1.1 --- a/lemon/cycle_canceling.h Thu Nov 15 07:05:29 2012 +0100
1.2 +++ b/lemon/cycle_canceling.h Thu Nov 15 07:17:48 2012 +0100
1.3 @@ -35,6 +35,7 @@
1.4 #include <lemon/circulation.h>
1.5 #include <lemon/bellman_ford.h>
1.6 #include <lemon/howard_mmc.h>
1.7 +#include <lemon/hartmann_orlin_mmc.h>
1.8
1.9 namespace lemon {
1.10
1.11 @@ -927,19 +928,42 @@
1.12
1.13 // Execute the "Minimum Mean Cycle Canceling" method
1.14 void startMinMeanCycleCanceling() {
1.15 - typedef SimplePath<StaticDigraph> SPath;
1.16 + typedef Path<StaticDigraph> SPath;
1.17 typedef typename SPath::ArcIt SPathArcIt;
1.18 typedef typename HowardMmc<StaticDigraph, CostArcMap>
1.19 - ::template SetPath<SPath>::Create MMC;
1.20 + ::template SetPath<SPath>::Create HwMmc;
1.21 + typedef typename HartmannOrlinMmc<StaticDigraph, CostArcMap>
1.22 + ::template SetPath<SPath>::Create HoMmc;
1.23 +
1.24 + const double HW_ITER_LIMIT_FACTOR = 1.0;
1.25 + const int HW_ITER_LIMIT_MIN_VALUE = 5;
1.26 +
1.27 + const int hw_iter_limit =
1.28 + std::max(static_cast<int>(HW_ITER_LIMIT_FACTOR * _node_num),
1.29 + HW_ITER_LIMIT_MIN_VALUE);
1.30
1.31 SPath cycle;
1.32 - MMC mmc(_sgr, _cost_map);
1.33 - mmc.cycle(cycle);
1.34 + HwMmc hw_mmc(_sgr, _cost_map);
1.35 + hw_mmc.cycle(cycle);
1.36 buildResidualNetwork();
1.37 - while (mmc.findCycleMean() && mmc.cycleCost() < 0) {
1.38 - // Find the cycle
1.39 - mmc.findCycle();
1.40 -
1.41 + while (true) {
1.42 +
1.43 + typename HwMmc::TerminationCause hw_tc =
1.44 + hw_mmc.findCycleMean(hw_iter_limit);
1.45 + if (hw_tc == HwMmc::ITERATION_LIMIT) {
1.46 + // Howard's algorithm reached the iteration limit, start a
1.47 + // strongly polynomial algorithm instead
1.48 + HoMmc ho_mmc(_sgr, _cost_map);
1.49 + ho_mmc.cycle(cycle);
1.50 + // Find a minimum mean cycle (Hartmann-Orlin algorithm)
1.51 + if (!(ho_mmc.findCycleMean() && ho_mmc.cycleCost() < 0)) break;
1.52 + ho_mmc.findCycle();
1.53 + } else {
1.54 + // Find a minimum mean cycle (Howard algorithm)
1.55 + if (!(hw_tc == HwMmc::OPTIMAL && hw_mmc.cycleCost() < 0)) break;
1.56 + hw_mmc.findCycle();
1.57 + }
1.58 +
1.59 // Compute delta value
1.60 Value delta = INF;
1.61 for (SPathArcIt a(cycle); a != INVALID; ++a) {
1.62 @@ -964,6 +988,12 @@
1.63 // Constants for the min mean cycle computations
1.64 const double LIMIT_FACTOR = 1.0;
1.65 const int MIN_LIMIT = 5;
1.66 + const double HW_ITER_LIMIT_FACTOR = 1.0;
1.67 + const int HW_ITER_LIMIT_MIN_VALUE = 5;
1.68 +
1.69 + const int hw_iter_limit =
1.70 + std::max(static_cast<int>(HW_ITER_LIMIT_FACTOR * _node_num),
1.71 + HW_ITER_LIMIT_MIN_VALUE);
1.72
1.73 // Contruct auxiliary data vectors
1.74 DoubleVector pi(_res_node_num, 0.0);
1.75 @@ -1137,17 +1167,30 @@
1.76 }
1.77 }
1.78 } else {
1.79 - typedef HowardMmc<StaticDigraph, CostArcMap> MMC;
1.80 + typedef HowardMmc<StaticDigraph, CostArcMap> HwMmc;
1.81 + typedef HartmannOrlinMmc<StaticDigraph, CostArcMap> HoMmc;
1.82 typedef typename BellmanFord<StaticDigraph, CostArcMap>
1.83 ::template SetDistMap<CostNodeMap>::Create BF;
1.84
1.85 // Set epsilon to the minimum cycle mean
1.86 + Cost cycle_cost = 0;
1.87 + int cycle_size = 1;
1.88 buildResidualNetwork();
1.89 - MMC mmc(_sgr, _cost_map);
1.90 - mmc.findCycleMean();
1.91 - epsilon = -mmc.cycleMean();
1.92 - Cost cycle_cost = mmc.cycleCost();
1.93 - int cycle_size = mmc.cycleSize();
1.94 + HwMmc hw_mmc(_sgr, _cost_map);
1.95 + if (hw_mmc.findCycleMean(hw_iter_limit) == HwMmc::ITERATION_LIMIT) {
1.96 + // Howard's algorithm reached the iteration limit, start a
1.97 + // strongly polynomial algorithm instead
1.98 + HoMmc ho_mmc(_sgr, _cost_map);
1.99 + ho_mmc.findCycleMean();
1.100 + epsilon = -ho_mmc.cycleMean();
1.101 + cycle_cost = ho_mmc.cycleCost();
1.102 + cycle_size = ho_mmc.cycleSize();
1.103 + } else {
1.104 + // Set epsilon
1.105 + epsilon = -hw_mmc.cycleMean();
1.106 + cycle_cost = hw_mmc.cycleCost();
1.107 + cycle_size = hw_mmc.cycleSize();
1.108 + }
1.109
1.110 // Compute feasible potentials for the current epsilon
1.111 for (int i = 0; i != int(_cost_vec.size()); ++i) {