Merge
authorAlpar Juttner <alpar@cs.elte.hu>
Fri, 25 Sep 2009 09:06:32 +0200
changeset 762ece80147fb08
parent 761 98a30824fe36
parent 759 6d5f547e5bfb
child 764 684964884a2e
Merge
doc/groups.dox
lemon/circulation.h
lemon/preflow.h
     1.1 --- a/doc/groups.dox	Fri Jul 24 11:07:52 2009 +0200
     1.2 +++ b/doc/groups.dox	Fri Sep 25 09:06:32 2009 +0200
     1.3 @@ -238,7 +238,36 @@
     1.4  efficient to have e.g. the Dijkstra algorithm to store its result in
     1.5  any kind of path structure.
     1.6  
     1.7 -\sa lemon::concepts::Path
     1.8 +\sa \ref concepts::Path "Path concept"
     1.9 +*/
    1.10 +
    1.11 +/**
    1.12 +@defgroup heaps Heap Structures
    1.13 +@ingroup datas
    1.14 +\brief %Heap structures implemented in LEMON.
    1.15 +
    1.16 +This group contains the heap structures implemented in LEMON.
    1.17 +
    1.18 +LEMON provides several heap classes. They are efficient implementations
    1.19 +of the abstract data type \e priority \e queue. They store items with
    1.20 +specified values called \e priorities in such a way that finding and
    1.21 +removing the item with minimum priority are efficient.
    1.22 +The basic operations are adding and erasing items, changing the priority
    1.23 +of an item, etc.
    1.24 +
    1.25 +Heaps are crucial in several algorithms, such as Dijkstra and Prim.
    1.26 +The heap implementations have the same interface, thus any of them can be
    1.27 +used easily in such algorithms.
    1.28 +
    1.29 +\sa \ref concepts::Heap "Heap concept"
    1.30 +*/
    1.31 +
    1.32 +/**
    1.33 +@defgroup matrices Matrices
    1.34 +@ingroup datas
    1.35 +\brief Two dimensional data storages implemented in LEMON.
    1.36 +
    1.37 +This group contains two dimensional data storages implemented in LEMON.
    1.38  */
    1.39  
    1.40  /**
     2.1 --- a/lemon/Makefile.am	Fri Jul 24 11:07:52 2009 +0200
     2.2 +++ b/lemon/Makefile.am	Fri Sep 25 09:06:32 2009 +0200
     2.3 @@ -57,8 +57,10 @@
     2.4  	lemon/adaptors.h \
     2.5  	lemon/arg_parser.h \
     2.6  	lemon/assert.h \
     2.7 +	lemon/bellman_ford.h \
     2.8  	lemon/bfs.h \
     2.9  	lemon/bin_heap.h \
    2.10 +	lemon/binom_heap.h \
    2.11  	lemon/bucket_heap.h \
    2.12  	lemon/cbc.h \
    2.13  	lemon/circulation.h \
    2.14 @@ -78,12 +80,14 @@
    2.15  	lemon/error.h \
    2.16  	lemon/euler.h \
    2.17  	lemon/fib_heap.h \
    2.18 +	lemon/fourary_heap.h \
    2.19  	lemon/full_graph.h \
    2.20  	lemon/glpk.h \
    2.21  	lemon/gomory_hu.h \
    2.22  	lemon/graph_to_eps.h \
    2.23  	lemon/grid_graph.h \
    2.24  	lemon/hypercube_graph.h \
    2.25 +	lemon/kary_heap.h \
    2.26  	lemon/kruskal.h \
    2.27  	lemon/hao_orlin.h \
    2.28  	lemon/lgf_reader.h \
    2.29 @@ -92,13 +96,13 @@
    2.30  	lemon/lp.h \
    2.31  	lemon/lp_base.h \
    2.32  	lemon/lp_skeleton.h \
    2.33 -	lemon/list_graph.h \
    2.34  	lemon/maps.h \
    2.35  	lemon/matching.h \
    2.36  	lemon/math.h \
    2.37  	lemon/min_cost_arborescence.h \
    2.38  	lemon/nauty_reader.h \
    2.39  	lemon/network_simplex.h \
    2.40 +	lemon/pairing_heap.h \
    2.41  	lemon/path.h \
    2.42  	lemon/preflow.h \
    2.43  	lemon/radix_heap.h \
     3.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     3.2 +++ b/lemon/bellman_ford.h	Fri Sep 25 09:06:32 2009 +0200
     3.3 @@ -0,0 +1,1100 @@
     3.4 +/* -*- C++ -*-
     3.5 + *
     3.6 + * This file is a part of LEMON, a generic C++ optimization library
     3.7 + *
     3.8 + * Copyright (C) 2003-2008
     3.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    3.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    3.11 + *
    3.12 + * Permission to use, modify and distribute this software is granted
    3.13 + * provided that this copyright notice appears in all copies. For
    3.14 + * precise terms see the accompanying LICENSE file.
    3.15 + *
    3.16 + * This software is provided "AS IS" with no warranty of any kind,
    3.17 + * express or implied, and with no claim as to its suitability for any
    3.18 + * purpose.
    3.19 + *
    3.20 + */
    3.21 +
    3.22 +#ifndef LEMON_BELLMAN_FORD_H
    3.23 +#define LEMON_BELLMAN_FORD_H
    3.24 +
    3.25 +/// \ingroup shortest_path
    3.26 +/// \file
    3.27 +/// \brief Bellman-Ford algorithm.
    3.28 +
    3.29 +#include <lemon/bits/path_dump.h>
    3.30 +#include <lemon/core.h>
    3.31 +#include <lemon/error.h>
    3.32 +#include <lemon/maps.h>
    3.33 +#include <lemon/path.h>
    3.34 +
    3.35 +#include <limits>
    3.36 +
    3.37 +namespace lemon {
    3.38 +
    3.39 +  /// \brief Default OperationTraits for the BellmanFord algorithm class.
    3.40 +  ///  
    3.41 +  /// This operation traits class defines all computational operations
    3.42 +  /// and constants that are used in the Bellman-Ford algorithm.
    3.43 +  /// The default implementation is based on the \c numeric_limits class.
    3.44 +  /// If the numeric type does not have infinity value, then the maximum
    3.45 +  /// value is used as extremal infinity value.
    3.46 +  template <
    3.47 +    typename V, 
    3.48 +    bool has_inf = std::numeric_limits<V>::has_infinity>
    3.49 +  struct BellmanFordDefaultOperationTraits {
    3.50 +    /// \e
    3.51 +    typedef V Value;
    3.52 +    /// \brief Gives back the zero value of the type.
    3.53 +    static Value zero() {
    3.54 +      return static_cast<Value>(0);
    3.55 +    }
    3.56 +    /// \brief Gives back the positive infinity value of the type.
    3.57 +    static Value infinity() {
    3.58 +      return std::numeric_limits<Value>::infinity();
    3.59 +    }
    3.60 +    /// \brief Gives back the sum of the given two elements.
    3.61 +    static Value plus(const Value& left, const Value& right) {
    3.62 +      return left + right;
    3.63 +    }
    3.64 +    /// \brief Gives back \c true only if the first value is less than
    3.65 +    /// the second.
    3.66 +    static bool less(const Value& left, const Value& right) {
    3.67 +      return left < right;
    3.68 +    }
    3.69 +  };
    3.70 +
    3.71 +  template <typename V>
    3.72 +  struct BellmanFordDefaultOperationTraits<V, false> {
    3.73 +    typedef V Value;
    3.74 +    static Value zero() {
    3.75 +      return static_cast<Value>(0);
    3.76 +    }
    3.77 +    static Value infinity() {
    3.78 +      return std::numeric_limits<Value>::max();
    3.79 +    }
    3.80 +    static Value plus(const Value& left, const Value& right) {
    3.81 +      if (left == infinity() || right == infinity()) return infinity();
    3.82 +      return left + right;
    3.83 +    }
    3.84 +    static bool less(const Value& left, const Value& right) {
    3.85 +      return left < right;
    3.86 +    }
    3.87 +  };
    3.88 +  
    3.89 +  /// \brief Default traits class of BellmanFord class.
    3.90 +  ///
    3.91 +  /// Default traits class of BellmanFord class.
    3.92 +  /// \param GR The type of the digraph.
    3.93 +  /// \param LEN The type of the length map.
    3.94 +  template<typename GR, typename LEN>
    3.95 +  struct BellmanFordDefaultTraits {
    3.96 +    /// The type of the digraph the algorithm runs on. 
    3.97 +    typedef GR Digraph;
    3.98 +
    3.99 +    /// \brief The type of the map that stores the arc lengths.
   3.100 +    ///
   3.101 +    /// The type of the map that stores the arc lengths.
   3.102 +    /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
   3.103 +    typedef LEN LengthMap;
   3.104 +
   3.105 +    /// The type of the arc lengths.
   3.106 +    typedef typename LEN::Value Value;
   3.107 +
   3.108 +    /// \brief Operation traits for Bellman-Ford algorithm.
   3.109 +    ///
   3.110 +    /// It defines the used operations and the infinity value for the
   3.111 +    /// given \c Value type.
   3.112 +    /// \see BellmanFordDefaultOperationTraits
   3.113 +    typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
   3.114 + 
   3.115 +    /// \brief The type of the map that stores the last arcs of the 
   3.116 +    /// shortest paths.
   3.117 +    /// 
   3.118 +    /// The type of the map that stores the last
   3.119 +    /// arcs of the shortest paths.
   3.120 +    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
   3.121 +    typedef typename GR::template NodeMap<typename GR::Arc> PredMap;
   3.122 +
   3.123 +    /// \brief Instantiates a \c PredMap.
   3.124 +    /// 
   3.125 +    /// This function instantiates a \ref PredMap. 
   3.126 +    /// \param g is the digraph to which we would like to define the
   3.127 +    /// \ref PredMap.
   3.128 +    static PredMap *createPredMap(const GR& g) {
   3.129 +      return new PredMap(g);
   3.130 +    }
   3.131 +
   3.132 +    /// \brief The type of the map that stores the distances of the nodes.
   3.133 +    ///
   3.134 +    /// The type of the map that stores the distances of the nodes.
   3.135 +    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
   3.136 +    typedef typename GR::template NodeMap<typename LEN::Value> DistMap;
   3.137 +
   3.138 +    /// \brief Instantiates a \c DistMap.
   3.139 +    ///
   3.140 +    /// This function instantiates a \ref DistMap. 
   3.141 +    /// \param g is the digraph to which we would like to define the 
   3.142 +    /// \ref DistMap.
   3.143 +    static DistMap *createDistMap(const GR& g) {
   3.144 +      return new DistMap(g);
   3.145 +    }
   3.146 +
   3.147 +  };
   3.148 +  
   3.149 +  /// \brief %BellmanFord algorithm class.
   3.150 +  ///
   3.151 +  /// \ingroup shortest_path
   3.152 +  /// This class provides an efficient implementation of the Bellman-Ford 
   3.153 +  /// algorithm. The maximum time complexity of the algorithm is
   3.154 +  /// <tt>O(ne)</tt>.
   3.155 +  ///
   3.156 +  /// The Bellman-Ford algorithm solves the single-source shortest path
   3.157 +  /// problem when the arcs can have negative lengths, but the digraph
   3.158 +  /// should not contain directed cycles with negative total length.
   3.159 +  /// If all arc costs are non-negative, consider to use the Dijkstra
   3.160 +  /// algorithm instead, since it is more efficient.
   3.161 +  ///
   3.162 +  /// The arc lengths are passed to the algorithm using a
   3.163 +  /// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any 
   3.164 +  /// kind of length. The type of the length values is determined by the
   3.165 +  /// \ref concepts::ReadMap::Value "Value" type of the length map.
   3.166 +  ///
   3.167 +  /// There is also a \ref bellmanFord() "function-type interface" for the
   3.168 +  /// Bellman-Ford algorithm, which is convenient in the simplier cases and
   3.169 +  /// it can be used easier.
   3.170 +  ///
   3.171 +  /// \tparam GR The type of the digraph the algorithm runs on.
   3.172 +  /// The default type is \ref ListDigraph.
   3.173 +  /// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies
   3.174 +  /// the lengths of the arcs. The default map type is
   3.175 +  /// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
   3.176 +#ifdef DOXYGEN
   3.177 +  template <typename GR, typename LEN, typename TR>
   3.178 +#else
   3.179 +  template <typename GR=ListDigraph,
   3.180 +            typename LEN=typename GR::template ArcMap<int>,
   3.181 +            typename TR=BellmanFordDefaultTraits<GR,LEN> >
   3.182 +#endif
   3.183 +  class BellmanFord {
   3.184 +  public:
   3.185 +
   3.186 +    ///The type of the underlying digraph.
   3.187 +    typedef typename TR::Digraph Digraph;
   3.188 +    
   3.189 +    /// \brief The type of the arc lengths.
   3.190 +    typedef typename TR::LengthMap::Value Value;
   3.191 +    /// \brief The type of the map that stores the arc lengths.
   3.192 +    typedef typename TR::LengthMap LengthMap;
   3.193 +    /// \brief The type of the map that stores the last
   3.194 +    /// arcs of the shortest paths.
   3.195 +    typedef typename TR::PredMap PredMap;
   3.196 +    /// \brief The type of the map that stores the distances of the nodes.
   3.197 +    typedef typename TR::DistMap DistMap;
   3.198 +    /// The type of the paths.
   3.199 +    typedef PredMapPath<Digraph, PredMap> Path;
   3.200 +    ///\brief The \ref BellmanFordDefaultOperationTraits
   3.201 +    /// "operation traits class" of the algorithm.
   3.202 +    typedef typename TR::OperationTraits OperationTraits;
   3.203 +
   3.204 +    ///The \ref BellmanFordDefaultTraits "traits class" of the algorithm.
   3.205 +    typedef TR Traits;
   3.206 +
   3.207 +  private:
   3.208 +
   3.209 +    typedef typename Digraph::Node Node;
   3.210 +    typedef typename Digraph::NodeIt NodeIt;
   3.211 +    typedef typename Digraph::Arc Arc;
   3.212 +    typedef typename Digraph::OutArcIt OutArcIt;
   3.213 +
   3.214 +    // Pointer to the underlying digraph.
   3.215 +    const Digraph *_gr;
   3.216 +    // Pointer to the length map
   3.217 +    const LengthMap *_length;
   3.218 +    // Pointer to the map of predecessors arcs.
   3.219 +    PredMap *_pred;
   3.220 +    // Indicates if _pred is locally allocated (true) or not.
   3.221 +    bool _local_pred;
   3.222 +    // Pointer to the map of distances.
   3.223 +    DistMap *_dist;
   3.224 +    // Indicates if _dist is locally allocated (true) or not.
   3.225 +    bool _local_dist;
   3.226 +
   3.227 +    typedef typename Digraph::template NodeMap<bool> MaskMap;
   3.228 +    MaskMap *_mask;
   3.229 +
   3.230 +    std::vector<Node> _process;
   3.231 +
   3.232 +    // Creates the maps if necessary.
   3.233 +    void create_maps() {
   3.234 +      if(!_pred) {
   3.235 +	_local_pred = true;
   3.236 +	_pred = Traits::createPredMap(*_gr);
   3.237 +      }
   3.238 +      if(!_dist) {
   3.239 +	_local_dist = true;
   3.240 +	_dist = Traits::createDistMap(*_gr);
   3.241 +      }
   3.242 +      _mask = new MaskMap(*_gr, false);
   3.243 +    }
   3.244 +    
   3.245 +  public :
   3.246 + 
   3.247 +    typedef BellmanFord Create;
   3.248 +
   3.249 +    /// \name Named Template Parameters
   3.250 +
   3.251 +    ///@{
   3.252 +
   3.253 +    template <class T>
   3.254 +    struct SetPredMapTraits : public Traits {
   3.255 +      typedef T PredMap;
   3.256 +      static PredMap *createPredMap(const Digraph&) {
   3.257 +        LEMON_ASSERT(false, "PredMap is not initialized");
   3.258 +        return 0; // ignore warnings
   3.259 +      }
   3.260 +    };
   3.261 +
   3.262 +    /// \brief \ref named-templ-param "Named parameter" for setting
   3.263 +    /// \c PredMap type.
   3.264 +    ///
   3.265 +    /// \ref named-templ-param "Named parameter" for setting
   3.266 +    /// \c PredMap type.
   3.267 +    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
   3.268 +    template <class T>
   3.269 +    struct SetPredMap 
   3.270 +      : public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > {
   3.271 +      typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create;
   3.272 +    };
   3.273 +    
   3.274 +    template <class T>
   3.275 +    struct SetDistMapTraits : public Traits {
   3.276 +      typedef T DistMap;
   3.277 +      static DistMap *createDistMap(const Digraph&) {
   3.278 +        LEMON_ASSERT(false, "DistMap is not initialized");
   3.279 +        return 0; // ignore warnings
   3.280 +      }
   3.281 +    };
   3.282 +
   3.283 +    /// \brief \ref named-templ-param "Named parameter" for setting
   3.284 +    /// \c DistMap type.
   3.285 +    ///
   3.286 +    /// \ref named-templ-param "Named parameter" for setting
   3.287 +    /// \c DistMap type.
   3.288 +    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
   3.289 +    template <class T>
   3.290 +    struct SetDistMap 
   3.291 +      : public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > {
   3.292 +      typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create;
   3.293 +    };
   3.294 +
   3.295 +    template <class T>
   3.296 +    struct SetOperationTraitsTraits : public Traits {
   3.297 +      typedef T OperationTraits;
   3.298 +    };
   3.299 +    
   3.300 +    /// \brief \ref named-templ-param "Named parameter" for setting 
   3.301 +    /// \c OperationTraits type.
   3.302 +    ///
   3.303 +    /// \ref named-templ-param "Named parameter" for setting
   3.304 +    /// \c OperationTraits type.
   3.305 +    /// For more information see \ref BellmanFordDefaultOperationTraits.
   3.306 +    template <class T>
   3.307 +    struct SetOperationTraits
   3.308 +      : public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > {
   3.309 +      typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> >
   3.310 +      Create;
   3.311 +    };
   3.312 +    
   3.313 +    ///@}
   3.314 +
   3.315 +  protected:
   3.316 +    
   3.317 +    BellmanFord() {}
   3.318 +
   3.319 +  public:      
   3.320 +    
   3.321 +    /// \brief Constructor.
   3.322 +    ///
   3.323 +    /// Constructor.
   3.324 +    /// \param g The digraph the algorithm runs on.
   3.325 +    /// \param length The length map used by the algorithm.
   3.326 +    BellmanFord(const Digraph& g, const LengthMap& length) :
   3.327 +      _gr(&g), _length(&length),
   3.328 +      _pred(0), _local_pred(false),
   3.329 +      _dist(0), _local_dist(false), _mask(0) {}
   3.330 +    
   3.331 +    ///Destructor.
   3.332 +    ~BellmanFord() {
   3.333 +      if(_local_pred) delete _pred;
   3.334 +      if(_local_dist) delete _dist;
   3.335 +      if(_mask) delete _mask;
   3.336 +    }
   3.337 +
   3.338 +    /// \brief Sets the length map.
   3.339 +    ///
   3.340 +    /// Sets the length map.
   3.341 +    /// \return <tt>(*this)</tt>
   3.342 +    BellmanFord &lengthMap(const LengthMap &map) {
   3.343 +      _length = &map;
   3.344 +      return *this;
   3.345 +    }
   3.346 +
   3.347 +    /// \brief Sets the map that stores the predecessor arcs.
   3.348 +    ///
   3.349 +    /// Sets the map that stores the predecessor arcs.
   3.350 +    /// If you don't use this function before calling \ref run()
   3.351 +    /// or \ref init(), an instance will be allocated automatically.
   3.352 +    /// The destructor deallocates this automatically allocated map,
   3.353 +    /// of course.
   3.354 +    /// \return <tt>(*this)</tt>
   3.355 +    BellmanFord &predMap(PredMap &map) {
   3.356 +      if(_local_pred) {
   3.357 +	delete _pred;
   3.358 +	_local_pred=false;
   3.359 +      }
   3.360 +      _pred = &map;
   3.361 +      return *this;
   3.362 +    }
   3.363 +
   3.364 +    /// \brief Sets the map that stores the distances of the nodes.
   3.365 +    ///
   3.366 +    /// Sets the map that stores the distances of the nodes calculated
   3.367 +    /// by the algorithm.
   3.368 +    /// If you don't use this function before calling \ref run()
   3.369 +    /// or \ref init(), an instance will be allocated automatically.
   3.370 +    /// The destructor deallocates this automatically allocated map,
   3.371 +    /// of course.
   3.372 +    /// \return <tt>(*this)</tt>
   3.373 +    BellmanFord &distMap(DistMap &map) {
   3.374 +      if(_local_dist) {
   3.375 +	delete _dist;
   3.376 +	_local_dist=false;
   3.377 +      }
   3.378 +      _dist = &map;
   3.379 +      return *this;
   3.380 +    }
   3.381 +
   3.382 +    /// \name Execution Control
   3.383 +    /// The simplest way to execute the Bellman-Ford algorithm is to use
   3.384 +    /// one of the member functions called \ref run().\n
   3.385 +    /// If you need better control on the execution, you have to call
   3.386 +    /// \ref init() first, then you can add several source nodes
   3.387 +    /// with \ref addSource(). Finally the actual path computation can be
   3.388 +    /// performed with \ref start(), \ref checkedStart() or
   3.389 +    /// \ref limitedStart().
   3.390 +
   3.391 +    ///@{
   3.392 +
   3.393 +    /// \brief Initializes the internal data structures.
   3.394 +    /// 
   3.395 +    /// Initializes the internal data structures. The optional parameter
   3.396 +    /// is the initial distance of each node.
   3.397 +    void init(const Value value = OperationTraits::infinity()) {
   3.398 +      create_maps();
   3.399 +      for (NodeIt it(*_gr); it != INVALID; ++it) {
   3.400 +	_pred->set(it, INVALID);
   3.401 +	_dist->set(it, value);
   3.402 +      }
   3.403 +      _process.clear();
   3.404 +      if (OperationTraits::less(value, OperationTraits::infinity())) {
   3.405 +	for (NodeIt it(*_gr); it != INVALID; ++it) {
   3.406 +	  _process.push_back(it);
   3.407 +	  _mask->set(it, true);
   3.408 +	}
   3.409 +      }
   3.410 +    }
   3.411 +    
   3.412 +    /// \brief Adds a new source node.
   3.413 +    ///
   3.414 +    /// This function adds a new source node. The optional second parameter
   3.415 +    /// is the initial distance of the node.
   3.416 +    void addSource(Node source, Value dst = OperationTraits::zero()) {
   3.417 +      _dist->set(source, dst);
   3.418 +      if (!(*_mask)[source]) {
   3.419 +	_process.push_back(source);
   3.420 +	_mask->set(source, true);
   3.421 +      }
   3.422 +    }
   3.423 +
   3.424 +    /// \brief Executes one round from the Bellman-Ford algorithm.
   3.425 +    ///
   3.426 +    /// If the algoritm calculated the distances in the previous round
   3.427 +    /// exactly for the paths of at most \c k arcs, then this function
   3.428 +    /// will calculate the distances exactly for the paths of at most
   3.429 +    /// <tt>k+1</tt> arcs. Performing \c k iterations using this function
   3.430 +    /// calculates the shortest path distances exactly for the paths
   3.431 +    /// consisting of at most \c k arcs.
   3.432 +    ///
   3.433 +    /// \warning The paths with limited arc number cannot be retrieved
   3.434 +    /// easily with \ref path() or \ref predArc() functions. If you also
   3.435 +    /// need the shortest paths and not only the distances, you should
   3.436 +    /// store the \ref predMap() "predecessor map" after each iteration
   3.437 +    /// and build the path manually.
   3.438 +    ///
   3.439 +    /// \return \c true when the algorithm have not found more shorter
   3.440 +    /// paths.
   3.441 +    ///
   3.442 +    /// \see ActiveIt
   3.443 +    bool processNextRound() {
   3.444 +      for (int i = 0; i < int(_process.size()); ++i) {
   3.445 +	_mask->set(_process[i], false);
   3.446 +      }
   3.447 +      std::vector<Node> nextProcess;
   3.448 +      std::vector<Value> values(_process.size());
   3.449 +      for (int i = 0; i < int(_process.size()); ++i) {
   3.450 +	values[i] = (*_dist)[_process[i]];
   3.451 +      }
   3.452 +      for (int i = 0; i < int(_process.size()); ++i) {
   3.453 +	for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
   3.454 +	  Node target = _gr->target(it);
   3.455 +	  Value relaxed = OperationTraits::plus(values[i], (*_length)[it]);
   3.456 +	  if (OperationTraits::less(relaxed, (*_dist)[target])) {
   3.457 +	    _pred->set(target, it);
   3.458 +	    _dist->set(target, relaxed);
   3.459 +	    if (!(*_mask)[target]) {
   3.460 +	      _mask->set(target, true);
   3.461 +	      nextProcess.push_back(target);
   3.462 +	    }
   3.463 +	  }	  
   3.464 +	}
   3.465 +      }
   3.466 +      _process.swap(nextProcess);
   3.467 +      return _process.empty();
   3.468 +    }
   3.469 +
   3.470 +    /// \brief Executes one weak round from the Bellman-Ford algorithm.
   3.471 +    ///
   3.472 +    /// If the algorithm calculated the distances in the previous round
   3.473 +    /// at least for the paths of at most \c k arcs, then this function
   3.474 +    /// will calculate the distances at least for the paths of at most
   3.475 +    /// <tt>k+1</tt> arcs.
   3.476 +    /// This function does not make it possible to calculate the shortest
   3.477 +    /// path distances exactly for paths consisting of at most \c k arcs,
   3.478 +    /// this is why it is called weak round.
   3.479 +    ///
   3.480 +    /// \return \c true when the algorithm have not found more shorter
   3.481 +    /// paths.
   3.482 +    ///
   3.483 +    /// \see ActiveIt
   3.484 +    bool processNextWeakRound() {
   3.485 +      for (int i = 0; i < int(_process.size()); ++i) {
   3.486 +	_mask->set(_process[i], false);
   3.487 +      }
   3.488 +      std::vector<Node> nextProcess;
   3.489 +      for (int i = 0; i < int(_process.size()); ++i) {
   3.490 +	for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
   3.491 +	  Node target = _gr->target(it);
   3.492 +	  Value relaxed = 
   3.493 +	    OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]);
   3.494 +	  if (OperationTraits::less(relaxed, (*_dist)[target])) {
   3.495 +	    _pred->set(target, it);
   3.496 +	    _dist->set(target, relaxed);
   3.497 +	    if (!(*_mask)[target]) {
   3.498 +	      _mask->set(target, true);
   3.499 +	      nextProcess.push_back(target);
   3.500 +	    }
   3.501 +	  }	  
   3.502 +	}
   3.503 +      }
   3.504 +      _process.swap(nextProcess);
   3.505 +      return _process.empty();
   3.506 +    }
   3.507 +
   3.508 +    /// \brief Executes the algorithm.
   3.509 +    ///
   3.510 +    /// Executes the algorithm.
   3.511 +    ///
   3.512 +    /// This method runs the Bellman-Ford algorithm from the root node(s)
   3.513 +    /// in order to compute the shortest path to each node.
   3.514 +    ///
   3.515 +    /// The algorithm computes
   3.516 +    /// - the shortest path tree (forest),
   3.517 +    /// - the distance of each node from the root(s).
   3.518 +    ///
   3.519 +    /// \pre init() must be called and at least one root node should be
   3.520 +    /// added with addSource() before using this function.
   3.521 +    void start() {
   3.522 +      int num = countNodes(*_gr) - 1;
   3.523 +      for (int i = 0; i < num; ++i) {
   3.524 +	if (processNextWeakRound()) break;
   3.525 +      }
   3.526 +    }
   3.527 +
   3.528 +    /// \brief Executes the algorithm and checks the negative cycles.
   3.529 +    ///
   3.530 +    /// Executes the algorithm and checks the negative cycles.
   3.531 +    ///
   3.532 +    /// This method runs the Bellman-Ford algorithm from the root node(s)
   3.533 +    /// in order to compute the shortest path to each node and also checks
   3.534 +    /// if the digraph contains cycles with negative total length.
   3.535 +    ///
   3.536 +    /// The algorithm computes 
   3.537 +    /// - the shortest path tree (forest),
   3.538 +    /// - the distance of each node from the root(s).
   3.539 +    /// 
   3.540 +    /// \return \c false if there is a negative cycle in the digraph.
   3.541 +    ///
   3.542 +    /// \pre init() must be called and at least one root node should be
   3.543 +    /// added with addSource() before using this function. 
   3.544 +    bool checkedStart() {
   3.545 +      int num = countNodes(*_gr);
   3.546 +      for (int i = 0; i < num; ++i) {
   3.547 +	if (processNextWeakRound()) return true;
   3.548 +      }
   3.549 +      return _process.empty();
   3.550 +    }
   3.551 +
   3.552 +    /// \brief Executes the algorithm with arc number limit.
   3.553 +    ///
   3.554 +    /// Executes the algorithm with arc number limit.
   3.555 +    ///
   3.556 +    /// This method runs the Bellman-Ford algorithm from the root node(s)
   3.557 +    /// in order to compute the shortest path distance for each node
   3.558 +    /// using only the paths consisting of at most \c num arcs.
   3.559 +    ///
   3.560 +    /// The algorithm computes
   3.561 +    /// - the limited distance of each node from the root(s),
   3.562 +    /// - the predecessor arc for each node.
   3.563 +    ///
   3.564 +    /// \warning The paths with limited arc number cannot be retrieved
   3.565 +    /// easily with \ref path() or \ref predArc() functions. If you also
   3.566 +    /// need the shortest paths and not only the distances, you should
   3.567 +    /// store the \ref predMap() "predecessor map" after each iteration
   3.568 +    /// and build the path manually.
   3.569 +    ///
   3.570 +    /// \pre init() must be called and at least one root node should be
   3.571 +    /// added with addSource() before using this function. 
   3.572 +    void limitedStart(int num) {
   3.573 +      for (int i = 0; i < num; ++i) {
   3.574 +	if (processNextRound()) break;
   3.575 +      }
   3.576 +    }
   3.577 +    
   3.578 +    /// \brief Runs the algorithm from the given root node.
   3.579 +    ///    
   3.580 +    /// This method runs the Bellman-Ford algorithm from the given root
   3.581 +    /// node \c s in order to compute the shortest path to each node.
   3.582 +    ///
   3.583 +    /// The algorithm computes
   3.584 +    /// - the shortest path tree (forest),
   3.585 +    /// - the distance of each node from the root(s).
   3.586 +    ///
   3.587 +    /// \note bf.run(s) is just a shortcut of the following code.
   3.588 +    /// \code
   3.589 +    ///   bf.init();
   3.590 +    ///   bf.addSource(s);
   3.591 +    ///   bf.start();
   3.592 +    /// \endcode
   3.593 +    void run(Node s) {
   3.594 +      init();
   3.595 +      addSource(s);
   3.596 +      start();
   3.597 +    }
   3.598 +    
   3.599 +    /// \brief Runs the algorithm from the given root node with arc
   3.600 +    /// number limit.
   3.601 +    ///    
   3.602 +    /// This method runs the Bellman-Ford algorithm from the given root
   3.603 +    /// node \c s in order to compute the shortest path distance for each
   3.604 +    /// node using only the paths consisting of at most \c num arcs.
   3.605 +    ///
   3.606 +    /// The algorithm computes
   3.607 +    /// - the limited distance of each node from the root(s),
   3.608 +    /// - the predecessor arc for each node.
   3.609 +    ///
   3.610 +    /// \warning The paths with limited arc number cannot be retrieved
   3.611 +    /// easily with \ref path() or \ref predArc() functions. If you also
   3.612 +    /// need the shortest paths and not only the distances, you should
   3.613 +    /// store the \ref predMap() "predecessor map" after each iteration
   3.614 +    /// and build the path manually.
   3.615 +    ///
   3.616 +    /// \note bf.run(s, num) is just a shortcut of the following code.
   3.617 +    /// \code
   3.618 +    ///   bf.init();
   3.619 +    ///   bf.addSource(s);
   3.620 +    ///   bf.limitedStart(num);
   3.621 +    /// \endcode
   3.622 +    void run(Node s, int num) {
   3.623 +      init();
   3.624 +      addSource(s);
   3.625 +      limitedStart(num);
   3.626 +    }
   3.627 +    
   3.628 +    ///@}
   3.629 +
   3.630 +    /// \brief LEMON iterator for getting the active nodes.
   3.631 +    ///
   3.632 +    /// This class provides a common style LEMON iterator that traverses
   3.633 +    /// the active nodes of the Bellman-Ford algorithm after the last
   3.634 +    /// phase. These nodes should be checked in the next phase to
   3.635 +    /// find augmenting arcs outgoing from them.
   3.636 +    class ActiveIt {
   3.637 +    public:
   3.638 +
   3.639 +      /// \brief Constructor.
   3.640 +      ///
   3.641 +      /// Constructor for getting the active nodes of the given BellmanFord
   3.642 +      /// instance. 
   3.643 +      ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm)
   3.644 +      {
   3.645 +        _index = _algorithm->_process.size() - 1;
   3.646 +      }
   3.647 +
   3.648 +      /// \brief Invalid constructor.
   3.649 +      ///
   3.650 +      /// Invalid constructor.
   3.651 +      ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
   3.652 +
   3.653 +      /// \brief Conversion to \c Node.
   3.654 +      ///
   3.655 +      /// Conversion to \c Node.
   3.656 +      operator Node() const { 
   3.657 +        return _index >= 0 ? _algorithm->_process[_index] : INVALID;
   3.658 +      }
   3.659 +
   3.660 +      /// \brief Increment operator.
   3.661 +      ///
   3.662 +      /// Increment operator.
   3.663 +      ActiveIt& operator++() {
   3.664 +        --_index;
   3.665 +        return *this; 
   3.666 +      }
   3.667 +
   3.668 +      bool operator==(const ActiveIt& it) const { 
   3.669 +        return static_cast<Node>(*this) == static_cast<Node>(it); 
   3.670 +      }
   3.671 +      bool operator!=(const ActiveIt& it) const { 
   3.672 +        return static_cast<Node>(*this) != static_cast<Node>(it); 
   3.673 +      }
   3.674 +      bool operator<(const ActiveIt& it) const { 
   3.675 +        return static_cast<Node>(*this) < static_cast<Node>(it); 
   3.676 +      }
   3.677 +      
   3.678 +    private:
   3.679 +      const BellmanFord* _algorithm;
   3.680 +      int _index;
   3.681 +    };
   3.682 +    
   3.683 +    /// \name Query Functions
   3.684 +    /// The result of the Bellman-Ford algorithm can be obtained using these
   3.685 +    /// functions.\n
   3.686 +    /// Either \ref run() or \ref init() should be called before using them.
   3.687 +    
   3.688 +    ///@{
   3.689 +
   3.690 +    /// \brief The shortest path to the given node.
   3.691 +    ///    
   3.692 +    /// Gives back the shortest path to the given node from the root(s).
   3.693 +    ///
   3.694 +    /// \warning \c t should be reached from the root(s).
   3.695 +    ///
   3.696 +    /// \pre Either \ref run() or \ref init() must be called before
   3.697 +    /// using this function.
   3.698 +    Path path(Node t) const
   3.699 +    {
   3.700 +      return Path(*_gr, *_pred, t);
   3.701 +    }
   3.702 +	  
   3.703 +    /// \brief The distance of the given node from the root(s).
   3.704 +    ///
   3.705 +    /// Returns the distance of the given node from the root(s).
   3.706 +    ///
   3.707 +    /// \warning If node \c v is not reached from the root(s), then
   3.708 +    /// the return value of this function is undefined.
   3.709 +    ///
   3.710 +    /// \pre Either \ref run() or \ref init() must be called before
   3.711 +    /// using this function.
   3.712 +    Value dist(Node v) const { return (*_dist)[v]; }
   3.713 +
   3.714 +    /// \brief Returns the 'previous arc' of the shortest path tree for
   3.715 +    /// the given node.
   3.716 +    ///
   3.717 +    /// This function returns the 'previous arc' of the shortest path
   3.718 +    /// tree for node \c v, i.e. it returns the last arc of a
   3.719 +    /// shortest path from a root to \c v. It is \c INVALID if \c v
   3.720 +    /// is not reached from the root(s) or if \c v is a root.
   3.721 +    ///
   3.722 +    /// The shortest path tree used here is equal to the shortest path
   3.723 +    /// tree used in \ref predNode() and \predMap().
   3.724 +    ///
   3.725 +    /// \pre Either \ref run() or \ref init() must be called before
   3.726 +    /// using this function.
   3.727 +    Arc predArc(Node v) const { return (*_pred)[v]; }
   3.728 +
   3.729 +    /// \brief Returns the 'previous node' of the shortest path tree for
   3.730 +    /// the given node.
   3.731 +    ///
   3.732 +    /// This function returns the 'previous node' of the shortest path
   3.733 +    /// tree for node \c v, i.e. it returns the last but one node of
   3.734 +    /// a shortest path from a root to \c v. It is \c INVALID if \c v
   3.735 +    /// is not reached from the root(s) or if \c v is a root.
   3.736 +    ///
   3.737 +    /// The shortest path tree used here is equal to the shortest path
   3.738 +    /// tree used in \ref predArc() and \predMap().
   3.739 +    ///
   3.740 +    /// \pre Either \ref run() or \ref init() must be called before
   3.741 +    /// using this function.
   3.742 +    Node predNode(Node v) const { 
   3.743 +      return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); 
   3.744 +    }
   3.745 +    
   3.746 +    /// \brief Returns a const reference to the node map that stores the
   3.747 +    /// distances of the nodes.
   3.748 +    ///
   3.749 +    /// Returns a const reference to the node map that stores the distances
   3.750 +    /// of the nodes calculated by the algorithm.
   3.751 +    ///
   3.752 +    /// \pre Either \ref run() or \ref init() must be called before
   3.753 +    /// using this function.
   3.754 +    const DistMap &distMap() const { return *_dist;}
   3.755 + 
   3.756 +    /// \brief Returns a const reference to the node map that stores the
   3.757 +    /// predecessor arcs.
   3.758 +    ///
   3.759 +    /// Returns a const reference to the node map that stores the predecessor
   3.760 +    /// arcs, which form the shortest path tree (forest).
   3.761 +    ///
   3.762 +    /// \pre Either \ref run() or \ref init() must be called before
   3.763 +    /// using this function.
   3.764 +    const PredMap &predMap() const { return *_pred; }
   3.765 + 
   3.766 +    /// \brief Checks if a node is reached from the root(s).
   3.767 +    ///
   3.768 +    /// Returns \c true if \c v is reached from the root(s).
   3.769 +    ///
   3.770 +    /// \pre Either \ref run() or \ref init() must be called before
   3.771 +    /// using this function.
   3.772 +    bool reached(Node v) const {
   3.773 +      return (*_dist)[v] != OperationTraits::infinity();
   3.774 +    }
   3.775 +
   3.776 +    /// \brief Gives back a negative cycle.
