 +  checkGraphInArcList(adaptor, n2, 1);
   8.213 +  checkGraphInArcList(adaptor, n3, 2);
   8.214 +
   8.215 +  checkNodeIds(adaptor);
   8.216 +  checkArcIds(adaptor);
   8.217 +
   8.218 +  checkGraphNodeMap(adaptor);
   8.219 +  checkGraphArcMap(adaptor);
   8.220 +
   8.221 +  node_filter[n1] = false;
   8.222 +
   8.223 +  checkGraphNodeList(adaptor, 2);
   8.224 +  checkGraphArcList(adaptor, 1);
   8.225 +  checkGraphConArcList(adaptor, 1);
   8.226 +
   8.227 +  checkGraphOutArcList(adaptor, n2, 1);
   8.228 +  checkGraphOutArcList(adaptor, n3, 0);
   8.229 +
   8.230 +  checkGraphInArcList(adaptor, n2, 0);
   8.231 +  checkGraphInArcList(adaptor, n3, 1);
   8.232 +
   8.233 +  checkNodeIds(adaptor);
   8.234 +  checkArcIds(adaptor);
   8.235 +
   8.236 +  checkGraphNodeMap(adaptor);
   8.237 +  checkGraphArcMap(adaptor);
   8.238 +
   8.239 +  node_filter[n1] = node_filter[n2] = node_filter[n3] = false;
   8.240 +
   8.241 +  checkGraphNodeList(adaptor, 0);
   8.242 +  checkGraphArcList(adaptor, 0);
   8.243 +  checkGraphConArcList(adaptor, 0);
   8.244 +
   8.245 +  checkNodeIds(adaptor);
   8.246 +  checkArcIds(adaptor);
   8.247 +
   8.248 +  checkGraphNodeMap(adaptor);
   8.249 +  checkGraphArcMap(adaptor);
   8.250 +}
   8.251 +
   8.252 +void checkFilterArcs() {
   8.253 +  checkConcept<concepts::Digraph,
   8.254 +    FilterArcs<concepts::Digraph,
   8.255 +    concepts::Digraph::ArcMap<bool> > >();
   8.256 +
   8.257 +  typedef ListDigraph Digraph;
   8.258 +  typedef Digraph::ArcMap<bool> ArcFilter;
   8.259 +  typedef FilterArcs<Digraph, ArcFilter> Adaptor;
   8.260 +
   8.261 +  Digraph digraph;
   8.262 +  ArcFilter arc_filter(digraph);
   8.263 +  Adaptor adaptor(digraph, arc_filter);
   8.264 +
   8.265 +  Digraph::Node n1 = digraph.addNode();
   8.266 +  Digraph::Node n2 = digraph.addNode();
   8.267 +  Digraph::Node n3 = digraph.addNode();
   8.268 +
   8.269 +  Digraph::Arc a1 = digraph.addArc(n1, n2);
   8.270 +  Digraph::Arc a2 = digraph.addArc(n1, n3);
   8.271 +  Digraph::Arc a3 = digraph.addArc(n2, n3);
   8.272 +
   8.273 +  arc_filter[a1] = arc_filter[a2] = arc_filter[a3] = true;
   8.274 +  
   8.275 +  checkGraphNodeList(adaptor, 3);
   8.276 +  checkGraphArcList(adaptor, 3);
   8.277 +  checkGraphConArcList(adaptor, 3);
   8.278 +
   8.279 +  checkGraphOutArcList(adaptor, n1, 2);
   8.280 +  checkGraphOutArcList(adaptor, n2, 1);
   8.281 +  checkGraphOutArcList(adaptor, n3, 0);
   8.282 +
   8.283 +  checkGraphInArcList(adaptor, n1, 0);
   8.284 +  checkGraphInArcList(adaptor, n2, 1);
   8.285 +  checkGraphInArcList(adaptor, n3, 2);
   8.286 +
   8.287 +  checkNodeIds(adaptor);
   8.288 +  checkArcIds(adaptor);
   8.289 +
   8.290 +  checkGraphNodeMap(adaptor);
   8.291 +  checkGraphArcMap(adaptor);
   8.292 +
   8.293 +  arc_filter[a2] = false;
   8.294 +
   8.295 +  checkGraphNodeList(adaptor, 3);
   8.296 +  checkGraphArcList(adaptor, 2);
   8.297 +  checkGraphConArcList(adaptor, 2);
   8.298 +
   8.299 +  checkGraphOutArcList(adaptor, n1, 1);
   8.300 +  checkGraphOutArcList(adaptor, n2, 1);
   8.301 +  checkGraphOutArcList(adaptor, n3, 0);
   8.302 +
   8.303 +  checkGraphInArcList(adaptor, n1, 0);
   8.304 +  checkGraphInArcList(adaptor, n2, 1);
   8.305 +  checkGraphInArcList(adaptor, n3, 1);
   8.306 +
   8.307 +  checkNodeIds(adaptor);
   8.308 +  checkArcIds(adaptor);
   8.309 +
   8.310 +  checkGraphNodeMap(adaptor);
   8.311 +  checkGraphArcMap(adaptor);
   8.312 +
   8.313 +  arc_filter[a1] = arc_filter[a2] = arc_filter[a3] = false;
   8.314 +
