[Lemon-commits] [lemon_svn] jacint: r126 - hugo/trunk/src/work/jacint

Lemon SVN svn at lemon.cs.elte.hu
Mon Nov 6 20:37:28 CET 2006


Author: jacint
Date: Wed Feb 18 15:42:38 2004
New Revision: 126

Modified:
   hugo/trunk/src/work/jacint/preflow_push_hl.h
   hugo/trunk/src/work/jacint/preflow_push_max_flow.h

Log:
javitott valtozat


Modified: hugo/trunk/src/work/jacint/preflow_push_hl.h
==============================================================================
--- hugo/trunk/src/work/jacint/preflow_push_hl.h	(original)
+++ hugo/trunk/src/work/jacint/preflow_push_hl.h	Wed Feb 18 15:42:38 2004
@@ -3,7 +3,9 @@
 preflow_push_hl.h
 by jacint. 
 Runs the highest label variant of the preflow push algorithm with 
-running time O(n^2\sqrt(m)). 
+running time O(n^2\sqrt(m)), and with the 'empty level' heuristic. 
+
+'A' is a parameter for the empty_level heuristic
 
 Member functions:
 
@@ -15,11 +17,17 @@
 
 T flowonedge(EdgeIt e) : for a fixed maximum flow x it returns x(e) 
 
-Graph::EdgeMap<T> allflow() : returns the fixed maximum flow x
+FlowMap allflow() : returns the fixed maximum flow x
+
+void mincut(CutMap& M) : sets M to the characteristic vector of a 
+     minimum cut. M should be a map of bools initialized to false.
+
+void min_mincut(CutMap& M) : sets M to the characteristic vector of the 
+     minimum min cut. M should be a map of bools initialized to false.
+
+void max_mincut(CutMap& M) : sets M to the characteristic vector of the 
+     maximum min cut. M should be a map of bools initialized to false.
 
-Graph::NodeMap<bool> mincut() : returns a 
-     characteristic vector of a minimum cut. (An empty level 
-     in the algorithm gives a minimum cut.)
 */
 
 #ifndef PREFLOW_PUSH_HL_H
@@ -29,12 +37,13 @@
 
 #include <vector>
 #include <stack>
-
-#include <reverse_bfs.h>
+#include <queue>
 
 namespace marci {
 
-  template <typename Graph, typename T>
+  template <typename Graph, typename T, 
+    typename FlowMap=typename Graph::EdgeMap<T>, typename CapMap=typename Graph::EdgeMap<T>, 
+    typename IntMap=typename Graph::NodeMap<int>, typename TMap=typename Graph::NodeMap<T> >
   class preflow_push_hl {
     
     typedef typename Graph::NodeIt NodeIt;
@@ -46,207 +55,207 @@
     Graph& G;
     NodeIt s;
     NodeIt t;
-    typename Graph::EdgeMap<T> flow;
-    typename Graph::EdgeMap<T> capacity; 
+    FlowMap flow;
+    CapMap& capacity;  
     T value;
-    typename Graph::NodeMap<bool> mincutvector;
-
+    
   public:
 
-    preflow_push_hl(Graph& _G, NodeIt _s, NodeIt _t, 
-		    typename Graph::EdgeMap<T>& _capacity) :
-      G(_G), s(_s), t(_t), flow(_G, 0), capacity(_capacity), 
-      mincutvector(_G, true) { }
+    preflow_push_hl(Graph& _G, NodeIt _s, NodeIt _t, CapMap& _capacity) :
+      G(_G), s(_s), t(_t), flow(_G, 0), capacity(_capacity) { }
 
 
-    /*
-      The run() function runs the highest label preflow-push, 
-      running time: O(n^2\sqrt(m))
-    */
+    
+
     void run() {
  
-      std::cout<<"A is "<<A<<" ";
-
-      typename Graph::NodeMap<int> level(G);      
-      typename Graph::NodeMap<T> excess(G); 
-
       int n=G.nodeNum(); 
       int b=n-2; 
       /*
 	b is a bound on the highest level of an active node. 
-	In the beginning it is at most n-2.
       */
 
-      std::vector<int> numb(n);     //The number of nodes on level i < n.
+      IntMap level(G,n);      
+      TMap excess(G); 
+
+      std::vector<int> numb(n);    
+      /*
+	The number of nodes on level i < n. It is
+	initialized to n+1, because of the reverse_bfs-part.
+      */
+
       std::vector<std::stack<NodeIt> > stack(2*n-1);    
       //Stack of the active nodes in level i.
 