   3.777 +    ///    
   3.778 +    /// This function gives back a directed cycle with negative total
   3.779 +    /// length if the algorithm has already found one.
   3.780 +    /// Otherwise it gives back an empty path.
   3.781 +    lemon::Path<Digraph> negativeCycle() {
   3.782 +      typename Digraph::template NodeMap<int> state(*_gr, -1);
   3.783 +      lemon::Path<Digraph> cycle;
   3.784 +      for (int i = 0; i < int(_process.size()); ++i) {
   3.785 +        if (state[_process[i]] != -1) continue;
   3.786 +        for (Node v = _process[i]; (*_pred)[v] != INVALID;
   3.787 +             v = _gr->source((*_pred)[v])) {
   3.788 +          if (state[v] == i) {
   3.789 +            cycle.addFront((*_pred)[v]);
   3.790 +            for (Node u = _gr->source((*_pred)[v]); u != v;
   3.791 +                 u = _gr->source((*_pred)[u])) {
   3.792 +              cycle.addFront((*_pred)[u]);
   3.793 +            }
   3.794 +            return cycle;
   3.795 +          }
   3.796 +          else if (state[v] >= 0) {
   3.797 +            break;
   3.798 +          }
   3.799 +          state[v] = i;
   3.800 +        }
   3.801 +      }
   3.802 +      return cycle;
   3.803 +    }
   3.804 +    
   3.805 +    ///@}
   3.806 +  };
   3.807 + 
   3.808 +  /// \brief Default traits class of bellmanFord() function.
   3.809 +  ///
   3.810 +  /// Default traits class of bellmanFord() function.
   3.811 +  /// \tparam GR The type of the digraph.
   3.812 +  /// \tparam LEN The type of the length map.
   3.813 +  template <typename GR, typename LEN>
   3.814 +  struct BellmanFordWizardDefaultTraits {
   3.815 +    /// The type of the digraph the algorithm runs on. 
   3.816 +    typedef GR Digraph;
   3.817 +
   3.818 +    /// \brief The type of the map that stores the arc lengths.
   3.819 +    ///
   3.820 +    /// The type of the map that stores the arc lengths.
   3.821 +    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
   3.822 +    typedef LEN LengthMap;
   3.823 +
   3.824 +    /// The type of the arc lengths.
   3.825 +    typedef typename LEN::Value Value;
   3.826 +
   3.827 +    /// \brief Operation traits for Bellman-Ford algorithm.
   3.828 +    ///
   3.829 +    /// It defines the used operations and the infinity value for the
   3.830 +    /// given \c Value type.
   3.831 +    /// \see BellmanFordDefaultOperationTraits
   3.832 +    typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
   3.833 +
   3.834 +    /// \brief The type of the map that stores the last
   3.835 +    /// arcs of the shortest paths.
   3.836 +    /// 
   3.837 +    /// The type of the map that stores the last arcs of the shortest paths.
   3.838 +    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
   3.839 +    typedef typename GR::template NodeMap<typename GR::Arc> PredMap;
   3.840 +
   3.841 +    /// \brief Instantiates a \c PredMap.
   3.842 +    /// 
   3.843 +    /// This function instantiates a \ref PredMap.
   3.844 +    /// \param g is the digraph to which we would like to define the
   3.845 +    /// \ref PredMap.
   3.846 +    static PredMap *createPredMap(const GR &g) {
   3.847 +      return new PredMap(g);
   3.848 +    }
   3.849 +
   3.850 +    /// \brief The type of the map that stores the distances of the nodes.
   3.851 +    ///
   3.852 +    /// The type of the map that stores the distances of the nodes.
   3.853 +    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
   3.854 +    typedef typename GR::template NodeMap<Value> DistMap;
   3.855 +
   3.856 +    /// \brief Instantiates a \c DistMap.
   3.857 +    ///
   3.858 +    /// This function instantiates a \ref DistMap. 
   3.859 +    /// \param g is the digraph to which we would like to define the
   3.860 +    /// \ref DistMap.
   3.861 +    static DistMap *createDistMap(const GR &g) {
   3.862 +      return new DistMap(g);
   3.863 +    }
   3.864 +
   3.865 +    ///The type of the shortest paths.
   3.866 +
   3.867 +    ///The type of the shortest paths.
   3.868 +    ///It must meet the \ref concepts::Path "Path" concept.
   3.869 +    typedef lemon::Path<Digraph> Path;
   3.870 +  };
   3.871 +  
   3.872 +  /// \brief Default traits class used by BellmanFordWizard.
   3.873 +  ///
   3.874 +  /// Default traits class used by BellmanFordWizard.
   3.875 +  /// \tparam GR The type of the digraph.
   3.876 +  /// \tparam LEN The type of the length map.
   3.877 +  template <typename GR, typename LEN>
   3.878 +  class BellmanFordWizardBase 
   3.879 +    : public BellmanFordWizardDefaultTraits<GR, LEN> {
   3.880 +
   3.881 +    typedef BellmanFordWizardDefaultTraits<GR, LEN> Base;
   3.882 +  protected:
   3.883 +    // Type of the nodes in the digraph.
   3.884 +    typedef typename Base::Digraph::Node Node;
   3.885 +
   3.886 +    // Pointer to the underlying digraph.
   3.887 +    void *_graph;
   3.888 +    // Pointer to the length map
   3.889 +    void *_length;
   3.890 +    // Pointer to the map of predecessors arcs.
   3.891 +    void *_pred;
   3.892 +    // Pointer to the map of distances.
   3.893 +    void *_dist;
   3.894 +    //Pointer to the shortest path to the target node.
   3.895 +    void *_path;
   3.896 +    //Pointer to the distance of the target node.
   3.897 +    void *_di;
   3.898 +
   3.899 +    public:
   3.900 +    /// Constructor.
   3.901 +    
   3.902 +    /// This constructor does not require parameters, it initiates
   3.903 +    /// all of the attributes to default values \c 0.
   3.904 +    BellmanFordWizardBase() :
   3.905 +      _graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {}
   3.906 +
   3.907 +    /// Constructor.
   3.908 +    
   3.909 +    /// This constructor requires two parameters,
   3.910 +    /// others are initiated to \c 0.
   3.911 +    /// \param gr The digraph the algorithm runs on.
   3.912 +    /// \param len The length map.
   3.913 +    BellmanFordWizardBase(const GR& gr, 
   3.914 +			  const LEN& len) :
   3.915 +      _graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))), 
   3.916 +      _length(reinterpret_cast<void*>(const_cast<LEN*>(&len))), 
   3.917 +      _pred(0), _dist(0), _path(0), _di(0) {}
   3.918 +
   3.919 +  };
   3.920 +  
   3.921 +  /// \brief Auxiliary class for the function-type interface of the
   3.922 +  /// \ref BellmanFord "Bellman-Ford" algorithm.
   3.923 +  ///
   3.924 +  /// This auxiliary class is created to implement the
   3.925 +  /// \ref bellmanFord() "function-type interface" of the
   3.926 +  /// \ref BellmanFord "Bellman-Ford" algorithm.
   3.927 +  /// It does not have own \ref run() method, it uses the
   3.928 +  /// functions and features of the plain \ref BellmanFord.
   3.929 +  ///
   3.930 +  /// This class should only be used through the \ref bellmanFord()
   3.931 +  /// function, which makes it easier to use the algorithm.
   3.932 +  template<class TR>
   3.933 +  class BellmanFordWizard : public TR {
   3.934 +    typedef TR Base;
   3.935 +
   3.936 +    typedef typename TR::Digraph Digraph;
   3.937 +
   3.938 +    typedef typename Digraph::Node Node;
   3.939 +    typedef typename Digraph::NodeIt NodeIt;
   3.940 +    typedef typename Digraph::Arc Arc;
   3.941 +    typedef typename Digraph::OutArcIt ArcIt;
   3.942 +    
   3.943 +    typedef typename TR::LengthMap LengthMap;
   3.944 +    typedef typename LengthMap::Value Value;
   3.945 +    typedef typename TR::PredMap PredMap;
   3.946 +    typedef typename TR::DistMap DistMap;
   3.947 +    typedef typename TR::Path Path;
   3.948 +
   3.949 +  public:
   3.950 +    /// Constructor.
   3.951 +    BellmanFordWizard() : TR() {}
   3.952 +
   3.953 +    /// \brief Constructor that requires parameters.
   3.954 +    ///
   3.955 +    /// Constructor that requires parameters.
   3.956 +    /// These parameters will be the default values for the traits class.
   3.957 +    /// \param gr The digraph the algorithm runs on.
   3.958 +    /// \param len The length map.
   3.959 +    BellmanFordWizard(const Digraph& gr, const LengthMap& len) 
   3.960 +      : TR(gr, len) {}
   3.961 +
   3.962 +    /// \brief Copy constructor
   3.963 +    BellmanFordWizard(const TR &b) : TR(b) {}
   3.964 +
   3.965 +    ~BellmanFordWizard() {}
   3.966 +
   3.967 +    /// \brief Runs the Bellman-Ford algorithm from the given source node.
   3.968 +    ///    
   3.969 +    /// This method runs the Bellman-Ford algorithm from the given source
   3.970 +    /// node in order to compute the shortest path to each node.
   3.971 +    void run(Node s) {
   3.972 +      BellmanFord<Digraph,LengthMap,TR> 
   3.973 +	bf(*reinterpret_cast<const Digraph*>(Base::_graph), 
   3.974 +           *reinterpret_cast<const LengthMap*>(Base::_length));
   3.975 +      if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
   3.976 +      if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
   3.977 +      bf.run(s);
   3.978 +    }
   3.979 +
   3.980 +    /// \brief Runs the Bellman-Ford algorithm to find the shortest path
   3.981 +    /// between \c s and \c t.
   3.982 +    ///
   3.983 +    /// This method runs the Bellman-Ford algorithm from node \c s
   3.984 +    /// in order to compute the shortest path to node \c t.
   3.985 +    /// Actually, it computes the shortest path to each node, but using
   3.986 +    /// this function you can retrieve the distance and the shortest path
   3.987 +    /// for a single target node easier.
   3.988 +    ///
   3.989 +    /// \return \c true if \c t is reachable form \c s.
   3.990 +    bool run(Node s, Node t) {
   3.991 +      BellmanFord<Digraph,LengthMap,TR>
   3.992 +        bf(*reinterpret_cast<const Digraph*>(Base::_graph),
   3.993 +           *reinterpret_cast<const LengthMap*>(Base::_length));
   3.994 +      if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
   3.995 +      if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
   3.996 +      bf.run(s);
   3.997 +      if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t);
   3.998 +      if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t);
   3.999 +      return bf.reached(t);
  3.1000 +    }
  3.1001 +
  3.1002 +    template<class T>
  3.1003 +    struct SetPredMapBase : public Base {
  3.1004 +      typedef T PredMap;
  3.1005 +      static PredMap *createPredMap(const Digraph &) { return 0; };
  3.1006 +      SetPredMapBase(const TR &b) : TR(b) {}
  3.1007 +    };
  3.1008 +    
  3.1009 +    /// \brief \ref named-templ-param "Named parameter" for setting
  3.1010 +    /// the predecessor map.
  3.1011 +    ///
  3.1012 +    /// \ref named-templ-param "Named parameter" for setting
  3.1013 +    /// the map that stores the predecessor arcs of the nodes.
  3.1014 +    template<class T>
  3.1015 +    BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) {
  3.1016 +      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
  3.1017 +      return BellmanFordWizard<SetPredMapBase<T> >(*this);
  3.1018 +    }
  3.1019 +    
  3.1020 +    template<class T>
  3.1021 +    struct SetDistMapBase : public Base {
  3.1022 +      typedef T DistMap;
  3.1023 +      static DistMap *createDistMap(const Digraph &) { return 0; };
  3.1024 +      SetDistMapBase(const TR &b) : TR(b) {}
  3.1025 +    };
  3.1026 +    
  3.1027 +    /// \brief \ref named-templ-param "Named parameter" for setting
  3.1028 +    /// the distance map.
  3.1029 +    ///
  3.1030 +    /// \ref named-templ-param "Named parameter" for setting
  3.1031 +    /// the map that stores the distances of the nodes calculated
  3.1032 +    /// by the algorithm.
  3.1033 +    template<class T>
  3.1034 +    BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) {
  3.1035 +      Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
  3.1036 +      return BellmanFordWizard<SetDistMapBase<T> >(*this);
  3.1037 +    }
  3.1038 +
  3.1039 +    template<class T>
  3.1040 +    struct SetPathBase : public Base {
  3.1041 +      typedef T Path;
  3.1042 +      SetPathBase(const TR &b) : TR(b) {}
  3.1043 +    };
  3.1044 +
  3.1045 +    /// \brief \ref named-func-param "Named parameter" for getting
  3.1046 +    /// the shortest path to the target node.
  3.1047 +    ///
  3.1048 +    /// \ref named-func-param "Named parameter" for getting
  3.1049 +    /// the shortest path to the target node.
  3.1050 +    template<class T>
  3.1051 +    BellmanFordWizard<SetPathBase<T> > path(const T &t)
  3.1052 +    {
  3.1053 +      Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
  3.1054 +      return BellmanFordWizard<SetPathBase<T> >(*this);
  3.1055 +    }
  3.1056 +
  3.1057 +    /// \brief \ref named-func-param "Named parameter" for getting
  3.1058 +    /// the distance of the target node.
  3.1059 +    ///
  3.1060 +    /// \ref named-func-param "Named parameter" for getting
  3.1061 +    /// the distance of the target node.
  3.1062 +    BellmanFordWizard dist(const Value &d)
  3.1063 +    {
  3.1064 +      Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d));
  3.1065 +      return *this;
  3.1066 +    }
  3.1067 +    
  3.1068 +  };
  3.1069 +  
  3.1070 +  /// \brief Function type interface for the \ref BellmanFord "Bellman-Ford"
  3.1071 +  /// algorithm.
  3.1072 +  ///
  3.1073 +  /// \ingroup shortest_path
  3.1074 +  /// Function type interface for the \ref BellmanFord "Bellman-Ford"
  3.1075 +  /// algorithm.
  3.1076 +  ///
  3.1077 +  /// This function also has several \ref named-templ-func-param 
  3.1078 +  /// "named parameters", they are declared as the members of class 
  3.1079 +  /// \ref BellmanFordWizard.
  3.1080 +  /// The following examples show how to use these parameters.
  3.1081 +  /// \code
  3.1082 +  ///   // Compute shortest path from node s to each node
  3.1083 +  ///   bellmanFord(g,length).predMap(preds).distMap(dists).run(s);
  3.1084 +  ///
  3.1085 +  ///   // Compute shortest path from s to t
  3.1086 +  ///   bool reached = bellmanFord(g,length).path(p).dist(d).run(s,t);
  3.1087 +  /// \endcode
  3.1088 +  /// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()"
  3.1089 +  /// to the end of the parameter list.
  3.1090 +  /// \sa BellmanFordWizard
  3.1091 +  /// \sa BellmanFord
  3.1092 +  template<typename GR, typename LEN>
  3.1093 +  BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >
  3.1094 +  bellmanFord(const GR& digraph,
  3.1095 +	      const LEN& length)
  3.1096 +  {
  3.1097 +    return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length);
  3.1098 +  }
  3.1099 +
  3.1100 +} //END OF NAMESPACE LEMON
  3.1101 +
  3.1102 +#endif
  3.1103 +
     4.1 --- a/lemon/bin_heap.h	Fri Jul 24 11:07:52 2009 +0200
     4.2 +++ b/lemon/bin_heap.h	Fri Sep 25 09:06:32 2009 +0200
     4.3 @@ -19,9 +19,9 @@
     4.4  #ifndef LEMON_BIN_HEAP_H
     4.5  #define LEMON_BIN_HEAP_H
     4.6  
     4.7 -///\ingroup auxdat
     4.8 +///\ingroup heaps
     4.9  ///\file
    4.10 -///\brief Binary Heap implementation.
    4.11 +///\brief Binary heap implementation.
    4.12  
    4.13  #include <vector>
    4.14  #include <utility>
    4.15 @@ -29,45 +29,41 @@
    4.16  
    4.17  namespace lemon {
    4.18  
    4.19 -  ///\ingroup auxdat
    4.20 +  /// \ingroup heaps
    4.21    ///
    4.22 -  ///\brief A Binary Heap implementation.
    4.23 +  /// \brief Binary heap data structure.
    4.24    ///
    4.25 -  ///This class implements the \e binary \e heap data structure.
    4.26 +  /// This class implements the \e binary \e heap data structure.
    4.27 +  /// It fully conforms to the \ref concepts::Heap "heap concept".
    4.28    ///
    4.29 -  ///A \e heap is a data structure for storing items with specified values
    4.30 -  ///called \e priorities in such a way that finding the item with minimum
    4.31 -  ///priority is efficient. \c CMP specifies the ordering of the priorities.
    4.32 -  ///In a heap one can change the priority of an item, add or erase an
    4.33 -  ///item, etc.
    4.34 -  ///
    4.35 -  ///\tparam PR Type of the priority of the items.
    4.36 -  ///\tparam IM A read and writable item map with int values, used internally
    4.37 -  ///to handle the cross references.
    4.38 -  ///\tparam CMP A functor class for the ordering of the priorities.
    4.39 -  ///The default is \c std::less<PR>.
    4.40 -  ///
    4.41 -  ///\sa FibHeap
    4.42 -  ///\sa Dijkstra
    4.43 +  /// \tparam PR Type of the priorities of the items.
    4.44 +  /// \tparam IM A read-writable item map with \c int values, used
    4.45 +  /// internally to handle the cross references.
    4.46 +  /// \tparam CMP A functor class for comparing the priorities.
    4.47 +  /// The default is \c std::less<PR>.
    4.48 +#ifdef DOXYGEN
    4.49 +  template <typename PR, typename IM, typename CMP>
    4.50 +#else
    4.51    template <typename PR, typename IM, typename CMP = std::less<PR> >
    4.52 +#endif
    4.53    class BinHeap {
    4.54 +  public:
    4.55  
    4.56 -  public:
    4.57 -    ///\e
    4.58 +    /// Type of the item-int map.
    4.59      typedef IM ItemIntMap;
    4.60 -    ///\e
    4.61 +    /// Type of the priorities.
    4.62      typedef PR Prio;
    4.63 -    ///\e
    4.64 +    /// Type of the items stored in the heap.
    4.65      typedef typename ItemIntMap::Key Item;
    4.66 -    ///\e
    4.67 +    /// Type of the item-priority pairs.
    4.68      typedef std::pair<Item,Prio> Pair;
    4.69 -    ///\e
    4.70 +    /// Functor type for comparing the priorities.
    4.71      typedef CMP Compare;
    4.72  
    4.73 -    /// \brief Type to represent the items states.
    4.74 +    /// \brief Type to represent the states of the items.
    4.75      ///
    4.76 -    /// Each Item element have a state associated to it. It may be "in heap",
    4.77 -    /// "pre heap" or "post heap". The latter two are indifferent from the
    4.78 +    /// Each item has a state associated to it. It can be "in heap",
    4.79 +    /// "pre-heap" or "post-heap". The latter two are indifferent from the
    4.80      /// heap's point of view, but may be useful to the user.
    4.81      ///
    4.82      /// The item-int map must be initialized in such way that it assigns
    4.83 @@ -84,42 +80,43 @@
    4.84      ItemIntMap &_iim;
    4.85  
    4.86    public:
    4.87 -    /// \brief The constructor.
    4.88 +
    4.89 +    /// \brief Constructor.
    4.90      ///
    4.91 -    /// The constructor.
    4.92 -    /// \param map should be given to the constructor, since it is used
    4.93 -    /// internally to handle the cross references. The value of the map
    4.94 -    /// must be \c PRE_HEAP (<tt>-1</tt>) for every item.
    4.95 +    /// Constructor.
    4.96 +    /// \param map A map that assigns \c int values to the items.
    4.97 +    /// It is used internally to handle the cross references.
    4.98 +    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
    4.99      explicit BinHeap(ItemIntMap &map) : _iim(map) {}
   4.100  
   4.101 -    /// \brief The constructor.
   4.102 +    /// \brief Constructor.
   4.103      ///
   4.104 -    /// The constructor.
   4.105 -    /// \param map should be given to the constructor, since it is used
   4.106 -    /// internally to handle the cross references. The value of the map
   4.107 -    /// should be PRE_HEAP (-1) for each element.
   4.108 -    ///
   4.109 -    /// \param comp The comparator function object.
   4.110 +    /// Constructor.
   4.111 +    /// \param map A map that assigns \c int values to the items.
   4.112 +    /// It is used internally to handle the cross references.
   4.113 +    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
   4.114 +    /// \param comp The function object used for comparing the priorities.
   4.115      BinHeap(ItemIntMap &map, const Compare &comp)
   4.116        : _iim(map), _comp(comp) {}
   4.117  
   4.118  
   4.119 -    /// The number of items stored in the heap.
   4.120 +    /// \brief The number of items stored in the heap.
   4.121      ///
   4.122 -    /// \brief Returns the number of items stored in the heap.
   4.123 +    /// This function returns the number of items stored in the heap.
   4.124      int size() const { return _data.size(); }
   4.125  
   4.126 -    /// \brief Checks if the heap stores no items.
   4.127 +    /// \brief Check if the heap is empty.
   4.128      ///
   4.129 -    /// Returns \c true if and only if the heap stores no items.
   4.130 +    /// This function returns \c true if the heap is empty.
   4.131      bool empty() const { return _data.empty(); }
   4.132  
   4.133 -    /// \brief Make empty this heap.
   4.134 +    /// \brief Make the heap empty.
   4.135      ///
   4.136 -    /// Make empty this heap. It does not change the cross reference map.
   4.137 -    /// If you want to reuse what is not surely empty you should first clear
   4.138 -    /// the heap and after that you should set the cross reference map for
   4.139 -    /// each item to \c PRE_HEAP.
   4.140 +    /// This functon makes the heap empty.
   4.141 +    /// It does not change the cross reference map. If you want to reuse
   4.142 +    /// a heap that is not surely empty, you should first clear it and
   4.143 +    /// then you should set the cross reference map to \c PRE_HEAP
   4.144 +    /// for each item.
   4.145      void clear() {
   4.146        _data.clear();
   4.147      }
   4.148 @@ -127,12 +124,12 @@
   4.149    private:
   4.150      static int parent(int i) { return (i-1)/2; }
   4.151  
   4.152 -    static int second_child(int i) { return 2*i+2; }
   4.153 +    static int secondChild(int i) { return 2*i+2; }
   4.154      bool less(const Pair &p1, const Pair &p2) const {
   4.155        return _comp(p1.second, p2.second);
   4.156      }
   4.157  
   4.158 -    int bubble_up(int hole, Pair p) {
   4.159 +    int bubbleUp(int hole, Pair p) {
   4.160        int par = parent(hole);
   4.161        while( hole>0 && less(p,_data[par]) ) {
   4.162          move(_data[par],hole);
   4.163 @@ -143,8 +140,8 @@
   4.164        return hole;
   4.165      }
   4.166  
   4.167 -    int bubble_down(int hole, Pair p, int length) {
   4.168 -      int child = second_child(hole);
   4.169 +    int bubbleDown(int hole, Pair p, int length) {
   4.170 +      int child = secondChild(hole);
   4.171        while(child < length) {
   4.172          if( less(_data[child-1], _data[child]) ) {
   4.173            --child;
   4.174 @@ -153,7 +150,7 @@
   4.175            goto ok;
   4.176          move(_data[child], hole);
   4.177          hole = child;
   4.178 -        child = second_child(hole);
   4.179 +        child = secondChild(hole);
   4.180        }
   4.181        child--;
   4.182        if( child<length && less(_data[child], p) ) {
   4.183 @@ -171,87 +168,91 @@
   4.184      }
   4.185  
   4.186    public:
   4.187 +
   4.188      /// \brief Insert a pair of item and priority into the heap.
   4.189      ///
   4.190 -    /// Adds \c p.first to the heap with priority \c p.second.
   4.191 +    /// This function inserts \c p.first to the heap with priority
   4.192 +    /// \c p.second.
   4.193      /// \param p The pair to insert.
   4.194 +    /// \pre \c p.first must not be stored in the heap.
   4.195      void push(const Pair &p) {
   4.196        int n = _data.size();
   4.197        _data.resize(n+1);
   4.198 -      bubble_up(n, p);
   4.199 +      bubbleUp(n, p);
   4.200      }
   4.201  
   4.202 -    /// \brief Insert an item into the heap with the given heap.
   4.203 +    /// \brief Insert an item into the heap with the given priority.
   4.204      ///
   4.205 -    /// Adds \c i to the heap with priority \c p.
   4.206 +    /// This function inserts the given item into the heap with the
   4.207 +    /// given priority.
   4.208      /// \param i The item to insert.
   4.209      /// \param p The priority of the item.
   4.210 +    /// \pre \e i must not be stored in the heap.
   4.211      void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
   4.212  
   4.213 -    /// \brief Returns the item with minimum priority relative to \c Compare.
   4.214 +    /// \brief Return the item having minimum priority.
   4.215      ///
   4.216 -    /// This method returns the item with minimum priority relative to \c
   4.217 -    /// Compare.
   4.218 -    /// \pre The heap must be nonempty.
   4.219 +    /// This function returns the item having minimum priority.
   4.220 +    /// \pre The heap must be non-empty.
   4.221      Item top() const {
   4.222        return _data[0].first;
   4.223      }
   4.224  
   4.225 -    /// \brief Returns the minimum priority relative to \c Compare.
   4.226 +    /// \brief The minimum priority.
   4.227      ///
   4.228 -    /// It returns the minimum priority relative to \c Compare.
   4.229 -    /// \pre The heap must be nonempty.
   4.230 +    /// This function returns the minimum priority.
   4.231 +    /// \pre The heap must be non-empty.
   4.232      Prio prio() const {
   4.233        return _data[0].second;
   4.234      }
   4.235  
   4.236 -    /// \brief Deletes the item with minimum priority relative to \c Compare.
   4.237 +    /// \brief Remove the item having minimum priority.
   4.238      ///
   4.239 -    /// This method deletes the item with minimum priority relative to \c
   4.240 -    /// Compare from the heap.
   4.241 +    /// This function removes the item having minimum priority.
   4.242      /// \pre The heap must be non-empty.
   4.243      void pop() {
   4.244        int n = _data.size()-1;
   4.245        _iim.set(_data[0].first, POST_HEAP);
   4.246        if (n > 0) {
   4.247 -        bubble_down(0, _data[n], n);
   4.248 +        bubbleDown(0, _data[n], n);
   4.249        }
   4.250        _data.pop_back();
   4.251      }
   4.252  
   4.253 -    /// \brief Deletes \c i from the heap.
   4.254 +    /// \brief Remove the given item from the heap.
   4.255      ///
   4.256 -    /// This method deletes item \c i from the heap.
   4.257 -    /// \param i The item to erase.
   4.258 -    /// \pre The item should be in the heap.
   4.259 +    /// This function removes the given item from the heap if it is
   4.260 +    /// already stored.
   4.261 +    /// \param i The item to delete.
   4.262 +    /// \pre \e i must be in the heap.
   4.263      void erase(const Item &i) {
   4.264        int h = _iim[i];
   4.265        int n = _data.size()-1;
   4.266        _iim.set(_data[h].first, POST_HEAP);
   4.267        if( h < n ) {
   4.268 -        if ( bubble_up(h, _data[n]) == h) {
   4.269 -          bubble_down(h, _data[n], n);
   4.270 +        if ( bubbleUp(h, _data[n]) == h) {
   4.271 +          bubbleDown(h, _data[n], n);
   4.272          }
   4.273        }
   4.274        _data.pop_back();
   4.275      }
   4.276  
   4.277 -
   4.278 -    /// \brief Returns the priority of \c i.
   4.279 +    /// \brief The priority of the given item.
   4.280      ///
   4.281 -    /// This function returns the priority of item \c i.
   4.282 +    /// This function returns the priority of the given item.
   4.283      /// \param i The item.
   4.284 -    /// \pre \c i must be in the heap.
   4.285 +    /// \pre \e i must be in the heap.
   4.286      Prio operator[](const Item &i) const {
   4.287        int idx = _iim[i];
   4.288        return _data[idx].second;
   4.289      }
   4.290  
   4.291 -    /// \brief \c i gets to the heap with priority \c p independently
   4.292 -    /// if \c i was already there.
   4.293 +    /// \brief Set the priority of an item or insert it, if it is
   4.294 +    /// not stored in the heap.
   4.295      ///
   4.296 -    /// This method calls \ref push(\c i, \c p) if \c i is not stored
   4.297 -    /// in the heap and sets the priority of \c i to \c p otherwise.
   4.298 +    /// This method sets the priority of the given item if it is
   4.299 +    /// already stored in the heap. Otherwise it inserts the given
   4.300 +    /// item into the heap with the given priority.
   4.301      /// \param i The item.
   4.302      /// \param p The priority.
   4.303      void set(const Item &i, const Prio &p) {
   4.304 @@ -260,44 +261,42 @@
   4.305          push(i,p);
   4.306        }
   4.307        else if( _comp(p, _data[idx].second) ) {
   4.308 -        bubble_up(idx, Pair(i,p));
   4.309 +        bubbleUp(idx, Pair(i,p));
   4.310        }
   4.311        else {
   4.312 -        bubble_down(idx, Pair(i,p), _data.size());
   4.313 +        bubbleDown(idx, Pair(i,p), _data.size());
   4.314        }
   4.315      }
   4.316  
   4.317 -    /// \brief Decreases the priority of \c i to \c p.
   4.318 +    /// \brief Decrease the priority of an item to the given value.
   4.319      ///
   4.320 -    /// This method decreases the priority of item \c i to \c p.
   4.321 +    /// This function decreases the priority of an item to the given value.
   4.322      /// \param i The item.
   4.323      /// \param p The priority.
   4.324 -    /// \pre \c i must be stored in the heap with priority at least \c
   4.325 -    /// p relative to \c Compare.
   4.326 +    /// \pre \e i must be stored in the heap with priority at least \e p.
   4.327      void decrease(const Item &i, const Prio &p) {
   4.328        int idx = _iim[i];
   4.329 -      bubble_up(idx, Pair(i,p));
   4.330 +      bubbleUp(idx, Pair(i,p));
   4.331      }
   4.332  
   4.333 -    /// \brief Increases the priority of \c i to \c p.
   4.334 +    /// \brief Increase the priority of an item to the given value.
   4.335      ///
   4.336 -    /// This method sets the priority of item \c i to \c p.
   4.337 +    /// This function increases the priority of an item to the given value.
   4.338      /// \param i The item.
   4.339      /// \param p The priority.
   4.340 -    /// \pre \c i must be stored in the heap with priority at most \c
   4.341 -    /// p relative to \c Compare.
   4.342 +    /// \pre \e i must be stored in the heap with priority at most \e p.
   4.343      void increase(const Item &i, const Prio &p) {
   4.344        int idx = _iim[i];
   4.345 -      bubble_down(idx, Pair(i,p), _data.size());
   4.346 +      bubbleDown(idx, Pair(i,p), _data.size());
   4.347      }
   4.348  
   4.349 -    /// \brief Returns if \c item is in, has already been in, or has
   4.350 -    /// never been in the heap.
   4.351 +    /// \brief Return the state of an item.
   4.352      ///
   4.353 -    /// This method returns PRE_HEAP if \c item has never been in the
   4.354 -    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   4.355 -    /// otherwise. In the latter case it is possible that \c item will
   4.356 -    /// get back to the heap again.
   4.357 +    /// This method returns \c PRE_HEAP if the given item has never
   4.358 +    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
   4.359 +    /// and \c POST_HEAP otherwise.
   4.360 +    /// In the latter case it is possible that the item will get back
   4.361 +    /// to the heap again.
   4.362      /// \param i The item.
   4.363      State state(const Item &i) const {
   4.364        int s = _iim[i];
   4.365 @@ -306,11 +305,11 @@
   4.366        return State(s);
   4.367      }
   4.368  
   4.369 -    /// \brief Sets the state of the \c item in the heap.
   4.370 +    /// \brief Set the state of an item in the heap.
   4.371      ///
   4.372 -    /// Sets the state of the \c item in the heap. It can be used to
   4.373 -    /// manually clear the heap when it is important to achive the
   4.374 -    /// better time complexity.
   4.375 +    /// This function sets the state of the given item in the heap.
   4.376 +    /// It can be used to manually clear the heap when it is important
   4.377 +    /// to achive better time complexity.
   4.378      /// \param i The item.
   4.379      /// \param st The state. It should not be \c IN_HEAP.
   4.380      void state(const Item& i, State st) {
   4.381 @@ -327,12 +326,13 @@
   4.382        }
   4.383      }
   4.384  
   4.385 -    /// \brief Replaces an item in the heap.
   4.386 +    /// \brief Replace an item in the heap.
   4.387      ///
   4.388 -    /// The \c i item is replaced with \c j item. The \c i item should
   4.389 -    /// be in the heap, while the \c j should be out of the heap. The
   4.390 -    /// \c i item will out of the heap and \c j will be in the heap
   4.391 -    /// with the same prioriority as prevoiusly the \c i item.
   4.392 +    /// This function replaces item \c i with item \c j.
   4.393 +    /// Item \c i must be in the heap, while \c j must be out of the heap.
   4.394 +    /// After calling this method, item \c i will be out of the
   4.395 +    /// heap and \c j will be in the heap with the same prioriority
   4.396 +    /// as item \c i had before.
   4.397      void replace(const Item& i, const Item& j) {
   4.398        int idx = _iim[i];
   4.399        _iim.set(i, _iim[j]);
     5.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     5.2 +++ b/lemon/binom_heap.h	Fri Sep 25 09:06:32 2009 +0200
     5.3 @@ -0,0 +1,445 @@
     5.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     5.5 + *
     5.6 + * This file is a part of LEMON, a generic C++ optimization library.
     5.7 + *
     5.8 + * Copyright (C) 2003-2009
     5.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    5.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    5.11 + *
    5.12 + * Permission to use, modify and distribute this software is granted
    5.13 + * provided that this copyright notice appears in all copies. For
    5.14 + * precise terms see the accompanying LICENSE file.
    5.15 + *
    5.16 + * This software is provided "AS IS" with no warranty of any kind,
    5.17 + * express or implied, and with no claim as to its suitability for any
    5.18 + * purpose.
    5.19 + *
    5.20 + */
    5.21 +
    5.22 +#ifndef LEMON_BINOM_HEAP_H
    5.23 +#define LEMON_BINOM_HEAP_H
    5.24 +
    5.25 +///\file
    5.26 +///\ingroup heaps
    5.27 +///\brief Binomial Heap implementation.
    5.28 +
    5.29 +#include <vector>
    5.30 +#include <utility>
    5.31 +#include <functional>
    5.32 +#include <lemon/math.h>
    5.33 +#include <lemon/counter.h>
    5.34 +
    5.35 +namespace lemon {
    5.36 +
    5.37 +  /// \ingroup heaps
    5.38 +  ///
    5.39 +  ///\brief Binomial heap data structure.
    5.40 +  ///
    5.41 +  /// This class implements the \e binomial \e heap data structure.
    5.42 +  /// It fully conforms to the \ref concepts::Heap "heap concept".
    5.43 +  ///
    5.44 +  /// The methods \ref increase() and \ref erase() are not efficient
    5.45 +  /// in a binomial heap. In case of many calls of these operations,
    5.46 +  /// it is better to use other heap structure, e.g. \ref BinHeap
    5.47 +  /// "binary heap".
    5.48 +  ///
    5.49 +  /// \tparam PR Type of the priorities of the items.
    5.50 +  /// \tparam IM A read-writable item map with \c int values, used
    5.51 +  /// internally to handle the cross references.
    5.52 +  /// \tparam CMP A functor class for comparing the priorities.
    5.53 +  /// The default is \c std::less<PR>.
    5.54 +#ifdef DOXYGEN
    5.55 +  template <typename PR, typename IM, typename CMP>
    5.56 +#else
    5.57 +  template <typename PR, typename IM, typename CMP = std::less<PR> >
    5.58 +#endif
    5.59 +  class BinomHeap {
    5.60 +  public:
    5.61 +    /// Type of the item-int map.
    5.62 +    typedef IM ItemIntMap;
    5.63 +    /// Type of the priorities.
    5.64 +    typedef PR Prio;
    5.65 +    /// Type of the items stored in the heap.
    5.66 +    typedef typename ItemIntMap::Key Item;
    5.67 +    /// Functor type for comparing the priorities.
    5.68 +    typedef CMP Compare;
    5.69 +
    5.70 +    /// \brief Type to represent the states of the items.
    5.71 +    ///
    5.72 +    /// Each item has a state associated to it. It can be "in heap",
    5.73 +    /// "pre-heap" or "post-heap". The latter two are indifferent from the
    5.74 +    /// heap's point of view, but may be useful to the user.
    5.75 +    ///
    5.76 +    /// The item-int map must be initialized in such way that it assigns
    5.77 +    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
    5.78 +    enum State {
    5.79 +      IN_HEAP = 0,    ///< = 0.
    5.80 +      PRE_HEAP = -1,  ///< = -1.
    5.81 +      POST_HEAP = -2  ///< = -2.
    5.82 +    };
    5.83 +
    5.84 +  private:
    5.85 +    class Store;
    5.86 +
    5.87 +    std::vector<Store> _data;
    5.88 +    int _min, _head;
    5.89 +    ItemIntMap &_iim;
    5.90 +    Compare _comp;
    5.91 +    int _num_items;
    5.92 +
    5.93 +  public:
    5.94 +    /// \brief Constructor.
    5.95 +    ///
    5.96 +    /// Constructor.
    5.97 +    /// \param map A map that assigns \c int values to the items.
    5.98 +    /// It is used internally to handle the cross references.
    5.99 +    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
   5.100 +    explicit BinomHeap(ItemIntMap &map)
   5.101 +      : _min(0), _head(-1), _iim(map), _num_items(0) {}
   5.102 +
   5.103 +    /// \brief Constructor.
   5.104 +    ///
   5.105 +    /// Constructor.
   5.106 +    /// \param map A map that assigns \c int values to the items.
   5.107 +    /// It is used internally to handle the cross references.
   5.108 +    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
   5.109 +    /// \param comp The function object used for comparing the priorities.
   5.110 +    BinomHeap(ItemIntMap &map, const Compare &comp)
   5.111 +      : _min(0), _head(-1), _iim(map), _comp(comp), _num_items(0) {}
   5.112 +
   5.113 +    /// \brief The number of items stored in the heap.
   5.114 +    ///
   5.115 +    /// This function returns the number of items stored in the heap.
   5.116 +    int size() const { return _num_items; }
   5.117 +
   5.118 +    /// \brief Check if the heap is empty.
   5.119 +    ///
   5.120 +    /// This function returns \c true if the heap is empty.
   5.121 +    bool empty() const { return _num_items==0; }
   5.122 +
   5.123 +    /// \brief Make the heap empty.
   5.124 +    ///
   5.125 +    /// This functon makes the heap empty.
   5.126 +    /// It does not change the cross reference map. If you want to reuse
   5.127 +    /// a heap that is not surely empty, you should first clear it and
   5.128 +    /// then you should set the cross reference map to \c PRE_HEAP
   5.129 +    /// for each item.