   8.315 +  checkGraphNodeList(adaptor, 3);
   8.316 +  checkGraphArcList(adaptor, 0);
   8.317 +  checkGraphConArcList(adaptor, 0);
   8.318 +
   8.319 +  checkNodeIds(adaptor);
   8.320 +  checkArcIds(adaptor);
   8.321 +
   8.322 +  checkGraphNodeMap(adaptor);
   8.323 +  checkGraphArcMap(adaptor);
   8.324 +}
   8.325 +
   8.326 +void checkUndirector() {
   8.327 +  checkConcept<concepts::Graph, Undirector<concepts::Digraph> >();
   8.328 +
   8.329 +  typedef ListDigraph Digraph;
   8.330 +  typedef Undirector<Digraph> Adaptor;
   8.331 +
   8.332 +  Digraph digraph;
   8.333 +  Adaptor adaptor(digraph);
   8.334 +
   8.335 +  Digraph::Node n1 = digraph.addNode();
   8.336 +  Digraph::Node n2 = digraph.addNode();
   8.337 +  Digraph::Node n3 = digraph.addNode();
   8.338 +
   8.339 +  Digraph::Arc a1 = digraph.addArc(n1, n2);
   8.340 +  Digraph::Arc a2 = digraph.addArc(n1, n3);
   8.341 +  Digraph::Arc a3 = digraph.addArc(n2, n3);
   8.342 +
   8.343 +  checkGraphNodeList(adaptor, 3);
   8.344 +  checkGraphArcList(adaptor, 6);
   8.345 +  checkGraphEdgeList(adaptor, 3);
   8.346 +  checkGraphConArcList(adaptor, 6);
   8.347 +  checkGraphConEdgeList(adaptor, 3);
   8.348 +
   8.349 +  checkGraphOutArcList(adaptor, n1, 2);
   8.350 +  checkGraphOutArcList(adaptor, n2, 2);
   8.351 +  checkGraphOutArcList(adaptor, n3, 2);
   8.352 +
   8.353 +  checkGraphInArcList(adaptor, n1, 2);
   8.354 +  checkGraphInArcList(adaptor, n2, 2);
   8.355 +  checkGraphInArcList(adaptor, n3, 2);
   8.356 +
   8.357 +  checkGraphIncEdgeList(adaptor, n1, 2);
   8.358 +  checkGraphIncEdgeList(adaptor, n2, 2);
   8.359 +  checkGraphIncEdgeList(adaptor, n3, 2);
   8.360 +
   8.361 +  checkNodeIds(adaptor);
   8.362 +  checkArcIds(adaptor);
   8.363 +  checkEdgeIds(adaptor);
   8.364 +
   8.365 +  checkGraphNodeMap(adaptor);
   8.366 +  checkGraphArcMap(adaptor);
   8.367 +  checkGraphEdgeMap(adaptor);
   8.368 +
   8.369 +  for (Adaptor::EdgeIt e(adaptor); e != INVALID; ++e) {
   8.370 +    check(adaptor.u(e) == digraph.source(e), "Wrong undir");
   8.371 +    check(adaptor.v(e) == digraph.target(e), "Wrong undir");
   8.372 +  }
   8.373 +
   8.374 +}
   8.375 +
   8.376 +void checkResidual() {
   8.377 +  checkConcept<concepts::Digraph,
   8.378 +    Residual<concepts::Digraph,
   8.379 +    concepts::Digraph::ArcMap<int>,
   8.380 +    concepts::Digraph::ArcMap<int> > >();
   8.381 +
   8.382 +  typedef ListDigraph Digraph;
   8.383 +  typedef Digraph::ArcMap<int> IntArcMap;
   8.384 +  typedef Residual<Digraph, IntArcMap> Adaptor;
   8.385 +
   8.386 +  Digraph digraph;
   8.387 +  IntArcMap capacity(digraph), flow(digraph);
   8.388 +  Adaptor adaptor(digraph, capacity, flow);
   8.389 +
   8.390 +  Digraph::Node n1 = digraph.addNode();
   8.391 +  Digraph::Node n2 = digraph.addNode();
   8.392 +  Digraph::Node n3 = digraph.addNode();
   8.393 +  Digraph::Node n4 = digraph.addNode();
   8.394 +
   8.395 +  Digraph::Arc a1 = digraph.addArc(n1, n2);
   8.396 +  Digraph::Arc a2 = digraph.addArc(n1, n3);
   8.397 +  Digraph::Arc a3 = digraph.addArc(n1, n4);
   8.398 +  Digraph::Arc a4 = digraph.addArc(n2, n3);
   8.399 +  Digraph::Arc a5 = digraph.addArc(n2, n4);
   8.400 +  Digraph::Arc a6 = digraph.addArc(n3, n4);
   8.401 +
   8.402 +  capacity[a1] = 8;
   8.403 +  capacity[a2] = 6;
   8.404 +  capacity[a3] = 4;
   8.405 +  capacity[a4] = 4;
   8.406 +  capacity[a5] = 6;
   8.407 +  capacity[a6] = 10;
   8.408 +
   8.409 +  for (Adaptor::ArcIt a(adaptor); a != INVALID; ++a) {
   8.410 +    flow[a] = 0;
   8.411 +  }
   8.412 +
