Port MinMeanCycle from SVN -r3524 (#179)
authorPeter Kovacs <kpeter@inf.elte.hu>
Mon, 03 Aug 2009 14:12:55 +0200
changeset 805b31e130db13d
parent 730 9f529abcaebf
child 806 d66ff32624e2
Port MinMeanCycle from SVN -r3524 (#179)
with some doc improvements
lemon/Makefile.am
lemon/min_mean_cycle.h
     1.1 --- a/lemon/Makefile.am	Thu Jun 11 23:13:24 2009 +0200
     1.2 +++ b/lemon/Makefile.am	Mon Aug 03 14:12:55 2009 +0200
     1.3 @@ -97,6 +97,7 @@
     1.4  	lemon/matching.h \
     1.5  	lemon/math.h \
     1.6  	lemon/min_cost_arborescence.h \
     1.7 +	lemon/min_mean_cycle.h \
     1.8  	lemon/nauty_reader.h \
     1.9  	lemon/network_simplex.h \
    1.10  	lemon/path.h \
     2.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     2.2 +++ b/lemon/min_mean_cycle.h	Mon Aug 03 14:12:55 2009 +0200
     2.3 @@ -0,0 +1,462 @@
     2.4 +/* -*- C++ -*-
     2.5 + *
     2.6 + * This file is a part of LEMON, a generic C++ optimization library
     2.7 + *
     2.8 + * Copyright (C) 2003-2008
     2.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    2.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    2.11 + *
    2.12 + * Permission to use, modify and distribute this software is granted
    2.13 + * provided that this copyright notice appears in all copies. For
    2.14 + * precise terms see the accompanying LICENSE file.
    2.15 + *
    2.16 + * This software is provided "AS IS" with no warranty of any kind,
    2.17 + * express or implied, and with no claim as to its suitability for any
    2.18 + * purpose.
    2.19 + *
    2.20 + */
    2.21 +
    2.22 +#ifndef LEMON_MIN_MEAN_CYCLE_H
    2.23 +#define LEMON_MIN_MEAN_CYCLE_H
    2.24 +
    2.25 +/// \ingroup shortest_path
    2.26 +///
    2.27 +/// \file
    2.28 +/// \brief Howard's algorithm for finding a minimum mean cycle.
    2.29 +
    2.30 +#include <vector>
    2.31 +#include <lemon/core.h>
    2.32 +#include <lemon/path.h>
    2.33 +#include <lemon/tolerance.h>
    2.34 +#include <lemon/connectivity.h>
    2.35 +
    2.36 +namespace lemon {
    2.37 +
    2.38 +  /// \addtogroup shortest_path
    2.39 +  /// @{
    2.40 +
    2.41 +  /// \brief Implementation of Howard's algorithm for finding a minimum
    2.42 +  /// mean cycle.
    2.43 +  ///
    2.44 +  /// \ref MinMeanCycle implements Howard's algorithm for finding a
    2.45 +  /// directed cycle of minimum mean length (cost) in a digraph.
    2.46 +  ///
    2.47 +  /// \tparam GR The type of the digraph the algorithm runs on.
    2.48 +  /// \tparam LEN The type of the length map. The default
    2.49 +  /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
    2.50 +  ///
    2.51 +  /// \warning \c LEN::Value must be convertible to \c double.
    2.52 +#ifdef DOXYGEN
    2.53 +  template <typename GR, typename LEN>
    2.54 +#else
    2.55 +  template < typename GR,
    2.56 +             typename LEN = typename GR::template ArcMap<int> >
    2.57 +#endif
    2.58 +  class MinMeanCycle
    2.59 +  {
    2.60 +  public:
    2.61 +  
    2.62 +    /// The type of the digraph the algorithm runs on
    2.63 +    typedef GR Digraph;
    2.64 +    /// The type of the length map
    2.65 +    typedef LEN LengthMap;
    2.66 +    /// The type of the arc lengths
    2.67 +    typedef typename LengthMap::Value Value;
    2.68 +    /// The type of the paths
    2.69 +    typedef lemon::Path<Digraph> Path;
    2.70 +
    2.71 +  private:
    2.72 +
    2.73 +    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
    2.74 +  
    2.75 +    // The digraph the algorithm runs on
    2.76 +    const Digraph &_gr;
    2.77 +    // The length of the arcs
    2.78 +    const LengthMap &_length;
    2.79 +
    2.80 +    // The total length of the found cycle
    2.81 +    Value _cycle_length;
    2.82 +    // The number of arcs on the found cycle
    2.83 +    int _cycle_size;
    2.84 +    // The found cycle
    2.85 +    Path *_cycle_path;
    2.86 +
    2.87 +    bool _local_path;
    2.88 +    bool _cycle_found;
    2.89 +    Node _cycle_node;
    2.90 +
    2.91 +    typename Digraph::template NodeMap<bool> _reached;
    2.92 +    typename Digraph::template NodeMap<double> _dist;
    2.93 +    typename Digraph::template NodeMap<Arc> _policy;
    2.94 +
    2.95 +    typename Digraph::template NodeMap<int> _comp;
    2.96 +    int _comp_num;
    2.97 +
    2.98 +    std::vector<Node> _nodes;
    2.99 +    std::vector<Arc> _arcs;
   2.100 +    Tolerance<double> _tol;
   2.101 +
   2.102 +  public:
   2.103 +
   2.104 +    /// \brief Constructor.