 
       /*Reverse_bfs from t, to find the starting level.*/
-      reverse_bfs<Graph> bfs(G, t);
-      bfs.run();
-      for(EachNodeIt v=G.template first<EachNodeIt>(); v.valid(); ++v) 
-	{
-	  int dist=bfs.dist(v);
-	  level.set(v, dist);
-	  ++numb[dist];
+      level.set(t,0);
+      std::queue<NodeIt> bfs_queue;
+      bfs_queue.push(t);
+
+      while (!bfs_queue.empty()) {
+
+	NodeIt v=bfs_queue.front();	
+	bfs_queue.pop();
+	int l=level.get(v)+1;
+
+	for(InEdgeIt e=G.template first<InEdgeIt>(v); e.valid(); ++e) {
+	  NodeIt w=G.tail(e);
+	  if ( level.get(w) == n ) {
+	    bfs_queue.push(w);
+	    ++numb[l];
+	    level.set(w, l);
+	  }
 	}
-
+      }
+	
       level.set(s,n);
 
 
+
       /* Starting flow. It is everywhere 0 at the moment. */     
       for(OutEdgeIt e=G.template first<OutEdgeIt>(s); e.valid(); ++e) 
 	{
-	  if ( capacity.get(e) > 0 ) {
-	    NodeIt w=G.head(e);
-	    if ( w!=s ) {	  
-	      if ( excess.get(w) == 0 && w!=t ) stack[level.get(w)].push(w); 
-	      flow.set(e, capacity.get(e)); 
-	      excess.set(w, excess.get(w)+capacity.get(e));
-	    }
+	  if ( capacity.get(e) == 0 ) continue;
+	  NodeIt w=G.head(e);
+	  if ( w!=s ) {	  
+	    if ( excess.get(w) == 0 && w!=t ) stack[level.get(w)].push(w); 
+	    flow.set(e, capacity.get(e)); 
+	    excess.set(w, excess.get(w)+capacity.get(e));
 	  }
 	}
-
+      
       /* 
 	 End of preprocessing 
       */
 
 
-
       /*
 	Push/relabel on the highest level active nodes.
       */
-	
       /*While there exists an active node.*/
       while (b) { 
-
-	/*We decrease the bound if there is no active node of level b.*/
-	if (stack[b].empty()) {
+	if ( stack[b].empty() ) { 
 	  --b;
-	} else {
-
-	  NodeIt w=stack[b].top();        //w is a highest label active node.
-	  stack[b].pop();           
+	  continue;
+	} 
 	
-	  int newlevel=2*n-2;             //In newlevel we bound the next level of w.
+	NodeIt w=stack[b].top();        //w is a highest label active node.
+	stack[b].pop();           
+	int lev=level.get(w);
+	int exc=excess.get(w);
+	int newlevel=2*n-2;      //In newlevel we bound the next level of w.
 	
+	//  if ( level.get(w) < n ) { //Nem tudom ez mukodik-e
 	  for(OutEdgeIt e=G.template first<OutEdgeIt>(w); e.valid(); ++e) {
 	    
-	    if ( flow.get(e) < capacity.get(e) ) {              
-	      /*e is an edge of the residual graph */
-
-	      NodeIt v=G.head(e);               /*e is the edge wv.*/
-
-	      if( level.get(w) == level.get(v)+1 ) {      
-		/*Push is allowed now*/
-
-		if ( excess.get(v)==0 && v != s && v !=t ) stack[level.get(v)].push(v); 
-		/*v becomes active.*/
-
-		if ( capacity.get(e)-flow.get(e) > excess.get(w) ) {       
-		  /*A nonsaturating push.*/
-		  
-		  flow.set(e, flow.get(e)+excess.get(w));
-		  excess.set(v, excess.get(v)+excess.get(w));
-		  excess.set(w,0);
-		  break; 
-
-		} else { 
-		  /*A saturating push.*/
-
-		  excess.set(v, excess.get(v)+capacity.get(e)-flow.get(e));
-		  excess.set(w, excess.get(w)-capacity.get(e)+flow.get(e));
-		  flow.set(e, capacity.get(e));
-		  if ( excess.get(w)==0 ) break;
-		  /*If w is not active any more, then we go on to the next node.*/
-		  
-		}
-	      } else {
-		newlevel = newlevel < level.get(v) ? newlevel : level.get(v);
+	    if ( flow.get(e) == capacity.get(e) ) continue; 
+	    NodeIt v=G.head(e);            
+	    //e=wv	    
+	    
+	    if( lev > level.get(v) ) {      
+	      /*Push is allowed now*/
+	      
+	      if ( excess.get(v)==0 && v != s && v !=t ) 
+		stack[level.get(v)].push(v); 
+	      /*v becomes active.*/
+	      
+	      int cap=capacity.get(e);
+	      int flo=flow.get(e);
+	      int remcap=cap-flo;
+	      
+	      if ( remcap >= exc ) {       
+		/*A nonsaturating push.*/
+		
+		flow.set(e, flo+exc);
+		excess.set(v, excess.get(v)+exc);
+		exc=0;
+		break; 
+		
+	      } else { 
+		/*A saturating push.*/
+		
+		flow.set(e, cap );
+		excess.set(v, excess.get(v)+remcap);
+		exc-=remcap;
 	      }
+	    } else if ( newlevel > level.get(v) ) newlevel = level.get(v);
 	    