   8.413 +  checkGraphNodeList(adaptor, 4);
   8.414 +  checkGraphArcList(adaptor, 6);
   8.415 +  checkGraphConArcList(adaptor, 6);
   8.416 +
   8.417 +  checkGraphOutArcList(adaptor, n1, 3);
   8.418 +  checkGraphOutArcList(adaptor, n2, 2);
   8.419 +  checkGraphOutArcList(adaptor, n3, 1);
   8.420 +  checkGraphOutArcList(adaptor, n4, 0);
   8.421 +
   8.422 +  checkGraphInArcList(adaptor, n1, 0);
   8.423 +  checkGraphInArcList(adaptor, n2, 1);
   8.424 +  checkGraphInArcList(adaptor, n3, 2);
   8.425 +  checkGraphInArcList(adaptor, n4, 3);
   8.426 +
   8.427 +  for (Adaptor::ArcIt a(adaptor); a != INVALID; ++a) {
   8.428 +    flow[a] = capacity[a] / 2;
   8.429 +  }
   8.430 +
   8.431 +  checkGraphNodeList(adaptor, 4);
   8.432 +  checkGraphArcList(adaptor, 12);
   8.433 +  checkGraphConArcList(adaptor, 12);
   8.434 +
   8.435 +  checkGraphOutArcList(adaptor, n1, 3);
   8.436 +  checkGraphOutArcList(adaptor, n2, 3);
   8.437 +  checkGraphOutArcList(adaptor, n3, 3);
   8.438 +  checkGraphOutArcList(adaptor, n4, 3);
   8.439 +
   8.440 +  checkGraphInArcList(adaptor, n1, 3);
   8.441 +  checkGraphInArcList(adaptor, n2, 3);
   8.442 +  checkGraphInArcList(adaptor, n3, 3);
   8.443 +  checkGraphInArcList(adaptor, n4, 3);
   8.444 +
   8.445 +  checkNodeIds(adaptor);
   8.446 +  checkArcIds(adaptor);
   8.447 +
   8.448 +  checkGraphNodeMap(adaptor);
   8.449 +  checkGraphArcMap(adaptor);
   8.450 +
   8.451 +  for (Adaptor::ArcIt a(adaptor); a != INVALID; ++a) {
   8.452 +    flow[a] = capacity[a];
   8.453 +  }
   8.454 +
   8.455 +  checkGraphNodeList(adaptor, 4);
   8.456 +  checkGraphArcList(adaptor, 6);
   8.457 +  checkGraphConArcList(adaptor, 6);
   8.458 +
   8.459 +  checkGraphOutArcList(adaptor, n1, 0);
   8.460 +  checkGraphOutArcList(adaptor, n2, 1);
   8.461 +  checkGraphOutArcList(adaptor, n3, 2);
   8.462 +  checkGraphOutArcList(adaptor, n4, 3);
   8.463 +
   8.464 +  checkGraphInArcList(adaptor, n1, 3);
   8.465 +  checkGraphInArcList(adaptor, n2, 2);
   8.466 +  checkGraphInArcList(adaptor, n3, 1);
   8.467 +  checkGraphInArcList(adaptor, n4, 0);
   8.468 +
   8.469 +  for (Adaptor::ArcIt a(adaptor); a != INVALID; ++a) {
   8.470 +    flow[a] = 0;
   8.471 +  }
   8.472 +
   8.473 +  int flow_value = 0;
   8.474 +  while (true) {
   8.475 +
   8.476 +    Bfs<Adaptor> bfs(adaptor);
   8.477 +    bfs.run(n1, n4);
   8.478 +
   8.479 +    if (!bfs.reached(n4)) break;
   8.480 +
   8.481 +    Path<Adaptor> p = bfs.path(n4);
   8.482 +
   8.483 +    int min = std::numeric_limits<int>::max();
   8.484 +    for (Path<Adaptor>::ArcIt a(p); a != INVALID; ++a) {
   8.485 +      if (adaptor.residualCapacity(a) < min)
   8.486 +        min = adaptor.residualCapacity(a);
   8.487 +    }
   8.488 +
   8.489 +    for (Path<Adaptor>::ArcIt a(p); a != INVALID; ++a) {
   8.490 +      adaptor.augment(a, min);
   8.491 +    }
   8.492 +    flow_value += min;
   8.493 +  }
   8.494 +
   8.495 +  check(flow_value == 18, "Wrong flow with res graph adaptor");
   8.496 +
   8.497 +}
   8.498 +
   8.499 +void checkSplitNodes() {
   8.500 +  checkConcept<concepts::Digraph, SplitNodes<concepts::Digraph> >();
   8.501 +
   8.502 +  typedef ListDigraph Digraph;
   8.503 +  typedef SplitNodes<Digraph> Adaptor;
   8.504 +
   8.505 +  Digraph digraph;
   8.506 +  Adaptor adaptor(digraph);
   8.507 +
   8.508 +  Digraph::Node n1 = digraph.addNode();
   8.509 +  Digraph::Node n2 = digraph.addNode();
   8.510 +  Digraph::Node n3 = digraph.addNode();
   8.511 +
   8.512 +  Digraph::Arc a1 = digraph.addArc(n1, n2);
   8.513 +  Digraph::Arc a2 = digraph.addArc(n1, n3);