   5.130 +    void clear() {
   5.131 +      _data.clear(); _min=0; _num_items=0; _head=-1;
   5.132 +    }
   5.133 +
   5.134 +    /// \brief Set the priority of an item or insert it, if it is
   5.135 +    /// not stored in the heap.
   5.136 +    ///
   5.137 +    /// This method sets the priority of the given item if it is
   5.138 +    /// already stored in the heap. Otherwise it inserts the given
   5.139 +    /// item into the heap with the given priority.
   5.140 +    /// \param item The item.
   5.141 +    /// \param value The priority.
   5.142 +    void set (const Item& item, const Prio& value) {
   5.143 +      int i=_iim[item];
   5.144 +      if ( i >= 0 && _data[i].in ) {
   5.145 +        if ( _comp(value, _data[i].prio) ) decrease(item, value);
   5.146 +        if ( _comp(_data[i].prio, value) ) increase(item, value);
   5.147 +      } else push(item, value);
   5.148 +    }
   5.149 +
   5.150 +    /// \brief Insert an item into the heap with the given priority.
   5.151 +    ///
   5.152 +    /// This function inserts the given item into the heap with the
   5.153 +    /// given priority.
   5.154 +    /// \param item The item to insert.
   5.155 +    /// \param value The priority of the item.
   5.156 +    /// \pre \e item must not be stored in the heap.
   5.157 +    void push (const Item& item, const Prio& value) {
   5.158 +      int i=_iim[item];
   5.159 +      if ( i<0 ) {
   5.160 +        int s=_data.size();
   5.161 +        _iim.set( item,s );
   5.162 +        Store st;
   5.163 +        st.name=item;
   5.164 +        st.prio=value;
   5.165 +        _data.push_back(st);
   5.166 +        i=s;
   5.167 +      }
   5.168 +      else {
   5.169 +        _data[i].parent=_data[i].right_neighbor=_data[i].child=-1;
   5.170 +        _data[i].degree=0;
   5.171 +        _data[i].in=true;
   5.172 +        _data[i].prio=value;
   5.173 +      }
   5.174 +
   5.175 +      if( 0==_num_items ) {
   5.176 +        _head=i;
   5.177 +        _min=i;
   5.178 +      } else {
   5.179 +        merge(i);
   5.180 +        if( _comp(_data[i].prio, _data[_min].prio) ) _min=i;
   5.181 +      }
   5.182 +      ++_num_items;
   5.183 +    }
   5.184 +
   5.185 +    /// \brief Return the item having minimum priority.
   5.186 +    ///
   5.187 +    /// This function returns the item having minimum priority.
   5.188 +    /// \pre The heap must be non-empty.
   5.189 +    Item top() const { return _data[_min].name; }
   5.190 +
   5.191 +    /// \brief The minimum priority.
   5.192 +    ///
   5.193 +    /// This function returns the minimum priority.
   5.194 +    /// \pre The heap must be non-empty.
   5.195 +    Prio prio() const { return _data[_min].prio; }
   5.196 +
   5.197 +    /// \brief The priority of the given item.
   5.198 +    ///
   5.199 +    /// This function returns the priority of the given item.
   5.200 +    /// \param item The item.
   5.201 +    /// \pre \e item must be in the heap.
   5.202 +    const Prio& operator[](const Item& item) const {
   5.203 +      return _data[_iim[item]].prio;
   5.204 +    }
   5.205 +
   5.206 +    /// \brief Remove the item having minimum priority.
   5.207 +    ///
   5.208 +    /// This function removes the item having minimum priority.
   5.209 +    /// \pre The heap must be non-empty.
   5.210 +    void pop() {
   5.211 +      _data[_min].in=false;
   5.212 +
   5.213 +      int head_child=-1;
   5.214 +      if ( _data[_min].child!=-1 ) {
   5.215 +        int child=_data[_min].child;
   5.216 +        int neighb;
   5.217 +        while( child!=-1 ) {
   5.218 +          neighb=_data[child].right_neighbor;
   5.219 +          _data[child].parent=-1;
   5.220 +          _data[child].right_neighbor=head_child;
   5.221 +          head_child=child;
   5.222 +          child=neighb;
   5.223 +        }
   5.224 +      }
   5.225 +
   5.226 +      if ( _data[_head].right_neighbor==-1 ) {
   5.227 +        // there was only one root
   5.228 +        _head=head_child;
   5.229 +      }
   5.230 +      else {
   5.231 +        // there were more roots
   5.232 +        if( _head!=_min )  { unlace(_min); }
   5.233 +        else { _head=_data[_head].right_neighbor; }
   5.234 +        merge(head_child);
   5.235 +      }
   5.236 +      _min=findMin();
   5.237 +      --_num_items;
   5.238 +    }
   5.239 +
   5.240 +    /// \brief Remove the given item from the heap.
   5.241 +    ///
   5.242 +    /// This function removes the given item from the heap if it is
   5.243 +    /// already stored.
   5.244 +    /// \param item The item to delete.
   5.245 +    /// \pre \e item must be in the heap.
   5.246 +    void erase (const Item& item) {
   5.247 +      int i=_iim[item];
   5.248 +      if ( i >= 0 && _data[i].in ) {
   5.249 +        decrease( item, _data[_min].prio-1 );
   5.250 +        pop();
   5.251 +      }
   5.252 +    }
   5.253 +
   5.254 +    /// \brief Decrease the priority of an item to the given value.
   5.255 +    ///
   5.256 +    /// This function decreases the priority of an item to the given value.
   5.257 +    /// \param item The item.
   5.258 +    /// \param value The priority.
   5.259 +    /// \pre \e item must be stored in the heap with priority at least \e value.
   5.260 +    void decrease (Item item, const Prio& value) {
   5.261 +      int i=_iim[item];
   5.262 +      int p=_data[i].parent;
   5.263 +      _data[i].prio=value;
   5.264 +      
   5.265 +      while( p!=-1 && _comp(value, _data[p].prio) ) {
   5.266 +        _data[i].name=_data[p].name;
   5.267 +        _data[i].prio=_data[p].prio;
   5.268 +        _data[p].name=item;
   5.269 +        _data[p].prio=value;
   5.270 +        _iim[_data[i].name]=i;
   5.271 +        i=p;
   5.272 +        p=_data[p].parent;
   5.273 +      }
   5.274 +      _iim[item]=i;
   5.275 +      if ( _comp(value, _data[_min].prio) ) _min=i;
   5.276 +    }
   5.277 +
   5.278 +    /// \brief Increase the priority of an item to the given value.
   5.279 +    ///
   5.280 +    /// This function increases the priority of an item to the given value.
   5.281 +    /// \param item The item.
   5.282 +    /// \param value The priority.
   5.283 +    /// \pre \e item must be stored in the heap with priority at most \e value.
   5.284 +    void increase (Item item, const Prio& value) {
   5.285 +      erase(item);
   5.286 +      push(item, value);
   5.287 +    }
   5.288 +
   5.289 +    /// \brief Return the state of an item.
   5.290 +    ///
   5.291 +    /// This method returns \c PRE_HEAP if the given item has never
   5.292 +    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
   5.293 +    /// and \c POST_HEAP otherwise.
   5.294 +    /// In the latter case it is possible that the item will get back
   5.295 +    /// to the heap again.
   5.296 +    /// \param item The item.
   5.297 +    State state(const Item &item) const {
   5.298 +      int i=_iim[item];
   5.299 +      if( i>=0 ) {
   5.300 +        if ( _data[i].in ) i=0;
   5.301 +        else i=-2;
   5.302 +      }
   5.303 +      return State(i);
   5.304 +    }
   5.305 +
   5.306 +    /// \brief Set the state of an item in the heap.
   5.307 +    ///
   5.308 +    /// This function sets the state of the given item in the heap.
   5.309 +    /// It can be used to manually clear the heap when it is important
   5.310 +    /// to achive better time complexity.
   5.311 +    /// \param i The item.
   5.312 +    /// \param st The state. It should not be \c IN_HEAP.
   5.313 +    void state(const Item& i, State st) {
   5.314 +      switch (st) {
   5.315 +      case POST_HEAP:
   5.316 +      case PRE_HEAP:
   5.317 +        if (state(i) == IN_HEAP) {
   5.318 +          erase(i);
   5.319 +        }
   5.320 +        _iim[i] = st;
   5.321 +        break;
   5.322 +      case IN_HEAP:
   5.323 +        break;
   5.324 +      }
   5.325 +    }
   5.326 +
   5.327 +  private:
   5.328 +    
   5.329 +    // Find the minimum of the roots
   5.330 +    int findMin() {
   5.331 +      if( _head!=-1 ) {
   5.332 +        int min_loc=_head, min_val=_data[_head].prio;
   5.333 +        for( int x=_data[_head].right_neighbor; x!=-1;
   5.334 +             x=_data[x].right_neighbor ) {
   5.335 +          if( _comp( _data[x].prio,min_val ) ) {
   5.336 +            min_val=_data[x].prio;
   5.337 +            min_loc=x;
   5.338 +          }
   5.339 +        }
   5.340 +        return min_loc;
   5.341 +      }
   5.342 +      else return -1;
   5.343 +    }
   5.344 +
   5.345 +    // Merge the heap with another heap starting at the given position
   5.346 +    void merge(int a) {
   5.347 +      if( _head==-1 || a==-1 ) return;
   5.348 +      if( _data[a].right_neighbor==-1 &&
   5.349 +          _data[a].degree<=_data[_head].degree ) {
   5.350 +        _data[a].right_neighbor=_head;
   5.351 +        _head=a;
   5.352 +      } else {
   5.353 +        interleave(a);
   5.354 +      }
   5.355 +      if( _data[_head].right_neighbor==-1 ) return;
   5.356 +      
   5.357 +      int x=_head;
   5.358 +      int x_prev=-1, x_next=_data[x].right_neighbor;
   5.359 +      while( x_next!=-1 ) {
   5.360 +        if( _data[x].degree!=_data[x_next].degree ||
   5.361 +            ( _data[x_next].right_neighbor!=-1 &&
   5.362 +              _data[_data[x_next].right_neighbor].degree==_data[x].degree ) ) {
   5.363 +          x_prev=x;
   5.364 +          x=x_next;
   5.365 +        }
   5.366 +        else {
   5.367 +          if( _comp(_data[x_next].prio,_data[x].prio) ) {
   5.368 +            if( x_prev==-1 ) {
   5.369 +              _head=x_next;
   5.370 +            } else {
   5.371 +              _data[x_prev].right_neighbor=x_next;
   5.372 +            }
   5.373 +            fuse(x,x_next);
   5.374 +            x=x_next;
   5.375 +          }
   5.376 +          else {
   5.377 +            _data[x].right_neighbor=_data[x_next].right_neighbor;
   5.378 +            fuse(x_next,x);
   5.379 +          }
   5.380 +        }
   5.381 +        x_next=_data[x].right_neighbor;
   5.382 +      }
   5.383 +    }
   5.384 +
   5.385 +    // Interleave the elements of the given list into the list of the roots
   5.386 +    void interleave(int a) {
   5.387 +      int p=_head, q=a;
   5.388 +      int curr=_data.size();
   5.389 +      _data.push_back(Store());
   5.390 +      
   5.391 +      while( p!=-1 || q!=-1 ) {
   5.392 +        if( q==-1 || ( p!=-1 && _data[p].degree<_data[q].degree ) ) {
   5.393 +          _data[curr].right_neighbor=p;
   5.394 +          curr=p;
   5.395 +          p=_data[p].right_neighbor;
   5.396 +        }
   5.397 +        else {
   5.398 +          _data[curr].right_neighbor=q;
   5.399 +          curr=q;
   5.400 +          q=_data[q].right_neighbor;
   5.401 +        }
   5.402 +      }
   5.403 +      
   5.404 +      _head=_data.back().right_neighbor;
   5.405 +      _data.pop_back();
   5.406 +    }
   5.407 +
   5.408 +    // Lace node a under node b
   5.409 +    void fuse(int a, int b) {
   5.410 +      _data[a].parent=b;
   5.411 +      _data[a].right_neighbor=_data[b].child;
   5.412 +      _data[b].child=a;
   5.413 +
   5.414 +      ++_data[b].degree;
   5.415 +    }
   5.416 +
   5.417 +    // Unlace node a (if it has siblings)
   5.418 +    void unlace(int a) {
   5.419 +      int neighb=_data[a].right_neighbor;
   5.420 +      int other=_head;
   5.421 +
   5.422 +      while( _data[other].right_neighbor!=a )
   5.423 +        other=_data[other].right_neighbor;
   5.424 +      _data[other].right_neighbor=neighb;
   5.425 +    }
   5.426 +
   5.427 +  private:
   5.428 +
   5.429 +    class Store {
   5.430 +      friend class BinomHeap;
   5.431 +
   5.432 +      Item name;
   5.433 +      int parent;
   5.434 +      int right_neighbor;
   5.435 +      int child;
   5.436 +      int degree;
   5.437 +      bool in;
   5.438 +      Prio prio;
   5.439 +
   5.440 +      Store() : parent(-1), right_neighbor(-1), child(-1), degree(0),
   5.441 +        in(true) {}
   5.442 +    };
   5.443 +  };
   5.444 +
   5.445 +} //namespace lemon
   5.446 +
   5.447 +#endif //LEMON_BINOM_HEAP_H
   5.448 +
     6.1 --- a/lemon/bits/edge_set_extender.h	Fri Jul 24 11:07:52 2009 +0200
     6.2 +++ b/lemon/bits/edge_set_extender.h	Fri Sep 25 09:06:32 2009 +0200
     6.3 @@ -537,7 +537,7 @@
     6.4        typedef MapExtender<DefaultMap<Graph, Arc, _Value> > Parent;
     6.5  
     6.6      public:
     6.7 -      ArcMap(const Graph& _g) 
     6.8 +      explicit ArcMap(const Graph& _g) 
     6.9  	: Parent(_g) {}
    6.10        ArcMap(const Graph& _g, const _Value& _v) 
    6.11  	: Parent(_g, _v) {}
    6.12 @@ -561,7 +561,7 @@
    6.13        typedef MapExtender<DefaultMap<Graph, Edge, _Value> > Parent;
    6.14  
    6.15      public:
    6.16 -      EdgeMap(const Graph& _g) 
    6.17 +      explicit EdgeMap(const Graph& _g) 
    6.18  	: Parent(_g) {}
    6.19  
    6.20        EdgeMap(const Graph& _g, const _Value& _v) 
     7.1 --- a/lemon/bits/graph_extender.h	Fri Jul 24 11:07:52 2009 +0200
     7.2 +++ b/lemon/bits/graph_extender.h	Fri Sep 25 09:06:32 2009 +0200
     7.3 @@ -604,7 +604,7 @@
     7.4        typedef MapExtender<DefaultMap<Graph, Node, _Value> > Parent;
     7.5  
     7.6      public:
     7.7 -      NodeMap(const Graph& graph)
     7.8 +      explicit NodeMap(const Graph& graph)
     7.9          : Parent(graph) {}
    7.10        NodeMap(const Graph& graph, const _Value& value)
    7.11          : Parent(graph, value) {}
    7.12 @@ -628,7 +628,7 @@
    7.13        typedef MapExtender<DefaultMap<Graph, Arc, _Value> > Parent;
    7.14  
    7.15      public:
    7.16 -      ArcMap(const Graph& graph)
    7.17 +      explicit ArcMap(const Graph& graph)
    7.18          : Parent(graph) {}
    7.19        ArcMap(const Graph& graph, const _Value& value)
    7.20          : Parent(graph, value) {}
    7.21 @@ -652,7 +652,7 @@
    7.22        typedef MapExtender<DefaultMap<Graph, Edge, _Value> > Parent;
    7.23  
    7.24      public:
    7.25 -      EdgeMap(const Graph& graph)
    7.26 +      explicit EdgeMap(const Graph& graph)
    7.27          : Parent(graph) {}
    7.28  
    7.29        EdgeMap(const Graph& graph, const _Value& value)
     8.1 --- a/lemon/bucket_heap.h	Fri Jul 24 11:07:52 2009 +0200
     8.2 +++ b/lemon/bucket_heap.h	Fri Sep 25 09:06:32 2009 +0200
     8.3 @@ -19,9 +19,9 @@
     8.4  #ifndef LEMON_BUCKET_HEAP_H
     8.5  #define LEMON_BUCKET_HEAP_H
     8.6  
     8.7 -///\ingroup auxdat
     8.8 +///\ingroup heaps
     8.9  ///\file
    8.10 -///\brief Bucket Heap implementation.
    8.11 +///\brief Bucket heap implementation.
    8.12  
    8.13  #include <vector>
    8.14  #include <utility>
    8.15 @@ -53,35 +53,41 @@
    8.16  
    8.17    }
    8.18  
    8.19 -  /// \ingroup auxdat
    8.20 +  /// \ingroup heaps
    8.21    ///
    8.22 -  /// \brief A Bucket Heap implementation.
    8.23 +  /// \brief Bucket heap data structure.
    8.24    ///
    8.25 -  /// This class implements the \e bucket \e heap data structure. A \e heap
    8.26 -  /// is a data structure for storing items with specified values called \e
    8.27 -  /// priorities in such a way that finding the item with minimum priority is
    8.28 -  /// efficient. The bucket heap is very simple implementation, it can store
    8.29 -  /// only integer priorities and it stores for each priority in the
    8.30 -  /// \f$ [0..C) \f$ range a list of items. So it should be used only when
    8.31 -  /// the priorities are small. It is not intended to use as dijkstra heap.
    8.32 +  /// This class implements the \e bucket \e heap data structure.
    8.33 +  /// It practically conforms to the \ref concepts::Heap "heap concept",
    8.34 +  /// but it has some limitations.
    8.35    ///
    8.36 -  /// \param IM A read and write Item int map, used internally
    8.37 -  /// to handle the cross references.
    8.38 -  /// \param MIN If the given parameter is false then instead of the
    8.39 -  /// minimum value the maximum can be retrivied with the top() and
    8.40 -  /// prio() member functions.
    8.41 +  /// The bucket heap is a very simple structure. It can store only
    8.42 +  /// \c int priorities and it maintains a list of items for each priority
    8.43 +  /// in the range <tt>[0..C)</tt>. So it should only be used when the
    8.44 +  /// priorities are small. It is not intended to use as a Dijkstra heap.
    8.45 +  ///
    8.46 +  /// \tparam IM A read-writable item map with \c int values, used
    8.47 +  /// internally to handle the cross references.
    8.48 +  /// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap.
    8.49 +  /// The default is \e min-heap. If this parameter is set to \c false,
    8.50 +  /// then the comparison is reversed, so the top(), prio() and pop()
    8.51 +  /// functions deal with the item having maximum priority instead of the
    8.52 +  /// minimum.
    8.53 +  ///
    8.54 +  /// \sa SimpleBucketHeap
    8.55    template <typename IM, bool MIN = true>
    8.56    class BucketHeap {
    8.57  
    8.58    public:
    8.59 -    /// \e
    8.60 -    typedef typename IM::Key Item;
    8.61 -    /// \e
    8.62 +
    8.63 +    /// Type of the item-int map.
    8.64 +    typedef IM ItemIntMap;
    8.65 +    /// Type of the priorities.
    8.66      typedef int Prio;
    8.67 -    /// \e
    8.68 -    typedef std::pair<Item, Prio> Pair;
    8.69 -    /// \e
    8.70 -    typedef IM ItemIntMap;
    8.71 +    /// Type of the items stored in the heap.
    8.72 +    typedef typename ItemIntMap::Key Item;
    8.73 +    /// Type of the item-priority pairs.
    8.74 +    typedef std::pair<Item,Prio> Pair;
    8.75  
    8.76    private:
    8.77  
    8.78 @@ -89,10 +95,10 @@
    8.79  
    8.80    public:
    8.81  
    8.82 -    /// \brief Type to represent the items states.
    8.83 +    /// \brief Type to represent the states of the items.
    8.84      ///
    8.85 -    /// Each Item element have a state associated to it. It may be "in heap",
    8.86 -    /// "pre heap" or "post heap". The latter two are indifferent from the
    8.87 +    /// Each item has a state associated to it. It can be "in heap",
    8.88 +    /// "pre-heap" or "post-heap". The latter two are indifferent from the
    8.89      /// heap's point of view, but may be useful to the user.
    8.90      ///
    8.91      /// The item-int map must be initialized in such way that it assigns
    8.92 @@ -104,37 +110,39 @@
    8.93      };
    8.94  
    8.95    public:
    8.96 -    /// \brief The constructor.
    8.97 +
    8.98 +    /// \brief Constructor.
    8.99      ///
   8.100 -    /// The constructor.
   8.101 -    /// \param map should be given to the constructor, since it is used
   8.102 -    /// internally to handle the cross references. The value of the map
   8.103 -    /// should be PRE_HEAP (-1) for each element.
   8.104 +    /// Constructor.
   8.105 +    /// \param map A map that assigns \c int values to the items.
   8.106 +    /// It is used internally to handle the cross references.
   8.107 +    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
   8.108      explicit BucketHeap(ItemIntMap &map) : _iim(map), _minimum(0) {}
   8.109  
   8.110 -    /// The number of items stored in the heap.
   8.111 +    /// \brief The number of items stored in the heap.
   8.112      ///
   8.113 -    /// \brief Returns the number of items stored in the heap.
   8.114 +    /// This function returns the number of items stored in the heap.
   8.115      int size() const { return _data.size(); }
   8.116  
   8.117 -    /// \brief Checks if the heap stores no items.
   8.118 +    /// \brief Check if the heap is empty.
   8.119      ///
   8.120 -    /// Returns \c true if and only if the heap stores no items.
   8.121 +    /// This function returns \c true if the heap is empty.
   8.122      bool empty() const { return _data.empty(); }
   8.123  
   8.124 -    /// \brief Make empty this heap.
   8.125 +    /// \brief Make the heap empty.
   8.126      ///
   8.127 -    /// Make empty this heap. It does not change the cross reference
   8.128 -    /// map.  If you want to reuse a heap what is not surely empty you
   8.129 -    /// should first clear the heap and after that you should set the
   8.130 -    /// cross reference map for each item to \c PRE_HEAP.
   8.131 +    /// This functon makes the heap empty.
   8.132 +    /// It does not change the cross reference map. If you want to reuse
   8.133 +    /// a heap that is not surely empty, you should first clear it and
   8.134 +    /// then you should set the cross reference map to \c PRE_HEAP
   8.135 +    /// for each item.
   8.136      void clear() {
   8.137        _data.clear(); _first.clear(); _minimum = 0;
   8.138      }
   8.139  
   8.140    private:
   8.141  
   8.142 -    void relocate_last(int idx) {
   8.143 +    void relocateLast(int idx) {
   8.144        if (idx + 1 < int(_data.size())) {
   8.145          _data[idx] = _data.back();
   8.146          if (_data[idx].prev != -1) {
   8.147 @@ -174,19 +182,24 @@
   8.148      }
   8.149  
   8.150    public:
   8.151 +
   8.152      /// \brief Insert a pair of item and priority into the heap.
   8.153      ///
   8.154 -    /// Adds \c p.first to the heap with priority \c p.second.
   8.155 +    /// This function inserts \c p.first to the heap with priority
   8.156 +    /// \c p.second.
   8.157      /// \param p The pair to insert.
   8.158 +    /// \pre \c p.first must not be stored in the heap.
   8.159      void push(const Pair& p) {
   8.160        push(p.first, p.second);
   8.161      }
   8.162  
   8.163      /// \brief Insert an item into the heap with the given priority.
   8.164      ///
   8.165 -    /// Adds \c i to the heap with priority \c p.
   8.166 +    /// This function inserts the given item into the heap with the
   8.167 +    /// given priority.
   8.168      /// \param i The item to insert.
   8.169      /// \param p The priority of the item.
   8.170 +    /// \pre \e i must not be stored in the heap.
   8.171      void push(const Item &i, const Prio &p) {
   8.172        int idx = _data.size();
   8.173        _iim[i] = idx;
   8.174 @@ -197,10 +210,10 @@
   8.175        }
   8.176      }
   8.177  
   8.178 -    /// \brief Returns the item with minimum priority.
   8.179 +    /// \brief Return the item having minimum priority.
   8.180      ///
   8.181 -    /// This method returns the item with minimum priority.
   8.182 -    /// \pre The heap must be nonempty.
   8.183 +    /// This function returns the item having minimum priority.
   8.184 +    /// \pre The heap must be non-empty.
   8.185      Item top() const {
   8.186        while (_first[_minimum] == -1) {
   8.187          Direction::increase(_minimum);
   8.188 @@ -208,10 +221,10 @@
   8.189        return _data[_first[_minimum]].item;
   8.190      }
   8.191  
   8.192 -    /// \brief Returns the minimum priority.
   8.193 +    /// \brief The minimum priority.
   8.194      ///
   8.195 -    /// It returns the minimum priority.
   8.196 -    /// \pre The heap must be nonempty.
   8.197 +    /// This function returns the minimum priority.
   8.198 +    /// \pre The heap must be non-empty.
   8.199      Prio prio() const {
   8.200        while (_first[_minimum] == -1) {
   8.201          Direction::increase(_minimum);
   8.202 @@ -219,9 +232,9 @@
   8.203        return _minimum;
   8.204      }
   8.205  
   8.206 -    /// \brief Deletes the item with minimum priority.
   8.207 +    /// \brief Remove the item having minimum priority.
   8.208      ///
   8.209 -    /// This method deletes the item with minimum priority from the heap.
   8.210 +    /// This function removes the item having minimum priority.
   8.211      /// \pre The heap must be non-empty.
   8.212      void pop() {
   8.213        while (_first[_minimum] == -1) {
   8.214 @@ -230,37 +243,38 @@
   8.215        int idx = _first[_minimum];
   8.216        _iim[_data[idx].item] = -2;
   8.217        unlace(idx);
   8.218 -      relocate_last(idx);
   8.219 +      relocateLast(idx);
   8.220      }
   8.221  
   8.222 -    /// \brief Deletes \c i from the heap.
   8.223 +    /// \brief Remove the given item from the heap.
   8.224      ///
   8.225 -    /// This method deletes item \c i from the heap, if \c i was
   8.226 -    /// already stored in the heap.
   8.227 -    /// \param i The item to erase.
   8.228 +    /// This function removes the given item from the heap if it is
   8.229 +    /// already stored.
   8.230 +    /// \param i The item to delete.
   8.231 +    /// \pre \e i must be in the heap.
   8.232      void erase(const Item &i) {
   8.233        int idx = _iim[i];
   8.234        _iim[_data[idx].item] = -2;
   8.235        unlace(idx);
   8.236 -      relocate_last(idx);
   8.237 +      relocateLast(idx);
   8.238      }
   8.239  
   8.240 -
   8.241 -    /// \brief Returns the priority of \c i.
   8.242 +    /// \brief The priority of the given item.
   8.243      ///
   8.244 -    /// This function returns the priority of item \c i.
   8.245 -    /// \pre \c i must be in the heap.
   8.246 +    /// This function returns the priority of the given item.
   8.247      /// \param i The item.
   8.248 +    /// \pre \e i must be in the heap.
   8.249      Prio operator[](const Item &i) const {
   8.250        int idx = _iim[i];
   8.251        return _data[idx].value;
   8.252      }
   8.253  
   8.254 -    /// \brief \c i gets to the heap with priority \c p independently
   8.255 -    /// if \c i was already there.
   8.256 +    /// \brief Set the priority of an item or insert it, if it is
   8.257 +    /// not stored in the heap.
   8.258      ///
   8.259 -    /// This method calls \ref push(\c i, \c p) if \c i is not stored
   8.260 -    /// in the heap and sets the priority of \c i to \c p otherwise.
   8.261 +    /// This method sets the priority of the given item if it is
   8.262 +    /// already stored in the heap. Otherwise it inserts the given
   8.263 +    /// item into the heap with the given priority.
   8.264      /// \param i The item.
   8.265      /// \param p The priority.
   8.266      void set(const Item &i, const Prio &p) {
   8.267 @@ -274,13 +288,12 @@
   8.268        }
   8.269      }
   8.270  
   8.271 -    /// \brief Decreases the priority of \c i to \c p.
   8.272 +    /// \brief Decrease the priority of an item to the given value.
   8.273      ///
   8.274 -    /// This method decreases the priority of item \c i to \c p.
   8.275 -    /// \pre \c i must be stored in the heap with priority at least \c
   8.276 -    /// p relative to \c Compare.
   8.277 +    /// This function decreases the priority of an item to the given value.
   8.278      /// \param i The item.
   8.279      /// \param p The priority.
   8.280 +    /// \pre \e i must be stored in the heap with priority at least \e p.
   8.281      void decrease(const Item &i, const Prio &p) {
   8.282        int idx = _iim[i];
   8.283        unlace(idx);
   8.284 @@ -291,13 +304,12 @@
   8.285        lace(idx);
   8.286      }
   8.287  
   8.288 -    /// \brief Increases the priority of \c i to \c p.
   8.289 +    /// \brief Increase the priority of an item to the given value.
   8.290      ///
   8.291 -    /// This method sets the priority of item \c i to \c p.
   8.292 -    /// \pre \c i must be stored in the heap with priority at most \c
   8.293 -    /// p relative to \c Compare.
   8.294 +    /// This function increases the priority of an item to the given value.
   8.295      /// \param i The item.
   8.296      /// \param p The priority.
   8.297 +    /// \pre \e i must be stored in the heap with priority at most \e p.
   8.298      void increase(const Item &i, const Prio &p) {
   8.299        int idx = _iim[i];
   8.300        unlace(idx);
   8.301 @@ -305,13 +317,13 @@
   8.302        lace(idx);
   8.303      }
   8.304  
   8.305 -    /// \brief Returns if \c item is in, has already been in, or has
   8.306 -    /// never been in the heap.
   8.307 +    /// \brief Return the state of an item.
   8.308      ///
   8.309 -    /// This method returns PRE_HEAP if \c item has never been in the
   8.310 -    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   8.311 -    /// otherwise. In the latter case it is possible that \c item will
   8.312 -    /// get back to the heap again.
   8.313 +    /// This method returns \c PRE_HEAP if the given item has never
   8.314 +    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
   8.315 +    /// and \c POST_HEAP otherwise.
   8.316 +    /// In the latter case it is possible that the item will get back
   8.317 +    /// to the heap again.
   8.318      /// \param i The item.
   8.319      State state(const Item &i) const {
   8.320        int idx = _iim[i];
   8.321 @@ -319,11 +331,11 @@
   8.322        return State(idx);
   8.323      }
   8.324  
   8.325 -    /// \brief Sets the state of the \c item in the heap.
   8.326 +    /// \brief Set the state of an item in the heap.
   8.327      ///
   8.328 -    /// Sets the state of the \c item in the heap. It can be used to
   8.329 -    /// manually clear the heap when it is important to achive the
   8.330 -    /// better time complexity.
   8.331 +    /// This function sets the state of the given item in the heap.
   8.332 +    /// It can be used to manually clear the heap when it is important
   8.333 +    /// to achive better time complexity.
   8.334      /// \param i The item.
   8.335      /// \param st The state. It should not be \c IN_HEAP.
   8.336      void state(const Item& i, State st) {
   8.337 @@ -359,33 +371,44 @@
   8.338  
   8.339    }; // class BucketHeap
   8.340  
   8.341 -  /// \ingroup auxdat
   8.342 +  /// \ingroup heaps
   8.343    ///
   8.344 -  /// \brief A Simplified Bucket Heap implementation.
   8.345 +  /// \brief Simplified bucket heap data structure.
   8.346    ///
   8.347    /// This class implements a simplified \e bucket \e heap data
   8.348 -  /// structure.  It does not provide some functionality but it faster
   8.349 -  /// and simplier data structure than the BucketHeap. The main
   8.350 -  /// difference is that the BucketHeap stores for every key a double
   8.351 -  /// linked list while this class stores just simple lists. In the
   8.352 -  /// other way it does not support erasing each elements just the
   8.353 -  /// minimal and it does not supports key increasing, decreasing.
   8.354 +  /// structure. It does not provide some functionality, but it is
   8.355 +  /// faster and simpler than BucketHeap. The main difference is
   8.356 +  /// that BucketHeap stores a doubly-linked list for each key while
   8.357 +  /// this class stores only simply-linked lists. It supports erasing
   8.358 +  /// only for the item having minimum priority and it does not support
   8.359 +  /// key increasing and decreasing.
   8.360    ///
   8.361 -  /// \param IM A read and write Item int map, used internally
   8.362 -  /// to handle the cross references.
   8.363 -  /// \param MIN If the given parameter is false then instead of the
   8.364 -  /// minimum value the maximum can be retrivied with the top() and
   8.365 -  /// prio() member functions.
   8.366 +  /// Note that this implementation does not conform to the
   8.367 +  /// \ref concepts::Heap "heap concept" due to the lack of some 
   8.368 +  /// functionality.
   8.369 +  ///
   8.370 +  /// \tparam IM A read-writable item map with \c int values, used
   8.371 +  /// internally to handle the cross references.
   8.372 +  /// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap.
   8.373 +  /// The default is \e min-heap. If this parameter is set to \c false,
   8.374 +  /// then the comparison is reversed, so the top(), prio() and pop()
   8.375 +  /// functions deal with the item having maximum priority instead of the
   8.376 +  /// minimum.
   8.377    ///
   8.378    /// \sa BucketHeap
   8.379    template <typename IM, bool MIN = true >
   8.380    class SimpleBucketHeap {
   8.381  
   8.382    public:
   8.383 -    typedef typename IM::Key Item;
   8.384 +
   8.385 +    /// Type of the item-int map.
   8.386 +    typedef IM ItemIntMap;
   8.387 +    /// Type of the priorities.
   8.388      typedef int Prio;
   8.389 -    typedef std::pair<Item, Prio> Pair;
   8.390 -    typedef IM ItemIntMap;
   8.391 +    /// Type of the items stored in the heap.
   8.392 +    typedef typename ItemIntMap::Key Item;
   8.393 +    /// Type of the item-priority pairs.
   8.394 +    typedef std::pair<Item,Prio> Pair;
   8.395  
   8.396    private:
   8.397  
   8.398 @@ -393,10 +416,10 @@
   8.399  
   8.400    public:
   8.401  
   8.402 -    /// \brief Type to represent the items states.
   8.403 +    /// \brief Type to represent the states of the items.
   8.404      ///
   8.405 -    /// Each Item element have a state associated to it. It may be "in heap",
   8.406 -    /// "pre heap" or "post heap". The latter two are indifferent from the
   8.407 +    /// Each item has a state associated to it. It can be "in heap",
   8.408 +    /// "pre-heap" or "post-heap". The latter two are indifferent from the
   8.409      /// heap's point of view, but may be useful to the user.
   8.410      ///
   8.411      /// The item-int map must be initialized in such way that it assigns
   8.412 @@ -409,48 +432,53 @@
   8.413  
   8.414    public:
   8.415  
   8.416 -    /// \brief The constructor.
   8.417 +    /// \brief Constructor.
   8.418      ///
   8.419 -    /// The constructor.
   8.420 -    /// \param map should be given to the constructor, since it is used
   8.421 -    /// internally to handle the cross references. The value of the map
   8.422 -    /// should be PRE_HEAP (-1) for each element.
   8.423 +    /// Constructor.
   8.424 +    /// \param map A map that assigns \c int values to the items.
   8.425 +    /// It is used internally to handle the cross references.
   8.426 +    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
   8.427      explicit SimpleBucketHeap(ItemIntMap &map)
   8.428        : _iim(map), _free(-1), _num(0), _minimum(0) {}
   8.429  
   8.430 -    /// \brief Returns the number of items stored in the heap.
   8.431 +    /// \brief The number of items stored in the heap.
   8.432      ///
   8.433 -    /// The number of items stored in the heap.
   8.434 +    /// This function returns the number of items stored in the heap.
   8.435      int size() const { return _num; }
   8.436  
   8.437 -    /// \brief Checks if the heap stores no items.
   8.438 +    /// \brief Check if the heap is empty.
   8.439      ///
   8.440 -    /// Returns \c true if and only if the heap stores no items.
   8.441 +    /// This function returns \c true if the heap is empty.
   8.442      bool empty() const { return _num == 0; }
   8.443  
   8.444 -    /// \brief Make empty this heap.
   8.445 +    /// \brief Make the heap empty.
   8.446      ///
   8.447 -    /// Make empty this heap. It does not change the cross reference
   8.448 -    /// map.  If you want to reuse a heap what is not surely empty you
   8.449 -    /// should first clear the heap and after that you should set the
   8.450 -    /// cross reference map for each item to \c PRE_HEAP.
   8.451 +    /// This functon makes the heap empty.
   8.452 +    /// It does not change the cross reference map. If you want to reuse
   8.453 +    /// a heap that is not surely empty, you should first clear it and
   8.454 +    /// then you should set the cross reference map to \c PRE_HEAP
   8.455 +    /// for each item.
   8.456      void clear() {
   8.457        _data.clear(); _first.clear(); _free = -1; _num = 0; _minimum = 0;
   8.458      }
   8.459  
   8.460      /// \brief Insert a pair of item and priority into the heap.
   8.461      ///
   8.462 -    /// Adds \c p.first to the heap with priority \c p.second.
   8.463 +    /// This function inserts \c p.first to the heap with priority
   8.464 +    /// \c p.second.
   8.465      /// \param p The pair to insert.
   8.466 +    /// \pre \c p.first must not be stored in the heap.
   8.467      void push(const Pair& p) {
   8.468        push(p.first, p.second);
   8.469      }
   8.470  
   8.471      /// \brief Insert an item into the heap with the given priority.
   8.472      ///
   8.473 -    /// Adds \c i to the heap with priority \c p.
   8.474 +    /// This function inserts the given item into the heap with the
   8.475 +    /// given priority.
   8.476      /// \param i The item to insert.
   8.477      /// \param p The priority of the item.
   8.478 +    /// \pre \e i must not be stored in the heap.
   8.479      void push(const Item &i, const Prio &p) {
   8.480        int idx;
   8.481        if (_free == -1) {
   8.482 @@ -471,10 +499,10 @@
   8.483        ++_num;
   8.484      }
   8.485  
   8.486 -    /// \brief Returns the item with minimum priority.
   8.487 +    /// \brief Return the item having minimum priority.
   8.488      ///
   8.489 -    /// This method returns the item with minimum priority.
   8.490 -    /// \pre The heap must be nonempty.
   8.491 +    /// This function returns the item having minimum priority.
   8.492 +    /// \pre The heap must be non-empty.
   8.493      Item top() const {
   8.494        while (_first[_minimum] == -1) {
   8.495          Direction::increase(_minimum);
   8.496 @@ -482,10 +510,10 @@
   8.497        return _data[_first[_minimum]].item;
   8.498      }
   8.499  
   8.500 -    /// \brief Returns the minimum priority.
   8.501 +    /// \brief The minimum priority.
   8.502      ///
   8.503 -    /// It returns the minimum priority.
   8.504 -    /// \pre The heap must be nonempty.
   8.505 +    /// This function returns the minimum priority.
   8.506 +    /// \pre The heap must be non-empty.