   2.105 +    ///
   2.106 +    /// The constructor of the class.
   2.107 +    ///
   2.108 +    /// \param digraph The digraph the algorithm runs on.
   2.109 +    /// \param length The lengths (costs) of the arcs.
   2.110 +    MinMeanCycle( const Digraph &digraph,
   2.111 +                  const LengthMap &length ) :
   2.112 +      _gr(digraph), _length(length), _cycle_length(0), _cycle_size(-1),
   2.113 +      _cycle_path(NULL), _local_path(false), _reached(digraph),
   2.114 +      _dist(digraph), _policy(digraph), _comp(digraph)
   2.115 +    {}
   2.116 +
   2.117 +    /// Destructor.
   2.118 +    ~MinMeanCycle() {
   2.119 +      if (_local_path) delete _cycle_path;
   2.120 +    }
   2.121 +
   2.122 +    /// \brief Set the path structure for storing the found cycle.
   2.123 +    ///
   2.124 +    /// This function sets an external path structure for storing the
   2.125 +    /// found cycle.
   2.126 +    ///
   2.127 +    /// If you don't call this function before calling \ref run() or
   2.128 +    /// \ref init(), it will allocate a local \ref Path "path"
   2.129 +    /// structure. The destuctor deallocates this automatically
   2.130 +    /// allocated object, of course.
   2.131 +    ///
   2.132 +    /// \note The algorithm calls only the \ref lemon::Path::addBack()
   2.133 +    /// "addBack()" function of the given path structure.
   2.134 +    ///
   2.135 +    /// \return <tt>(*this)</tt>
   2.136 +    ///
   2.137 +    /// \sa cycle()
   2.138 +    MinMeanCycle& cyclePath(Path &path) {
   2.139 +      if (_local_path) {
   2.140 +        delete _cycle_path;
   2.141 +        _local_path = false;
   2.142 +      }
   2.143 +      _cycle_path = &path;
   2.144 +      return *this;
   2.145 +    }
   2.146 +
   2.147 +    /// \name Execution control
   2.148 +    /// The simplest way to execute the algorithm is to call the \ref run()
   2.149 +    /// function.\n
   2.150 +    /// If you only need the minimum mean length, you may call \ref init()
   2.151 +    /// and \ref findMinMean().
   2.152 +    /// If you would like to run the algorithm again (e.g. the underlying
   2.153 +    /// digraph and/or the arc lengths has been modified), you may not
   2.154 +    /// create a new instance of the class, rather call \ref reset(),
   2.155 +    /// \ref findMinMean() and \ref findCycle() instead.
   2.156 +
   2.157 +    /// @{
   2.158 +
   2.159 +    /// \brief Run the algorithm.
   2.160 +    ///
   2.161 +    /// This function runs the algorithm.
   2.162 +    ///
   2.163 +    /// \return \c true if a directed cycle exists in the digraph.
   2.164 +    ///
   2.165 +    /// \note Apart from the return value, <tt>mmc.run()</tt> is just a
   2.166 +    /// shortcut of the following code.
   2.167 +    /// \code
   2.168 +    ///   mmc.init();
   2.169 +    ///   mmc.findMinMean();
   2.170 +    ///   mmc.findCycle();
   2.171 +    /// \endcode
   2.172 +    bool run() {
   2.173 +      init();
   2.174 +      return findMinMean() && findCycle();
   2.175 +    }
   2.176 +
   2.177 +    /// \brief Initialize the internal data structures.
   2.178 +    ///
   2.179 +    /// This function initializes the internal data structures.