   8.514 +  Digraph::Arc a3 = digraph.addArc(n2, n3);
   8.515 +
   8.516 +  checkGraphNodeList(adaptor, 6);
   8.517 +  checkGraphArcList(adaptor, 6);
   8.518 +  checkGraphConArcList(adaptor, 6);
   8.519 +
   8.520 +  checkGraphOutArcList(adaptor, adaptor.inNode(n1), 1);
   8.521 +  checkGraphOutArcList(adaptor, adaptor.outNode(n1), 2);
   8.522 +  checkGraphOutArcList(adaptor, adaptor.inNode(n2), 1);
   8.523 +  checkGraphOutArcList(adaptor, adaptor.outNode(n2), 1);
   8.524 +  checkGraphOutArcList(adaptor, adaptor.inNode(n3), 1);
   8.525 +  checkGraphOutArcList(adaptor, adaptor.outNode(n3), 0);
   8.526 +
   8.527 +  checkGraphInArcList(adaptor, adaptor.inNode(n1), 0);
   8.528 +  checkGraphInArcList(adaptor, adaptor.outNode(n1), 1);
   8.529 +  checkGraphInArcList(adaptor, adaptor.inNode(n2), 1);
   8.530 +  checkGraphInArcList(adaptor, adaptor.outNode(n2), 1);
   8.531 +  checkGraphInArcList(adaptor, adaptor.inNode(n3), 2);
   8.532 +  checkGraphInArcList(adaptor, adaptor.outNode(n3), 1);
   8.533 +
   8.534 +  checkNodeIds(adaptor);
   8.535 +  checkArcIds(adaptor);
   8.536 +
   8.537 +  checkGraphNodeMap(adaptor);
   8.538 +  checkGraphArcMap(adaptor);
   8.539 +
   8.540 +  for (Adaptor::ArcIt a(adaptor); a != INVALID; ++a) {
   8.541 +    if (adaptor.origArc(a)) {
   8.542 +      Digraph::Arc oa = a;
   8.543 +      check(adaptor.source(a) == adaptor.outNode(digraph.source(oa)),
   8.544 +            "Wrong split");
   8.545 +      check(adaptor.target(a) == adaptor.inNode(digraph.target(oa)),
   8.546 +            "Wrong split");
   8.547 +    } else {
   8.548 +      Digraph::Node on = a;
   8.549 +      check(adaptor.source(a) == adaptor.inNode(on), "Wrong split");
   8.550 +      check(adaptor.target(a) == adaptor.outNode(on), "Wrong split");
   8.551 +    }
   8.552 +  }
   8.553 +}
   8.554 +
   8.555 +void checkSubGraph() {
   8.556 +  checkConcept<concepts::Graph,
   8.557 +    SubGraph<concepts::Graph,
   8.558 +    concepts::Graph::NodeMap<bool>,
   8.559 +    concepts::Graph::EdgeMap<bool> > >();
   8.560 +
   8.561 +  typedef ListGraph Graph;
   8.562 +  typedef Graph::NodeMap<bool> NodeFilter;
   8.563 +  typedef Graph::EdgeMap<bool> EdgeFilter;
   8.564 +  typedef SubGraph<Graph, NodeFilter, EdgeFilter> Adaptor;
   8.565 +
   8.566 +  Graph graph;
   8.567 +  NodeFilter node_filter(graph);
   8.568 +  EdgeFilter edge_filter(graph);
   8.569 +  Adaptor adaptor(graph, node_filter, edge_filter);
   8.570 +
   8.571 +  Graph::Node n1 = graph.addNode();
   8.572 +  Graph::Node n2 = graph.addNode();
   8.573 +  Graph::Node n3 = graph.addNode();
   8.574 +  Graph::Node n4 = graph.addNode();
   8.575 +
   8.576 +  Graph::Edge e1 = graph.addEdge(n1, n2);
   8.577 +  Graph::Edge e2 = graph.addEdge(n1, n3);
   8.578 +  Graph::Edge e3 = graph.addEdge(n2, n3);
   8.579 +  Graph::Edge e4 = graph.addEdge(n3, n4);
   8.580 +
   8.581 +  node_filter[n1] = node_filter[n2] = node_filter[n3] = node_filter[n4] = true;
   8.582 +  edge_filter[e1] = edge_filter[e2] = edge_filter[e3] = edge_filter[e4] = true;
   8.583 +  
   8.584 +  checkGraphNodeList(adaptor, 4);
   8.585 +  checkGraphArcList(adaptor, 8);
   8.586 +  checkGraphEdgeList(adaptor, 4);
   8.587 +  checkGraphConArcList(adaptor, 8);
   8.588 +  checkGraphConEdgeList(adaptor, 4);
   8.589 +
   8.590 +  checkGraphOutArcList(adaptor, n1, 2);
   8.591 +  checkGraphOutArcList(adaptor, n2, 2);
   8.592 +  checkGraphOutArcList(adaptor, n3, 3);
   8.593 +  checkGraphOutArcList(adaptor, n4, 1);
   8.594 +
   8.595 +  checkGraphInArcList(adaptor, n1, 2);