   8.507      Prio prio() const {
   8.508        while (_first[_minimum] == -1) {
   8.509          Direction::increase(_minimum);
   8.510 @@ -493,9 +521,9 @@
   8.511        return _minimum;
   8.512      }
   8.513  
   8.514 -    /// \brief Deletes the item with minimum priority.
   8.515 +    /// \brief Remove the item having minimum priority.
   8.516      ///
   8.517 -    /// This method deletes the item with minimum priority from the heap.
   8.518 +    /// This function removes the item having minimum priority.
   8.519      /// \pre The heap must be non-empty.
   8.520      void pop() {
   8.521        while (_first[_minimum] == -1) {
   8.522 @@ -509,16 +537,15 @@
   8.523        --_num;
   8.524      }
   8.525  
   8.526 -    /// \brief Returns the priority of \c i.
   8.527 +    /// \brief The priority of the given item.
   8.528      ///
   8.529 -    /// This function returns the priority of item \c i.
   8.530 -    /// \warning This operator is not a constant time function
   8.531 -    /// because it scans the whole data structure to find the proper
   8.532 -    /// value.
   8.533 -    /// \pre \c i must be in the heap.
   8.534 +    /// This function returns the priority of the given item.
   8.535      /// \param i The item.
   8.536 +    /// \pre \e i must be in the heap.
   8.537 +    /// \warning This operator is not a constant time function because
   8.538 +    /// it scans the whole data structure to find the proper value.
   8.539      Prio operator[](const Item &i) const {
   8.540 -      for (int k = 0; k < _first.size(); ++k) {
   8.541 +      for (int k = 0; k < int(_first.size()); ++k) {
   8.542          int idx = _first[k];
   8.543          while (idx != -1) {
   8.544            if (_data[idx].item == i) {
   8.545 @@ -530,13 +557,13 @@
   8.546        return -1;
   8.547      }
   8.548  
   8.549 -    /// \brief Returns if \c item is in, has already been in, or has
   8.550 -    /// never been in the heap.
   8.551 +    /// \brief Return the state of an item.
   8.552      ///
   8.553 -    /// This method returns PRE_HEAP if \c item has never been in the
   8.554 -    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   8.555 -    /// otherwise. In the latter case it is possible that \c item will
   8.556 -    /// get back to the heap again.
   8.557 +    /// This method returns \c PRE_HEAP if the given item has never
   8.558 +    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
   8.559 +    /// and \c POST_HEAP otherwise.
   8.560 +    /// In the latter case it is possible that the item will get back
   8.561 +    /// to the heap again.
   8.562      /// \param i The item.
   8.563      State state(const Item &i) const {
   8.564        int idx = _iim[i];
     9.1 --- a/lemon/circulation.h	Fri Jul 24 11:07:52 2009 +0200
     9.2 +++ b/lemon/circulation.h	Fri Sep 25 09:06:32 2009 +0200
     9.3 @@ -457,19 +457,21 @@
     9.4        return *_level;
     9.5      }
     9.6  
     9.7 -    /// \brief Sets the tolerance used by algorithm.
     9.8 +    /// \brief Sets the tolerance used by the algorithm.
     9.9      ///
    9.10 -    /// Sets the tolerance used by algorithm.
    9.11 -    Circulation& tolerance(const Tolerance& tolerance) const {
    9.12 +    /// Sets the tolerance object used by the algorithm.
    9.13 +    /// \return <tt>(*this)</tt>
    9.14 +    Circulation& tolerance(const Tolerance& tolerance) {
    9.15        _tol = tolerance;
    9.16        return *this;
    9.17      }
    9.18  
    9.19      /// \brief Returns a const reference to the tolerance.
    9.20      ///
    9.21 -    /// Returns a const reference to the tolerance.
    9.22 +    /// Returns a const reference to the tolerance object used by
    9.23 +    /// the algorithm.
    9.24      const Tolerance& tolerance() const {
    9.25 -      return tolerance;
    9.26 +      return _tol;
    9.27      }
    9.28  
    9.29      /// \name Execution Control
    10.1 --- a/lemon/concepts/heap.h	Fri Jul 24 11:07:52 2009 +0200
    10.2 +++ b/lemon/concepts/heap.h	Fri Sep 25 09:06:32 2009 +0200
    10.3 @@ -16,13 +16,13 @@
    10.4   *
    10.5   */
    10.6  
    10.7 +#ifndef LEMON_CONCEPTS_HEAP_H
    10.8 +#define LEMON_CONCEPTS_HEAP_H
    10.9 +
   10.10  ///\ingroup concept
   10.11  ///\file
   10.12  ///\brief The concept of heaps.
   10.13  
   10.14 -#ifndef LEMON_CONCEPTS_HEAP_H
   10.15 -#define LEMON_CONCEPTS_HEAP_H
   10.16 -
   10.17  #include <lemon/core.h>
   10.18  #include <lemon/concept_check.h>
   10.19  
   10.20 @@ -35,21 +35,27 @@
   10.21  
   10.22      /// \brief The heap concept.
   10.23      ///
   10.24 -    /// Concept class describing the main interface of heaps. A \e heap
   10.25 -    /// is a data structure for storing items with specified values called
   10.26 -    /// \e priorities in such a way that finding the item with minimum
   10.27 -    /// priority is efficient. In a heap one can change the priority of an
   10.28 -    /// item, add or erase an item, etc.
   10.29 +    /// This concept class describes the main interface of heaps.
   10.30 +    /// The various \ref heaps "heap structures" are efficient
   10.31 +    /// implementations of the abstract data type \e priority \e queue.
   10.32 +    /// They store items with specified values called \e priorities
   10.33 +    /// in such a way that finding and removing the item with minimum
   10.34 +    /// priority are efficient. The basic operations are adding and
   10.35 +    /// erasing items, changing the priority of an item, etc.
   10.36      ///
   10.37 -    /// \tparam PR Type of the priority of the items.
   10.38 -    /// \tparam IM A read and writable item map with int values, used
   10.39 +    /// Heaps are crucial in several algorithms, such as Dijkstra and Prim.
   10.40 +    /// Any class that conforms to this concept can be used easily in such
   10.41 +    /// algorithms.
   10.42 +    ///
   10.43 +    /// \tparam PR Type of the priorities of the items.
   10.44 +    /// \tparam IM A read-writable item map with \c int values, used
   10.45      /// internally to handle the cross references.
   10.46 -    /// \tparam Comp A functor class for the ordering of the priorities.
   10.47 +    /// \tparam CMP A functor class for comparing the priorities.
   10.48      /// The default is \c std::less<PR>.
   10.49  #ifdef DOXYGEN
   10.50 -    template <typename PR, typename IM, typename Comp = std::less<PR> >
   10.51 +    template <typename PR, typename IM, typename CMP>
   10.52  #else
   10.53 -    template <typename PR, typename IM>
   10.54 +    template <typename PR, typename IM, typename CMP = std::less<PR> >
   10.55  #endif
   10.56      class Heap {
   10.57      public:
   10.58 @@ -64,109 +70,125 @@
   10.59        /// \brief Type to represent the states of the items.
   10.60        ///
   10.61        /// Each item has a state associated to it. It can be "in heap",
   10.62 -      /// "pre heap" or "post heap". The later two are indifferent
   10.63 -      /// from the point of view of the heap, but may be useful for
   10.64 -      /// the user.
   10.65 +      /// "pre-heap" or "post-heap". The latter two are indifferent from the
   10.66 +      /// heap's point of view, but may be useful to the user.
   10.67        ///
   10.68        /// The item-int map must be initialized in such way that it assigns
   10.69        /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
   10.70        enum State {
   10.71          IN_HEAP = 0,    ///< = 0. The "in heap" state constant.
   10.72 -        PRE_HEAP = -1,  ///< = -1. The "pre heap" state constant.
   10.73 -        POST_HEAP = -2  ///< = -2. The "post heap" state constant.
   10.74 +        PRE_HEAP = -1,  ///< = -1. The "pre-heap" state constant.
   10.75 +        POST_HEAP = -2  ///< = -2. The "post-heap" state constant.
   10.76        };
   10.77  
   10.78 -      /// \brief The constructor.
   10.79 +      /// \brief Constructor.
   10.80        ///
   10.81 -      /// The constructor.
   10.82 +      /// Constructor.
   10.83        /// \param map A map that assigns \c int values to keys of type
   10.84        /// \c Item. It is used internally by the heap implementations to
   10.85        /// handle the cross references. The assigned value must be
   10.86 -      /// \c PRE_HEAP (<tt>-1</tt>) for every item.
   10.87 +      /// \c PRE_HEAP (<tt>-1</tt>) for each item.
   10.88        explicit Heap(ItemIntMap &map) {}
   10.89  
   10.90 +      /// \brief Constructor.
   10.91 +      ///
   10.92 +      /// Constructor.
   10.93 +      /// \param map A map that assigns \c int values to keys of type
   10.94 +      /// \c Item. It is used internally by the heap implementations to
   10.95 +      /// handle the cross references. The assigned value must be
   10.96 +      /// \c PRE_HEAP (<tt>-1</tt>) for each item.
   10.97 +      /// \param comp The function object used for comparing the priorities.
   10.98 +      explicit Heap(ItemIntMap &map, const CMP &comp) {}
   10.99 +
  10.100        /// \brief The number of items stored in the heap.
  10.101        ///
  10.102 -      /// Returns the number of items stored in the heap.
  10.103 +      /// This function returns the number of items stored in the heap.
  10.104        int size() const { return 0; }
  10.105  
  10.106 -      /// \brief Checks if the heap is empty.
  10.107 +      /// \brief Check if the heap is empty.
  10.108        ///
  10.109 -      /// Returns \c true if the heap is empty.
  10.110 +      /// This function returns \c true if the heap is empty.
  10.111        bool empty() const { return false; }
  10.112  
  10.113 -      /// \brief Makes the heap empty.
  10.114 +      /// \brief Make the heap empty.
  10.115        ///
  10.116 -      /// Makes the heap empty.
  10.117 -      void clear();
  10.118 +      /// This functon makes the heap empty.
  10.119 +      /// It does not change the cross reference map. If you want to reuse
  10.120 +      /// a heap that is not surely empty, you should first clear it and
  10.121 +      /// then you should set the cross reference map to \c PRE_HEAP
  10.122 +      /// for each item.
  10.123 +      void clear() {}
  10.124  
  10.125 -      /// \brief Inserts an item into the heap with the given priority.
  10.126 +      /// \brief Insert an item into the heap with the given priority.
  10.127        ///
  10.128 -      /// Inserts the given item into the heap with the given priority.
  10.129 +      /// This function inserts the given item into the heap with the
  10.130 +      /// given priority.
  10.131        /// \param i The item to insert.
  10.132        /// \param p The priority of the item.
  10.133 +      /// \pre \e i must not be stored in the heap.
  10.134        void push(const Item &i, const Prio &p) {}
  10.135  
  10.136 -      /// \brief Returns the item having minimum priority.
  10.137 +      /// \brief Return the item having minimum priority.
  10.138        ///
  10.139 -      /// Returns the item having minimum priority.
  10.140 +      /// This function returns the item having minimum priority.
  10.141        /// \pre The heap must be non-empty.
  10.142        Item top() const {}
  10.143  
  10.144        /// \brief The minimum priority.
  10.145        ///
  10.146 -      /// Returns the minimum priority.
  10.147 +      /// This function returns the minimum priority.
  10.148        /// \pre The heap must be non-empty.
  10.149        Prio prio() const {}
  10.150  
  10.151 -      /// \brief Removes the item having minimum priority.
  10.152 +      /// \brief Remove the item having minimum priority.
  10.153        ///
  10.154 -      /// Removes the item having minimum priority.
  10.155 +      /// This function removes the item having minimum priority.
  10.156        /// \pre The heap must be non-empty.
  10.157        void pop() {}
  10.158  
  10.159 -      /// \brief Removes an item from the heap.
  10.160 +      /// \brief Remove the given item from the heap.
  10.161        ///
  10.162 -      /// Removes the given item from the heap if it is already stored.
  10.163 +      /// This function removes the given item from the heap if it is
  10.164 +      /// already stored.
  10.165        /// \param i The item to delete.
  10.166 +      /// \pre \e i must be in the heap.
  10.167        void erase(const Item &i) {}
  10.168  
  10.169 -      /// \brief The priority of an item.
  10.170 +      /// \brief The priority of the given item.
  10.171        ///
  10.172 -      /// Returns the priority of the given item.
  10.173 +      /// This function returns the priority of the given item.
  10.174        /// \param i The item.
  10.175 -      /// \pre \c i must be in the heap.
  10.176 +      /// \pre \e i must be in the heap.
  10.177        Prio operator[](const Item &i) const {}
  10.178  
  10.179 -      /// \brief Sets the priority of an item or inserts it, if it is
  10.180 +      /// \brief Set the priority of an item or insert it, if it is
  10.181        /// not stored in the heap.
  10.182        ///
  10.183        /// This method sets the priority of the given item if it is
  10.184 -      /// already stored in the heap.
  10.185 -      /// Otherwise it inserts the given item with the given priority.
  10.186 +      /// already stored in the heap. Otherwise it inserts the given
  10.187 +      /// item into the heap with the given priority.
  10.188        ///
  10.189        /// \param i The item.
  10.190        /// \param p The priority.
  10.191        void set(const Item &i, const Prio &p) {}
  10.192  
  10.193 -      /// \brief Decreases the priority of an item to the given value.
  10.194 +      /// \brief Decrease the priority of an item to the given value.
  10.195        ///
  10.196 -      /// Decreases the priority of an item to the given value.
  10.197 +      /// This function decreases the priority of an item to the given value.
  10.198        /// \param i The item.
  10.199        /// \param p The priority.
  10.200 -      /// \pre \c i must be stored in the heap with priority at least \c p.
  10.201 +      /// \pre \e i must be stored in the heap with priority at least \e p.
  10.202        void decrease(const Item &i, const Prio &p) {}
  10.203  
  10.204 -      /// \brief Increases the priority of an item to the given value.
  10.205 +      /// \brief Increase the priority of an item to the given value.
  10.206        ///
  10.207 -      /// Increases the priority of an item to the given value.
  10.208 +      /// This function increases the priority of an item to the given value.
  10.209        /// \param i The item.
  10.210        /// \param p The priority.
  10.211 -      /// \pre \c i must be stored in the heap with priority at most \c p.
  10.212 +      /// \pre \e i must be stored in the heap with priority at most \e p.
  10.213        void increase(const Item &i, const Prio &p) {}
  10.214  
  10.215 -      /// \brief Returns if an item is in, has already been in, or has
  10.216 -      /// never been in the heap.
  10.217 +      /// \brief Return the state of an item.
  10.218        ///
  10.219        /// This method returns \c PRE_HEAP if the given item has never
  10.220        /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
  10.221 @@ -176,11 +198,11 @@
  10.222        /// \param i The item.
  10.223        State state(const Item &i) const {}
  10.224  
  10.225 -      /// \brief Sets the state of an item in the heap.
  10.226 +      /// \brief Set the state of an item in the heap.
  10.227        ///
  10.228 -      /// Sets the state of the given item in the heap. It can be used
  10.229 -      /// to manually clear the heap when it is important to achive the
  10.230 -      /// better time complexity.
  10.231 +      /// This function sets the state of the given item in the heap.
  10.232 +      /// It can be used to manually clear the heap when it is important
  10.233 +      /// to achive better time complexity.
  10.234        /// \param i The item.
  10.235        /// \param st The state. It should not be \c IN_HEAP.
  10.236        void state(const Item& i, State st) {}
    11.1 --- a/lemon/fib_heap.h	Fri Jul 24 11:07:52 2009 +0200
    11.2 +++ b/lemon/fib_heap.h	Fri Sep 25 09:06:32 2009 +0200
    11.3 @@ -20,53 +20,49 @@
    11.4  #define LEMON_FIB_HEAP_H
    11.5  
    11.6  ///\file
    11.7 -///\ingroup auxdat
    11.8 -///\brief Fibonacci Heap implementation.
    11.9 +///\ingroup heaps
   11.10 +///\brief Fibonacci heap implementation.
   11.11  
   11.12  #include <vector>
   11.13 +#include <utility>
   11.14  #include <functional>
   11.15  #include <lemon/math.h>
   11.16  
   11.17  namespace lemon {
   11.18  
   11.19 -  /// \ingroup auxdat
   11.20 +  /// \ingroup heaps
   11.21    ///
   11.22 -  ///\brief Fibonacci Heap.
   11.23 +  /// \brief Fibonacci heap data structure.
   11.24    ///
   11.25 -  ///This class implements the \e Fibonacci \e heap data structure. A \e heap
   11.26 -  ///is a data structure for storing items with specified values called \e
   11.27 -  ///priorities in such a way that finding the item with minimum priority is
   11.28 -  ///efficient. \c CMP specifies the ordering of the priorities. In a heap
   11.29 -  ///one can change the priority of an item, add or erase an item, etc.
   11.30 +  /// This class implements the \e Fibonacci \e heap data structure.
   11.31 +  /// It fully conforms to the \ref concepts::Heap "heap concept".
   11.32    ///
   11.33 -  ///The methods \ref increase and \ref erase are not efficient in a Fibonacci
   11.34 -  ///heap. In case of many calls to these operations, it is better to use a
   11.35 -  ///\ref BinHeap "binary heap".
   11.36 +  /// The methods \ref increase() and \ref erase() are not efficient in a
   11.37 +  /// Fibonacci heap. In case of many calls of these operations, it is
   11.38 +  /// better to use other heap structure, e.g. \ref BinHeap "binary heap".
   11.39    ///
   11.40 -  ///\param PRIO Type of the priority of the items.
   11.41 -  ///\param IM A read and writable Item int map, used internally
   11.42 -  ///to handle the cross references.
   11.43 -  ///\param CMP A class for the ordering of the priorities. The
   11.44 -  ///default is \c std::less<PRIO>.
   11.45 -  ///
   11.46 -  ///\sa BinHeap
   11.47 -  ///\sa Dijkstra
   11.48 +  /// \tparam PR Type of the priorities of the items.
   11.49 +  /// \tparam IM A read-writable item map with \c int values, used
   11.50 +  /// internally to handle the cross references.
   11.51 +  /// \tparam CMP A functor class for comparing the priorities.
   11.52 +  /// The default is \c std::less<PR>.
   11.53  #ifdef DOXYGEN
   11.54 -  template <typename PRIO, typename IM, typename CMP>
   11.55 +  template <typename PR, typename IM, typename CMP>
   11.56  #else
   11.57 -  template <typename PRIO, typename IM, typename CMP = std::less<PRIO> >
   11.58 +  template <typename PR, typename IM, typename CMP = std::less<PR> >
   11.59  #endif
   11.60    class FibHeap {
   11.61    public:
   11.62 -    ///\e
   11.63 +
   11.64 +    /// Type of the item-int map.
   11.65      typedef IM ItemIntMap;
   11.66 -    ///\e
   11.67 -    typedef PRIO Prio;
   11.68 -    ///\e
   11.69 +    /// Type of the priorities.
   11.70 +    typedef PR Prio;
   11.71 +    /// Type of the items stored in the heap.
   11.72      typedef typename ItemIntMap::Key Item;
   11.73 -    ///\e
   11.74 +    /// Type of the item-priority pairs.
   11.75      typedef std::pair<Item,Prio> Pair;
   11.76 -    ///\e
   11.77 +    /// Functor type for comparing the priorities.
   11.78      typedef CMP Compare;
   11.79  
   11.80    private:
   11.81 @@ -80,10 +76,10 @@
   11.82  
   11.83    public:
   11.84  
   11.85 -    /// \brief Type to represent the items states.
   11.86 +    /// \brief Type to represent the states of the items.
   11.87      ///
   11.88 -    /// Each Item element have a state associated to it. It may be "in heap",
   11.89 -    /// "pre heap" or "post heap". The latter two are indifferent from the
   11.90 +    /// Each item has a state associated to it. It can be "in heap",
   11.91 +    /// "pre-heap" or "post-heap". The latter two are indifferent from the
   11.92      /// heap's point of view, but may be useful to the user.
   11.93      ///
   11.94      /// The item-int map must be initialized in such way that it assigns
   11.95 @@ -94,60 +90,54 @@
   11.96        POST_HEAP = -2  ///< = -2.
   11.97      };
   11.98  
   11.99 -    /// \brief The constructor
  11.100 +    /// \brief Constructor.
  11.101      ///
  11.102 -    /// \c map should be given to the constructor, since it is
  11.103 -    ///   used internally to handle the cross references.
  11.104 +    /// Constructor.
  11.105 +    /// \param map A map that assigns \c int values to the items.
  11.106 +    /// It is used internally to handle the cross references.
  11.107 +    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
  11.108      explicit FibHeap(ItemIntMap &map)
  11.109        : _minimum(0), _iim(map), _num() {}
  11.110  
  11.111 -    /// \brief The constructor
  11.112 +    /// \brief Constructor.
  11.113      ///
  11.114 -    /// \c map should be given to the constructor, since it is used
  11.115 -    /// internally to handle the cross references. \c comp is an
  11.116 -    /// object for ordering of the priorities.
  11.117 +    /// Constructor.
  11.118 +    /// \param map A map that assigns \c int values to the items.
  11.119 +    /// It is used internally to handle the cross references.
  11.120 +    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
  11.121 +    /// \param comp The function object used for comparing the priorities.
  11.122      FibHeap(ItemIntMap &map, const Compare &comp)
  11.123        : _minimum(0), _iim(map), _comp(comp), _num() {}
  11.124  
  11.125      /// \brief The number of items stored in the heap.
  11.126      ///
  11.127 -    /// Returns the number of items stored in the heap.
  11.128 +    /// This function returns the number of items stored in the heap.
  11.129      int size() const { return _num; }
  11.130  
  11.131 -    /// \brief Checks if the heap stores no items.
  11.132 +    /// \brief Check if the heap is empty.
  11.133      ///
  11.134 -    ///   Returns \c true if and only if the heap stores no items.
  11.135 +    /// This function returns \c true if the heap is empty.
  11.136      bool empty() const { return _num==0; }
  11.137  
  11.138 -    /// \brief Make empty this heap.
  11.139 +    /// \brief Make the heap empty.
  11.140      ///
  11.141 -    /// Make empty this heap. It does not change the cross reference
  11.142 -    /// map.  If you want to reuse a heap what is not surely empty you
  11.143 -    /// should first clear the heap and after that you should set the
  11.144 -    /// cross reference map for each item to \c PRE_HEAP.
  11.145 +    /// This functon makes the heap empty.
  11.146 +    /// It does not change the cross reference map. If you want to reuse
  11.147 +    /// a heap that is not surely empty, you should first clear it and
  11.148 +    /// then you should set the cross reference map to \c PRE_HEAP
  11.149 +    /// for each item.
  11.150      void clear() {
  11.151        _data.clear(); _minimum = 0; _num = 0;
  11.152      }
  11.153  
  11.154 -    /// \brief \c item gets to the heap with priority \c value independently
  11.155 -    /// if \c item was already there.
  11.156 +    /// \brief Insert an item into the heap with the given priority.
  11.157      ///
  11.158 -    /// This method calls \ref push(\c item, \c value) if \c item is not
  11.159 -    /// stored in the heap and it calls \ref decrease(\c item, \c value) or
  11.160 -    /// \ref increase(\c item, \c value) otherwise.
  11.161 -    void set (const Item& item, const Prio& value) {
  11.162 -      int i=_iim[item];
  11.163 -      if ( i >= 0 && _data[i].in ) {
  11.164 -        if ( _comp(value, _data[i].prio) ) decrease(item, value);
  11.165 -        if ( _comp(_data[i].prio, value) ) increase(item, value);
  11.166 -      } else push(item, value);
  11.167 -    }
  11.168 -
  11.169 -    /// \brief Adds \c item to the heap with priority \c value.
  11.170 -    ///
  11.171 -    /// Adds \c item to the heap with priority \c value.
  11.172 -    /// \pre \c item must not be stored in the heap.
  11.173 -    void push (const Item& item, const Prio& value) {
  11.174 +    /// This function inserts the given item into the heap with the
  11.175 +    /// given priority.
  11.176 +    /// \param item The item to insert.
  11.177 +    /// \param prio The priority of the item.
  11.178 +    /// \pre \e item must not be stored in the heap.
  11.179 +    void push (const Item& item, const Prio& prio) {
  11.180        int i=_iim[item];
  11.181        if ( i < 0 ) {
  11.182          int s=_data.size();
  11.183 @@ -168,47 +158,37 @@
  11.184          _data[i].right_neighbor=_data[_minimum].right_neighbor;
  11.185          _data[_minimum].right_neighbor=i;
  11.186          _data[i].left_neighbor=_minimum;
  11.187 -        if ( _comp( value, _data[_minimum].prio) ) _minimum=i;
  11.188 +        if ( _comp( prio, _data[_minimum].prio) ) _minimum=i;
  11.189        } else {
  11.190          _data[i].right_neighbor=_data[i].left_neighbor=i;
  11.191          _minimum=i;
  11.192        }
  11.193 -      _data[i].prio=value;
  11.194 +      _data[i].prio=prio;
  11.195        ++_num;
  11.196      }
  11.197  
  11.198 -    /// \brief Returns the item with minimum priority relative to \c Compare.
  11.199 +    /// \brief Return the item having minimum priority.
  11.200      ///
  11.201 -    /// This method returns the item with minimum priority relative to \c
  11.202 -    /// Compare.
  11.203 -    /// \pre The heap must be nonempty.
  11.204 +    /// This function returns the item having minimum priority.
  11.205 +    /// \pre The heap must be non-empty.
  11.206      Item top() const { return _data[_minimum].name; }
  11.207  
  11.208 -    /// \brief Returns the minimum priority relative to \c Compare.
  11.209 +    /// \brief The minimum priority.
  11.210      ///
  11.211 -    /// It returns the minimum priority relative to \c Compare.
  11.212 -    /// \pre The heap must be nonempty.
  11.213 -    const Prio& prio() const { return _data[_minimum].prio; }
  11.214 +    /// This function returns the minimum priority.
  11.215 +    /// \pre The heap must be non-empty.
  11.216 +    Prio prio() const { return _data[_minimum].prio; }
  11.217  
  11.218 -    /// \brief Returns the priority of \c item.
  11.219 +    /// \brief Remove the item having minimum priority.
  11.220      ///
  11.221 -    /// It returns the priority of \c item.
  11.222 -    /// \pre \c item must be in the heap.
  11.223 -    const Prio& operator[](const Item& item) const {
  11.224 -      return _data[_iim[item]].prio;
  11.225 -    }
  11.226 -
  11.227 -    /// \brief Deletes the item with minimum priority relative to \c Compare.
  11.228 -    ///
  11.229 -    /// This method deletes the item with minimum priority relative to \c
  11.230 -    /// Compare from the heap.
  11.231 +    /// This function removes the item having minimum priority.
  11.232      /// \pre The heap must be non-empty.
  11.233      void pop() {
  11.234        /*The first case is that there are only one root.*/
  11.235        if ( _data[_minimum].left_neighbor==_minimum ) {
  11.236          _data[_minimum].in=false;
  11.237          if ( _data[_minimum].degree!=0 ) {
  11.238 -          makeroot(_data[_minimum].child);
  11.239 +          makeRoot(_data[_minimum].child);
  11.240            _minimum=_data[_minimum].child;
  11.241            balance();
  11.242          }
  11.243 @@ -221,7 +201,7 @@
  11.244            int child=_data[_minimum].child;
  11.245            int last_child=_data[child].left_neighbor;
  11.246  
  11.247 -          makeroot(child);
  11.248 +          makeRoot(child);
  11.249  
  11.250            _data[left].right_neighbor=child;
  11.251            _data[child].left_neighbor=left;
  11.252 @@ -234,10 +214,12 @@
  11.253        --_num;
  11.254      }
  11.255  
  11.256 -    /// \brief Deletes \c item from the heap.
  11.257 +    /// \brief Remove the given item from the heap.
  11.258      ///
  11.259 -    /// This method deletes \c item from the heap, if \c item was already
  11.260 -    /// stored in the heap. It is quite inefficient in Fibonacci heaps.
  11.261 +    /// This function removes the given item from the heap if it is
  11.262 +    /// already stored.
  11.263 +    /// \param item The item to delete.
  11.264 +    /// \pre \e item must be in the heap.
  11.265      void erase (const Item& item) {
  11.266        int i=_iim[item];
  11.267  
  11.268 @@ -252,43 +234,68 @@
  11.269        }
  11.270      }
  11.271  
  11.272 -    /// \brief Decreases the priority of \c item to \c value.
  11.273 +    /// \brief The priority of the given item.
  11.274      ///
  11.275 -    /// This method decreases the priority of \c item to \c value.
  11.276 -    /// \pre \c item must be stored in the heap with priority at least \c
  11.277 -    ///   value relative to \c Compare.
  11.278 -    void decrease (Item item, const Prio& value) {
  11.279 +    /// This function returns the priority of the given item.
  11.280 +    /// \param item The item.
  11.281 +    /// \pre \e item must be in the heap.
  11.282 +    Prio operator[](const Item& item) const {
  11.283 +      return _data[_iim[item]].prio;
  11.284 +    }
  11.285 +
  11.286 +    /// \brief Set the priority of an item or insert it, if it is
  11.287 +    /// not stored in the heap.
  11.288 +    ///
  11.289 +    /// This method sets the priority of the given item if it is
  11.290 +    /// already stored in the heap. Otherwise it inserts the given
  11.291 +    /// item into the heap with the given priority.
  11.292 +    /// \param item The item.
  11.293 +    /// \param prio The priority.
  11.294 +    void set (const Item& item, const Prio& prio) {
  11.295        int i=_iim[item];
  11.296 -      _data[i].prio=value;
  11.297 +      if ( i >= 0 && _data[i].in ) {
  11.298 +        if ( _comp(prio, _data[i].prio) ) decrease(item, prio);
  11.299 +        if ( _comp(_data[i].prio, prio) ) increase(item, prio);
  11.300 +      } else push(item, prio);
  11.301 +    }
  11.302 +
  11.303 +    /// \brief Decrease the priority of an item to the given value.
  11.304 +    ///
  11.305 +    /// This function decreases the priority of an item to the given value.
  11.306 +    /// \param item The item.
  11.307 +    /// \param prio The priority.
  11.308 +    /// \pre \e item must be stored in the heap with priority at least \e prio.
  11.309 +    void decrease (const Item& item, const Prio& prio) {
  11.310 +      int i=_iim[item];
  11.311 +      _data[i].prio=prio;
  11.312        int p=_data[i].parent;
  11.313  
  11.314 -      if ( p!=-1 && _comp(value, _data[p].prio) ) {
  11.315 +      if ( p!=-1 && _comp(prio, _data[p].prio) ) {
  11.316          cut(i,p);
  11.317          cascade(p);
  11.318        }
  11.319 -      if ( _comp(value, _data[_minimum].prio) ) _minimum=i;
  11.320 +      if ( _comp(prio, _data[_minimum].prio) ) _minimum=i;
  11.321      }
  11.322  
  11.323 -    /// \brief Increases the priority of \c item to \c value.
  11.324 +    /// \brief Increase the priority of an item to the given value.
  11.325      ///
  11.326 -    /// This method sets the priority of \c item to \c value. Though
  11.327 -    /// there is no precondition on the priority of \c item, this
  11.328 -    /// method should be used only if it is indeed necessary to increase
  11.329 -    /// (relative to \c Compare) the priority of \c item, because this
  11.330 -    /// method is inefficient.
  11.331 -    void increase (Item item, const Prio& value) {
  11.332 +    /// This function increases the priority of an item to the given value.
  11.333 +    /// \param item The item.
  11.334 +    /// \param prio The priority.
  11.335 +    /// \pre \e item must be stored in the heap with priority at most \e prio.
  11.336 +    void increase (const Item& item, const Prio& prio) {
  11.337        erase(item);
  11.338 -      push(item, value);
  11.339 +      push(item, prio);
  11.340      }
  11.341  
  11.342 -
  11.343 -    /// \brief Returns if \c item is in, has already been in, or has never
  11.344 -    /// been in the heap.
  11.345 +    /// \brief Return the state of an item.
  11.346      ///
  11.347 -    /// This method returns PRE_HEAP if \c item has never been in the
  11.348 -    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
  11.349 -    /// otherwise. In the latter case it is possible that \c item will
  11.350 -    /// get back to the heap again.
  11.351 +    /// This method returns \c PRE_HEAP if the given item has never
  11.352 +    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
  11.353 +    /// and \c POST_HEAP otherwise.
  11.354 +    /// In the latter case it is possible that the item will get back
  11.355 +    /// to the heap again.
  11.356 +    /// \param item The item.
  11.357      State state(const Item &item) const {
  11.358        int i=_iim[item];
  11.359        if( i>=0 ) {
  11.360 @@ -298,11 +305,11 @@
  11.361        return State(i);
  11.362      }
  11.363  
  11.364 -    /// \brief Sets the state of the \c item in the heap.
  11.365 +    /// \brief Set the state of an item in the heap.
  11.366      ///
  11.367 -    /// Sets the state of the \c item in the heap. It can be used to
  11.368 -    /// manually clear the heap when it is important to achive the
  11.369 -    /// better time _complexity.
  11.370 +    /// This function sets the state of the given item in the heap.
  11.371 +    /// It can be used to manually clear the heap when it is important
  11.372 +    /// to achive better time complexity.
  11.373      /// \param i The item.
  11.374      /// \param st The state. It should not be \c IN_HEAP.
  11.375      void state(const Item& i, State st) {
  11.376 @@ -365,7 +372,7 @@
  11.377        } while ( s != m );
  11.378      }
  11.379  
  11.380 -    void makeroot(int c) {
  11.381 +    void makeRoot(int c) {
  11.382        int s=c;
  11.383        do {
  11.384          _data[s].parent=-1;
    12.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
    12.2 +++ b/lemon/fourary_heap.h	Fri Sep 25 09:06:32 2009 +0200
    12.3 @@ -0,0 +1,342 @@
    12.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
    12.5 + *
    12.6 + * This file is a part of LEMON, a generic C++ optimization library.
    12.7 + *
    12.8 + * Copyright (C) 2003-2009
    12.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
   12.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
   12.11 + *
   12.12 + * Permission to use, modify and distribute this software is granted
   12.13 + * provided that this copyright notice appears in all copies. For
   12.14 + * precise terms see the accompanying LICENSE file.
   12.15 + *
   12.16 + * This software is provided "AS IS" with no warranty of any kind,
   12.17 + * express or implied, and with no claim as to its suitability for any
   12.18 + * purpose.
   12.19 + *
   12.20 + */
   12.21 +
   12.22 +#ifndef LEMON_FOURARY_HEAP_H
   12.23 +#define LEMON_FOURARY_HEAP_H
   12.24 +
   12.25 +///\ingroup heaps
   12.26 +///\file
   12.27 +///\brief Fourary heap implementation.
   12.28 +
   12.29 +#include <vector>
   12.30 +#include <utility>
   12.31 +#include <functional>
   12.32 +
   12.33 +namespace lemon {
   12.34 +
   12.35 +  /// \ingroup heaps
   12.36 +  ///
   12.37 +  ///\brief Fourary heap data structure.
   12.38 +  ///
   12.39 +  /// This class implements the \e fourary \e heap data structure.
   12.40 +  /// It fully conforms to the \ref concepts::Heap "heap concept".
   12.41 +  ///
   12.42 +  /// The fourary heap is a specialization of the \ref KaryHeap "K-ary heap"
   12.43 +  /// for <tt>K=4</tt>. It is similar to the \ref BinHeap "binary heap",
   12.44 +  /// but its nodes have at most four children, instead of two.
   12.45 +  ///
   12.46 +  /// \tparam PR Type of the priorities of the items.
   12.47 +  /// \tparam IM A read-writable item map with \c int values, used
   12.48 +  /// internally to handle the cross references.
   12.49 +  /// \tparam CMP A functor class for comparing the priorities.
   12.50 +  /// The default is \c std::less<PR>.
   12.51 +  ///
   12.52 +  ///\sa BinHeap
   12.53 +  ///\sa KaryHeap
   12.54 +#ifdef DOXYGEN
   12.55 +  template <typename PR, typename IM, typename CMP>
   12.56 +#else
   12.57 +  template <typename PR, typename IM, typename CMP = std::less<PR> >
   12.58 +#endif
   12.59 +  class FouraryHeap {
   12.60 +  public:
   12.61 +    /// Type of the item-int map.
   12.62 +    typedef IM ItemIntMap;
   12.63 +    /// Type of the priorities.
   12.64 +    typedef PR Prio;
   12.65 +    /// Type of the items stored in the heap.
   12.66 +    typedef typename ItemIntMap::Key Item;
   12.67 +    /// Type of the item-priority pairs.
   12.68 +    typedef std::pair<Item,Prio> Pair;
   12.69 +    /// Functor type for comparing the priorities.
   12.70 +    typedef CMP Compare;
   12.71 +
   12.72 +    /// \brief Type to represent the states of the items.
   12.73 +    ///
   12.74 +    /// Each item has a state associated to it. It can be "in heap",
   12.75 +    /// "pre-heap" or "post-heap". The latter two are indifferent from the
   12.76 +    /// heap's point of view, but may be useful to the user.
   12.77 +    ///
   12.78 +    /// The item-int map must be initialized in such way that it assigns
   12.79 +    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
   12.80 +    enum State {
   12.81 +      IN_HEAP = 0,    ///< = 0.
   12.82 +      PRE_HEAP = -1,  ///< = -1.
   12.83 +      POST_HEAP = -2  ///< = -2.
   12.84 +    };
   12.85 +
   12.86 +  private:
   12.87 +    std::vector<Pair> _data;
   12.88 +    Compare _comp;
   12.89 +    ItemIntMap &_iim;
   12.90 +
   12.91 +  public:
   12.92 +    /// \brief Constructor.
   12.93 +    ///
   12.94 +    /// Constructor.
   12.95 +    /// \param map A map that assigns \c int values to the items.
   12.96 +    /// It is used internally to handle the cross references.
   12.97 +    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
   12.98 +    explicit FouraryHeap(ItemIntMap &map) : _iim(map) {}
   12.99 +
  12.100 +    /// \brief Constructor.
  12.101 +    ///
  12.102 +    /// Constructor.
  12.103 +    /// \param map A map that assigns \c int values to the items.
  12.104 +    /// It is used internally to handle the cross references.
  12.105 +    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
  12.106 +    /// \param comp The function object used for comparing the priorities.
  12.107 +    FouraryHeap(ItemIntMap &map, const Compare &comp)
  12.108 +      : _iim(map), _comp(comp) {}
  12.109 +
  12.110 +    /// \brief The number of items stored in the heap.
  12.111 +    ///
  12.112 +    /// This function returns the number of items stored in the heap.
  12.113 +    int size() const { return _data.size(); }
  12.114 +
  12.115 +    /// \brief Check if the heap is empty.
  12.116 +    ///
  12.117 +    /// This function returns \c true if the heap is empty.
  12.118 +    bool empty() const { return _data.empty(); }
  12.119 +
  12.120 +    /// \brief Make the heap empty.
  12.121 +    ///
  12.122 +    /// This functon makes the heap empty.