   2.180 +    ///
   2.181 +    /// \sa reset()
   2.182 +    void init() {
   2.183 +      _tol.epsilon(1e-6);
   2.184 +      if (!_cycle_path) {
   2.185 +        _local_path = true;
   2.186 +        _cycle_path = new Path;
   2.187 +      }
   2.188 +      _cycle_found = false;
   2.189 +      _comp_num = stronglyConnectedComponents(_gr, _comp);
   2.190 +    }
   2.191 +
   2.192 +    /// \brief Reset the internal data structures.
   2.193 +    ///
   2.194 +    /// This function resets the internal data structures so that
   2.195 +    /// findMinMean() and findCycle() can be called again (e.g. when the
   2.196 +    /// underlying digraph and/or the arc lengths has been modified).
   2.197 +    ///
   2.198 +    /// \sa init()
   2.199 +    void reset() {
   2.200 +      if (_cycle_path) _cycle_path->clear();
   2.201 +      _cycle_found = false;
   2.202 +      _comp_num = stronglyConnectedComponents(_gr, _comp);
   2.203 +    }
   2.204 +
   2.205 +    /// \brief Find the minimum cycle mean.
   2.206 +    ///
   2.207 +    /// This function computes all the required data and finds the
   2.208 +    /// minimum mean length of the directed cycles in the digraph.
   2.209 +    ///
   2.210 +    /// \return \c true if a directed cycle exists in the digraph.
   2.211 +    ///
   2.212 +    /// \pre \ref init() must be called before using this function.
   2.213 +    bool findMinMean() {
   2.214 +      // Find the minimum cycle mean in the components
   2.215 +      for (int comp = 0; comp < _comp_num; ++comp) {
   2.216 +        if (!initCurrentComponent(comp)) continue;
   2.217 +        while (true) {
   2.218 +          if (!findPolicyCycles()) break;
   2.219 +          contractPolicyGraph(comp);
   2.220 +          if (!computeNodeDistances()) break;
   2.221 +        }
   2.222 +      }
   2.223 +      return _cycle_found;
   2.224 +    }
   2.225 +
   2.226 +    /// \brief Find a minimum mean directed cycle.
   2.227 +    ///
   2.228 +    /// This function finds a directed cycle of minimum mean length
   2.229 +    /// in the digraph using the data computed by findMinMean().
   2.230 +    ///
   2.231 +    /// \return \c true if a directed cycle exists in the digraph.
   2.232 +    ///
   2.233 +    /// \pre \ref init() and \ref findMinMean() must be called before
   2.234 +    /// using this function.
   2.235 +    bool findCycle() {
   2.236 +      if (!_cycle_found) return false;
   2.237 +      _cycle_path->addBack(_policy[_cycle_node]);
   2.238 +      for ( Node v = _cycle_node;
   2.239 +            (v = _gr.target(_policy[v])) != _cycle_node; ) {
   2.240 +        _cycle_path->addBack(_policy[v]);
   2.241 +      }
   2.242 +      return true;
   2.243 +    }
   2.244 +
   2.245 +    /// @}
   2.246 +
   2.247 +    /// \name Query Functions
   2.248 +    /// The result of the algorithm can be obtained using these
   2.249 +    /// functions.\n
   2.250 +    /// The algorithm should be executed before using them.
   2.251 +
   2.252 +    /// @{
   2.253 +
   2.254 +    /// \brief Return the total length of the found cycle.
   2.255 +    ///
   2.256 +    /// This function returns the total length of the found cycle.
   2.257 +    ///
   2.258 +    /// \pre \ref run() or \ref findCycle() must be called before
   2.259 +    /// using this function.
   2.260 +    Value cycleLength() const {
   2.261 +      return _cycle_length;
   2.262 +    }
   2.263 +
   2.264 +    /// \brief Return the number of arcs on the found cycle.
   2.265 +    ///
   2.266 +    /// This function returns the number of arcs on the found cycle.
   2.267 +    ///
   2.268 +    /// \pre \ref run() or \ref findCycle() must be called before
   2.269 +    /// using this function.
   2.270 +    int cycleArcNum() const {
   2.271 +      return _cycle_size;
   2.272 +    }
   2.273 +
   2.274 +    /// \brief Return the mean length of the found cycle.
   2.275 +    ///
   2.276 +    /// This function returns the mean length of the found cycle.
   2.277 +    ///
   2.278 +    /// \note <tt>mmc.cycleMean()</tt> is just a shortcut of the
   2.279 +    /// following code.