   8.596 +  checkGraphInArcList(adaptor, n2, 2);
   8.597 +  checkGraphInArcList(adaptor, n3, 3);
   8.598 +  checkGraphInArcList(adaptor, n4, 1);
   8.599 +
   8.600 +  checkGraphIncEdgeList(adaptor, n1, 2);
   8.601 +  checkGraphIncEdgeList(adaptor, n2, 2);
   8.602 +  checkGraphIncEdgeList(adaptor, n3, 3);
   8.603 +  checkGraphIncEdgeList(adaptor, n4, 1);
   8.604 +
   8.605 +  checkNodeIds(adaptor);
   8.606 +  checkArcIds(adaptor);
   8.607 +  checkEdgeIds(adaptor);
   8.608 +
   8.609 +  checkGraphNodeMap(adaptor);
   8.610 +  checkGraphArcMap(adaptor);
   8.611 +  checkGraphEdgeMap(adaptor);
   8.612 +
   8.613 +  edge_filter[e2] = false;
   8.614 +
   8.615 +  checkGraphNodeList(adaptor, 4);
   8.616 +  checkGraphArcList(adaptor, 6);
   8.617 +  checkGraphEdgeList(adaptor, 3);
   8.618 +  checkGraphConArcList(adaptor, 6);
   8.619 +  checkGraphConEdgeList(adaptor, 3);
   8.620 +
   8.621 +  checkGraphOutArcList(adaptor, n1, 1);
   8.622 +  checkGraphOutArcList(adaptor, n2, 2);
   8.623 +  checkGraphOutArcList(adaptor, n3, 2);
   8.624 +  checkGraphOutArcList(adaptor, n4, 1);
   8.625 +
   8.626 +  checkGraphInArcList(adaptor, n1, 1);
   8.627 +  checkGraphInArcList(adaptor, n2, 2);
   8.628 +  checkGraphInArcList(adaptor, n3, 2);
   8.629 +  checkGraphInArcList(adaptor, n4, 1);
   8.630 +
   8.631 +  checkGraphIncEdgeList(adaptor, n1, 1);
   8.632 +  checkGraphIncEdgeList(adaptor, n2, 2);
   8.633 +  checkGraphIncEdgeList(adaptor, n3, 2);
   8.634 +  checkGraphIncEdgeList(adaptor, n4, 1);
   8.635 +
   8.636 +  checkNodeIds(adaptor);
   8.637 +  checkArcIds(adaptor);
   8.638 +  checkEdgeIds(adaptor);
   8.639 +
   8.640 +  checkGraphNodeMap(adaptor);
   8.641 +  checkGraphArcMap(adaptor);
   8.642 +  checkGraphEdgeMap(adaptor);
   8.643 +
   8.644 +  node_filter[n1] = false;
   8.645 +
   8.646 +  checkGraphNodeList(adaptor, 3);
   8.647 +  checkGraphArcList(adaptor, 4);
   8.648 +  checkGraphEdgeList(adaptor, 2);
   8.649 +  checkGraphConArcList(adaptor, 4);
   8.650 +  checkGraphConEdgeList(adaptor, 2);
   8.651 +
   8.652 +  checkGraphOutArcList(adaptor, n2, 1);
   8.653 +  checkGraphOutArcList(adaptor, n3, 2);
   8.654 +  checkGraphOutArcList(adaptor, n4, 1);
   8.655 +
   8.656 +  checkGraphInArcList(adaptor, n2, 1);
   8.657 +  checkGraphInArcList(adaptor, n3, 2);
   8.658 +  checkGraphInArcList(adaptor, n4, 1);
   8.659 +
   8.660 +  checkGraphIncEdgeList(adaptor, n2, 1);
   8.661 +  checkGraphIncEdgeList(adaptor, n3, 2);
   8.662 +  checkGraphIncEdgeList(adaptor, n4, 1);
   8.663 +
   8.664 +  checkNodeIds(adaptor);
   8.665 +  checkArcIds(adaptor);
   8.666 +  checkEdgeIds(adaptor);
   8.667 +
   8.668 +  checkGraphNodeMap(adaptor);
   8.669 +  checkGraphArcMap(adaptor);
   8.670 +  checkGraphEdgeMap(adaptor);
   8.671 +
   8.672 +  node_filter[n1] = node_filter[n2] = node_filter[n3] = node_filter[n4] = false;
   8.673 +  edge_filter[e1] = edge_filter[e2] = edge_filter[e3] = edge_filter[e4] = false;
   8.674 +
   8.675 +  checkGraphNodeList(adaptor, 0);
   8.676 +  checkGraphArcList(adaptor, 0);
   8.677 +  checkGraphEdgeList(adaptor, 0);
   8.678 +  checkGraphConArcList(adaptor, 0);
   8.679 +  checkGraphConEdgeList(adaptor, 0);
   8.680 +
   8.681 +  checkNodeIds(adaptor);
   8.682 +  checkArcIds(adaptor);
   8.683 +  checkEdgeIds(adaptor);
   8.684 +
   8.685 +  checkGraphNodeMap(adaptor);
   8.686 +  checkGraphArcMap(adaptor);
   8.687 +  checkGraphEdgeMap(adaptor);
   8.688 +}
   8.689 +
   8.690 +void checkFilterNodes2() {
   8.691 +  checkConcept<concepts::Graph,