  12.123 +    /// It does not change the cross reference map. If you want to reuse
  12.124 +    /// a heap that is not surely empty, you should first clear it and
  12.125 +    /// then you should set the cross reference map to \c PRE_HEAP
  12.126 +    /// for each item.
  12.127 +    void clear() { _data.clear(); }
  12.128 +
  12.129 +  private:
  12.130 +    static int parent(int i) { return (i-1)/4; }
  12.131 +    static int firstChild(int i) { return 4*i+1; }
  12.132 +
  12.133 +    bool less(const Pair &p1, const Pair &p2) const {
  12.134 +      return _comp(p1.second, p2.second);
  12.135 +    }
  12.136 +
  12.137 +    void bubbleUp(int hole, Pair p) {
  12.138 +      int par = parent(hole);
  12.139 +      while( hole>0 && less(p,_data[par]) ) {
  12.140 +        move(_data[par],hole);
  12.141 +        hole = par;
  12.142 +        par = parent(hole);
  12.143 +      }
  12.144 +      move(p, hole);
  12.145 +    }
  12.146 +
  12.147 +    void bubbleDown(int hole, Pair p, int length) {
  12.148 +      if( length>1 ) {
  12.149 +        int child = firstChild(hole);
  12.150 +        while( child+3<length ) {
  12.151 +          int min=child;
  12.152 +          if( less(_data[++child], _data[min]) ) min=child;
  12.153 +          if( less(_data[++child], _data[min]) ) min=child;
  12.154 +          if( less(_data[++child], _data[min]) ) min=child;
  12.155 +          if( !less(_data[min], p) )
  12.156 +            goto ok;
  12.157 +          move(_data[min], hole);
  12.158 +          hole = min;
  12.159 +          child = firstChild(hole);
  12.160 +        }
  12.161 +        if ( child<length ) {
  12.162 +          int min = child;
  12.163 +          if( ++child<length && less(_data[child], _data[min]) ) min=child;
  12.164 +          if( ++child<length && less(_data[child], _data[min]) ) min=child;
  12.165 +          if( less(_data[min], p) ) {
  12.166 +            move(_data[min], hole);
  12.167 +            hole = min;
  12.168 +          }
  12.169 +        }
  12.170 +      }
  12.171 +    ok:
  12.172 +      move(p, hole);
  12.173 +    }
  12.174 +
  12.175 +    void move(const Pair &p, int i) {
  12.176 +      _data[i] = p;
  12.177 +      _iim.set(p.first, i);
  12.178 +    }
  12.179 +
  12.180 +  public:
  12.181 +    /// \brief Insert a pair of item and priority into the heap.
  12.182 +    ///
  12.183 +    /// This function inserts \c p.first to the heap with priority
  12.184 +    /// \c p.second.
  12.185 +    /// \param p The pair to insert.
  12.186 +    /// \pre \c p.first must not be stored in the heap.
  12.187 +    void push(const Pair &p) {
  12.188 +      int n = _data.size();
  12.189 +      _data.resize(n+1);
  12.190 +      bubbleUp(n, p);
  12.191 +    }
  12.192 +
  12.193 +    /// \brief Insert an item into the heap with the given priority.
  12.194 +    ///
  12.195 +    /// This function inserts the given item into the heap with the
  12.196 +    /// given priority.
  12.197 +    /// \param i The item to insert.
  12.198 +    /// \param p The priority of the item.
  12.199 +    /// \pre \e i must not be stored in the heap.
  12.200 +    void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
  12.201 +
  12.202 +    /// \brief Return the item having minimum priority.
  12.203 +    ///
  12.204 +    /// This function returns the item having minimum priority.
  12.205 +    /// \pre The heap must be non-empty.
  12.206 +    Item top() const { return _data[0].first; }
  12.207 +
  12.208 +    /// \brief The minimum priority.
  12.209 +    ///
  12.210 +    /// This function returns the minimum priority.
  12.211 +    /// \pre The heap must be non-empty.
  12.212 +    Prio prio() const { return _data[0].second; }
  12.213 +
  12.214 +    /// \brief Remove the item having minimum priority.
  12.215 +    ///
  12.216 +    /// This function removes the item having minimum priority.
  12.217 +    /// \pre The heap must be non-empty.
  12.218 +    void pop() {
  12.219 +      int n = _data.size()-1;
  12.220 +      _iim.set(_data[0].first, POST_HEAP);
  12.221 +      if (n>0) bubbleDown(0, _data[n], n);
  12.222 +      _data.pop_back();
  12.223 +    }
  12.224 +
  12.225 +    /// \brief Remove the given item from the heap.
  12.226 +    ///
  12.227 +    /// This function removes the given item from the heap if it is
  12.228 +    /// already stored.
  12.229 +    /// \param i The item to delete.
  12.230 +    /// \pre \e i must be in the heap.
  12.231 +    void erase(const Item &i) {
  12.232 +      int h = _iim[i];
  12.233 +      int n = _data.size()-1;
  12.234 +      _iim.set(_data[h].first, POST_HEAP);
  12.235 +      if( h<n ) {
  12.236 +        if( less(_data[parent(h)], _data[n]) )
  12.237 +          bubbleDown(h, _data[n], n);
  12.238 +        else
  12.239 +          bubbleUp(h, _data[n]);
  12.240 +      }
  12.241 +      _data.pop_back();
  12.242 +    }
  12.243 +
  12.244 +    /// \brief The priority of the given item.
  12.245 +    ///
  12.246 +    /// This function returns the priority of the given item.
  12.247 +    /// \param i The item.
  12.248 +    /// \pre \e i must be in the heap.
  12.249 +    Prio operator[](const Item &i) const {
  12.250 +      int idx = _iim[i];
  12.251 +      return _data[idx].second;
  12.252 +    }
  12.253 +
  12.254 +    /// \brief Set the priority of an item or insert it, if it is
  12.255 +    /// not stored in the heap.
  12.256 +    ///
  12.257 +    /// This method sets the priority of the given item if it is
  12.258 +    /// already stored in the heap. Otherwise it inserts the given
  12.259 +    /// item into the heap with the given priority.
  12.260 +    /// \param i The item.
  12.261 +    /// \param p The priority.
  12.262 +    void set(const Item &i, const Prio &p) {
  12.263 +      int idx = _iim[i];
  12.264 +      if( idx < 0 )
  12.265 +        push(i,p);
  12.266 +      else if( _comp(p, _data[idx].second) )
  12.267 +        bubbleUp(idx, Pair(i,p));
  12.268 +      else
  12.269 +        bubbleDown(idx, Pair(i,p), _data.size());
  12.270 +    }
  12.271 +
  12.272 +    /// \brief Decrease the priority of an item to the given value.
  12.273 +    ///
  12.274 +    /// This function decreases the priority of an item to the given value.
  12.275 +    /// \param i The item.
  12.276 +    /// \param p The priority.
  12.277 +    /// \pre \e i must be stored in the heap with priority at least \e p.
  12.278 +    void decrease(const Item &i, const Prio &p) {
  12.279 +      int idx = _iim[i];
  12.280 +      bubbleUp(idx, Pair(i,p));
  12.281 +    }
  12.282 +
  12.283 +    /// \brief Increase the priority of an item to the given value.
  12.284 +    ///
  12.285 +    /// This function increases the priority of an item to the given value.
  12.286 +    /// \param i The item.
  12.287 +    /// \param p The priority.
  12.288 +    /// \pre \e i must be stored in the heap with priority at most \e p.
  12.289 +    void increase(const Item &i, const Prio &p) {
  12.290 +      int idx = _iim[i];
  12.291 +      bubbleDown(idx, Pair(i,p), _data.size());
  12.292 +    }
  12.293 +
  12.294 +    /// \brief Return the state of an item.
  12.295 +    ///
  12.296 +    /// This method returns \c PRE_HEAP if the given item has never
  12.297 +    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
  12.298 +    /// and \c POST_HEAP otherwise.
  12.299 +    /// In the latter case it is possible that the item will get back
  12.300 +    /// to the heap again.
  12.301 +    /// \param i The item.
  12.302 +    State state(const Item &i) const {
  12.303 +      int s = _iim[i];
  12.304 +      if (s>=0) s=0;
  12.305 +      return State(s);
  12.306 +    }
  12.307 +
  12.308 +    /// \brief Set the state of an item in the heap.
  12.309 +    ///
  12.310 +    /// This function sets the state of the given item in the heap.
  12.311 +    /// It can be used to manually clear the heap when it is important
  12.312 +    /// to achive better time complexity.
  12.313 +    /// \param i The item.
  12.314 +    /// \param st The state. It should not be \c IN_HEAP.
  12.315 +    void state(const Item& i, State st) {
  12.316 +      switch (st) {
  12.317 +        case POST_HEAP:
  12.318 +        case PRE_HEAP:
  12.319 +          if (state(i) == IN_HEAP) erase(i);
  12.320 +          _iim[i] = st;
  12.321 +          break;
  12.322 +        case IN_HEAP:
  12.323 +          break;
  12.324 +      }
  12.325 +    }
  12.326 +
  12.327 +    /// \brief Replace an item in the heap.
  12.328 +    ///
  12.329 +    /// This function replaces item \c i with item \c j.
  12.330 +    /// Item \c i must be in the heap, while \c j must be out of the heap.
  12.331 +    /// After calling this method, item \c i will be out of the
  12.332 +    /// heap and \c j will be in the heap with the same prioriority
  12.333 +    /// as item \c i had before.
  12.334 +    void replace(const Item& i, const Item& j) {
  12.335 +      int idx = _iim[i];
  12.336 +      _iim.set(i, _iim[j]);
  12.337 +      _iim.set(j, idx);
  12.338 +      _data[idx].first = j;
  12.339 +    }
  12.340 +
  12.341 +  }; // class FouraryHeap
  12.342 +
  12.343 +} // namespace lemon
  12.344 +
  12.345 +#endif // LEMON_FOURARY_HEAP_H
    13.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
    13.2 +++ b/lemon/kary_heap.h	Fri Sep 25 09:06:32 2009 +0200
    13.3 @@ -0,0 +1,352 @@
    13.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
    13.5 + *
    13.6 + * This file is a part of LEMON, a generic C++ optimization library.
    13.7 + *
    13.8 + * Copyright (C) 2003-2009
    13.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
   13.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
   13.11 + *
   13.12 + * Permission to use, modify and distribute this software is granted
   13.13 + * provided that this copyright notice appears in all copies. For
   13.14 + * precise terms see the accompanying LICENSE file.
   13.15 + *
   13.16 + * This software is provided "AS IS" with no warranty of any kind,
   13.17 + * express or implied, and with no claim as to its suitability for any
   13.18 + * purpose.
   13.19 + *
   13.20 + */
   13.21 +
   13.22 +#ifndef LEMON_KARY_HEAP_H
   13.23 +#define LEMON_KARY_HEAP_H
   13.24 +
   13.25 +///\ingroup heaps
   13.26 +///\file
   13.27 +///\brief Fourary heap implementation.
   13.28 +
   13.29 +#include <vector>
   13.30 +#include <utility>
   13.31 +#include <functional>
   13.32 +
   13.33 +namespace lemon {
   13.34 +
   13.35 +  /// \ingroup heaps
   13.36 +  ///
   13.37 +  ///\brief K-ary heap data structure.
   13.38 +  ///
   13.39 +  /// This class implements the \e K-ary \e heap data structure.
   13.40 +  /// It fully conforms to the \ref concepts::Heap "heap concept".
   13.41 +  ///
   13.42 +  /// The \ref KaryHeap "K-ary heap" is a generalization of the
   13.43 +  /// \ref BinHeap "binary heap" structure, its nodes have at most
   13.44 +  /// \c K children, instead of two.
   13.45 +  /// \ref BinHeap and \ref FouraryHeap are specialized implementations
   13.46 +  /// of this structure for <tt>K=2</tt> and <tt>K=4</tt>, respectively.
   13.47 +  ///
   13.48 +  /// \tparam PR Type of the priorities of the items.
   13.49 +  /// \tparam IM A read-writable item map with \c int values, used
   13.50 +  /// internally to handle the cross references.
   13.51 +  /// \tparam K The degree of the heap, each node have at most \e K
   13.52 +  /// children. The default is 16. Powers of two are suggested to use
   13.53 +  /// so that the multiplications and divisions needed to traverse the
   13.54 +  /// nodes of the heap could be performed faster.
   13.55 +  /// \tparam CMP A functor class for comparing the priorities.
   13.56 +  /// The default is \c std::less<PR>.
   13.57 +  ///
   13.58 +  ///\sa BinHeap
   13.59 +  ///\sa FouraryHeap
   13.60 +#ifdef DOXYGEN
   13.61 +  template <typename PR, typename IM, int K, typename CMP>
   13.62 +#else
   13.63 +  template <typename PR, typename IM, int K = 16,
   13.64 +            typename CMP = std::less<PR> >
   13.65 +#endif
   13.66 +  class KaryHeap {
   13.67 +  public:
   13.68 +    /// Type of the item-int map.
   13.69 +    typedef IM ItemIntMap;
   13.70 +    /// Type of the priorities.
   13.71 +    typedef PR Prio;
   13.72 +    /// Type of the items stored in the heap.
   13.73 +    typedef typename ItemIntMap::Key Item;
   13.74 +    /// Type of the item-priority pairs.
   13.75 +    typedef std::pair<Item,Prio> Pair;
   13.76 +    /// Functor type for comparing the priorities.
   13.77 +    typedef CMP Compare;
   13.78 +
   13.79 +    /// \brief Type to represent the states of the items.
   13.80 +    ///
   13.81 +    /// Each item has a state associated to it. It can be "in heap",
   13.82 +    /// "pre-heap" or "post-heap". The latter two are indifferent from the
   13.83 +    /// heap's point of view, but may be useful to the user.
   13.84 +    ///
   13.85 +    /// The item-int map must be initialized in such way that it assigns
   13.86 +    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
   13.87 +    enum State {
   13.88 +      IN_HEAP = 0,    ///< = 0.
   13.89 +      PRE_HEAP = -1,  ///< = -1.
   13.90 +      POST_HEAP = -2  ///< = -2.
   13.91 +    };
   13.92 +
   13.93 +  private:
   13.94 +    std::vector<Pair> _data;
   13.95 +    Compare _comp;
   13.96 +    ItemIntMap &_iim;
   13.97 +
   13.98 +  public:
   13.99 +    /// \brief Constructor.
  13.100 +    ///
  13.101 +    /// Constructor.
  13.102 +    /// \param map A map that assigns \c int values to the items.
  13.103 +    /// It is used internally to handle the cross references.
  13.104 +    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
  13.105 +    explicit KaryHeap(ItemIntMap &map) : _iim(map) {}
  13.106 +
  13.107 +    /// \brief Constructor.
  13.108 +    ///
  13.109 +    /// Constructor.
  13.110 +    /// \param map A map that assigns \c int values to the items.
  13.111 +    /// It is used internally to handle the cross references.
  13.112 +    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
  13.113 +    /// \param comp The function object used for comparing the priorities.
  13.114 +    KaryHeap(ItemIntMap &map, const Compare &comp)
  13.115 +      : _iim(map), _comp(comp) {}
  13.116 +
  13.117 +    /// \brief The number of items stored in the heap.
  13.118 +    ///
  13.119 +    /// This function returns the number of items stored in the heap.
  13.120 +    int size() const { return _data.size(); }
  13.121 +
  13.122 +    /// \brief Check if the heap is empty.
  13.123 +    ///
  13.124 +    /// This function returns \c true if the heap is empty.
  13.125 +    bool empty() const { return _data.empty(); }
  13.126 +
  13.127 +    /// \brief Make the heap empty.
  13.128 +    ///
  13.129 +    /// This functon makes the heap empty.
  13.130 +    /// It does not change the cross reference map. If you want to reuse
  13.131 +    /// a heap that is not surely empty, you should first clear it and
  13.132 +    /// then you should set the cross reference map to \c PRE_HEAP
  13.133 +    /// for each item.
  13.134 +    void clear() { _data.clear(); }
  13.135 +
  13.136 +  private:
  13.137 +    int parent(int i) { return (i-1)/K; }
  13.138 +    int firstChild(int i) { return K*i+1; }
  13.139 +
  13.140 +    bool less(const Pair &p1, const Pair &p2) const {
  13.141 +      return _comp(p1.second, p2.second);
  13.142 +    }
  13.143 +
  13.144 +    void bubbleUp(int hole, Pair p) {
  13.145 +      int par = parent(hole);
  13.146 +      while( hole>0 && less(p,_data[par]) ) {
  13.147 +        move(_data[par],hole);
  13.148 +        hole = par;
  13.149 +        par = parent(hole);
  13.150 +      }
  13.151 +      move(p, hole);
  13.152 +    }
  13.153 +
  13.154 +    void bubbleDown(int hole, Pair p, int length) {
  13.155 +      if( length>1 ) {
  13.156 +        int child = firstChild(hole);
  13.157 +        while( child+K<=length ) {
  13.158 +          int min=child;
  13.159 +          for (int i=1; i<K; ++i) {
  13.160 +            if( less(_data[child+i], _data[min]) )
  13.161 +              min=child+i;
  13.162 +          }
  13.163 +          if( !less(_data[min], p) )
  13.164 +            goto ok;
  13.165 +          move(_data[min], hole);
  13.166 +          hole = min;
  13.167 +          child = firstChild(hole);
  13.168 +        }
  13.169 +        if ( child<length ) {
  13.170 +          int min = child;
  13.171 +          while (++child < length) {
  13.172 +            if( less(_data[child], _data[min]) )
  13.173 +              min=child;
  13.174 +          }
  13.175 +          if( less(_data[min], p) ) {
  13.176 +            move(_data[min], hole);
  13.177 +            hole = min;
  13.178 +          }
  13.179 +        }
  13.180 +      }
  13.181 +    ok:
  13.182 +      move(p, hole);
  13.183 +    }
  13.184 +
  13.185 +    void move(const Pair &p, int i) {
  13.186 +      _data[i] = p;
  13.187 +      _iim.set(p.first, i);
  13.188 +    }
  13.189 +
  13.190 +  public:
  13.191 +    /// \brief Insert a pair of item and priority into the heap.
  13.192 +    ///
  13.193 +    /// This function inserts \c p.first to the heap with priority
  13.194 +    /// \c p.second.
  13.195 +    /// \param p The pair to insert.
  13.196 +    /// \pre \c p.first must not be stored in the heap.
  13.197 +    void push(const Pair &p) {
  13.198 +      int n = _data.size();
  13.199 +      _data.resize(n+1);
  13.200 +      bubbleUp(n, p);
  13.201 +    }
  13.202 +
  13.203 +    /// \brief Insert an item into the heap with the given priority.
  13.204 +    ///
  13.205 +    /// This function inserts the given item into the heap with the
  13.206 +    /// given priority.
  13.207 +    /// \param i The item to insert.
  13.208 +    /// \param p The priority of the item.
  13.209 +    /// \pre \e i must not be stored in the heap.
  13.210 +    void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
  13.211 +
  13.212 +    /// \brief Return the item having minimum priority.
  13.213 +    ///
  13.214 +    /// This function returns the item having minimum priority.
  13.215 +    /// \pre The heap must be non-empty.
  13.216 +    Item top() const { return _data[0].first; }
  13.217 +
  13.218 +    /// \brief The minimum priority.
  13.219 +    ///
  13.220 +    /// This function returns the minimum priority.
  13.221 +    /// \pre The heap must be non-empty.
  13.222 +    Prio prio() const { return _data[0].second; }
  13.223 +
  13.224 +    /// \brief Remove the item having minimum priority.
  13.225 +    ///
  13.226 +    /// This function removes the item having minimum priority.
  13.227 +    /// \pre The heap must be non-empty.
  13.228 +    void pop() {
  13.229 +      int n = _data.size()-1;
  13.230 +      _iim.set(_data[0].first, POST_HEAP);
  13.231 +      if (n>0) bubbleDown(0, _data[n], n);
  13.232 +      _data.pop_back();
  13.233 +    }
  13.234 +
  13.235 +    /// \brief Remove the given item from the heap.
  13.236 +    ///
  13.237 +    /// This function removes the given item from the heap if it is
  13.238 +    /// already stored.
  13.239 +    /// \param i The item to delete.
  13.240 +    /// \pre \e i must be in the heap.
  13.241 +    void erase(const Item &i) {
  13.242 +      int h = _iim[i];
  13.243 +      int n = _data.size()-1;
  13.244 +      _iim.set(_data[h].first, POST_HEAP);
  13.245 +      if( h<n ) {
  13.246 +        if( less(_data[parent(h)], _data[n]) )
  13.247 +          bubbleDown(h, _data[n], n);
  13.248 +        else
  13.249 +          bubbleUp(h, _data[n]);
  13.250 +      }
  13.251 +      _data.pop_back();
  13.252 +    }
  13.253 +
  13.254 +    /// \brief The priority of the given item.
  13.255 +    ///
  13.256 +    /// This function returns the priority of the given item.
  13.257 +    /// \param i The item.
  13.258 +    /// \pre \e i must be in the heap.
  13.259 +    Prio operator[](const Item &i) const {
  13.260 +      int idx = _iim[i];
  13.261 +      return _data[idx].second;
  13.262 +    }
  13.263 +
  13.264 +    /// \brief Set the priority of an item or insert it, if it is
  13.265 +    /// not stored in the heap.
  13.266 +    ///
  13.267 +    /// This method sets the priority of the given item if it is
  13.268 +    /// already stored in the heap. Otherwise it inserts the given
  13.269 +    /// item into the heap with the given priority.
  13.270 +    /// \param i The item.
  13.271 +    /// \param p The priority.
  13.272 +    void set(const Item &i, const Prio &p) {
  13.273 +      int idx = _iim[i];
  13.274 +      if( idx<0 )
  13.275 +        push(i,p);
  13.276 +      else if( _comp(p, _data[idx].second) )
  13.277 +        bubbleUp(idx, Pair(i,p));
  13.278 +      else
  13.279 +        bubbleDown(idx, Pair(i,p), _data.size());
  13.280 +    }
  13.281 +
  13.282 +    /// \brief Decrease the priority of an item to the given value.
  13.283 +    ///
  13.284 +    /// This function decreases the priority of an item to the given value.
  13.285 +    /// \param i The item.
  13.286 +    /// \param p The priority.
  13.287 +    /// \pre \e i must be stored in the heap with priority at least \e p.
  13.288 +    void decrease(const Item &i, const Prio &p) {
  13.289 +      int idx = _iim[i];
  13.290 +      bubbleUp(idx, Pair(i,p));
  13.291 +    }
  13.292 +
  13.293 +    /// \brief Increase the priority of an item to the given value.
  13.294 +    ///
  13.295 +    /// This function increases the priority of an item to the given value.
  13.296 +    /// \param i The item.
  13.297 +    /// \param p The priority.
  13.298 +    /// \pre \e i must be stored in the heap with priority at most \e p.
  13.299 +    void increase(const Item &i, const Prio &p) {
  13.300 +      int idx = _iim[i];
  13.301 +      bubbleDown(idx, Pair(i,p), _data.size());
  13.302 +    }
  13.303 +
  13.304 +    /// \brief Return the state of an item.
  13.305 +    ///
  13.306 +    /// This method returns \c PRE_HEAP if the given item has never
  13.307 +    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
  13.308 +    /// and \c POST_HEAP otherwise.
  13.309 +    /// In the latter case it is possible that the item will get back
  13.310 +    /// to the heap again.
  13.311 +    /// \param i The item.
  13.312 +    State state(const Item &i) const {
  13.313 +      int s = _iim[i];
  13.314 +      if (s>=0) s=0;
  13.315 +      return State(s);
  13.316 +    }
  13.317 +
  13.318 +    /// \brief Set the state of an item in the heap.
  13.319 +    ///
  13.320 +    /// This function sets the state of the given item in the heap.
  13.321 +    /// It can be used to manually clear the heap when it is important
  13.322 +    /// to achive better time complexity.
  13.323 +    /// \param i The item.
  13.324 +    /// \param st The state. It should not be \c IN_HEAP.
  13.325 +    void state(const Item& i, State st) {
  13.326 +      switch (st) {
  13.327 +        case POST_HEAP:
  13.328 +        case PRE_HEAP:
  13.329 +          if (state(i) == IN_HEAP) erase(i);
  13.330 +          _iim[i] = st;
  13.331 +          break;
  13.332 +        case IN_HEAP:
  13.333 +          break;
  13.334 +      }
  13.335 +    }
  13.336 +
  13.337 +    /// \brief Replace an item in the heap.
  13.338 +    ///
  13.339 +    /// This function replaces item \c i with item \c j.
  13.340 +    /// Item \c i must be in the heap, while \c j must be out of the heap.
  13.341 +    /// After calling this method, item \c i will be out of the
  13.342 +    /// heap and \c j will be in the heap with the same prioriority
  13.343 +    /// as item \c i had before.
  13.344 +    void replace(const Item& i, const Item& j) {
  13.345 +      int idx=_iim[i];
  13.346 +      _iim.set(i, _iim[j]);
  13.347 +      _iim.set(j, idx);
  13.348 +      _data[idx].first=j;
  13.349 +    }
  13.350 +
  13.351 +  }; // class KaryHeap
  13.352 +
  13.353 +} // namespace lemon
  13.354 +
  13.355 +#endif // LEMON_KARY_HEAP_H
    14.1 --- a/lemon/maps.h	Fri Jul 24 11:07:52 2009 +0200
    14.2 +++ b/lemon/maps.h	Fri Sep 25 09:06:32 2009 +0200
    14.3 @@ -22,6 +22,7 @@
    14.4  #include <iterator>
    14.5  #include <functional>
    14.6  #include <vector>
    14.7 +#include <map>
    14.8  
    14.9  #include <lemon/core.h>
   14.10  
   14.11 @@ -29,8 +30,6 @@
   14.12  ///\ingroup maps
   14.13  ///\brief Miscellaneous property maps
   14.14  
   14.15 -#include <map>
   14.16 -
   14.17  namespace lemon {
   14.18  
   14.19    /// \addtogroup maps
   14.20 @@ -1818,7 +1817,7 @@
   14.21    /// \brief Provides an immutable and unique id for each item in a graph.
   14.22    ///
   14.23    /// IdMap provides a unique and immutable id for each item of the
   14.24 -  /// same type (\c Node, \c Arc or \c Edge) in a graph. This id is 
   14.25 +  /// same type (\c Node, \c Arc or \c Edge) in a graph. This id is
   14.26    ///  - \b unique: different items get different ids,
   14.27    ///  - \b immutable: the id of an item does not change (even if you
   14.28    ///    delete other nodes).
   14.29 @@ -1902,13 +1901,14 @@
   14.30    /// \brief General cross reference graph map type.
   14.31  
   14.32    /// This class provides simple invertable graph maps.
   14.33 -  /// It wraps an arbitrary \ref concepts::ReadWriteMap "ReadWriteMap"
   14.34 -  /// and if a key is set to a new value then store it
   14.35 -  /// in the inverse map.
   14.36 -  ///
   14.37 +  /// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap)
   14.38 +  /// and if a key is set to a new value, then stores it in the inverse map.
   14.39    /// The values of the map can be accessed
   14.40    /// with stl compatible forward iterator.
   14.41    ///
   14.42 +  /// This type is not reference map, so it cannot be modified with
   14.43 +  /// the subscript operator.
   14.44 +  ///
   14.45    /// \tparam GR The graph type.
   14.46    /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
   14.47    /// \c GR::Edge).
   14.48 @@ -1923,7 +1923,7 @@
   14.49      typedef typename ItemSetTraits<GR, K>::
   14.50        template Map<V>::Type Map;
   14.51  
   14.52 -    typedef std::map<V, K> Container;
   14.53 +    typedef std::multimap<V, K> Container;
   14.54      Container _inv_map;
   14.55  
   14.56    public:
   14.57 @@ -1948,6 +1948,8 @@
   14.58      /// This iterator is an stl compatible forward
   14.59      /// iterator on the values of the map. The values can
   14.60      /// be accessed in the <tt>[beginValue, endValue)</tt> range.
   14.61 +    /// They are considered with multiplicity, so each value is
   14.62 +    /// traversed for each item it is assigned to.
   14.63      class ValueIterator
   14.64        : public std::iterator<std::forward_iterator_tag, Value> {
   14.65        friend class CrossRefMap;
   14.66 @@ -2000,11 +2002,15 @@
   14.67      /// Sets the value associated with the given key.
   14.68      void set(const Key& key, const Value& val) {
   14.69        Value oldval = Map::operator[](key);
   14.70 -      typename Container::iterator it = _inv_map.find(oldval);
   14.71 -      if (it != _inv_map.end() && it->second == key) {
   14.72 -        _inv_map.erase(it);
   14.73 +      typename Container::iterator it;
   14.74 +      for (it = _inv_map.equal_range(oldval).first;
   14.75 +           it != _inv_map.equal_range(oldval).second; ++it) {
   14.76 +        if (it->second == key) {
   14.77 +          _inv_map.erase(it);
   14.78 +          break;
   14.79 +        }
   14.80        }
   14.81 -      _inv_map.insert(make_pair(val, key));
   14.82 +      _inv_map.insert(std::make_pair(val, key));
   14.83        Map::set(key, val);
   14.84      }
   14.85  
   14.86 @@ -2016,11 +2022,14 @@
   14.87        return Map::operator[](key);
   14.88      }
   14.89  
   14.90 -    /// \brief Gives back the item by its value.
   14.91 +    /// \brief Gives back an item by its value.
   14.92      ///
   14.93 -    /// Gives back the item by its value.
   14.94 -    Key operator()(const Value& key) const {
   14.95 -      typename Container::const_iterator it = _inv_map.find(key);
   14.96 +    /// This function gives back an item that is assigned to
   14.97 +    /// the given value or \c INVALID if no such item exists.
   14.98 +    /// If there are more items with the same associated value,
   14.99 +    /// only one of them is returned.
  14.100 +    Key operator()(const Value& val) const {
  14.101 +      typename Container::const_iterator it = _inv_map.find(val);
  14.102        return it != _inv_map.end() ? it->second : INVALID;
  14.103      }
  14.104  
  14.105 @@ -2032,9 +2041,13 @@
  14.106      /// \c AlterationNotifier.
  14.107      virtual void erase(const Key& key) {
  14.108        Value val = Map::operator[](key);
  14.109 -      typename Container::iterator it = _inv_map.find(val);
  14.110 -      if (it != _inv_map.end() && it->second == key) {
  14.111 -        _inv_map.erase(it);
  14.112 +      typename Container::iterator it;
  14.113 +      for (it = _inv_map.equal_range(val).first;
  14.114 +           it != _inv_map.equal_range(val).second; ++it) {
  14.115 +        if (it->second == key) {
  14.116 +          _inv_map.erase(it);
  14.117 +          break;
  14.118 +        }
  14.119        }
  14.120        Map::erase(key);
  14.121      }
  14.122 @@ -2046,9 +2059,13 @@
  14.123      virtual void erase(const std::vector<Key>& keys) {
  14.124        for (int i = 0; i < int(keys.size()); ++i) {
  14.125          Value val = Map::operator[](keys[i]);
  14.126 -        typename Container::iterator it = _inv_map.find(val);
  14.127 -        if (it != _inv_map.end() && it->second == keys[i]) {
  14.128 -          _inv_map.erase(it);
  14.129 +        typename Container::iterator it;
  14.130 +        for (it = _inv_map.equal_range(val).first;
  14.131 +             it != _inv_map.equal_range(val).second; ++it) {
  14.132 +          if (it->second == keys[i]) {
  14.133 +            _inv_map.erase(it);
  14.134 +            break;
  14.135 +          }
  14.136          }
  14.137        }
  14.138        Map::erase(keys);
  14.139 @@ -2084,8 +2101,9 @@
  14.140  
  14.141        /// \brief Subscript operator.
  14.142        ///
  14.143 -      /// Subscript operator. It gives back the item
  14.144 -      /// that was last assigned to the given value.
  14.145 +      /// Subscript operator. It gives back an item
  14.146 +      /// that is assigned to the given value or \c INVALID
  14.147 +      /// if no such item exists.
  14.148        Value operator[](const Key& key) const {
  14.149          return _inverted(key);
  14.150        }
  14.151 @@ -2254,7 +2272,7 @@
  14.152      }
  14.153  
  14.154      /// \brief Gives back the item belonging to a \e RangeId
  14.155 -    /// 
  14.156 +    ///
  14.157      /// Gives back the item belonging to a \e RangeId.
  14.158      Item operator()(int id) const {
  14.159        return _inv_map[id];
  14.160 @@ -2311,6 +2329,903 @@
  14.161      }
  14.162    };
  14.163  
  14.164 +  /// \brief Dynamic iterable \c bool map.
  14.165 +  ///
  14.166 +  /// This class provides a special graph map type which can store a
  14.167 +  /// \c bool value for graph items (\c Node, \c Arc or \c Edge).
  14.168 +  /// For both \c true and \c false values it is possible to iterate on
  14.169 +  /// the keys.
  14.170 +  ///
  14.171 +  /// This type is a reference map, so it can be modified with the
  14.172 +  /// subscript operator.
  14.173 +  ///
  14.174 +  /// \tparam GR The graph type.
  14.175 +  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
  14.176 +  /// \c GR::Edge).
  14.177 +  ///
  14.178 +  /// \see IterableIntMap, IterableValueMap
  14.179 +  /// \see CrossRefMap
  14.180 +  template <typename GR, typename K>
  14.181 +  class IterableBoolMap
  14.182 +    : protected ItemSetTraits<GR, K>::template Map<int>::Type {
  14.183 +  private:
  14.184 +    typedef GR Graph;
  14.185 +
  14.186 +    typedef typename ItemSetTraits<GR, K>::ItemIt KeyIt;
  14.187 +    typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Parent;
  14.188 +
  14.189 +    std::vector<K> _array;
  14.190 +    int _sep;
  14.191 +
  14.192 +  public:
  14.193 +
  14.194 +    /// Indicates that the map is reference map.
  14.195 +    typedef True ReferenceMapTag;
  14.196 +
  14.197 +    /// The key type
  14.198 +    typedef K Key;
  14.199 +    /// The value type
  14.200 +    typedef bool Value;
  14.201 +    /// The const reference type.
  14.202 +    typedef const Value& ConstReference;
  14.203 +
  14.204 +  private:
  14.205 +
  14.206 +    int position(const Key& key) const {
  14.207 +      return Parent::operator[](key);
  14.208 +    }
  14.209 +
  14.210 +  public:
  14.211 +
  14.212 +    /// \brief Reference to the value of the map.
  14.213 +    ///
  14.214 +    /// This class is similar to the \c bool type. It can be converted to
  14.215 +    /// \c bool and it provides the same operators.
  14.216 +    class Reference {
  14.217 +      friend class IterableBoolMap;
  14.218 +    private:
  14.219 +      Reference(IterableBoolMap& map, const Key& key)
  14.220 +        : _key(key), _map(map) {}
  14.221 +    public:
  14.222 +
  14.223 +      Reference& operator=(const Reference& value) {
  14.224 +        _map.set(_key, static_cast<bool>(value));
  14.225 +         return *this;
  14.226 +      }
  14.227 +
  14.228 +      operator bool() const {
  14.229 +        return static_cast<const IterableBoolMap&>(_map)[_key];
  14.230 +      }
  14.231 +
  14.232 +      Reference& operator=(bool value) {
  14.233 +        _map.set(_key, value);
  14.234 +        return *this;
  14.235 +      }
  14.236 +      Reference& operator&=(bool value) {
  14.237 +        _map.set(_key, _map[_key] & value);
  14.238 +        return *this;
  14.239 +      }
  14.240 +      Reference& operator|=(bool value) {
  14.241 +        _map.set(_key, _map[_key] | value);
  14.242 +        return *this;
  14.243 +      }
  14.244 +      Reference& operator^=(bool value) {
  14.245 +        _map.set(_key, _map[_key] ^ value);
  14.246 +        return *this;
  14.247 +      }
  14.248 +    private:
  14.249 +      Key _key;
  14.250 +      IterableBoolMap& _map;
  14.251 +    };
  14.252 +
  14.253 +    /// \brief Constructor of the map with a default value.
  14.254 +    ///
  14.255 +    /// Constructor of the map with a default value.
  14.256 +    explicit IterableBoolMap(const Graph& graph, bool def = false)
  14.257 +      : Parent(graph) {
  14.258 +      typename Parent::Notifier* nf = Parent::notifier();
  14.259 +      Key it;
  14.260 +      for (nf->first(it); it != INVALID; nf->next(it)) {
  14.261 +        Parent::set(it, _array.size());
  14.262 +        _array.push_back(it);
  14.263 +      }
  14.264 +      _sep = (def ? _array.size() : 0);
  14.265 +    }
  14.266 +
  14.267 +    /// \brief Const subscript operator of the map.
  14.268 +    ///
  14.269 +    /// Const subscript operator of the map.
  14.270 +    bool operator[](const Key& key) const {
  14.271 +      return position(key) < _sep;
  14.272 +    }
  14.273 +
  14.274 +    /// \brief Subscript operator of the map.
  14.275 +    ///
  14.276 +    /// Subscript operator of the map.
  14.277 +    Reference operator[](const Key& key) {
  14.278 +      return Reference(*this, key);
  14.279 +    }
  14.280 +
  14.281 +    /// \brief Set operation of the map.
  14.282 +    ///
  14.283 +    /// Set operation of the map.
  14.284 +    void set(const Key& key, bool value) {
  14.285 +      int pos = position(key);
  14.286 +      if (value) {
  14.287 +        if (pos < _sep) return;
  14.288 +        Key tmp = _array[_sep];
  14.289 +        _array[_sep] = key;
  14.290 +        Parent::set(key, _sep);
  14.291 +        _array[pos] = tmp;
  14.292 +        Parent::set(tmp, pos);
  14.293 +        ++_sep;
  14.294 +      } else {
  14.295 +        if (pos >= _sep) return;
  14.296 +        --_sep;
  14.297 +        Key tmp = _array[_sep];
  14.298 +        _array[_sep] = key;
  14.299 +        Parent::set(key, _sep);
  14.300 +        _array[pos] = tmp;
  14.301 +        Parent::set(tmp, pos);
  14.302 +      }
  14.303 +    }
  14.304 +
  14.305 +    /// \brief Set all items.
  14.306 +    ///
  14.307 +    /// Set all items in the map.
  14.308 +    /// \note Constant time operation.
  14.309 +    void setAll(bool value) {
  14.310 +      _sep = (value ? _array.size() : 0);
  14.311 +    }
  14.312 +
  14.313 +    /// \brief Returns the number of the keys mapped to \c true.
  14.314 +    ///
  14.315 +    /// Returns the number of the keys mapped to \c true.
  14.316 +    int trueNum() const {
  14.317 +      return _sep;
  14.318 +    }
  14.319 +
  14.320 +    /// \brief Returns the number of the keys mapped to \c false.
  14.321 +    ///
  14.322 +    /// Returns the number of the keys mapped to \c false.
  14.323 +    int falseNum() const {
  14.324 +      return _array.size() - _sep;
  14.325 +    }
  14.326 +
  14.327 +    /// \brief Iterator for the keys mapped to \c true.