   2.280 +    /// \code
   2.281 +    ///   return double(mmc.cycleLength()) / mmc.cycleArcNum();
   2.282 +    /// \endcode
   2.283 +    ///
   2.284 +    /// \pre \ref run() or \ref findMinMean() must be called before
   2.285 +    /// using this function.
   2.286 +    double cycleMean() const {
   2.287 +      return double(_cycle_length) / _cycle_size;
   2.288 +    }
   2.289 +
   2.290 +    /// \brief Return the found cycle.
   2.291 +    ///
   2.292 +    /// This function returns a const reference to the path structure
   2.293 +    /// storing the found cycle.
   2.294 +    ///
   2.295 +    /// \pre \ref run() or \ref findCycle() must be called before using
   2.296 +    /// this function.
   2.297 +    ///
   2.298 +    /// \sa cyclePath()
   2.299 +    const Path& cycle() const {
   2.300 +      return *_cycle_path;
   2.301 +    }
   2.302 +
   2.303 +    ///@}
   2.304 +
   2.305 +  private:
   2.306 +
   2.307 +    // Initialize the internal data structures for the current strongly
   2.308 +    // connected component and create the policy graph.
   2.309 +    // The policy graph can be represented by the _policy map because
   2.310 +    // the out-degree of every node is 1.
   2.311 +    bool initCurrentComponent(int comp) {
   2.312 +      // Find the nodes of the current component
   2.313 +      _nodes.clear();
   2.314 +      for (NodeIt n(_gr); n != INVALID; ++n) {
   2.315 +        if (_comp[n] == comp) _nodes.push_back(n);
   2.316 +      }
   2.317 +      if (_nodes.size() <= 1) return false;
   2.318 +      // Find the arcs of the current component
   2.319 +      _arcs.clear();
   2.320 +      for (ArcIt e(_gr); e != INVALID; ++e) {
   2.321 +        if ( _comp[_gr.source(e)] == comp &&
   2.322 +             _comp[_gr.target(e)] == comp )
   2.323 +          _arcs.push_back(e);
   2.324 +      }
   2.325 +      // Initialize _reached, _dist, _policy maps
   2.326 +      for (int i = 0; i < int(_nodes.size()); ++i) {
   2.327 +        _reached[_nodes[i]] = false;
   2.328 +        _policy[_nodes[i]] = INVALID;
   2.329 +      }
   2.330 +      Node u; Arc e;
   2.331 +      for (int j = 0; j < int(_arcs.size()); ++j) {
   2.332 +        e = _arcs[j];
   2.333 +        u = _gr.source(e);
   2.334 +        if (!_reached[u] || _length[e] < _dist[u]) {
   2.335 +          _dist[u] = _length[e];
   2.336 +          _policy[u] = e;
   2.337 +          _reached[u] = true;
   2.338 +        }
   2.339 +      }
   2.340 +      return true;
   2.341 +    }
   2.342 +
   2.343 +    // Find all cycles in the policy graph.
   2.344 +    // Set _cycle_found to true if a cycle is found and set
   2.345 +    // _cycle_length, _cycle_size, _cycle_node to represent the minimum
   2.346 +    // mean cycle in the policy graph.
   2.347 +    bool findPolicyCycles() {
   2.348 +      typename Digraph::template NodeMap<int> level(_gr, -1);
   2.349 +      bool curr_cycle_found = false;
   2.350 +      Value clength;
   2.351 +      int csize;
   2.352 +      int path_cnt = 0;
   2.353 +      Node u, v;
   2.354 +      // Searching for cycles
   2.355 +      for (int i = 0; i < int(_nodes.size()); ++i) {
   2.356 +        if (level[_nodes[i]] < 0) {
   2.357 +          u = _nodes[i];
   2.358 +          level[u] = path_cnt;
   2.359 +          while (level[u = _gr.target(_policy[u])] < 0)
   2.360 +            level[u] = path_cnt;
   2.361 +          if (level[u] == path_cnt) {
   2.362 +            // A cycle is found
   2.363 +            curr_cycle_found = true;
   2.364 +            clength = _length[_policy[u]];
   2.365 +            csize = 1;
   2.366 +            for (v = u; (v = _gr.target(_policy[v])) != u; ) {
   2.367 +              clength += _length[_policy[v]];
   2.368 +              ++csize;
   2.369 +            }
   2.370 +            if ( !_cycle_found ||
   2.371 +                 clength * _cycle_size < _cycle_length * csize ) {
   2.372 +              _cycle_found = true;
   2.373 +              _cycle_length = clength;
   2.374 +              _cycle_size = csize;
   2.375 +              _cycle_node = u;
   2.376 +            }
   2.377 +          }
   2.378 +          ++path_cnt;
   2.379 +        }
   2.380 +      }
   2.381 +      return curr_cycle_found;
   2.382 +    }
   2.383 +
   2.384 +    // Contract the policy graph to be connected by cutting all cycles
   2.385 +    // except for the main cycle (i.e. the minimum mean cycle).