   8.692 +    FilterNodes<concepts::Graph,
   8.693 +      concepts::Graph::NodeMap<bool> > >();
   8.694 +
   8.695 +  typedef ListGraph Graph;
   8.696 +  typedef Graph::NodeMap<bool> NodeFilter;
   8.697 +  typedef FilterNodes<Graph, NodeFilter> Adaptor;
   8.698 +
   8.699 +  Graph graph;
   8.700 +  NodeFilter node_filter(graph);
   8.701 +  Adaptor adaptor(graph, node_filter);
   8.702 +
   8.703 +  Graph::Node n1 = graph.addNode();
   8.704 +  Graph::Node n2 = graph.addNode();
   8.705 +  Graph::Node n3 = graph.addNode();
   8.706 +  Graph::Node n4 = graph.addNode();
   8.707 +
   8.708 +  Graph::Edge e1 = graph.addEdge(n1, n2);
   8.709 +  Graph::Edge e2 = graph.addEdge(n1, n3);
   8.710 +  Graph::Edge e3 = graph.addEdge(n2, n3);
   8.711 +  Graph::Edge e4 = graph.addEdge(n3, n4);
   8.712 +
   8.713 +  node_filter[n1] = node_filter[n2] = node_filter[n3] = node_filter[n4] = true;
   8.714 +  
   8.715 +  checkGraphNodeList(adaptor, 4);
   8.716 +  checkGraphArcList(adaptor, 8);
   8.717 +  checkGraphEdgeList(adaptor, 4);
   8.718 +  checkGraphConArcList(adaptor, 8);
   8.719 +  checkGraphConEdgeList(adaptor, 4);
   8.720 +
   8.721 +  checkGraphOutArcList(adaptor, n1, 2);
   8.722 +  checkGraphOutArcList(adaptor, n2, 2);
   8.723 +  checkGraphOutArcList(adaptor, n3, 3);
   8.724 +  checkGraphOutArcList(adaptor, n4, 1);
   8.725 +
   8.726 +  checkGraphInArcList(adaptor, n1, 2);
   8.727 +  checkGraphInArcList(adaptor, n2, 2);
   8.728 +  checkGraphInArcList(adaptor, n3, 3);
   8.729 +  checkGraphInArcList(adaptor, n4, 1);
   8.730 +
   8.731 +  checkGraphIncEdgeList(adaptor, n1, 2);
   8.732 +  checkGraphIncEdgeList(adaptor, n2, 2);
   8.733 +  checkGraphIncEdgeList(adaptor, n3, 3);
   8.734 +  checkGraphIncEdgeList(adaptor, n4, 1);
   8.735 +
   8.736 +  checkNodeIds(adaptor);
   8.737 +  checkArcIds(adaptor);
   8.738 +  checkEdgeIds(adaptor);
   8.739 +
   8.740 +  checkGraphNodeMap(adaptor);
   8.741 +  checkGraphArcMap(adaptor);
   8.742 +  checkGraphEdgeMap(adaptor);
   8.743 +
   8.744 +  node_filter[n1] = false;
   8.745 +
   8.746 +  checkGraphNodeList(adaptor, 3);
   8.747 +  checkGraphArcList(adaptor, 4);
   8.748 +  checkGraphEdgeList(adaptor, 2);
   8.749 +  checkGraphConArcList(adaptor, 4);
   8.750 +  checkGraphConEdgeList(adaptor, 2);
   8.751 +
   8.752 +  checkGraphOutArcList(adaptor, n2, 1);
   8.753 +  checkGraphOutArcList(adaptor, n3, 2);
   8.754 +  checkGraphOutArcList(adaptor, n4, 1);
   8.755 +
   8.756 +  checkGraphInArcList(adaptor, n2, 1);
   8.757 +  checkGraphInArcList(adaptor, n3, 2);
   8.758 +  checkGraphInArcList(adaptor, n4, 1);
   8.759 +
   8.760 +  checkGraphIncEdgeList(adaptor, n2, 1);
   8.761 +  checkGraphIncEdgeList(adaptor, n3, 2);
   8.762 +  checkGraphIncEdgeList(adaptor, n4, 1);
   8.763 +
   8.764 +  checkNodeIds(adaptor);
   8.765 +  checkArcIds(adaptor);
   8.766 +  checkEdgeIds(adaptor);
   8.767 +
   8.768 +  checkGraphNodeMap(adaptor);
   8.769 +  checkGraphArcMap(adaptor);
   8.770 +  checkGraphEdgeMap(adaptor);
   8.771 +
   8.772 +  node_filter[n1] = node_filter[n2] = node_filter[n3] = node_filter[n4] = false;
   8.773 +
   8.774 +  checkGraphNodeList(adaptor, 0);
   8.775 +  checkGraphArcList(adaptor, 0);
   8.776 +  checkGraphEdgeList(adaptor, 0);
   8.777 +  checkGraphConArcList(adaptor, 0);
   8.778 +  checkGraphConEdgeList(adaptor, 0);
   8.779 +
   8.780 +  checkNodeIds(adaptor);
   8.781 +  checkArcIds(adaptor);
   8.782 +  checkEdgeIds(adaptor);
   8.783 +
   8.784 +  checkGraphNodeMap(adaptor);
   8.785 +  checkGraphArcMap(adaptor);