  14.328 +    ///
  14.329 +    /// Iterator for the keys mapped to \c true. It works
  14.330 +    /// like a graph item iterator, it can be converted to
  14.331 +    /// the key type of the map, incremented with \c ++ operator, and
  14.332 +    /// if the iterator leaves the last valid key, it will be equal to
  14.333 +    /// \c INVALID.
  14.334 +    class TrueIt : public Key {
  14.335 +    public:
  14.336 +      typedef Key Parent;
  14.337 +
  14.338 +      /// \brief Creates an iterator.
  14.339 +      ///
  14.340 +      /// Creates an iterator. It iterates on the
  14.341 +      /// keys mapped to \c true.
  14.342 +      /// \param map The IterableBoolMap.
  14.343 +      explicit TrueIt(const IterableBoolMap& map)
  14.344 +        : Parent(map._sep > 0 ? map._array[map._sep - 1] : INVALID),
  14.345 +          _map(&map) {}
  14.346 +
  14.347 +      /// \brief Invalid constructor \& conversion.
  14.348 +      ///
  14.349 +      /// This constructor initializes the iterator to be invalid.
  14.350 +      /// \sa Invalid for more details.
  14.351 +      TrueIt(Invalid) : Parent(INVALID), _map(0) {}
  14.352 +
  14.353 +      /// \brief Increment operator.
  14.354 +      ///
  14.355 +      /// Increment operator.
  14.356 +      TrueIt& operator++() {
  14.357 +        int pos = _map->position(*this);
  14.358 +        Parent::operator=(pos > 0 ? _map->_array[pos - 1] : INVALID);
  14.359 +        return *this;
  14.360 +      }
  14.361 +
  14.362 +    private:
  14.363 +      const IterableBoolMap* _map;
  14.364 +    };
  14.365 +
  14.366 +    /// \brief Iterator for the keys mapped to \c false.
  14.367 +    ///
  14.368 +    /// Iterator for the keys mapped to \c false. It works
  14.369 +    /// like a graph item iterator, it can be converted to
  14.370 +    /// the key type of the map, incremented with \c ++ operator, and
  14.371 +    /// if the iterator leaves the last valid key, it will be equal to
  14.372 +    /// \c INVALID.
  14.373 +    class FalseIt : public Key {
  14.374 +    public:
  14.375 +      typedef Key Parent;
  14.376 +
  14.377 +      /// \brief Creates an iterator.
  14.378 +      ///
  14.379 +      /// Creates an iterator. It iterates on the
  14.380 +      /// keys mapped to \c false.
  14.381 +      /// \param map The IterableBoolMap.
  14.382 +      explicit FalseIt(const IterableBoolMap& map)
  14.383 +        : Parent(map._sep < int(map._array.size()) ?
  14.384 +                 map._array.back() : INVALID), _map(&map) {}
  14.385 +
  14.386 +      /// \brief Invalid constructor \& conversion.
  14.387 +      ///
  14.388 +      /// This constructor initializes the iterator to be invalid.
  14.389 +      /// \sa Invalid for more details.
  14.390 +      FalseIt(Invalid) : Parent(INVALID), _map(0) {}
  14.391 +
  14.392 +      /// \brief Increment operator.
  14.393 +      ///
  14.394 +      /// Increment operator.
  14.395 +      FalseIt& operator++() {
  14.396 +        int pos = _map->position(*this);
  14.397 +        Parent::operator=(pos > _map->_sep ? _map->_array[pos - 1] : INVALID);
  14.398 +        return *this;
  14.399 +      }
  14.400 +
  14.401 +    private:
  14.402 +      const IterableBoolMap* _map;
  14.403 +    };
  14.404 +
  14.405 +    /// \brief Iterator for the keys mapped to a given value.
  14.406 +    ///
  14.407 +    /// Iterator for the keys mapped to a given value. It works
  14.408 +    /// like a graph item iterator, it can be converted to
  14.409 +    /// the key type of the map, incremented with \c ++ operator, and
  14.410 +    /// if the iterator leaves the last valid key, it will be equal to
  14.411 +    /// \c INVALID.
  14.412 +    class ItemIt : public Key {
  14.413 +    public:
  14.414 +      typedef Key Parent;
  14.415 +
  14.416 +      /// \brief Creates an iterator with a value.
  14.417 +      ///
  14.418 +      /// Creates an iterator with a value. It iterates on the
  14.419 +      /// keys mapped to the given value.
  14.420 +      /// \param map The IterableBoolMap.
  14.421 +      /// \param value The value.
  14.422 +      ItemIt(const IterableBoolMap& map, bool value)
  14.423 +        : Parent(value ? 
  14.424 +                 (map._sep > 0 ?
  14.425 +                  map._array[map._sep - 1] : INVALID) :
  14.426 +                 (map._sep < int(map._array.size()) ?
  14.427 +                  map._array.back() : INVALID)), _map(&map) {}
  14.428 +
  14.429 +      /// \brief Invalid constructor \& conversion.
  14.430 +      ///
  14.431 +      /// This constructor initializes the iterator to be invalid.
  14.432 +      /// \sa Invalid for more details.
  14.433 +      ItemIt(Invalid) : Parent(INVALID), _map(0) {}
  14.434 +
  14.435 +      /// \brief Increment operator.
  14.436 +      ///
  14.437 +      /// Increment operator.
  14.438 +      ItemIt& operator++() {
  14.439 +        int pos = _map->position(*this);
  14.440 +        int _sep = pos >= _map->_sep ? _map->_sep : 0;
  14.441 +        Parent::operator=(pos > _sep ? _map->_array[pos - 1] : INVALID);
  14.442 +        return *this;
  14.443 +      }
  14.444 +
  14.445 +    private:
  14.446 +      const IterableBoolMap* _map;
  14.447 +    };
  14.448 +
  14.449 +  protected:
  14.450 +
  14.451 +    virtual void add(const Key& key) {
  14.452 +      Parent::add(key);
  14.453 +      Parent::set(key, _array.size());
  14.454 +      _array.push_back(key);
  14.455 +    }
  14.456 +
  14.457 +    virtual void add(const std::vector<Key>& keys) {
  14.458 +      Parent::add(keys);
  14.459 +      for (int i = 0; i < int(keys.size()); ++i) {
  14.460 +        Parent::set(keys[i], _array.size());
  14.461 +        _array.push_back(keys[i]);
  14.462 +      }
  14.463 +    }
  14.464 +
  14.465 +    virtual void erase(const Key& key) {
  14.466 +      int pos = position(key);
  14.467 +      if (pos < _sep) {
  14.468 +        --_sep;
  14.469 +        Parent::set(_array[_sep], pos);
  14.470 +        _array[pos] = _array[_sep];
  14.471 +        Parent::set(_array.back(), _sep);
  14.472 +        _array[_sep] = _array.back();
  14.473 +        _array.pop_back();
  14.474 +      } else {
  14.475 +        Parent::set(_array.back(), pos);
  14.476 +        _array[pos] = _array.back();
  14.477 +        _array.pop_back();
  14.478 +      }
  14.479 +      Parent::erase(key);
  14.480 +    }
  14.481 +
  14.482 +    virtual void erase(const std::vector<Key>& keys) {
  14.483 +      for (int i = 0; i < int(keys.size()); ++i) {
  14.484 +        int pos = position(keys[i]);
  14.485 +        if (pos < _sep) {
  14.486 +          --_sep;
  14.487 +          Parent::set(_array[_sep], pos);
  14.488 +          _array[pos] = _array[_sep];
  14.489 +          Parent::set(_array.back(), _sep);
  14.490 +          _array[_sep] = _array.back();
  14.491 +          _array.pop_back();
  14.492 +        } else {
  14.493 +          Parent::set(_array.back(), pos);
  14.494 +          _array[pos] = _array.back();
  14.495 +          _array.pop_back();
  14.496 +        }
  14.497 +      }
  14.498 +      Parent::erase(keys);
  14.499 +    }
  14.500 +
  14.501 +    virtual void build() {
  14.502 +      Parent::build();
  14.503 +      typename Parent::Notifier* nf = Parent::notifier();
  14.504 +      Key it;
  14.505 +      for (nf->first(it); it != INVALID; nf->next(it)) {
  14.506 +        Parent::set(it, _array.size());
  14.507 +        _array.push_back(it);
  14.508 +      }
  14.509 +      _sep = 0;
  14.510 +    }
  14.511 +
  14.512 +    virtual void clear() {
  14.513 +      _array.clear();
  14.514 +      _sep = 0;
  14.515 +      Parent::clear();
  14.516 +    }
  14.517 +
  14.518 +  };
  14.519 +
  14.520 +
  14.521 +  namespace _maps_bits {
  14.522 +    template <typename Item>
  14.523 +    struct IterableIntMapNode {
  14.524 +      IterableIntMapNode() : value(-1) {}
  14.525 +      IterableIntMapNode(int _value) : value(_value) {}
  14.526 +      Item prev, next;
  14.527 +      int value;
  14.528 +    };
  14.529 +  }
  14.530 +
  14.531 +  /// \brief Dynamic iterable integer map.
  14.532 +  ///
  14.533 +  /// This class provides a special graph map type which can store an
  14.534 +  /// integer value for graph items (\c Node, \c Arc or \c Edge).
  14.535 +  /// For each non-negative value it is possible to iterate on the keys
  14.536 +  /// mapped to the value.
  14.537 +  ///
  14.538 +  /// This type is a reference map, so it can be modified with the
  14.539 +  /// subscript operator.
  14.540 +  ///
  14.541 +  /// \note The size of the data structure depends on the largest
  14.542 +  /// value in the map.
  14.543 +  ///
  14.544 +  /// \tparam GR The graph type.
  14.545 +  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
  14.546 +  /// \c GR::Edge).
  14.547 +  ///
  14.548 +  /// \see IterableBoolMap, IterableValueMap
  14.549 +  /// \see CrossRefMap
  14.550 +  template <typename GR, typename K>
  14.551 +  class IterableIntMap
  14.552 +    : protected ItemSetTraits<GR, K>::
  14.553 +        template Map<_maps_bits::IterableIntMapNode<K> >::Type {
  14.554 +  public:
  14.555 +    typedef typename ItemSetTraits<GR, K>::
  14.556 +      template Map<_maps_bits::IterableIntMapNode<K> >::Type Parent;
  14.557 +
  14.558 +    /// The key type
  14.559 +    typedef K Key;
  14.560 +    /// The value type
  14.561 +    typedef int Value;
  14.562 +    /// The graph type
  14.563 +    typedef GR Graph;
  14.564 +
  14.565 +    /// \brief Constructor of the map.
  14.566 +    ///
  14.567 +    /// Constructor of the map. It sets all values to -1.
  14.568 +    explicit IterableIntMap(const Graph& graph)
  14.569 +      : Parent(graph) {}
  14.570 +
  14.571 +    /// \brief Constructor of the map with a given value.
  14.572 +    ///
  14.573 +    /// Constructor of the map with a given value.
  14.574 +    explicit IterableIntMap(const Graph& graph, int value)
  14.575 +      : Parent(graph, _maps_bits::IterableIntMapNode<K>(value)) {
  14.576 +      if (value >= 0) {
  14.577 +        for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
  14.578 +          lace(it);
  14.579 +        }
  14.580 +      }
  14.581 +    }
  14.582 +
  14.583 +  private:
  14.584 +
  14.585 +    void unlace(const Key& key) {
  14.586 +      typename Parent::Value& node = Parent::operator[](key);
  14.587 +      if (node.value < 0) return;
  14.588 +      if (node.prev != INVALID) {
  14.589 +        Parent::operator[](node.prev).next = node.next;
  14.590 +      } else {
  14.591 +        _first[node.value] = node.next;
  14.592 +      }
  14.593 +      if (node.next != INVALID) {
  14.594 +        Parent::operator[](node.next).prev = node.prev;
  14.595 +      }
  14.596 +      while (!_first.empty() && _first.back() == INVALID) {
  14.597 +        _first.pop_back();
  14.598 +      }
  14.599 +    }
  14.600 +
  14.601 +    void lace(const Key& key) {
  14.602 +      typename Parent::Value& node = Parent::operator[](key);
  14.603 +      if (node.value < 0) return;
  14.604 +      if (node.value >= int(_first.size())) {
  14.605 +        _first.resize(node.value + 1, INVALID);
  14.606 +      }
  14.607 +      node.prev = INVALID;
  14.608 +      node.next = _first[node.value];
  14.609 +      if (node.next != INVALID) {
  14.610 +        Parent::operator[](node.next).prev = key;
  14.611 +      }
  14.612 +      _first[node.value] = key;
  14.613 +    }
  14.614 +
  14.615 +  public:
  14.616 +
  14.617 +    /// Indicates that the map is reference map.
  14.618 +    typedef True ReferenceMapTag;
  14.619 +
  14.620 +    /// \brief Reference to the value of the map.
  14.621 +    ///
  14.622 +    /// This class is similar to the \c int type. It can
  14.623 +    /// be converted to \c int and it has the same operators.
  14.624 +    class Reference {
  14.625 +      friend class IterableIntMap;
  14.626 +    private:
  14.627 +      Reference(IterableIntMap& map, const Key& key)
  14.628 +        : _key(key), _map(map) {}
  14.629 +    public:
  14.630 +
  14.631 +      Reference& operator=(const Reference& value) {
  14.632 +        _map.set(_key, static_cast<const int&>(value));
  14.633 +         return *this;
  14.634 +      }
  14.635 +
  14.636 +      operator const int&() const {
  14.637 +        return static_cast<const IterableIntMap&>(_map)[_key];
  14.638 +      }
  14.639 +
  14.640 +      Reference& operator=(int value) {
  14.641 +        _map.set(_key, value);
  14.642 +        return *this;
  14.643 +      }
  14.644 +      Reference& operator++() {
  14.645 +        _map.set(_key, _map[_key] + 1);
  14.646 +        return *this;
  14.647 +      }
  14.648 +      int operator++(int) {
  14.649 +        int value = _map[_key];
  14.650 +        _map.set(_key, value + 1);
  14.651 +        return value;
  14.652 +      }
  14.653 +      Reference& operator--() {
  14.654 +        _map.set(_key, _map[_key] - 1);
  14.655 +        return *this;
  14.656 +      }
  14.657 +      int operator--(int) {
  14.658 +        int value = _map[_key];
  14.659 +        _map.set(_key, value - 1);
  14.660 +        return value;
  14.661 +      }
  14.662 +      Reference& operator+=(int value) {
  14.663 +        _map.set(_key, _map[_key] + value);
  14.664 +        return *this;
  14.665 +      }
  14.666 +      Reference& operator-=(int value) {
  14.667 +        _map.set(_key, _map[_key] - value);
  14.668 +        return *this;
  14.669 +      }
  14.670 +      Reference& operator*=(int value) {
  14.671 +        _map.set(_key, _map[_key] * value);
  14.672 +        return *this;
  14.673 +      }
  14.674 +      Reference& operator/=(int value) {
  14.675 +        _map.set(_key, _map[_key] / value);
  14.676 +        return *this;
  14.677 +      }
  14.678 +      Reference& operator%=(int value) {
  14.679 +        _map.set(_key, _map[_key] % value);
  14.680 +        return *this;
  14.681 +      }
  14.682 +      Reference& operator&=(int value) {
  14.683 +        _map.set(_key, _map[_key] & value);
  14.684 +        return *this;
  14.685 +      }
  14.686 +      Reference& operator|=(int value) {
  14.687 +        _map.set(_key, _map[_key] | value);
  14.688 +        return *this;
  14.689 +      }
  14.690 +      Reference& operator^=(int value) {
  14.691 +        _map.set(_key, _map[_key] ^ value);
  14.692 +        return *this;
  14.693 +      }
  14.694 +      Reference& operator<<=(int value) {
  14.695 +        _map.set(_key, _map[_key] << value);
  14.696 +        return *this;
  14.697 +      }
  14.698 +      Reference& operator>>=(int value) {
  14.699 +        _map.set(_key, _map[_key] >> value);
  14.700 +        return *this;
  14.701 +      }
  14.702 +
  14.703 +    private:
  14.704 +      Key _key;
  14.705 +      IterableIntMap& _map;
  14.706 +    };
  14.707 +
  14.708 +    /// The const reference type.
  14.709 +    typedef const Value& ConstReference;
  14.710 +
  14.711 +    /// \brief Gives back the maximal value plus one.
  14.712 +    ///
  14.713 +    /// Gives back the maximal value plus one.
  14.714 +    int size() const {
  14.715 +      return _first.size();
  14.716 +    }
  14.717 +
  14.718 +    /// \brief Set operation of the map.
  14.719 +    ///
  14.720 +    /// Set operation of the map.
  14.721 +    void set(const Key& key, const Value& value) {
  14.722 +      unlace(key);
  14.723 +      Parent::operator[](key).value = value;
  14.724 +      lace(key);
  14.725 +    }
  14.726 +
  14.727 +    /// \brief Const subscript operator of the map.
  14.728 +    ///
  14.729 +    /// Const subscript operator of the map.
  14.730 +    const Value& operator[](const Key& key) const {
  14.731 +      return Parent::operator[](key).value;
  14.732 +    }
  14.733 +
  14.734 +    /// \brief Subscript operator of the map.
  14.735 +    ///
  14.736 +    /// Subscript operator of the map.
  14.737 +    Reference operator[](const Key& key) {
  14.738 +      return Reference(*this, key);
  14.739 +    }
  14.740 +
  14.741 +    /// \brief Iterator for the keys with the same value.
  14.742 +    ///
  14.743 +    /// Iterator for the keys with the same value. It works
  14.744 +    /// like a graph item iterator, it can be converted to
  14.745 +    /// the item type of the map, incremented with \c ++ operator, and
  14.746 +    /// if the iterator leaves the last valid item, it will be equal to
  14.747 +    /// \c INVALID.
  14.748 +    class ItemIt : public Key {
  14.749 +    public:
  14.750 +      typedef Key Parent;
  14.751 +
  14.752 +      /// \brief Invalid constructor \& conversion.
  14.753 +      ///
  14.754 +      /// This constructor initializes the iterator to be invalid.
  14.755 +      /// \sa Invalid for more details.
  14.756 +      ItemIt(Invalid) : Parent(INVALID), _map(0) {}
  14.757 +
  14.758 +      /// \brief Creates an iterator with a value.
  14.759 +      ///
  14.760 +      /// Creates an iterator with a value. It iterates on the
  14.761 +      /// keys mapped to the given value.
  14.762 +      /// \param map The IterableIntMap.
  14.763 +      /// \param value The value.
  14.764 +      ItemIt(const IterableIntMap& map, int value) : _map(&map) {
  14.765 +        if (value < 0 || value >= int(_map->_first.size())) {
  14.766 +          Parent::operator=(INVALID);
  14.767 +        } else {
  14.768 +          Parent::operator=(_map->_first[value]);
  14.769 +        }
  14.770 +      }
  14.771 +
  14.772 +      /// \brief Increment operator.
  14.773 +      ///
  14.774 +      /// Increment operator.
  14.775 +      ItemIt& operator++() {
  14.776 +        Parent::operator=(_map->IterableIntMap::Parent::
  14.777 +                          operator[](static_cast<Parent&>(*this)).next);
  14.778 +        return *this;
  14.779 +      }
  14.780 +
  14.781 +    private:
  14.782 +      const IterableIntMap* _map;
  14.783 +    };
  14.784 +
  14.785 +  protected:
  14.786 +
  14.787 +    virtual void erase(const Key& key) {
  14.788 +      unlace(key);
  14.789 +      Parent::erase(key);
  14.790 +    }
  14.791 +
  14.792 +    virtual void erase(const std::vector<Key>& keys) {
  14.793 +      for (int i = 0; i < int(keys.size()); ++i) {
  14.794 +        unlace(keys[i]);
  14.795 +      }
  14.796 +      Parent::erase(keys);
  14.797 +    }
  14.798 +
  14.799 +    virtual void clear() {
  14.800 +      _first.clear();
  14.801 +      Parent::clear();
  14.802 +    }
  14.803 +
  14.804 +  private:
  14.805 +    std::vector<Key> _first;
  14.806 +  };
  14.807 +
  14.808 +  namespace _maps_bits {
  14.809 +    template <typename Item, typename Value>
  14.810 +    struct IterableValueMapNode {
  14.811 +      IterableValueMapNode(Value _value = Value()) : value(_value) {}
  14.812 +      Item prev, next;
  14.813 +      Value value;
  14.814 +    };
  14.815 +  }
  14.816 +
  14.817 +  /// \brief Dynamic iterable map for comparable values.
  14.818 +  ///
  14.819 +  /// This class provides a special graph map type which can store an
  14.820 +  /// comparable value for graph items (\c Node, \c Arc or \c Edge).
  14.821 +  /// For each value it is possible to iterate on the keys mapped to
  14.822 +  /// the value.
  14.823 +  ///
  14.824 +  /// The map stores for each value a linked list with
  14.825 +  /// the items which mapped to the value, and the values are stored
  14.826 +  /// in balanced binary tree. The values of the map can be accessed
  14.827 +  /// with stl compatible forward iterator.
  14.828 +  ///
  14.829 +  /// This type is not reference map, so it cannot be modified with
  14.830 +  /// the subscript operator.
  14.831 +  ///
  14.832 +  /// \tparam GR The graph type.
  14.833 +  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
  14.834 +  /// \c GR::Edge).
  14.835 +  /// \tparam V The value type of the map. It can be any comparable
  14.836 +  /// value type.
  14.837 +  ///
  14.838 +  /// \see IterableBoolMap, IterableIntMap
  14.839 +  /// \see CrossRefMap
  14.840 +  template <typename GR, typename K, typename V>
  14.841 +  class IterableValueMap
  14.842 +    : protected ItemSetTraits<GR, K>::
  14.843 +        template Map<_maps_bits::IterableValueMapNode<K, V> >::Type {
  14.844 +  public:
  14.845 +    typedef typename ItemSetTraits<GR, K>::
  14.846 +      template Map<_maps_bits::IterableValueMapNode<K, V> >::Type Parent;
  14.847 +
  14.848 +    /// The key type
  14.849 +    typedef K Key;
  14.850 +    /// The value type
  14.851 +    typedef V Value;
  14.852 +    /// The graph type
  14.853 +    typedef GR Graph;
  14.854 +
  14.855 +  public:
  14.856 +
  14.857 +    /// \brief Constructor of the map with a given value.
  14.858 +    ///
  14.859 +    /// Constructor of the map with a given value.
  14.860 +    explicit IterableValueMap(const Graph& graph,
  14.861 +                              const Value& value = Value())
  14.862 +      : Parent(graph, _maps_bits::IterableValueMapNode<K, V>(value)) {
  14.863 +      for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
  14.864 +        lace(it);
  14.865 +      }
  14.866 +    }
  14.867 +
  14.868 +  protected:
  14.869 +
  14.870 +    void unlace(const Key& key) {
  14.871 +      typename Parent::Value& node = Parent::operator[](key);
  14.872 +      if (node.prev != INVALID) {
  14.873 +        Parent::operator[](node.prev).next = node.next;
  14.874 +      } else {
  14.875 +        if (node.next != INVALID) {
  14.876 +          _first[node.value] = node.next;
  14.877 +        } else {
  14.878 +          _first.erase(node.value);
  14.879 +        }
  14.880 +      }
  14.881 +      if (node.next != INVALID) {
  14.882 +        Parent::operator[](node.next).prev = node.prev;
  14.883 +      }
  14.884 +    }
  14.885 +
  14.886 +    void lace(const Key& key) {
  14.887 +      typename Parent::Value& node = Parent::operator[](key);
  14.888 +      typename std::map<Value, Key>::iterator it = _first.find(node.value);
  14.889 +      if (it == _first.end()) {
  14.890 +        node.prev = node.next = INVALID;
  14.891 +        _first.insert(std::make_pair(node.value, key));
  14.892 +      } else {
  14.893 +        node.prev = INVALID;
  14.894 +        node.next = it->second;
  14.895 +        if (node.next != INVALID) {
  14.896 +          Parent::operator[](node.next).prev = key;
  14.897 +        }
  14.898 +        it->second = key;
  14.899 +      }
  14.900 +    }
  14.901 +
  14.902 +  public:
  14.903 +
  14.904 +    /// \brief Forward iterator for values.
  14.905 +    ///
  14.906 +    /// This iterator is an stl compatible forward
  14.907 +    /// iterator on the values of the map. The values can
  14.908 +    /// be accessed in the <tt>[beginValue, endValue)</tt> range.
  14.909 +    class ValueIterator
  14.910 +      : public std::iterator<std::forward_iterator_tag, Value> {
  14.911 +      friend class IterableValueMap;
  14.912 +    private:
  14.913 +      ValueIterator(typename std::map<Value, Key>::const_iterator _it)
  14.914 +        : it(_it) {}
  14.915 +    public:
  14.916 +
  14.917 +      ValueIterator() {}
  14.918 +
  14.919 +      ValueIterator& operator++() { ++it; return *this; }
  14.920 +      ValueIterator operator++(int) {
  14.921 +        ValueIterator tmp(*this);
  14.922 +        operator++();
  14.923 +        return tmp;
  14.924 +      }
  14.925 +
  14.926 +      const Value& operator*() const { return it->first; }
  14.927 +      const Value* operator->() const { return &(it->first); }
  14.928 +
  14.929 +      bool operator==(ValueIterator jt) const { return it == jt.it; }
  14.930 +      bool operator!=(ValueIterator jt) const { return it != jt.it; }
  14.931 +
  14.932 +    private:
  14.933 +      typename std::map<Value, Key>::const_iterator it;
  14.934 +    };
  14.935 +
  14.936 +    /// \brief Returns an iterator to the first value.
  14.937 +    ///
  14.938 +    /// Returns an stl compatible iterator to the
  14.939 +    /// first value of the map. The values of the
  14.940 +    /// map can be accessed in the <tt>[beginValue, endValue)</tt>
  14.941 +    /// range.
  14.942 +    ValueIterator beginValue() const {
  14.943 +      return ValueIterator(_first.begin());
  14.944 +    }
  14.945 +
  14.946 +    /// \brief Returns an iterator after the last value.
  14.947 +    ///
  14.948 +    /// Returns an stl compatible iterator after the
  14.949 +    /// last value of the map. The values of the
  14.950 +    /// map can be accessed in the <tt>[beginValue, endValue)</tt>
  14.951 +    /// range.
  14.952 +    ValueIterator endValue() const {
  14.953 +      return ValueIterator(_first.end());
  14.954 +    }
  14.955 +
  14.956 +    /// \brief Set operation of the map.
  14.957 +    ///
  14.958 +    /// Set operation of the map.
  14.959 +    void set(const Key& key, const Value& value) {
  14.960 +      unlace(key);
  14.961 +      Parent::operator[](key).value = value;
  14.962 +      lace(key);
  14.963 +    }
  14.964 +
  14.965 +    /// \brief Const subscript operator of the map.
  14.966 +    ///
  14.967 +    /// Const subscript operator of the map.
  14.968 +    const Value& operator[](const Key& key) const {
  14.969 +      return Parent::operator[](key).value;
  14.970 +    }
  14.971 +
  14.972 +    /// \brief Iterator for the keys with the same value.
  14.973 +    ///
  14.974 +    /// Iterator for the keys with the same value. It works
  14.975 +    /// like a graph item iterator, it can be converted to
  14.976 +    /// the item type of the map, incremented with \c ++ operator, and
  14.977 +    /// if the iterator leaves the last valid item, it will be equal to
  14.978 +    /// \c INVALID.
  14.979 +    class ItemIt : public Key {
  14.980 +    public:
  14.981 +      typedef Key Parent;
  14.982 +
  14.983 +      /// \brief Invalid constructor \& conversion.
  14.984 +      ///
  14.985 +      /// This constructor initializes the iterator to be invalid.
  14.986 +      /// \sa Invalid for more details.
  14.987 +      ItemIt(Invalid) : Parent(INVALID), _map(0) {}
  14.988 +
  14.989 +      /// \brief Creates an iterator with a value.
  14.990 +      ///
  14.991 +      /// Creates an iterator with a value. It iterates on the
  14.992 +      /// keys which have the given value.
  14.993 +      /// \param map The IterableValueMap
  14.994 +      /// \param value The value
  14.995 +      ItemIt(const IterableValueMap& map, const Value& value) : _map(&map) {
  14.996 +        typename std::map<Value, Key>::const_iterator it =
  14.997 +          map._first.find(value);
  14.998 +        if (it == map._first.end()) {
  14.999 +          Parent::operator=(INVALID);
 14.1000 +        } else {
 14.1001 +          Parent::operator=(it->second);
 14.1002 +        }
 14.1003 +      }
 14.1004 +
 14.1005 +      /// \brief Increment operator.
 14.1006 +      ///
 14.1007 +      /// Increment Operator.
 14.1008 +      ItemIt& operator++() {
 14.1009 +        Parent::operator=(_map->IterableValueMap::Parent::
 14.1010 +                          operator[](static_cast<Parent&>(*this)).next);
 14.1011 +        return *this;
 14.1012 +      }
 14.1013 +
 14.1014 +
 14.1015 +    private:
 14.1016 +      const IterableValueMap* _map;
 14.1017 +    };
 14.1018 +
 14.1019 +  protected:
 14.1020 +
 14.1021 +    virtual void add(const Key& key) {
 14.1022 +      Parent::add(key);
 14.1023 +      unlace(key);
 14.1024 +    }
 14.1025 +
 14.1026 +    virtual void add(const std::vector<Key>& keys) {
 14.1027 +      Parent::add(keys);
 14.1028 +      for (int i = 0; i < int(keys.size()); ++i) {
 14.1029 +        lace(keys[i]);
 14.1030 +      }
 14.1031 +    }
 14.1032 +
 14.1033 +    virtual void erase(const Key& key) {
 14.1034 +      unlace(key);
 14.1035 +      Parent::erase(key);
 14.1036 +    }
 14.1037 +
 14.1038 +    virtual void erase(const std::vector<Key>& keys) {
 14.1039 +      for (int i = 0; i < int(keys.size()); ++i) {
 14.1040 +        unlace(keys[i]);
 14.1041 +      }
 14.1042 +      Parent::erase(keys);
 14.1043 +    }
 14.1044 +
 14.1045 +    virtual void build() {
 14.1046 +      Parent::build();
 14.1047 +      for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
 14.1048 +        lace(it);
 14.1049 +      }
 14.1050 +    }
 14.1051 +
 14.1052 +    virtual void clear() {
 14.1053 +      _first.clear();
 14.1054 +      Parent::clear();
 14.1055 +    }
 14.1056 +
 14.1057 +  private:
 14.1058 +    std::map<Value, Key> _first;
 14.1059 +  };
 14.1060 +
 14.1061    /// \brief Map of the source nodes of arcs in a digraph.
 14.1062    ///
 14.1063    /// SourceMap provides access for the source node of each arc in a digraph,
 14.1064 @@ -2480,7 +3395,7 @@
 14.1065    /// in constant time. On the other hand, the values are updated automatically
 14.1066    /// whenever the digraph changes.
 14.1067    ///
 14.1068 -  /// \warning Besides \c addNode() and \c addArc(), a digraph structure 
 14.1069 +  /// \warning Besides \c addNode() and \c addArc(), a digraph structure
 14.1070    /// may provide alternative ways to modify the digraph.
 14.1071    /// The correct behavior of InDegMap is not guarantied if these additional
 14.1072    /// features are used. For example the functions
 14.1073 @@ -2496,7 +3411,7 @@
 14.1074        ::ItemNotifier::ObserverBase {
 14.1075  
 14.1076    public:
 14.1077 -    
 14.1078 +
 14.1079      /// The graph type of InDegMap
 14.1080      typedef GR Graph;
 14.1081      typedef GR Digraph;
 14.1082 @@ -2610,7 +3525,7 @@
 14.1083    /// in constant time. On the other hand, the values are updated automatically
 14.1084    /// whenever the digraph changes.
 14.1085    ///
 14.1086 -  /// \warning Besides \c addNode() and \c addArc(), a digraph structure 
 14.1087 +  /// \warning Besides \c addNode() and \c addArc(), a digraph structure
 14.1088    /// may provide alternative ways to modify the digraph.
 14.1089    /// The correct behavior of OutDegMap is not guarantied if these additional
 14.1090    /// features are used. For example the functions
    15.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
    15.2 +++ b/lemon/pairing_heap.h	Fri Sep 25 09:06:32 2009 +0200
    15.3 @@ -0,0 +1,474 @@
    15.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
    15.5 + *
    15.6 + * This file is a part of LEMON, a generic C++ optimization library.
    15.7 + *
    15.8 + * Copyright (C) 2003-2009
    15.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
   15.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
   15.11 + *
   15.12 + * Permission to use, modify and distribute this software is granted
   15.13 + * provided that this copyright notice appears in all copies. For
   15.14 + * precise terms see the accompanying LICENSE file.
   15.15 + *
   15.16 + * This software is provided "AS IS" with no warranty of any kind,
   15.17 + * express or implied, and with no claim as to its suitability for any
   15.18 + * purpose.
   15.19 + *
   15.20 + */
   15.21 +
   15.22 +#ifndef LEMON_PAIRING_HEAP_H
   15.23 +#define LEMON_PAIRING_HEAP_H
   15.24 +
   15.25 +///\file
   15.26 +///\ingroup heaps
   15.27 +///\brief Pairing heap implementation.
   15.28 +
   15.29 +#include <vector>
   15.30 +#include <utility>
   15.31 +#include <functional>
   15.32 +#include <lemon/math.h>
   15.33 +
   15.34 +namespace lemon {
   15.35 +
   15.36 +  /// \ingroup heaps
   15.37 +  ///
   15.38 +  ///\brief Pairing Heap.
   15.39 +  ///
   15.40 +  /// This class implements the \e pairing \e heap data structure.
   15.41 +  /// It fully conforms to the \ref concepts::Heap "heap concept".
   15.42 +  ///
   15.43 +  /// The methods \ref increase() and \ref erase() are not efficient
   15.44 +  /// in a pairing heap. In case of many calls of these operations,
   15.45 +  /// it is better to use other heap structure, e.g. \ref BinHeap
   15.46 +  /// "binary heap".
   15.47 +  ///
   15.48 +  /// \tparam PR Type of the priorities of the items.
   15.49 +  /// \tparam IM A read-writable item map with \c int values, used
   15.50 +  /// internally to handle the cross references.
   15.51 +  /// \tparam CMP A functor class for comparing the priorities.
   15.52 +  /// The default is \c std::less<PR>.
   15.53 +#ifdef DOXYGEN
   15.54 +  template <typename PR, typename IM, typename CMP>
   15.55 +#else
   15.56 +  template <typename PR, typename IM, typename CMP = std::less<PR> >
   15.57 +#endif
   15.58 +  class PairingHeap {
   15.59 +  public:
   15.60 +    /// Type of the item-int map.
   15.61 +    typedef IM ItemIntMap;
   15.62 +    /// Type of the priorities.
   15.63 +    typedef PR Prio;
   15.64 +    /// Type of the items stored in the heap.
   15.65 +    typedef typename ItemIntMap::Key Item;
   15.66 +    /// Functor type for comparing the priorities.
   15.67 +    typedef CMP Compare;
   15.68 +
   15.69 +    /// \brief Type to represent the states of the items.
   15.70 +    ///
   15.71 +    /// Each item has a state associated to it. It can be "in heap",
   15.72 +    /// "pre-heap" or "post-heap". The latter two are indifferent from the
   15.73 +    /// heap's point of view, but may be useful to the user.
   15.74 +    ///
   15.75 +    /// The item-int map must be initialized in such way that it assigns
   15.76 +    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
   15.77 +    enum State {
   15.78 +      IN_HEAP = 0,    ///< = 0.
   15.79 +      PRE_HEAP = -1,  ///< = -1.
   15.80 +      POST_HEAP = -2  ///< = -2.
   15.81 +    };
   15.82 +
   15.83 +  private:
   15.84 +    class store;
   15.85 +
   15.86 +    std::vector<store> _data;
   15.87 +    int _min;
   15.88 +    ItemIntMap &_iim;
   15.89 +    Compare _comp;
   15.90 +    int _num_items;
   15.91 +
   15.92 +  public:
   15.93 +    /// \brief Constructor.
   15.94 +    ///
   15.95 +    /// Constructor.
   15.96 +    /// \param map A map that assigns \c int values to the items.
   15.97 +    /// It is used internally to handle the cross references.
   15.98 +    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
   15.99 +    explicit PairingHeap(ItemIntMap &map)
  15.100 +      : _min(0), _iim(map), _num_items(0) {}
  15.101 +
  15.102 +    /// \brief Constructor.
  15.103 +    ///
  15.104 +    /// Constructor.
  15.105 +    /// \param map A map that assigns \c int values to the items.
  15.106 +    /// It is used internally to handle the cross references.
  15.107 +    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
  15.108 +    /// \param comp The function object used for comparing the priorities.
  15.109 +    PairingHeap(ItemIntMap &map, const Compare &comp)
  15.110 +      : _min(0), _iim(map), _comp(comp), _num_items(0) {}
  15.111 +
  15.112 +    /// \brief The number of items stored in the heap.
  15.113 +    ///
  15.114 +    /// This function returns the number of items stored in the heap.
  15.115 +    int size() const { return _num_items; }
  15.116 +
  15.117 +    /// \brief Check if the heap is empty.
  15.118 +    ///
  15.119 +    /// This function returns \c true if the heap is empty.
  15.120 +    bool empty() const { return _num_items==0; }
  15.121 +
  15.122 +    /// \brief Make the heap empty.
  15.123 +    ///
  15.124 +    /// This functon makes the heap empty.
  15.125 +    /// It does not change the cross reference map. If you want to reuse
  15.126 +    /// a heap that is not surely empty, you should first clear it and
  15.127 +    /// then you should set the cross reference map to \c PRE_HEAP
  15.128 +    /// for each item.
  15.129 +    void clear() {
  15.130 +      _data.clear();
  15.131 +      _min = 0;
  15.132 +      _num_items = 0;
  15.133 +    }
  15.134 +
  15.135 +    /// \brief Set the priority of an item or insert it, if it is
  15.136 +    /// not stored in the heap.
  15.137 +    ///
  15.138 +    /// This method sets the priority of the given item if it is
  15.139 +    /// already stored in the heap. Otherwise it inserts the given
  15.140 +    /// item into the heap with the given priority.
  15.141 +    /// \param item The item.
  15.142 +    /// \param value The priority.
  15.143 +    void set (const Item& item, const Prio& value) {
  15.144 +      int i=_iim[item];
  15.145 +      if ( i>=0 && _data[i].in ) {
  15.146 +        if ( _comp(value, _data[i].prio) ) decrease(item, value);
  15.147 +        if ( _comp(_data[i].prio, value) ) increase(item, value);
  15.148 +      } else push(item, value);
  15.149 +    }
  15.150 +
  15.151 +    /// \brief Insert an item into the heap with the given priority.
  15.152 +    ///
  15.153 +    /// This function inserts the given item into the heap with the
  15.154 +    /// given priority.
  15.155 +    /// \param item The item to insert.
  15.156 +    /// \param value The priority of the item.
  15.157 +    /// \pre \e item must not be stored in the heap.