   2.386 +    void contractPolicyGraph(int comp) {
   2.387 +      // Find the component of the main cycle using reverse BFS search
   2.388 +      typename Digraph::template NodeMap<int> found(_gr, false);
   2.389 +      std::deque<Node> queue;
   2.390 +      queue.push_back(_cycle_node);
   2.391 +      found[_cycle_node] = true;
   2.392 +      Node u, v;
   2.393 +      while (!queue.empty()) {
   2.394 +        v = queue.front(); queue.pop_front();
   2.395 +        for (InArcIt e(_gr, v); e != INVALID; ++e) {
   2.396 +          u = _gr.source(e);
   2.397 +          if (_policy[u] == e && !found[u]) {
   2.398 +            found[u] = true;
   2.399 +            queue.push_back(u);
   2.400 +          }
   2.401 +        }
   2.402 +      }
   2.403 +      // Connect all other nodes to this component using reverse BFS search
   2.404 +      queue.clear();
   2.405 +      for (int i = 0; i < int(_nodes.size()); ++i)
   2.406 +        if (found[_nodes[i]]) queue.push_back(_nodes[i]);
   2.407 +      int found_cnt = queue.size();
   2.408 +      while (found_cnt < int(_nodes.size())) {
   2.409 +        v = queue.front(); queue.pop_front();
   2.410 +        for (InArcIt e(_gr, v); e != INVALID; ++e) {
   2.411 +          u = _gr.source(e);
   2.412 +          if (_comp[u] == comp && !found[u]) {
   2.413 +            found[u] = true;
   2.414 +            ++found_cnt;
   2.415 +            _policy[u] = e;
   2.416 +            queue.push_back(u);
   2.417 +          }
   2.418 +        }
   2.419 +      }
   2.420 +    }
   2.421 +
   2.422 +    // Compute node distances in the policy graph and update the
   2.423 +    // policy graph if the node distances can be improved.
   2.424 +    bool computeNodeDistances() {
   2.425 +      // Compute node distances using reverse BFS search
   2.426 +      double cycle_mean = double(_cycle_length) / _cycle_size;
   2.427 +      typename Digraph::template NodeMap<int> found(_gr, false);
   2.428 +      std::deque<Node> queue;
   2.429 +      queue.push_back(_cycle_node);
   2.430 +      found[_cycle_node] = true;
   2.431 +      _dist[_cycle_node] = 0;
   2.432 +      Node u, v;
   2.433 +      while (!queue.empty()) {
   2.434 +        v = queue.front(); queue.pop_front();
   2.435 +        for (InArcIt e(_gr, v); e != INVALID; ++e) {
   2.436 +          u = _gr.source(e);
   2.437 +          if (_policy[u] == e && !found[u]) {
   2.438 +            found[u] = true;
   2.439 +            _dist[u] = _dist[v] + _length[e] - cycle_mean;
   2.440 +            queue.push_back(u);
   2.441 +          }
   2.442 +        }
   2.443 +      }
   2.444 +      // Improving node distances
   2.445 +      bool improved = false;
   2.446 +      for (int j = 0; j < int(_arcs.size()); ++j) {
   2.447 +        Arc e = _arcs[j];
   2.448 +        u = _gr.source(e); v = _gr.target(e);
   2.449 +        double delta = _dist[v] + _length[e] - cycle_mean;
   2.450 +        if (_tol.less(delta, _dist[u])) {
   2.451 +          improved = true;
   2.452 +          _dist[u] = delta;
   2.453 +          _policy[u] = e;
   2.454 +        }
   2.455 +      }
   2.456 +      return improved;
   2.457 +    }
   2.458 +
   2.459 +  }; //class MinMeanCycle
   2.460 +
   2.461 +  ///@}
   2.462 +
   2.463 +} //namespace lemon
   2.464 +
   2.465 +#endif //LEMON_MIN_MEAN_CYCLE_H