   8.786 +  checkGraphEdgeMap(adaptor);
   8.787 +}
   8.788 +
   8.789 +void checkFilterEdges() {
   8.790 +  checkConcept<concepts::Graph,
   8.791 +    FilterEdges<concepts::Graph,
   8.792 +    concepts::Graph::EdgeMap<bool> > >();
   8.793 +
   8.794 +  typedef ListGraph Graph;
   8.795 +  typedef Graph::EdgeMap<bool> EdgeFilter;
   8.796 +  typedef FilterEdges<Graph, EdgeFilter> Adaptor;
   8.797 +
   8.798 +  Graph graph;
   8.799 +  EdgeFilter edge_filter(graph);
   8.800 +  Adaptor adaptor(graph, edge_filter);
   8.801 +
   8.802 +  Graph::Node n1 = graph.addNode();
   8.803 +  Graph::Node n2 = graph.addNode();
   8.804 +  Graph::Node n3 = graph.addNode();
   8.805 +  Graph::Node n4 = graph.addNode();
   8.806 +
   8.807 +  Graph::Edge e1 = graph.addEdge(n1, n2);
   8.808 +  Graph::Edge e2 = graph.addEdge(n1, n3);
   8.809 +  Graph::Edge e3 = graph.addEdge(n2, n3);
   8.810 +  Graph::Edge e4 = graph.addEdge(n3, n4);
   8.811 +
   8.812 +  edge_filter[e1] = edge_filter[e2] = edge_filter[e3] = edge_filter[e4] = true;
   8.813 +  
   8.814 +  checkGraphNodeList(adaptor, 4);
   8.815 +  checkGraphArcList(adaptor, 8);
   8.816 +  checkGraphEdgeList(adaptor, 4);
   8.817 +  checkGraphConArcList(adaptor, 8);
   8.818 +  checkGraphConEdgeList(adaptor, 4);
   8.819 +
   8.820 +  checkGraphOutArcList(adaptor, n1, 2);
   8.821 +  checkGraphOutArcList(adaptor, n2, 2);
   8.822 +  checkGraphOutArcList(adaptor, n3, 3);
   8.823 +  checkGraphOutArcList(adaptor, n4, 1);
   8.824 +
   8.825 +  checkGraphInArcList(adaptor, n1, 2);
   8.826 +  checkGraphInArcList(adaptor, n2, 2);
   8.827 +  checkGraphInArcList(adaptor, n3, 3);
   8.828 +  checkGraphInArcList(adaptor, n4, 1);
   8.829 +
   8.830 +  checkGraphIncEdgeList(adaptor, n1, 2);
   8.831 +  checkGraphIncEdgeList(adaptor, n2, 2);
   8.832 +  checkGraphIncEdgeList(adaptor, n3, 3);
   8.833 +  checkGraphIncEdgeList(adaptor, n4, 1);
   8.834 +
   8.835 +  checkNodeIds(adaptor);
   8.836 +  checkArcIds(adaptor);
   8.837 +  checkEdgeIds(adaptor);
   8.838 +
   8.839 +  checkGraphNodeMap(adaptor);
   8.840 +  checkGraphArcMap(adaptor);
   8.841 +  checkGraphEdgeMap(adaptor);
   8.842 +
   8.843 +  edge_filter[e2] = false;
   8.844 +
   8.845 +  checkGraphNodeList(adaptor, 4);
   8.846 +  checkGraphArcList(adaptor, 6);
   8.847 +  checkGraphEdgeList(adaptor, 3);
   8.848 +  checkGraphConArcList(adaptor, 6);
   8.849 +  checkGraphConEdgeList(adaptor, 3);
   8.850 +
   8.851 +  checkGraphOutArcList(adaptor, n1, 1);
   8.852 +  checkGraphOutArcList(adaptor, n2, 2);
   8.853 +  checkGraphOutArcList(adaptor, n3, 2);
   8.854 +  checkGraphOutArcList(adaptor, n4, 1);
   8.855 +
   8.856 +  checkGraphInArcList(adaptor, n1, 1);
   8.857 +  checkGraphInArcList(adaptor, n2, 2);
   8.858 +  checkGraphInArcList(adaptor, n3, 2);
   8.859 +  checkGraphInArcList(adaptor, n4, 1);
   8.860 +
   8.861 +  checkGraphIncEdgeList(adaptor, n1, 1);
   8.862 +  checkGraphIncEdgeList(adaptor, n2, 2);
   8.863 +  checkGraphIncEdgeList(adaptor, n3, 2);
   8.864 +  checkGraphIncEdgeList(adaptor, n4, 1);
   8.865 +
   8.866 +  checkNodeIds(adaptor);
   8.867 +  checkArcIds(adaptor);
   8.868 +  checkEdgeIds(adaptor);
   8.869 +
   8.870 +  checkGraphNodeMap(adaptor);
   8.871 +  checkGraphArcMap(adaptor);
   8.872 +  checkGraphEdgeMap(adaptor);
   8.873 +
   8.874 +  edge_filter[e1] = edge_filter[e2] = edge_filter[e3] = edge_filter[e4] = false;
   8.875 +
   8.876 +  checkGraphNodeList(adaptor, 4);
   8.877 +  checkGraphArcList(adaptor, 0);
   8.878 +  checkGraphEdgeList(adaptor, 0);
   8.879 +  checkGraphConArcList(adaptor, 0);