  15.158 +    void push (const Item& item, const Prio& value) {
  15.159 +      int i=_iim[item];
  15.160 +      if( i<0 ) {
  15.161 +        int s=_data.size();
  15.162 +        _iim.set(item, s);
  15.163 +        store st;
  15.164 +        st.name=item;
  15.165 +        _data.push_back(st);
  15.166 +        i=s;
  15.167 +      } else {
  15.168 +        _data[i].parent=_data[i].child=-1;
  15.169 +        _data[i].left_child=false;
  15.170 +        _data[i].degree=0;
  15.171 +        _data[i].in=true;
  15.172 +      }
  15.173 +
  15.174 +      _data[i].prio=value;
  15.175 +
  15.176 +      if ( _num_items!=0 ) {
  15.177 +        if ( _comp( value, _data[_min].prio) ) {
  15.178 +          fuse(i,_min);
  15.179 +          _min=i;
  15.180 +        }
  15.181 +        else fuse(_min,i);
  15.182 +      }
  15.183 +      else _min=i;
  15.184 +
  15.185 +      ++_num_items;
  15.186 +    }
  15.187 +
  15.188 +    /// \brief Return the item having minimum priority.
  15.189 +    ///
  15.190 +    /// This function returns the item having minimum priority.
  15.191 +    /// \pre The heap must be non-empty.
  15.192 +    Item top() const { return _data[_min].name; }
  15.193 +
  15.194 +    /// \brief The minimum priority.
  15.195 +    ///
  15.196 +    /// This function returns the minimum priority.
  15.197 +    /// \pre The heap must be non-empty.
  15.198 +    const Prio& prio() const { return _data[_min].prio; }
  15.199 +
  15.200 +    /// \brief The priority of the given item.
  15.201 +    ///
  15.202 +    /// This function returns the priority of the given item.
  15.203 +    /// \param item The item.
  15.204 +    /// \pre \e item must be in the heap.
  15.205 +    const Prio& operator[](const Item& item) const {
  15.206 +      return _data[_iim[item]].prio;
  15.207 +    }
  15.208 +
  15.209 +    /// \brief Remove the item having minimum priority.
  15.210 +    ///
  15.211 +    /// This function removes the item having minimum priority.
  15.212 +    /// \pre The heap must be non-empty.
  15.213 +    void pop() {
  15.214 +      std::vector<int> trees;
  15.215 +      int i=0, child_right = 0;
  15.216 +      _data[_min].in=false;
  15.217 +
  15.218 +      if( -1!=_data[_min].child ) {
  15.219 +        i=_data[_min].child;
  15.220 +        trees.push_back(i);
  15.221 +        _data[i].parent = -1;
  15.222 +        _data[_min].child = -1;
  15.223 +
  15.224 +        int ch=-1;
  15.225 +        while( _data[i].child!=-1 ) {
  15.226 +          ch=_data[i].child;
  15.227 +          if( _data[ch].left_child && i==_data[ch].parent ) {
  15.228 +            break;
  15.229 +          } else {
  15.230 +            if( _data[ch].left_child ) {
  15.231 +              child_right=_data[ch].parent;
  15.232 +              _data[ch].parent = i;
  15.233 +              --_data[i].degree;
  15.234 +            }
  15.235 +            else {
  15.236 +              child_right=ch;
  15.237 +              _data[i].child=-1;
  15.238 +              _data[i].degree=0;
  15.239 +            }
  15.240 +            _data[child_right].parent = -1;
  15.241 +            trees.push_back(child_right);
  15.242 +            i = child_right;
  15.243 +          }
  15.244 +        }
  15.245 +
  15.246 +        int num_child = trees.size();
  15.247 +        int other;
  15.248 +        for( i=0; i<num_child-1; i+=2 ) {
  15.249 +          if ( !_comp(_data[trees[i]].prio, _data[trees[i+1]].prio) ) {
  15.250 +            other=trees[i];
  15.251 +            trees[i]=trees[i+1];
  15.252 +            trees[i+1]=other;
  15.253 +          }
  15.254 +          fuse( trees[i], trees[i+1] );
  15.255 +        }
  15.256 +
  15.257 +        i = (0==(num_child % 2)) ? num_child-2 : num_child-1;
  15.258 +        while(i>=2) {
  15.259 +          if ( _comp(_data[trees[i]].prio, _data[trees[i-2]].prio) ) {
  15.260 +            other=trees[i];
  15.261 +            trees[i]=trees[i-2];
  15.262 +            trees[i-2]=other;
  15.263 +          }
  15.264 +          fuse( trees[i-2], trees[i] );
  15.265 +          i-=2;
  15.266 +        }
  15.267 +        _min = trees[0];
  15.268 +      }
  15.269 +      else {
  15.270 +        _min = _data[_min].child;
  15.271 +      }
  15.272 +
  15.273 +      if (_min >= 0) _data[_min].left_child = false;
  15.274 +      --_num_items;
  15.275 +    }
  15.276 +
  15.277 +    /// \brief Remove the given item from the heap.
  15.278 +    ///
  15.279 +    /// This function removes the given item from the heap if it is
  15.280 +    /// already stored.
  15.281 +    /// \param item The item to delete.
  15.282 +    /// \pre \e item must be in the heap.
  15.283 +    void erase (const Item& item) {
  15.284 +      int i=_iim[item];
  15.285 +      if ( i>=0 && _data[i].in ) {
  15.286 +        decrease( item, _data[_min].prio-1 );
  15.287 +        pop();
  15.288 +      }
  15.289 +    }
  15.290 +
  15.291 +    /// \brief Decrease the priority of an item to the given value.
  15.292 +    ///
  15.293 +    /// This function decreases the priority of an item to the given value.
  15.294 +    /// \param item The item.
  15.295 +    /// \param value The priority.
  15.296 +    /// \pre \e item must be stored in the heap with priority at least \e value.
  15.297 +    void decrease (Item item, const Prio& value) {
  15.298 +      int i=_iim[item];
  15.299 +      _data[i].prio=value;
  15.300 +      int p=_data[i].parent;
  15.301 +
  15.302 +      if( _data[i].left_child && i!=_data[p].child ) {
  15.303 +        p=_data[p].parent;
  15.304 +      }
  15.305 +
  15.306 +      if ( p!=-1 && _comp(value,_data[p].prio) ) {
  15.307 +        cut(i,p);
  15.308 +        if ( _comp(_data[_min].prio,value) ) {
  15.309 +          fuse(_min,i);
  15.310 +        } else {
  15.311 +          fuse(i,_min);
  15.312 +          _min=i;
  15.313 +        }
  15.314 +      }
  15.315 +    }
  15.316 +
  15.317 +    /// \brief Increase the priority of an item to the given value.
  15.318 +    ///
  15.319 +    /// This function increases the priority of an item to the given value.
  15.320 +    /// \param item The item.
  15.321 +    /// \param value The priority.
  15.322 +    /// \pre \e item must be stored in the heap with priority at most \e value.
  15.323 +    void increase (Item item, const Prio& value) {
  15.324 +      erase(item);
  15.325 +      push(item,value);
  15.326 +    }
  15.327 +
  15.328 +    /// \brief Return the state of an item.
  15.329 +    ///
  15.330 +    /// This method returns \c PRE_HEAP if the given item has never
  15.331 +    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
  15.332 +    /// and \c POST_HEAP otherwise.
  15.333 +    /// In the latter case it is possible that the item will get back
  15.334 +    /// to the heap again.
  15.335 +    /// \param item The item.
  15.336 +    State state(const Item &item) const {
  15.337 +      int i=_iim[item];
  15.338 +      if( i>=0 ) {
  15.339 +        if( _data[i].in ) i=0;
  15.340 +        else i=-2;
  15.341 +      }
  15.342 +      return State(i);
  15.343 +    }
  15.344 +
  15.345 +    /// \brief Set the state of an item in the heap.
  15.346 +    ///
  15.347 +    /// This function sets the state of the given item in the heap.
  15.348 +    /// It can be used to manually clear the heap when it is important
  15.349 +    /// to achive better time complexity.
  15.350 +    /// \param i The item.
  15.351 +    /// \param st The state. It should not be \c IN_HEAP.
  15.352 +    void state(const Item& i, State st) {
  15.353 +      switch (st) {
  15.354 +      case POST_HEAP:
  15.355 +      case PRE_HEAP:
  15.356 +        if (state(i) == IN_HEAP) erase(i);
  15.357 +        _iim[i]=st;
  15.358 +        break;
  15.359 +      case IN_HEAP:
  15.360 +        break;
  15.361 +      }
  15.362 +    }
  15.363 +
  15.364 +  private:
  15.365 +
  15.366 +    void cut(int a, int b) {
  15.367 +      int child_a;
  15.368 +      switch (_data[a].degree) {
  15.369 +        case 2:
  15.370 +          child_a = _data[_data[a].child].parent;
  15.371 +          if( _data[a].left_child ) {
  15.372 +            _data[child_a].left_child=true;
  15.373 +            _data[b].child=child_a;
  15.374 +            _data[child_a].parent=_data[a].parent;
  15.375 +          }
  15.376 +          else {
  15.377 +            _data[child_a].left_child=false;
  15.378 +            _data[child_a].parent=b;
  15.379 +            if( a!=_data[b].child )
  15.380 +              _data[_data[b].child].parent=child_a;
  15.381 +            else
  15.382 +              _data[b].child=child_a;
  15.383 +          }
  15.384 +          --_data[a].degree;
  15.385 +          _data[_data[a].child].parent=a;
  15.386 +          break;
  15.387 +
  15.388 +        case 1:
  15.389 +          child_a = _data[a].child;
  15.390 +          if( !_data[child_a].left_child ) {
  15.391 +            --_data[a].degree;
  15.392 +            if( _data[a].left_child ) {
  15.393 +              _data[child_a].left_child=true;
  15.394 +              _data[child_a].parent=_data[a].parent;
  15.395 +              _data[b].child=child_a;
  15.396 +            }
  15.397 +            else {
  15.398 +              _data[child_a].left_child=false;
  15.399 +              _data[child_a].parent=b;
  15.400 +              if( a!=_data[b].child )
  15.401 +                _data[_data[b].child].parent=child_a;
  15.402 +              else
  15.403 +                _data[b].child=child_a;
  15.404 +            }
  15.405 +            _data[a].child=-1;
  15.406 +          }
  15.407 +          else {
  15.408 +            --_data[b].degree;
  15.409 +            if( _data[a].left_child ) {
  15.410 +              _data[b].child =
  15.411 +                (1==_data[b].degree) ? _data[a].parent : -1;
  15.412 +            } else {
  15.413 +              if (1==_data[b].degree)
  15.414 +                _data[_data[b].child].parent=b;
  15.415 +              else
  15.416 +                _data[b].child=-1;
  15.417 +            }
  15.418 +          }
  15.419 +          break;
  15.420 +
  15.421 +        case 0:
  15.422 +          --_data[b].degree;
  15.423 +          if( _data[a].left_child ) {
  15.424 +            _data[b].child =
  15.425 +              (0!=_data[b].degree) ? _data[a].parent : -1;
  15.426 +          } else {
  15.427 +            if( 0!=_data[b].degree )
  15.428 +              _data[_data[b].child].parent=b;
  15.429 +            else
  15.430 +              _data[b].child=-1;
  15.431 +          }
  15.432 +          break;
  15.433 +      }
  15.434 +      _data[a].parent=-1;
  15.435 +      _data[a].left_child=false;
  15.436 +    }
  15.437 +
  15.438 +    void fuse(int a, int b) {
  15.439 +      int child_a = _data[a].child;
  15.440 +      int child_b = _data[b].child;
  15.441 +      _data[a].child=b;
  15.442 +      _data[b].parent=a;
  15.443 +      _data[b].left_child=true;
  15.444 +
  15.445 +      if( -1!=child_a ) {
  15.446 +        _data[b].child=child_a;
  15.447 +        _data[child_a].parent=b;
  15.448 +        _data[child_a].left_child=false;
  15.449 +        ++_data[b].degree;
  15.450 +
  15.451 +        if( -1!=child_b ) {
  15.452 +           _data[b].child=child_b;
  15.453 +           _data[child_b].parent=child_a;
  15.454 +        }
  15.455 +      }
  15.456 +      else { ++_data[a].degree; }
  15.457 +    }
  15.458 +
  15.459 +    class store {
  15.460 +      friend class PairingHeap;
  15.461 +
  15.462 +      Item name;
  15.463 +      int parent;
  15.464 +      int child;
  15.465 +      bool left_child;
  15.466 +      int degree;
  15.467 +      bool in;
  15.468 +      Prio prio;
  15.469 +
  15.470 +      store() : parent(-1), child(-1), left_child(false), degree(0), in(true) {}
  15.471 +    };
  15.472 +  };
  15.473 +
  15.474 +} //namespace lemon
  15.475 +
  15.476 +#endif //LEMON_PAIRING_HEAP_H
  15.477 +
    16.1 --- a/lemon/preflow.h	Fri Jul 24 11:07:52 2009 +0200
    16.2 +++ b/lemon/preflow.h	Fri Sep 25 09:06:32 2009 +0200
    16.3 @@ -104,7 +104,7 @@
    16.4    /// \e push-relabel algorithm producing a \ref max_flow
    16.5    /// "flow of maximum value" in a digraph.
    16.6    /// The preflow algorithms are the fastest known maximum
    16.7 -  /// flow algorithms. The current implementation use a mixture of the
    16.8 +  /// flow algorithms. The current implementation uses a mixture of the
    16.9    /// \e "highest label" and the \e "bound decrease" heuristics.
   16.10    /// The worst case time complexity of the algorithm is \f$O(n^2\sqrt{e})\f$.
   16.11    ///
   16.12 @@ -378,19 +378,21 @@
   16.13        return *_level;
   16.14      }
   16.15  
   16.16 -    /// \brief Sets the tolerance used by algorithm.
   16.17 +    /// \brief Sets the tolerance used by the algorithm.
   16.18      ///
   16.19 -    /// Sets the tolerance used by algorithm.
   16.20 -    Preflow& tolerance(const Tolerance& tolerance) const {
   16.21 +    /// Sets the tolerance object used by the algorithm.
   16.22 +    /// \return <tt>(*this)</tt>
   16.23 +    Preflow& tolerance(const Tolerance& tolerance) {
   16.24        _tolerance = tolerance;
   16.25        return *this;
   16.26      }
   16.27  
   16.28      /// \brief Returns a const reference to the tolerance.
   16.29      ///
   16.30 -    /// Returns a const reference to the tolerance.
   16.31 +    /// Returns a const reference to the tolerance object used by
   16.32 +    /// the algorithm.
   16.33      const Tolerance& tolerance() const {
   16.34 -      return tolerance;
   16.35 +      return _tolerance;
   16.36      }
   16.37  
   16.38      /// \name Execution Control
    17.1 --- a/lemon/radix_heap.h	Fri Jul 24 11:07:52 2009 +0200
    17.2 +++ b/lemon/radix_heap.h	Fri Sep 25 09:06:32 2009 +0200
    17.3 @@ -19,9 +19,9 @@
    17.4  #ifndef LEMON_RADIX_HEAP_H
    17.5  #define LEMON_RADIX_HEAP_H
    17.6  
    17.7 -///\ingroup auxdat
    17.8 +///\ingroup heaps
    17.9  ///\file
   17.10 -///\brief Radix Heap implementation.
   17.11 +///\brief Radix heap implementation.
   17.12  
   17.13  #include <vector>
   17.14  #include <lemon/error.h>
   17.15 @@ -29,56 +29,54 @@
   17.16  namespace lemon {
   17.17  
   17.18  
   17.19 -  /// \ingroup auxdata
   17.20 +  /// \ingroup heaps
   17.21    ///
   17.22 -  /// \brief A Radix Heap implementation.
   17.23 +  /// \brief Radix heap data structure.
   17.24    ///
   17.25 -  /// This class implements the \e radix \e heap data structure. A \e heap
   17.26 -  /// is a data structure for storing items with specified values called \e
   17.27 -  /// priorities in such a way that finding the item with minimum priority is
   17.28 -  /// efficient. This heap type can store only items with \e int priority.
   17.29 -  /// In a heap one can change the priority of an item, add or erase an
   17.30 -  /// item, but the priority cannot be decreased under the last removed
   17.31 -  /// item's priority.
   17.32 +  /// This class implements the \e radix \e heap data structure.
   17.33 +  /// It practically conforms to the \ref concepts::Heap "heap concept",
   17.34 +  /// but it has some limitations due its special implementation.
   17.35 +  /// The type of the priorities must be \c int and the priority of an
   17.36 +  /// item cannot be decreased under the priority of the last removed item.
   17.37    ///
   17.38 -  /// \param IM A read and writable Item int map, used internally
   17.39 -  /// to handle the cross references.
   17.40 -  ///
   17.41 -  /// \see BinHeap
   17.42 -  /// \see Dijkstra
   17.43 +  /// \tparam IM A read-writable item map with \c int values, used
   17.44 +  /// internally to handle the cross references.
   17.45    template <typename IM>
   17.46    class RadixHeap {
   17.47  
   17.48    public:
   17.49 -    typedef typename IM::Key Item;
   17.50 +
   17.51 +    /// Type of the item-int map.
   17.52 +    typedef IM ItemIntMap;
   17.53 +    /// Type of the priorities.
   17.54      typedef int Prio;
   17.55 -    typedef IM ItemIntMap;
   17.56 +    /// Type of the items stored in the heap.
   17.57 +    typedef typename ItemIntMap::Key Item;
   17.58  
   17.59      /// \brief Exception thrown by RadixHeap.
   17.60      ///
   17.61 -    /// This Exception is thrown when a smaller priority
   17.62 -    /// is inserted into the \e RadixHeap then the last time erased.
   17.63 +    /// This exception is thrown when an item is inserted into a
   17.64 +    /// RadixHeap with a priority smaller than the last erased one.
   17.65      /// \see RadixHeap
   17.66 -
   17.67 -    class UnderFlowPriorityError : public Exception {
   17.68 +    class PriorityUnderflowError : public Exception {
   17.69      public:
   17.70        virtual const char* what() const throw() {
   17.71 -        return "lemon::RadixHeap::UnderFlowPriorityError";
   17.72 +        return "lemon::RadixHeap::PriorityUnderflowError";
   17.73        }
   17.74      };
   17.75  
   17.76 -    /// \brief Type to represent the items states.
   17.77 +    /// \brief Type to represent the states of the items.
   17.78      ///
   17.79 -    /// Each Item element have a state associated to it. It may be "in heap",
   17.80 -    /// "pre heap" or "post heap". The latter two are indifferent from the
   17.81 +    /// Each item has a state associated to it. It can be "in heap",
   17.82 +    /// "pre-heap" or "post-heap". The latter two are indifferent from the
   17.83      /// heap's point of view, but may be useful to the user.
   17.84      ///
   17.85 -    /// The ItemIntMap \e should be initialized in such way that it maps
   17.86 -    /// PRE_HEAP (-1) to any element to be put in the heap...
   17.87 +    /// The item-int map must be initialized in such way that it assigns
   17.88 +    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
   17.89      enum State {
   17.90 -      IN_HEAP = 0,
   17.91 -      PRE_HEAP = -1,
   17.92 -      POST_HEAP = -2
   17.93 +      IN_HEAP = 0,    ///< = 0.
   17.94 +      PRE_HEAP = -1,  ///< = -1.
   17.95 +      POST_HEAP = -2  ///< = -2.
   17.96      };
   17.97  
   17.98    private:
   17.99 @@ -96,52 +94,55 @@
  17.100        RadixBox(int _min, int _size) : first(-1), min(_min), size(_size) {}
  17.101      };
  17.102  
  17.103 -    std::vector<RadixItem> data;
  17.104 -    std::vector<RadixBox> boxes;
  17.105 +    std::vector<RadixItem> _data;
  17.106 +    std::vector<RadixBox> _boxes;
  17.107  
  17.108      ItemIntMap &_iim;
  17.109  
  17.110 +  public:
  17.111  
  17.112 -  public:
  17.113 -    /// \brief The constructor.
  17.114 +    /// \brief Constructor.
  17.115      ///
  17.116 -    /// The constructor.
  17.117 -    ///
  17.118 -    /// \param map It should be given to the constructor, since it is used
  17.119 -    /// internally to handle the cross references. The value of the map
  17.120 -    /// should be PRE_HEAP (-1) for each element.
  17.121 -    ///
  17.122 -    /// \param minimal The initial minimal value of the heap.
  17.123 -    /// \param capacity It determines the initial capacity of the heap.
  17.124 -    RadixHeap(ItemIntMap &map, int minimal = 0, int capacity = 0)
  17.125 -      : _iim(map) {
  17.126 -      boxes.push_back(RadixBox(minimal, 1));
  17.127 -      boxes.push_back(RadixBox(minimal + 1, 1));
  17.128 -      while (lower(boxes.size() - 1, capacity + minimal - 1)) {
  17.129 +    /// Constructor.
  17.130 +    /// \param map A map that assigns \c int values to the items.
  17.131 +    /// It is used internally to handle the cross references.
  17.132 +    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
  17.133 +    /// \param minimum The initial minimum value of the heap.
  17.134 +    /// \param capacity The initial capacity of the heap.
  17.135 +    RadixHeap(ItemIntMap &map, int minimum = 0, int capacity = 0)
  17.136 +      : _iim(map)
  17.137 +    {
  17.138 +      _boxes.push_back(RadixBox(minimum, 1));
  17.139 +      _boxes.push_back(RadixBox(minimum + 1, 1));
  17.140 +      while (lower(_boxes.size() - 1, capacity + minimum - 1)) {
  17.141          extend();
  17.142        }
  17.143      }
  17.144  
  17.145 -    /// The number of items stored in the heap.
  17.146 +    /// \brief The number of items stored in the heap.
  17.147      ///
  17.148 -    /// \brief Returns the number of items stored in the heap.
  17.149 -    int size() const { return data.size(); }
  17.150 -    /// \brief Checks if the heap stores no items.
  17.151 +    /// This function returns the number of items stored in the heap.
  17.152 +    int size() const { return _data.size(); }
  17.153 +
  17.154 +    /// \brief Check if the heap is empty.
  17.155      ///
  17.156 -    /// Returns \c true if and only if the heap stores no items.
  17.157 -    bool empty() const { return data.empty(); }
  17.158 +    /// This function returns \c true if the heap is empty.
  17.159 +    bool empty() const { return _data.empty(); }
  17.160  
  17.161 -    /// \brief Make empty this heap.
  17.162 +    /// \brief Make the heap empty.
  17.163      ///
  17.164 -    /// Make empty this heap. It does not change the cross reference
  17.165 -    /// map.  If you want to reuse a heap what is not surely empty you
  17.166 -    /// should first clear the heap and after that you should set the
  17.167 -    /// cross reference map for each item to \c PRE_HEAP.
  17.168 -    void clear(int minimal = 0, int capacity = 0) {
  17.169 -      data.clear(); boxes.clear();
  17.170 -      boxes.push_back(RadixBox(minimal, 1));
  17.171 -      boxes.push_back(RadixBox(minimal + 1, 1));
  17.172 -      while (lower(boxes.size() - 1, capacity + minimal - 1)) {
  17.173 +    /// This functon makes the heap empty.
  17.174 +    /// It does not change the cross reference map. If you want to reuse
  17.175 +    /// a heap that is not surely empty, you should first clear it and
  17.176 +    /// then you should set the cross reference map to \c PRE_HEAP
  17.177 +    /// for each item.
  17.178 +    /// \param minimum The minimum value of the heap.
  17.179 +    /// \param capacity The capacity of the heap.
  17.180 +    void clear(int minimum = 0, int capacity = 0) {
  17.181 +      _data.clear(); _boxes.clear();
  17.182 +      _boxes.push_back(RadixBox(minimum, 1));
  17.183 +      _boxes.push_back(RadixBox(minimum + 1, 1));
  17.184 +      while (lower(_boxes.size() - 1, capacity + minimum - 1)) {
  17.185          extend();
  17.186        }
  17.187      }
  17.188 @@ -149,255 +150,259 @@
  17.189    private:
  17.190  
  17.191      bool upper(int box, Prio pr) {
  17.192 -      return pr < boxes[box].min;
  17.193 +      return pr < _boxes[box].min;
  17.194      }
  17.195  
  17.196      bool lower(int box, Prio pr) {
  17.197 -      return pr >= boxes[box].min + boxes[box].size;
  17.198 +      return pr >= _boxes[box].min + _boxes[box].size;
  17.199      }
  17.200  
  17.201 -    /// \brief Remove item from the box list.
  17.202 +    // Remove item from the box list
  17.203      void remove(int index) {
  17.204 -      if (data[index].prev >= 0) {
  17.205 -        data[data[index].prev].next = data[index].next;
  17.206 +      if (_data[index].prev >= 0) {
  17.207 +        _data[_data[index].prev].next = _data[index].next;
  17.208        } else {
  17.209 -        boxes[data[index].box].first = data[index].next;
  17.210 +        _boxes[_data[index].box].first = _data[index].next;
  17.211        }
  17.212 -      if (data[index].next >= 0) {
  17.213 -        data[data[index].next].prev = data[index].prev;
  17.214 +      if (_data[index].next >= 0) {
  17.215 +        _data[_data[index].next].prev = _data[index].prev;
  17.216        }
  17.217      }
  17.218  
  17.219 -    /// \brief Insert item into the box list.
  17.220 +    // Insert item into the box list
  17.221      void insert(int box, int index) {
  17.222 -      if (boxes[box].first == -1) {
  17.223 -        boxes[box].first = index;
  17.224 -        data[index].next = data[index].prev = -1;
  17.225 +      if (_boxes[box].first == -1) {
  17.226 +        _boxes[box].first = index;
  17.227 +        _data[index].next = _data[index].prev = -1;
  17.228        } else {
  17.229 -        data[index].next = boxes[box].first;
  17.230 -        data[boxes[box].first].prev = index;
  17.231 -        data[index].prev = -1;
  17.232 -        boxes[box].first = index;
  17.233 +        _data[index].next = _boxes[box].first;
  17.234 +        _data[_boxes[box].first].prev = index;
  17.235 +        _data[index].prev = -1;
  17.236 +        _boxes[box].first = index;
  17.237        }
  17.238 -      data[index].box = box;
  17.239 +      _data[index].box = box;
  17.240      }
  17.241  
  17.242 -    /// \brief Add a new box to the box list.
  17.243 +    // Add a new box to the box list
  17.244      void extend() {
  17.245 -      int min = boxes.back().min + boxes.back().size;
  17.246 -      int bs = 2 * boxes.back().size;
  17.247 -      boxes.push_back(RadixBox(min, bs));
  17.248 +      int min = _boxes.back().min + _boxes.back().size;
  17.249 +      int bs = 2 * _boxes.back().size;
  17.250 +      _boxes.push_back(RadixBox(min, bs));
  17.251      }
  17.252  
  17.253 -    /// \brief Move an item up into the proper box.
  17.254 -    void bubble_up(int index) {
  17.255 -      if (!lower(data[index].box, data[index].prio)) return;
  17.256 +    // Move an item up into the proper box.
  17.257 +    void bubbleUp(int index) {
  17.258 +      if (!lower(_data[index].box, _data[index].prio)) return;
  17.259        remove(index);
  17.260 -      int box = findUp(data[index].box, data[index].prio);
  17.261 +      int box = findUp(_data[index].box, _data[index].prio);
  17.262        insert(box, index);
  17.263      }
  17.264  
  17.265 -    /// \brief Find up the proper box for the item with the given prio.
  17.266 +    // Find up the proper box for the item with the given priority
  17.267      int findUp(int start, int pr) {
  17.268        while (lower(start, pr)) {
  17.269 -        if (++start == int(boxes.size())) {
  17.270 +        if (++start == int(_boxes.size())) {
  17.271            extend();
  17.272          }
  17.273        }
  17.274        return start;
  17.275      }
  17.276  
  17.277 -    /// \brief Move an item down into the proper box.
  17.278 -    void bubble_down(int index) {
  17.279 -      if (!upper(data[index].box, data[index].prio)) return;
  17.280 +    // Move an item down into the proper box
  17.281 +    void bubbleDown(int index) {
  17.282 +      if (!upper(_data[index].box, _data[index].prio)) return;
  17.283        remove(index);
  17.284 -      int box = findDown(data[index].box, data[index].prio);
  17.285 +      int box = findDown(_data[index].box, _data[index].prio);
  17.286        insert(box, index);
  17.287      }
  17.288  
  17.289 -    /// \brief Find up the proper box for the item with the given prio.
  17.290 +    // Find down the proper box for the item with the given priority
  17.291      int findDown(int start, int pr) {
  17.292        while (upper(start, pr)) {
  17.293 -        if (--start < 0) throw UnderFlowPriorityError();
  17.294 +        if (--start < 0) throw PriorityUnderflowError();
  17.295        }
  17.296        return start;
  17.297      }
  17.298  
  17.299 -    /// \brief Find the first not empty box.
  17.300 +    // Find the first non-empty box
  17.301      int findFirst() {
  17.302        int first = 0;
  17.303 -      while (boxes[first].first == -1) ++first;
  17.304 +      while (_boxes[first].first == -1) ++first;
  17.305        return first;
  17.306      }
  17.307  
  17.308 -    /// \brief Gives back the minimal prio of the box.
  17.309 +    // Gives back the minimum priority of the given box
  17.310      int minValue(int box) {
  17.311 -      int min = data[boxes[box].first].prio;
  17.312 -      for (int k = boxes[box].first; k != -1; k = data[k].next) {
  17.313 -        if (data[k].prio < min) min = data[k].prio;
  17.314 +      int min = _data[_boxes[box].first].prio;
  17.315 +      for (int k = _boxes[box].first; k != -1; k = _data[k].next) {
  17.316 +        if (_data[k].prio < min) min = _data[k].prio;
  17.317        }
  17.318        return min;
  17.319      }
  17.320  
  17.321 -    /// \brief Rearrange the items of the heap and makes the
  17.322 -    /// first box not empty.
  17.323 +    // Rearrange the items of the heap and make the first box non-empty
  17.324      void moveDown() {
  17.325        int box = findFirst();
  17.326        if (box == 0) return;
  17.327        int min = minValue(box);
  17.328        for (int i = 0; i <= box; ++i) {
  17.329 -        boxes[i].min = min;
  17.330 -        min += boxes[i].size;
  17.331 +        _boxes[i].min = min;
  17.332 +        min += _boxes[i].size;
  17.333        }
  17.334 -      int curr = boxes[box].first, next;
  17.335 +      int curr = _boxes[box].first, next;
  17.336        while (curr != -1) {
  17.337 -        next = data[curr].next;
  17.338 -        bubble_down(curr);
  17.339 +        next = _data[curr].next;
  17.340 +        bubbleDown(curr);
  17.341          curr = next;
  17.342        }
  17.343      }
  17.344  
  17.345 -    void relocate_last(int index) {
  17.346 -      if (index != int(data.size()) - 1) {
  17.347 -        data[index] = data.back();
  17.348 -        if (data[index].prev != -1) {
  17.349 -          data[data[index].prev].next = index;
  17.350 +    void relocateLast(int index) {
  17.351 +      if (index != int(_data.size()) - 1) {
  17.352 +        _data[index] = _data.back();
  17.353 +        if (_data[index].prev != -1) {
  17.354 +          _data[_data[index].prev].next = index;
  17.355          } else {
  17.356 -          boxes[data[index].box].first = index;
  17.357 +          _boxes[_data[index].box].first = index;
  17.358          }
  17.359 -        if (data[index].next != -1) {
  17.360 -          data[data[index].next].prev = index;
  17.361 +        if (_data[index].next != -1) {
  17.362 +          _data[_data[index].next].prev = index;
  17.363          }
  17.364 -        _iim[data[index].item] = index;
  17.365 +        _iim[_data[index].item] = index;
  17.366        }
  17.367 -      data.pop_back();
  17.368 +      _data.pop_back();
  17.369      }
  17.370  
  17.371    public:
  17.372  
  17.373      /// \brief Insert an item into the heap with the given priority.
  17.374      ///
  17.375 -    /// Adds \c i to the heap with priority \c p.
  17.376 +    /// This function inserts the given item into the heap with the
  17.377 +    /// given priority.
  17.378      /// \param i The item to insert.
  17.379      /// \param p The priority of the item.
  17.380 +    /// \pre \e i must not be stored in the heap.
  17.381 +    /// \warning This method may throw an \c UnderFlowPriorityException.
  17.382      void push(const Item &i, const Prio &p) {
  17.383 -      int n = data.size();
  17.384 +      int n = _data.size();
  17.385        _iim.set(i, n);
  17.386 -      data.push_back(RadixItem(i, p));
  17.387 -      while (lower(boxes.size() - 1, p)) {
  17.388 +      _data.push_back(RadixItem(i, p));
  17.389 +      while (lower(_boxes.size() - 1, p)) {
  17.390          extend();
  17.391        }
  17.392 -      int box = findDown(boxes.size() - 1, p);
  17.393 +      int box = findDown(_boxes.size() - 1, p);
  17.394        insert(box, n);
  17.395      }
  17.396  
  17.397 -    /// \brief Returns the item with minimum priority.
  17.398 +    /// \brief Return the item having minimum priority.
  17.399      ///
  17.400 -    /// This method returns the item with minimum priority.
  17.401 -    /// \pre The heap must be nonempty.
  17.402 +    /// This function returns the item having minimum priority.
  17.403 +    /// \pre The heap must be non-empty.
  17.404      Item top() const {
  17.405        const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown();
  17.406 -      return data[boxes[0].first].item;
  17.407 +      return _data[_boxes[0].first].item;
  17.408      }
  17.409  
  17.410 -    /// \brief Returns the minimum priority.
  17.411 +    /// \brief The minimum priority.
  17.412      ///
  17.413 -    /// It returns the minimum priority.
  17.414 -    /// \pre The heap must be nonempty.
  17.415 +    /// This function returns the minimum priority.
  17.416 +    /// \pre The heap must be non-empty.
  17.417      Prio prio() const {
  17.418        const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown();
  17.419 -      return data[boxes[0].first].prio;
  17.420 +      return _data[_boxes[0].first].prio;
  17.421       }
  17.422  
  17.423 -    /// \brief Deletes the item with minimum priority.
  17.424 +    /// \brief Remove the item having minimum priority.
  17.425      ///
  17.426 -    /// This method deletes the item with minimum priority.
  17.427 +    /// This function removes the item having minimum priority.
  17.428      /// \pre The heap must be non-empty.
  17.429      void pop() {
  17.430        moveDown();
  17.431 -      int index = boxes[0].first;
  17.432 -      _iim[data[index].item] = POST_HEAP;
  17.433 +      int index = _boxes[0].first;
  17.434 +      _iim[_data[index].item] = POST_HEAP;
  17.435        remove(index);
  17.436 -      relocate_last(index);
  17.437 +      relocateLast(index);
  17.438      }
  17.439  
  17.440 -    /// \brief Deletes \c i from the heap.
  17.441 +    /// \brief Remove the given item from the heap.
  17.442      ///
  17.443 -    /// This method deletes item \c i from the heap, if \c i was
  17.444 -    /// already stored in the heap.
  17.445 -    /// \param i The item to erase.
  17.446 +    /// This function removes the given item from the heap if it is
  17.447 +    /// already stored.
  17.448 +    /// \param i The item to delete.
  17.449 +    /// \pre \e i must be in the heap.
  17.450      void erase(const Item &i) {
  17.451        int index = _iim[i];
  17.452        _iim[i] = POST_HEAP;
  17.453        remove(index);
  17.454 -      relocate_last(index);
  17.455 +      relocateLast(index);
  17.456     }
  17.457  
  17.458 -    /// \brief Returns the priority of \c i.
  17.459 +    /// \brief The priority of the given item.
  17.460      ///
  17.461 -    /// This function returns the priority of item \c i.
  17.462 -    /// \pre \c i must be in the heap.
  17.463 +    /// This function returns the priority of the given item.
  17.464      /// \param i The item.
  17.465 +    /// \pre \e i must be in the heap.
  17.466      Prio operator[](const Item &i) const {
  17.467        int idx = _iim[i];
  17.468 -      return data[idx].prio;
  17.469 +      return _data[idx].prio;
  17.470      }
  17.471  
  17.472 -    /// \brief \c i gets to the heap with priority \c p independently
  17.473 -    /// if \c i was already there.
  17.474 +    /// \brief Set the priority of an item or insert it, if it is
  17.475 +    /// not stored in the heap.
  17.476      ///
  17.477 -    /// This method calls \ref push(\c i, \c p) if \c i is not stored
  17.478 -    /// in the heap and sets the priority of \c i to \c p otherwise.
  17.479 -    /// It may throw an \e UnderFlowPriorityException.
  17.480 +    /// This method sets the priority of the given item if it is
  17.481 +    /// already stored in the heap. Otherwise it inserts the given
  17.482 +    /// item into the heap with the given priority.
  17.483      /// \param i The item.
  17.484      /// \param p The priority.
  17.485 +    /// \pre \e i must be in the heap.
  17.486 +    /// \warning This method may throw an \c UnderFlowPriorityException.
  17.487      void set(const Item &i, const Prio &p) {
  17.488        int idx = _iim[i];
  17.489        if( idx < 0 ) {
  17.490          push(i, p);
  17.491        }
  17.492 -      else if( p >= data[idx].prio ) {
  17.493 -        data[idx].prio = p;
  17.494 -        bubble_up(idx);
  17.495 +      else if( p >= _data[idx].prio ) {
  17.496 +        _data[idx].prio = p;
  17.497 +        bubbleUp(idx);
  17.498        } else {
  17.499 -        data[idx].prio = p;
  17.500 -        bubble_down(idx);
  17.501 +        _data[idx].prio = p;
  17.502 +        bubbleDown(idx);
  17.503        }
  17.504      }
  17.505  
  17.506 -
  17.507 -    /// \brief Decreases the priority of \c i to \c p.
  17.508 +    /// \brief Decrease the priority of an item to the given value.
  17.509      ///
  17.510 -    /// This method decreases the priority of item \c i to \c p.
  17.511 -    /// \pre \c i must be stored in the heap with priority at least \c p, and
  17.512 -    /// \c should be greater or equal to the last removed item's priority.
  17.513 +    /// This function decreases the priority of an item to the given value.
  17.514      /// \param i The item.
  17.515      /// \param p The priority.
  17.516 +    /// \pre \e i must be stored in the heap with priority at least \e p.
  17.517 +    /// \warning This method may throw an \c UnderFlowPriorityException.
  17.518      void decrease(const Item &i, const Prio &p) {
  17.519        int idx = _iim[i];
  17.520 -      data[idx].prio = p;
  17.521 -      bubble_down(idx);
  17.522 +      _data[idx].prio = p;
  17.523 +      bubbleDown(idx);
  17.524      }
  17.525  
  17.526 -    /// \brief Increases the priority of \c i to \c p.
  17.527 +    /// \brief Increase the priority of an item to the given value.
  17.528      ///
  17.529 -    /// This method sets the priority of item \c i to \c p.
  17.530 -    /// \pre \c i must be stored in the heap with priority at most \c p
  17.531 +    /// This function increases the priority of an item to the given value.
  17.532      /// \param i The item.
  17.533      /// \param p The priority.
  17.534 +    /// \pre \e i must be stored in the heap with priority at most \e p.
  17.535      void increase(const Item &i, const Prio &p) {
  17.536        int idx = _iim[i];
  17.537 -      data[idx].prio = p;
  17.538 -      bubble_up(idx);
  17.539 +      _data[idx].prio = p;
  17.540 +      bubbleUp(idx);
  17.541      }
  17.542  
  17.543 -    /// \brief Returns if \c item is in, has already been in, or has
  17.544 -    /// never been in the heap.
  17.545 +    /// \brief Return the state of an item.
  17.546      ///
  17.547 -    /// This method returns PRE_HEAP if \c item has never been in the
  17.548 -    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
  17.549 -    /// otherwise. In the latter case it is possible that \c item will
  17.550 -    /// get back to the heap again.
  17.551 +    /// This method returns \c PRE_HEAP if the given item has never
  17.552 +    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
  17.553 +    /// and \c POST_HEAP otherwise.
  17.554 +    /// In the latter case it is possible that the item will get back
  17.555 +    /// to the heap again.
  17.556      /// \param i The item.
  17.557      State state(const Item &i) const {
  17.558        int s = _iim[i];
  17.559 @@ -405,11 +410,11 @@
  17.560        return State(s);
  17.561      }
  17.562  
  17.563 -    /// \brief Sets the state of the \c item in the heap.
  17.564 +    /// \brief Set the state of an item in the heap.
  17.565      ///
  17.566 -    /// Sets the state of the \c item in the heap. It can be used to
  17.567 -    /// manually clear the heap when it is important to achive the
  17.568 -    /// better time complexity.
  17.569 +    /// This function sets the state of the given item in the heap.
  17.570 +    /// It can be used to manually clear the heap when it is important
  17.571 +    /// to achive better time complexity.
  17.572      /// \param i The item.
  17.573      /// \param st The state. It should not be \c IN_HEAP.
  17.574      void state(const Item& i, State st) {
    18.1 --- a/test/CMakeLists.txt	Fri Jul 24 11:07:52 2009 +0200
    18.2 +++ b/test/CMakeLists.txt	Fri Sep 25 09:06:32 2009 +0200
    18.3 @@ -9,6 +9,7 @@
    18.4  
    18.5  SET(TESTS
    18.6    adaptors_test
    18.7 +  bellman_ford_test
    18.8    bfs_test
    18.9    circulation_test
   18.10    connectivity_test
    19.1 --- a/test/Makefile.am	Fri Jul 24 11:07:52 2009 +0200
    19.2 +++ b/test/Makefile.am	Fri Sep 25 09:06:32 2009 +0200
    19.3 @@ -7,6 +7,7 @@
    19.4  
    19.5  check_PROGRAMS += \
    19.6  	test/adaptors_test \
    19.7 +	test/bellman_ford_test \
    19.8  	test/bfs_test \
    19.9  	test/circulation_test \
   19.10  	test/connectivity_test \
   19.11 @@ -52,6 +53,7 @@
   19.12  XFAIL_TESTS += test/test_tools_fail$(EXEEXT)
   19.13  
   19.14  test_adaptors_test_SOURCES = test/adaptors_test.cc
   19.15 +test_bellman_ford_test_SOURCES = test/bellman_ford_test.cc
   19.16  test_bfs_test_SOURCES = test/bfs_test.cc
   19.17  test_circulation_test_SOURCES = test/circulation_test.cc
   19.18  test_counter_test_SOURCES = test/counter_test.cc
    20.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
    20.2 +++ b/test/bellman_ford_test.cc	Fri Sep 25 09:06:32 2009 +0200
    20.3 @@ -0,0 +1,283 @@
    20.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
    20.5 + *
    20.6 + * This file is a part of LEMON, a generic C++ optimization library.
    20.7 + *
    20.8 + * Copyright (C) 2003-2009
    20.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
   20.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
   20.11 + *
   20.12 + * Permission to use, modify and distribute this software is granted
   20.13 + * provided that this copyright notice appears in all copies. For
   20.14 + * precise terms see the accompanying LICENSE file.
   20.15 + *
   20.16 + * This software is provided "AS IS" with no warranty of any kind,
   20.17 + * express or implied, and with no claim as to its suitability for any
   20.18 + * purpose.
   20.19 + *
   20.20 + */
   20.21 +
   20.22 +#include <lemon/concepts/digraph.h>
   20.23 +#include <lemon/smart_graph.h>
   20.24 +#include <lemon/list_graph.h>
   20.25 +#include <lemon/lgf_reader.h>
   20.26 +#include <lemon/bellman_ford.h>
   20.27 +#include <lemon/path.h>
   20.28 +
   20.29 +#include "graph_test.h"
   20.30 +#include "test_tools.h"
   20.31 +
   20.32 +using namespace lemon;
   20.33 +
   20.34 +char test_lgf[] =
   20.35 +  "@nodes\n"
   20.36 +  "label\n"
   20.37 +  "0\n"
   20.38 +  "1\n"
   20.39 +  "2\n"
   20.40 +  "3\n"
   20.41 +  "4\n"
   20.42 +  "@arcs\n"
   20.43 +  "    length\n"
   20.44 +  "0 1 3\n"
   20.45 +  "1 2 -3\n"
   20.46 +  "1 2 -5\n"
   20.47 +  "1 3 -2\n"
   20.48 +  "0 2 -1\n"
   20.49 +  "1 2 -4\n"
   20.50 +  "0 3 2\n"
   20.51 +  "4 2 -5\n"
   20.52 +  "2 3 1\n"
   20.53 +  "@attributes\n"
   20.54 +  "source 0\n"
   20.55 +  "target 3\n";
   20.56 +
   20.57 +
   20.58 +void checkBellmanFordCompile()
   20.59 +{
   20.60 +  typedef int Value;
   20.61 +  typedef concepts::Digraph Digraph;
   20.62 +  typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap;
   20.63 +  typedef BellmanFord<Digraph, LengthMap> BF;
   20.64 +  typedef Digraph::Node Node;
   20.65 +  typedef Digraph::Arc Arc;
   20.66 +
   20.67 +  Digraph gr;
   20.68 +  Node s, t, n;
   20.69 +  Arc e;
   20.70 +  Value l;
   20.71 +  int k;
   20.72 +  bool b;
   20.73 +  BF::DistMap d(gr);
   20.74 +  BF::PredMap p(gr);
   20.75 +  LengthMap length;
   20.76 +  concepts::Path<Digraph> pp;
   20.77 +
   20.78 +  {
   20.79 +    BF bf_test(gr,length);
   20.80 +    const BF& const_bf_test = bf_test;
   20.81 +
   20.82 +    bf_test.run(s);
   20.83 +    bf_test.run(s,k);
   20.84 +
   20.85 +    bf_test.init();
   20.86 +    bf_test.addSource(s);
   20.87 +    bf_test.addSource(s, 1);
   20.88 +    b = bf_test.processNextRound();
   20.89 +    b = bf_test.processNextWeakRound();
   20.90 +
   20.91 +    bf_test.start();
   20.92 +    bf_test.checkedStart();
   20.93 +    bf_test.limitedStart(k);
   20.94 +
   20.95 +    l  = const_bf_test.dist(t);
   20.96 +    e  = const_bf_test.predArc(t);
   20.97 +    s  = const_bf_test.predNode(t);
   20.98 +    b  = const_bf_test.reached(t);
   20.99 +    d  = const_bf_test.distMap();
  20.100 +    p  = const_bf_test.predMap();
  20.101 +    pp = const_bf_test.path(t);
  20.102 +    
  20.103 +    for (BF::ActiveIt it(const_bf_test); it != INVALID; ++it) {}
  20.104 +  }
  20.105 +  {
  20.106 +    BF::SetPredMap<concepts::ReadWriteMap<Node,Arc> >
  20.107 +      ::SetDistMap<concepts::ReadWriteMap<Node,Value> >
  20.108 +      ::SetOperationTraits<BellmanFordDefaultOperationTraits<Value> >
  20.109 +      ::Create bf_test(gr,length);
  20.110 +
  20.111 +    LengthMap length_map;
  20.112 +    concepts::ReadWriteMap<Node,Arc> pred_map;
  20.113 +    concepts::ReadWriteMap<Node,Value> dist_map;
  20.114 +    
  20.115 +    bf_test
  20.116 +      .lengthMap(length_map)
  20.117 +      .predMap(pred_map)
  20.118 +      .distMap(dist_map);
  20.119 +
  20.120 +    bf_test.run(s);
  20.121 +    bf_test.run(s,k);
  20.122 +
  20.123 +    bf_test.init();
  20.124 +    bf_test.addSource(s);
  20.125 +    bf_test.addSource(s, 1);
  20.126 +    b = bf_test.processNextRound();
  20.127 +    b = bf_test.processNextWeakRound();
  20.128 +
  20.129 +    bf_test.start();
  20.130 +    bf_test.checkedStart();
  20.131 +    bf_test.limitedStart(k);
  20.132 +
  20.133 +    l  = bf_test.dist(t);
  20.134 +    e  = bf_test.predArc(t);
  20.135 +    s  = bf_test.predNode(t);
  20.136 +    b  = bf_test.reached(t);
  20.137 +    pp = bf_test.path(t);
  20.138 +  }
  20.139 +}
  20.140 +
  20.141 +void checkBellmanFordFunctionCompile()
  20.142 +{
  20.143 +  typedef int Value;
  20.144 +  typedef concepts::Digraph Digraph;
  20.145 +  typedef Digraph::Arc Arc;
  20.146 +  typedef Digraph::Node Node;
  20.147 +  typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap;
  20.148 +
  20.149 +  Digraph g;
  20.150 +  bool b;
  20.151 +  bellmanFord(g,LengthMap()).run(Node());
  20.152 +  b = bellmanFord(g,LengthMap()).run(Node(),Node());
  20.153 +  bellmanFord(g,LengthMap())
  20.154 +    .predMap(concepts::ReadWriteMap<Node,Arc>())
  20.155 +    .distMap(concepts::ReadWriteMap<Node,Value>())
  20.156 +    .run(Node());
  20.157 +  b=bellmanFord(g,LengthMap())
  20.158 +    .predMap(concepts::ReadWriteMap<Node,Arc>())
  20.159 +    .distMap(concepts::ReadWriteMap<Node,Value>())
  20.160 +    .path(concepts::Path<Digraph>())
  20.161 +    .dist(Value())
  20.162 +    .run(Node(),Node());
  20.163 +}
  20.164 +
  20.165 +
  20.166 +template <typename Digraph, typename Value>
  20.167 +void checkBellmanFord() {
  20.168 +  TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
  20.169 +  typedef typename Digraph::template ArcMap<Value> LengthMap;
  20.170 +
  20.171 +  Digraph gr;
  20.172 +  Node s, t;
  20.173 +  LengthMap length(gr);
  20.174 +
  20.175 +  std::istringstream input(test_lgf);
  20.176 +  digraphReader(gr, input).
  20.177 +    arcMap("length", length).
  20.178 +    node("source", s).
  20.179 +    node("target", t).
  20.180 +    run();
  20.181 +
  20.182 +  BellmanFord<Digraph, LengthMap>
  20.183 +    bf(gr, length);
  20.184 +  bf.run(s);
  20.185 +  Path<Digraph> p = bf.path(t);
  20.186 +
  20.187 +  check(bf.reached(t) && bf.dist(t) == -1, "Bellman-Ford found a wrong path.");
  20.188 +  check(p.length() == 3, "path() found a wrong path.");
  20.189 +  check(checkPath(gr, p), "path() found a wrong path.");
  20.190 +  check(pathSource(gr, p) == s, "path() found a wrong path.");
  20.191 +  check(pathTarget(gr, p) == t, "path() found a wrong path.");
  20.192 +  
  20.193 +  ListPath<Digraph> path;
  20.194 +  Value dist;
  20.195 +  bool reached = bellmanFord(gr,length).path(path).dist(dist).run(s,t);
  20.196 +
  20.197 +  check(reached && dist == -1, "Bellman-Ford found a wrong path.");
  20.198 +  check(path.length() == 3, "path() found a wrong path.");
  20.199 +  check(checkPath(gr, path), "path() found a wrong path.");
  20.200 +  check(pathSource(gr, path) == s, "path() found a wrong path.");
  20.201 +  check(pathTarget(gr, path) == t, "path() found a wrong path.");
  20.202 +
  20.203 +  for(ArcIt e(gr); e!=INVALID; ++e) {
  20.204 +    Node u=gr.source(e);
  20.205 +    Node v=gr.target(e);
  20.206 +    check(!bf.reached(u) || (bf.dist(v) - bf.dist(u) <= length[e]),
  20.207 +          "Wrong output. dist(target)-dist(source)-arc_length=" <<
  20.208 +          bf.dist(v) - bf.dist(u) - length[e]);
  20.209 +  }
  20.210 +
  20.211 +  for(NodeIt v(gr); v!=INVALID; ++v) {
  20.212 +    if (bf.reached(v)) {
  20.213 +      check(v==s || bf.predArc(v)!=INVALID, "Wrong tree.");
  20.214 +      if (bf.predArc(v)!=INVALID ) {
  20.215 +        Arc e=bf.predArc(v);
  20.216 +        Node u=gr.source(e);
  20.217 +        check(u==bf.predNode(v),"Wrong tree.");
  20.218 +        check(bf.dist(v) - bf.dist(u) == length[e],
  20.219 +              "Wrong distance! Difference: " <<
  20.220 +              bf.dist(v) - bf.dist(u) - length[e]);
  20.221 +      }
  20.222 +    }
  20.223 +  }
  20.224 +}
  20.225 +
  20.226 +void checkBellmanFordNegativeCycle() {
  20.227 +  DIGRAPH_TYPEDEFS(SmartDigraph);
  20.228 +
  20.229 +  SmartDigraph gr;
  20.230 +  IntArcMap length(gr);
  20.231 +  
  20.232 +  Node n1 = gr.addNode();
  20.233 +  Node n2 = gr.addNode();
  20.234 +  Node n3 = gr.addNode();
  20.235 +  Node n4 = gr.addNode();
  20.236 +  
  20.237 +  Arc a1 = gr.addArc(n1, n2);
  20.238 +  Arc a2 = gr.addArc(n2, n2);
  20.239 +  
  20.240 +  length[a1] = 2;
  20.241 +  length[a2] = -1;
  20.242 +  
  20.243 +  {
  20.244 +    BellmanFord<SmartDigraph, IntArcMap> bf(gr, length);
  20.245 +    bf.run(n1);
  20.246 +    StaticPath<SmartDigraph> p = bf.negativeCycle();
  20.247 +    check(p.length() == 1 && p.front() == p.back() && p.front() == a2,
  20.248 +          "Wrong negative cycle.");
  20.249 +  }
  20.250 + 
  20.251 +  length[a2] = 0;
  20.252 +  
  20.253 +  {
  20.254 +    BellmanFord<SmartDigraph, IntArcMap> bf(gr, length);
  20.255 +    bf.run(n1);
  20.256 +    check(bf.negativeCycle().empty(),
  20.257 +          "Negative cycle should not be found.");
  20.258 +  }
  20.259 +  
  20.260 +  length[gr.addArc(n1, n3)] = 5;
  20.261 +  length[gr.addArc(n4, n3)] = 1;
  20.262 +  length[gr.addArc(n2, n4)] = 2;
  20.263 +  length[gr.addArc(n3, n2)] = -4;
  20.264 +  
  20.265 +  {
  20.266 +    BellmanFord<SmartDigraph, IntArcMap> bf(gr, length);
  20.267 +    bf.init();
  20.268 +    bf.addSource(n1);
  20.269 +    for (int i = 0; i < 4; ++i) {
  20.270 +      check(bf.negativeCycle().empty(),
  20.271 +            "Negative cycle should not be found.");
  20.272 +      bf.processNextRound();
  20.273 +    }
  20.274 +    StaticPath<SmartDigraph> p = bf.negativeCycle();
  20.275 +    check(p.length() == 3, "Wrong negative cycle.");
  20.276 +    check(length[p.nth(0)] + length[p.nth(1)] + length[p.nth(2)] == -1,
  20.277 +          "Wrong negative cycle.");
  20.278 +  }
  20.279 +}
  20.280 +
  20.281 +int main() {
  20.282 +  checkBellmanFord<ListDigraph, int>();
  20.283 +  checkBellmanFord<SmartDigraph, double>();
  20.284 +  checkBellmanFordNegativeCycle();
  20.285 +  return 0;
  20.286 +}
    21.1 --- a/test/circulation_test.cc	Fri Jul 24 11:07:52 2009 +0200
    21.2 +++ b/test/circulation_test.cc	Fri Sep 25 09:06:32 2009 +0200
    21.3 @@ -87,6 +87,11 @@
    21.4      .upperMap(ucap)
    21.5      .supplyMap(supply)
    21.6      .flowMap(flow);
    21.7 +  
    21.8 +  const CirculationType::Elevator& elev = const_circ_test.elevator();
    21.9 +  circ_test.elevator(const_cast<CirculationType::Elevator&>(elev));
   21.10 +  CirculationType::Tolerance tol = const_circ_test.tolerance();
   21.11 +  circ_test.tolerance(tol);
   21.12  
   21.13    circ_test.init();
   21.14    circ_test.greedyInit();
    22.1 --- a/test/heap_test.cc	Fri Jul 24 11:07:52 2009 +0200
    22.2 +++ b/test/heap_test.cc	Fri Sep 25 09:06:32 2009 +0200
    22.3 @@ -25,14 +25,17 @@
    22.4  #include <lemon/concepts/heap.h>
    22.5  
    22.6  #include <lemon/smart_graph.h>
    22.7 -
    22.8  #include <lemon/lgf_reader.h>
    22.9  #include <lemon/dijkstra.h>
   22.10  #include <lemon/maps.h>
   22.11  
   22.12  #include <lemon/bin_heap.h>
   22.13 +#include <lemon/fourary_heap.h>
   22.14 +#include <lemon/kary_heap.h>
   22.15  #include <lemon/fib_heap.h>
   22.16 +#include <lemon/pairing_heap.h>
   22.17  #include <lemon/radix_heap.h>
   22.18 +#include <lemon/binom_heap.h>
   22.19  #include <lemon/bucket_heap.h>
   22.20  
   22.21  #include "test_tools.h"
   22.22 @@ -89,18 +92,16 @@
   22.23  template <typename Heap>
   22.24  void heapSortTest() {
   22.25    RangeMap<int> map(test_len, -1);
   22.26 -
   22.27    Heap heap(map);
   22.28  
   22.29    std::vector<int> v(test_len);
   22.30 -
   22.31    for (int i = 0; i < test_len; ++i) {
   22.32      v[i] = test_seq[i];
   22.33      heap.push(i, v[i]);
   22.34    }
   22.35    std::sort(v.begin(), v.end());
   22.36    for (int i = 0; i < test_len; ++i) {
   22.37 -    check(v[i] == heap.prio() ,"Wrong order in heap sort.");
   22.38 +    check(v[i] == heap.prio(), "Wrong order in heap sort.");
   22.39      heap.pop();
   22.40    }
   22.41  }
   22.42 @@ -112,7 +113,6 @@
   22.43    Heap heap(map);
   22.44  
   22.45    std::vector<int> v(test_len);
   22.46 -
   22.47    for (int i = 0; i < test_len; ++i) {
   22.48      v[i] = test_seq[i];
   22.49      heap.push(i, v[i]);
   22.50 @@ -123,13 +123,11 @@
   22.51    }
   22.52    std::sort(v.begin(), v.end());
   22.53    for (int i = 0; i < test_len; ++i) {
   22.54 -    check(v[i] == heap.prio() ,"Wrong order in heap increase test.");
   22.55 +    check(v[i] == heap.prio(), "Wrong order in heap increase test.");
   22.56      heap.pop();
   22.57    }
   22.58  }
   22.59  
   22.60 -
   22.61 -
   22.62  template <typename Heap>
   22.63  void dijkstraHeapTest(const Digraph& digraph, const IntArcMap& length,
   22.64                        Node source) {
   22.65 @@ -144,7 +142,7 @@
   22.66      Node t = digraph.target(a);
   22.67      if (dijkstra.reached(s)) {
   22.68        check( dijkstra.dist(t) - dijkstra.dist(s) <= length[a],
   22.69 -             "Error in a shortest path tree!");
   22.70 +             "Error in shortest path tree.");
   22.71      }
   22.72    }
   22.73  
   22.74 @@ -153,7 +151,7 @@
   22.75        Arc a = dijkstra.predArc(n);
   22.76        Node s = digraph.source(a);
   22.77        check( dijkstra.dist(n) - dijkstra.dist(s) == length[a],
   22.78 -             "Error in a shortest path tree!");
   22.79 +             "Error in shortest path tree.");
   22.80      }
   22.81    }
   22.82  
   22.83 @@ -175,6 +173,7 @@
   22.84      node("source", source).
   22.85      run();
   22.86  
   22.87 +  // BinHeap
   22.88    {
   22.89      typedef BinHeap<Prio, ItemIntMap> IntHeap;
   22.90      checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
   22.91 @@ -186,6 +185,31 @@
   22.92      dijkstraHeapTest<NodeHeap>(digraph, length, source);
   22.93    }
   22.94  
   22.95 +  // FouraryHeap
   22.96 +  {
   22.97 +    typedef FouraryHeap<Prio, ItemIntMap> IntHeap;
   22.98 +    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
   22.99 +    heapSortTest<IntHeap>();
  22.100 +    heapIncreaseTest<IntHeap>();
  22.101 +
  22.102 +    typedef FouraryHeap<Prio, IntNodeMap > NodeHeap;
  22.103 +    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
  22.104 +    dijkstraHeapTest<NodeHeap>(digraph, length, source);
  22.105 +  }
  22.106 +
  22.107 +  // KaryHeap
  22.108 +  {
  22.109 +    typedef KaryHeap<Prio, ItemIntMap> IntHeap;
  22.110 +    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
  22.111 +    heapSortTest<IntHeap>();
  22.112 +    heapIncreaseTest<IntHeap>();
  22.113 +
  22.114 +    typedef KaryHeap<Prio, IntNodeMap > NodeHeap;
  22.115 +    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
  22.116 +    dijkstraHeapTest<NodeHeap>(digraph, length, source);
  22.117 +  }
  22.118 +
  22.119 +  // FibHeap
  22.120    {
  22.121      typedef FibHeap<Prio, ItemIntMap> IntHeap;
  22.122      checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
  22.123 @@ -197,6 +221,19 @@
  22.124      dijkstraHeapTest<NodeHeap>(digraph, length, source);
  22.125    }
  22.126  
  22.127 +  // PairingHeap
  22.128 +  {
  22.129 +    typedef PairingHeap<Prio, ItemIntMap> IntHeap;
  22.130 +    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
  22.131 +    heapSortTest<IntHeap>();
  22.132 +    heapIncreaseTest<IntHeap>();
  22.133 +
  22.134 +    typedef PairingHeap<Prio, IntNodeMap > NodeHeap;
  22.135 +    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
  22.136 +    dijkstraHeapTest<NodeHeap>(digraph, length, source);
  22.137 +  }
  22.138 +
  22.139 +  // RadixHeap
  22.140    {
  22.141      typedef RadixHeap<ItemIntMap> IntHeap;
  22.142      checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
  22.143 @@ -208,6 +245,19 @@
  22.144      dijkstraHeapTest<NodeHeap>(digraph, length, source);
  22.145    }
  22.146  
  22.147 +  // BinomHeap
  22.148 +  {
  22.149 +    typedef BinomHeap<Prio, ItemIntMap> IntHeap;
  22.150 +    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
  22.151 +    heapSortTest<IntHeap>();
  22.152 +    heapIncreaseTest<IntHeap>();
  22.153 +
  22.154 +    typedef BinomHeap<Prio, IntNodeMap > NodeHeap;
  22.155 +    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
  22.156 +    dijkstraHeapTest<NodeHeap>(digraph, length, source);
  22.157 +  }
  22.158 +
  22.159 +  // BucketHeap, SimpleBucketHeap
  22.160    {
  22.161      typedef BucketHeap<ItemIntMap> IntHeap;
  22.162      checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
  22.163 @@ -217,8 +267,10 @@
  22.164      typedef BucketHeap<IntNodeMap > NodeHeap;
  22.165      checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
  22.166      dijkstraHeapTest<NodeHeap>(digraph, length, source);
  22.167 +
  22.168 +    typedef SimpleBucketHeap<ItemIntMap> SimpleIntHeap;
  22.169 +    heapSortTest<SimpleIntHeap>();
  22.170    }
  22.171  
  22.172 -
  22.173    return 0;
  22.174  }
    23.1 --- a/test/maps_test.cc	Fri Jul 24 11:07:52 2009 +0200
    23.2 +++ b/test/maps_test.cc	Fri Sep 25 09:06:32 2009 +0200
    23.3 @@ -22,6 +22,7 @@
    23.4  #include <lemon/concept_check.h>
    23.5  #include <lemon/concepts/maps.h>
    23.6  #include <lemon/maps.h>
    23.7 +#include <lemon/smart_graph.h>
    23.8  
    23.9  #include "test_tools.h"
   23.10  
   23.11 @@ -349,5 +350,226 @@
   23.12        check(v1[i++] == *it, "Something is wrong with LoggerBoolMap");
   23.13    }
   23.14  
   23.15 +  // CrossRefMap
   23.16 +  {
   23.17 +    typedef SmartDigraph Graph;
   23.18 +    DIGRAPH_TYPEDEFS(Graph);
   23.19 +
   23.20 +    checkConcept<ReadWriteMap<Node, int>,
   23.21 +                 CrossRefMap<Graph, Node, int> >();
   23.22 +    
   23.23 +    Graph gr;
   23.24 +    typedef CrossRefMap<Graph, Node, char> CRMap;
   23.25 +    typedef CRMap::ValueIterator ValueIt;
   23.26 +    CRMap map(gr);
   23.27 +    
   23.28 +    Node n0 = gr.addNode();
   23.29 +    Node n1 = gr.addNode();
   23.30 +    Node n2 = gr.addNode();
   23.31 +    
   23.32 +    map.set(n0, 'A');
   23.33 +    map.set(n1, 'B');
   23.34 +    map.set(n2, 'C');
   23.35 +    map.set(n2, 'A');
   23.36 +    map.set(n0, 'C');
   23.37 +
   23.38 +    check(map[n0] == 'C' && map[n1] == 'B' && map[n2] == 'A',
   23.39 +          "Wrong CrossRefMap");
   23.40 +    check(map('A') == n2 && map.inverse()['A'] == n2, "Wrong CrossRefMap");
   23.41 +    check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap");
   23.42 +    check(map('C') == n0 && map.inverse()['C'] == n0, "Wrong CrossRefMap");
   23.43 +
   23.44 +    ValueIt it = map.beginValue();
   23.45 +    check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' &&
   23.46 +          it == map.endValue(), "Wrong value iterator");
   23.47 +  }
   23.48 +  
   23.49 +  // Iterable bool map
   23.50 +  {
   23.51 +    typedef SmartGraph Graph;
   23.52 +    typedef SmartGraph::Node Item;
   23.53 +
   23.54 +    typedef IterableBoolMap<SmartGraph, SmartGraph::Node> Ibm;
   23.55 +    checkConcept<ReferenceMap<Item, bool, bool&, const bool&>, Ibm>();
   23.56 +
   23.57 +    const int num = 10;
   23.58 +    Graph g;
   23.59 +    std::vector<Item> items;
   23.60 +    for (int i = 0; i < num; ++i) {
   23.61 +      items.push_back(g.addNode());
   23.62 +    }
   23.63 +
   23.64 +    Ibm map1(g, true);
   23.65 +    int n = 0;
   23.66 +    for (Ibm::TrueIt it(map1); it != INVALID; ++it) {
   23.67 +      check(map1[static_cast<Item>(it)], "Wrong TrueIt");
   23.68 +      ++n;
   23.69 +    }
   23.70 +    check(n == num, "Wrong number");
   23.71 +
   23.72 +    n = 0;
   23.73 +    for (Ibm::ItemIt it(map1, true); it != INVALID; ++it) {
   23.74 +        check(map1[static_cast<Item>(it)], "Wrong ItemIt for true");
   23.75 +        ++n;
   23.76 +    }
   23.77 +    check(n == num, "Wrong number");
   23.78 +    check(Ibm::FalseIt(map1) == INVALID, "Wrong FalseIt");
   23.79 +    check(Ibm::ItemIt(map1, false) == INVALID, "Wrong ItemIt for false");
   23.80 +
   23.81 +    map1[items[5]] = true;
   23.82 +
   23.83 +    n = 0;
   23.84 +    for (Ibm::ItemIt it(map1, true); it != INVALID; ++it) {
   23.85 +        check(map1[static_cast<Item>(it)], "Wrong ItemIt for true");
   23.86 +        ++n;
   23.87 +    }
   23.88 +    check(n == num, "Wrong number");
   23.89 +
   23.90 +    map1[items[num / 2]] = false;
   23.91 +    check(map1[items[num / 2]] == false, "Wrong map value");
   23.92 +
   23.93 +    n = 0;
   23.94 +    for (Ibm::TrueIt it(map1); it != INVALID; ++it) {
   23.95 +        check(map1[static_cast<Item>(it)], "Wrong TrueIt for true");
   23.96 +        ++n;
   23.97 +    }
   23.98 +    check(n == num - 1, "Wrong number");
   23.99 +
  23.100 +    n = 0;
  23.101 +    for (Ibm::FalseIt it(map1); it != INVALID; ++it) {
  23.102 +        check(!map1[static_cast<Item>(it)], "Wrong FalseIt for true");
  23.103 +        ++n;
  23.104 +    }
  23.105 +    check(n == 1, "Wrong number");
  23.106 +
  23.107 +    map1[items[0]] = false;
  23.108 +    check(map1[items[0]] == false, "Wrong map value");
  23.109 +
  23.110 +    map1[items[num - 1]] = false;
  23.111 +    check(map1[items[num - 1]] == false, "Wrong map value");
  23.112 +
  23.113 +    n = 0;
  23.114 +    for (Ibm::TrueIt it(map1); it != INVALID; ++it) {
  23.115 +        check(map1[static_cast<Item>(it)], "Wrong TrueIt for true");
  23.116 +        ++n;
  23.117 +    }
  23.118 +    check(n == num - 3, "Wrong number");
  23.119 +    check(map1.trueNum() == num - 3, "Wrong number");
  23.120 +
  23.121 +    n = 0;
  23.122 +    for (Ibm::FalseIt it(map1); it != INVALID; ++it) {
  23.123 +        check(!map1[static_cast<Item>(it)], "Wrong FalseIt for true");
  23.124 +        ++n;
  23.125 +    }
  23.126 +    check(n == 3, "Wrong number");
  23.127 +    check(map1.falseNum() == 3, "Wrong number");
  23.128 +  }
  23.129 +
  23.130 +  // Iterable int map
  23.131 +  {
  23.132 +    typedef SmartGraph Graph;
  23.133 +    typedef SmartGraph::Node Item;
  23.134 +    typedef IterableIntMap<SmartGraph, SmartGraph::Node> Iim;
  23.135 +
  23.136 +    checkConcept<ReferenceMap<Item, int, int&, const int&>, Iim>();
  23.137 +
  23.138 +    const int num = 10;
  23.139 +    Graph g;
  23.140 +    std::vector<Item> items;
  23.141 +    for (int i = 0; i < num; ++i) {
  23.142 +      items.push_back(g.addNode());
  23.143 +    }
  23.144 +
  23.145 +    Iim map1(g);
  23.146 +    check(map1.size() == 0, "Wrong size");
  23.147 +
  23.148 +    for (int i = 0; i < num; ++i) {
  23.149 +      map1[items[i]] = i;
  23.150 +    }
  23.151 +    check(map1.size() == num, "Wrong size");
  23.152 +
  23.153 +    for (int i = 0; i < num; ++i) {
  23.154 +      Iim::ItemIt it(map1, i);
  23.155 +      check(static_cast<Item>(it) == items[i], "Wrong value");
  23.156 +      ++it;
  23.157 +      check(static_cast<Item>(it) == INVALID, "Wrong value");
  23.158 +    }
  23.159 +
  23.160 +    for (int i = 0; i < num; ++i) {
  23.161 +      map1[items[i]] = i % 2;
  23.162 +    }
  23.163 +    check(map1.size() == 2, "Wrong size");
  23.164 +
  23.165 +    int n = 0;
  23.166 +    for (Iim::ItemIt it(map1, 0); it != INVALID; ++it) {
  23.167 +      check(map1[static_cast<Item>(it)] == 0, "Wrong value");
  23.168 +      ++n;
  23.169 +    }
  23.170 +    check(n == (num + 1) / 2, "Wrong number");
  23.171 +
  23.172 +    for (Iim::ItemIt it(map1, 1); it != INVALID; ++it) {
  23.173 +      check(map1[static_cast<Item>(it)] == 1, "Wrong value");
  23.174 +      ++n;
  23.175 +    }
  23.176 +    check(n == num, "Wrong number");
  23.177 +
  23.178 +  }
  23.179 +
  23.180 +  // Iterable value map
  23.181 +  {
  23.182 +    typedef SmartGraph Graph;
  23.183 +    typedef SmartGraph::Node Item;
  23.184 +    typedef IterableValueMap<SmartGraph, SmartGraph::Node, double> Ivm;
  23.185 +
  23.186 +    checkConcept<ReadWriteMap<Item, double>, Ivm>();
  23.187 +
  23.188 +    const int num = 10;
  23.189 +    Graph g;
  23.190 +    std::vector<Item> items;
  23.191 +    for (int i = 0; i < num; ++i) {
  23.192 +      items.push_back(g.addNode());
  23.193 +    }
  23.194 +
  23.195 +    Ivm map1(g, 0.0);
  23.196 +    check(distance(map1.beginValue(), map1.endValue()) == 1, "Wrong size");
  23.197 +    check(*map1.beginValue() == 0.0, "Wrong value");
  23.198 +
  23.199 +    for (int i = 0; i < num; ++i) {
  23.200 +      map1.set(items[i], static_cast<double>(i));
  23.201 +    }
  23.202 +    check(distance(map1.beginValue(), map1.endValue()) == num, "Wrong size");
  23.203 +
  23.204 +    for (int i = 0; i < num; ++i) {
  23.205 +      Ivm::ItemIt it(map1, static_cast<double>(i));
  23.206 +      check(static_cast<Item>(it) == items[i], "Wrong value");
  23.207 +      ++it;
  23.208 +      check(static_cast<Item>(it) == INVALID, "Wrong value");
  23.209 +    }
  23.210 +
  23.211 +    for (Ivm::ValueIterator vit = map1.beginValue();
  23.212 +         vit != map1.endValue(); ++vit) {
  23.213 +      check(map1[static_cast<Item>(Ivm::ItemIt(map1, *vit))] == *vit,
  23.214 +            "Wrong ValueIterator");
  23.215 +    }
  23.216 +
  23.217 +    for (int i = 0; i < num; ++i) {
  23.218 +      map1.set(items[i], static_cast<double>(i % 2));
  23.219 +    }
  23.220 +    check(distance(map1.beginValue(), map1.endValue()) == 2, "Wrong size");
  23.221 +
  23.222 +    int n = 0;
  23.223 +    for (Ivm::ItemIt it(map1, 0.0); it != INVALID; ++it) {
  23.224 +      check(map1[static_cast<Item>(it)] == 0.0, "Wrong value");
  23.225 +      ++n;
  23.226 +    }
  23.227 +    check(n == (num + 1) / 2, "Wrong number");
  23.228 +
  23.229 +    for (Ivm::ItemIt it(map1, 1.0); it != INVALID; ++it) {
  23.230 +      check(map1[static_cast<Item>(it)] == 1.0, "Wrong value");
  23.231 +      ++n;
  23.232 +    }
  23.233 +    check(n == num, "Wrong number");
  23.234 +
  23.235 +  }
  23.236    return 0;
  23.237  }
    24.1 --- a/test/preflow_test.cc	Fri Jul 24 11:07:52 2009 +0200
    24.2 +++ b/test/preflow_test.cc	Fri Sep 25 09:06:32 2009 +0200
    24.3 @@ -94,6 +94,11 @@
    24.4              ::Create PreflowType;
    24.5    PreflowType preflow_test(g, cap, n, n);
    24.6    const PreflowType& const_preflow_test = preflow_test;
    24.7 +  
    24.8 +  const PreflowType::Elevator& elev = const_preflow_test.elevator();
    24.9 +  preflow_test.elevator(const_cast<PreflowType::Elevator&>(elev));
   24.10 +  PreflowType::Tolerance tol = const_preflow_test.tolerance();
   24.11 +  preflow_test.tolerance(tol);
   24.12  
   24.13    preflow_test
   24.14      .capacityMap(cap)
    25.1 --- a/tools/lemon-0.x-to-1.x.sh	Fri Jul 24 11:07:52 2009 +0200
    25.2 +++ b/tools/lemon-0.x-to-1.x.sh	Fri Sep 25 09:06:32 2009 +0200
    25.3 @@ -35,10 +35,10 @@
    25.4          -e "s/IncEdgeIt/_In_cEd_geIt_label_/g"\
    25.5          -e "s/Edge\>/_Ar_c_label_/g"\
    25.6          -e "s/\<edge\>/_ar_c_label_/g"\
    25.7 -        -e "s/_edge\>/_ar_c_label_/g"\
    25.8 +        -e "s/_edge\>/__ar_c_label_/g"\
    25.9          -e "s/Edges\>/_Ar_c_label_s/g"\
   25.10          -e "s/\<edges\>/_ar_c_label_s/g"\
   25.11 -        -e "s/_edges\>/_ar_c_label_s/g"\
   25.12 +        -e "s/_edges\>/__ar_c_label_s/g"\
   25.13          -e "s/\([Ee]\)dge\([a-z]\)/_\1d_ge_label_\2/g"\
   25.14          -e "s/\([a-z]\)edge/\1_ed_ge_label_/g"\
   25.15          -e "s/Edge/_Ar_c_label_/g"\
   25.16 @@ -68,6 +68,11 @@
   25.17          -e "s/_blu_e_label_/blue/g"\
   25.18          -e "s/_GR_APH_TY_PEDE_FS_label_/GRAPH_TYPEDEFS/g"\
   25.19          -e "s/_DIGR_APH_TY_PEDE_FS_label_/DIGRAPH_TYPEDEFS/g"\
   25.20 +        -e "s/\<digraph_adaptor\.h\>/adaptors.h/g"\
   25.21 +        -e "s/\<digraph_utils\.h\>/core.h/g"\
   25.22 +        -e "s/\<digraph_reader\.h\>/lgf_reader.h/g"\
   25.23 +        -e "s/\<digraph_writer\.h\>/lgf_writer.h/g"\
   25.24 +        -e "s/\<topology\.h\>/connectivity.h/g"\
   25.25          -e "s/DigraphToEps/GraphToEps/g"\
   25.26          -e "s/digraphToEps/graphToEps/g"\
   25.27          -e "s/\<DefPredMap\>/SetPredMap/g"\