   8.880 +  checkGraphConEdgeList(adaptor, 0);
   8.881 +
   8.882 +  checkNodeIds(adaptor);
   8.883 +  checkArcIds(adaptor);
   8.884 +  checkEdgeIds(adaptor);
   8.885 +
   8.886 +  checkGraphNodeMap(adaptor);
   8.887 +  checkGraphArcMap(adaptor);
   8.888 +  checkGraphEdgeMap(adaptor);
   8.889 +}
   8.890 +
   8.891 +void checkOrienter() {
   8.892 +  checkConcept<concepts::Digraph,
   8.893 +    Orienter<concepts::Graph, concepts::Graph::EdgeMap<bool> > >();
   8.894 +
   8.895 +  typedef ListGraph Graph;
   8.896 +  typedef ListGraph::EdgeMap<bool> DirMap;
   8.897 +  typedef Orienter<Graph> Adaptor;
   8.898 +
   8.899 +  Graph graph;
   8.900 +  DirMap dir(graph, true);
   8.901 +  Adaptor adaptor(graph, dir);
   8.902 +
   8.903 +  Graph::Node n1 = graph.addNode();
   8.904 +  Graph::Node n2 = graph.addNode();
   8.905 +  Graph::Node n3 = graph.addNode();
   8.906 +
   8.907 +  Graph::Edge e1 = graph.addEdge(n1, n2);
   8.908 +  Graph::Edge e2 = graph.addEdge(n1, n3);
   8.909 +  Graph::Edge e3 = graph.addEdge(n2, n3);
   8.910 +
   8.911 +  checkGraphNodeList(adaptor, 3);
   8.912 +  checkGraphArcList(adaptor, 3);
   8.913 +  checkGraphConArcList(adaptor, 3);
   8.914 +
   8.915 +  {
   8.916 +    dir[e1] = true;
   8.917 +    Adaptor::Node u = adaptor.source(e1);
   8.918 +    Adaptor::Node v = adaptor.target(e1);
   8.919 +
   8.920 +    dir[e1] = false;
   8.921 +    check (u == adaptor.target(e1), "Wrong dir");
   8.922 +    check (v == adaptor.source(e1), "Wrong dir");
   8.923 +
   8.924 +    check ((u == n1 && v == n2) || (u == n2 && v == n1), "Wrong dir");
   8.925 +    dir[e1] = n1 == u;
   8.926 +  }
   8.927 +
   8.928 +  {
   8.929 +    dir[e2] = true;
   8.930 +    Adaptor::Node u = adaptor.source(e2);
   8.931 +    Adaptor::Node v = adaptor.target(e2);
   8.932 +
   8.933 +    dir[e2] = false;
   8.934 +    check (u == adaptor.target(e2), "Wrong dir");
   8.935 +    check (v == adaptor.source(e2), "Wrong dir");
   8.936 +
   8.937 +    check ((u == n1 && v == n3) || (u == n3 && v == n1), "Wrong dir");
   8.938 +    dir[e2] = n3 == u;
   8.939 +  }
   8.940 +
   8.941 +  {
   8.942 +    dir[e3] = true;
   8.943 +    Adaptor::Node u = adaptor.source(e3);
   8.944 +    Adaptor::Node v = adaptor.target(e3);
   8.945 +
   8.946 +    dir[e3] = false;
   8.947 +    check (u == adaptor.target(e3), "Wrong dir");
   8.948 +    check (v == adaptor.source(e3), "Wrong dir");
   8.949 +
   8.950 +    check ((u == n2 && v == n3) || (u == n3 && v == n2), "Wrong dir");
   8.951 +    dir[e3] = n2 == u;
   8.952 +  }
   8.953 +
   8.954 +  checkGraphOutArcList(adaptor, n1, 1);
   8.955 +  checkGraphOutArcList(adaptor, n2, 1);
   8.956 +  checkGraphOutArcList(adaptor, n3, 1);
   8.957 +
   8.958 +  checkGraphInArcList(adaptor, n1, 1);
   8.959 +  checkGraphInArcList(adaptor, n2, 1);
   8.960 +  checkGraphInArcList(adaptor, n3, 1);
   8.961 +
   8.962 +  checkNodeIds(adaptor);
   8.963 +  checkArcIds(adaptor);
   8.964 +
   8.965 +  checkGraphNodeMap(adaptor);
   8.966 +  checkGraphArcMap(adaptor);
   8.967 +
   8.968 +}
   8.969 +
   8.970 +
   8.971 +int main(int, const char **) {
   8.972 +
   8.973 +  checkReverseDigraph();
   8.974 +  checkSubDigraph();
   8.975 +  checkFilterNodes1();
   8.976 +  checkFilterArcs();
   8.977 +  checkUndirector();
   8.978 +  checkResidual();
   8.979 +  checkSplitNodes();
   8.980 +
   8.981 +  checkSubGraph();
   8.982 +  checkFilterNodes2();
   8.983 +  checkFilterEdges();
   8.984 +  checkOrienter();
   8.985 +
   8.986 +  return 0;
   8.987 +}