-	    } //if the out edge wv is in the res graph 
-	 
 	  } //for out edges wv 
-	  
-
-	  if ( excess.get(w) > 0 ) {	
+	
+	
+	if ( exc > 0 ) {	
+	  for( InEdgeIt e=G.template first<InEdgeIt>(w); e.valid(); ++e) {
 	    
-	    for( InEdgeIt e=G.template first<InEdgeIt>(w); e.valid(); ++e) {
-	      NodeIt v=G.tail(e);  /*e is the edge vw.*/
-
-	      if( flow.get(e) > 0 ) {             
-		/*e is an edge of the residual graph */
-
-		if( level.get(w)==level.get(v)+1 ) {  
-		  /*Push is allowed now*/
+	    if( flow.get(e) == 0 ) continue; 
+	    NodeIt v=G.tail(e);  
+	    //e=vw
+	    
+	    if( lev > level.get(v) ) {  
+	      /*Push is allowed now*/
+	      
+	      if ( excess.get(v)==0 && v != s && v !=t) 
+		stack[level.get(v)].push(v); 
+	      /*v becomes active.*/
+	      
+	      int flo=flow.get(e);
+	      
+	      if ( flo >= exc ) { 
+		/*A nonsaturating push.*/
 		
-		  if ( excess.get(v)==0 && v != s && v !=t) stack[level.get(v)].push(v); 
-		  /*v becomes active.*/
-
-		  if ( flow.get(e) > excess.get(w) ) { 
-		    /*A nonsaturating push.*/
-		  
-		    flow.set(e, flow.get(e)-excess.get(w));
-		    excess.set(v, excess.get(v)+excess.get(w));
-		    excess.set(w,0);
-		    break; 
-		  } else {                                               
-		    /*A saturating push.*/
-		    
-		    excess.set(v, excess.get(v)+flow.get(e));
-		    excess.set(w, excess.get(w)-flow.get(e));
-		    flow.set(e,0);
-		    if ( excess.get(w)==0 ) break;
-		  }  
-		} else {
-		  newlevel = newlevel < level.get(v) ? newlevel : level.get(v);
-		}
+		flow.set(e, flo-exc);
+		excess.set(v, excess.get(v)+exc);
+		exc=0;
+		break; 
+	      } else {                                               
+		/*A saturating push.*/
 		
-	      } //if in edge vw is in the res graph 
-
-	    } //for in edges vw
-
-	  } // if w still has excess after the out edge for cycle
+		excess.set(v, excess.get(v)+flo);
+		exc-=flo;
+		flow.set(e,0);
+	      }  
+	    } else if ( newlevel > level.get(v) ) newlevel = level.get(v);
+	    
+	  } //for in edges vw
+	  
+	} // if w still has excess after the out edge for cycle
+	
+	excess.set(w, exc);
+	
 
+	
 
-	  /*
-	    Relabel
-	  */
+	/*
+	  Relabel
+	*/
+	
+	if ( exc > 0 ) {
+	  //now 'lev' is the old level of w
+	  level.set(w,++newlevel);
 	  
-	  if ( excess.get(w) > 0 ) {
+	  if ( lev < n ) {
+	    --numb[lev];
 	    
-	    int oldlevel=level.get(w);	    
-	    level.set(w,++newlevel);
-
-	    if ( oldlevel < n ) {
-	      --numb[oldlevel];
-
-	      if ( !numb[oldlevel] && oldlevel < A*n ) {  //If the level of w gets empty. 
-		
-		for (EachNodeIt v=G.template first<EachNodeIt>(); v.valid() ; ++v) {
-		  if (level.get(v) > oldlevel && level.get(v) < n ) level.set(v,n);  
-		}
-		for (int i=oldlevel+1 ; i!=n ; ++i) numb[i]=0; 
-		if ( newlevel < n ) newlevel=n; 
-	      } else { 
-		if ( newlevel < n ) ++numb[newlevel]; 
+	    if ( !numb[lev] && lev < A*n ) {  //If the level of w gets empty. 
+	      
+	      for (EachNodeIt v=G.template first<EachNodeIt>(); v.valid() ; ++v) {
+		if (level.get(v) > lev && level.get(v) < n ) level.set(v,n);  
 	      }
+	      for (int i=lev+1 ; i!=n ; ++i) numb[i]=0; 
+	      if ( newlevel < n ) newlevel=n; 
 	    } else { 
-	    if ( newlevel < n ) ++numb[newlevel];
+	      if ( newlevel < n ) ++numb[newlevel]; 
 	    }
-	    
-	    stack[newlevel].push(w);
-	    b=newlevel;
-
-	  }
-
-	} // if stack[b] is nonempty
-
+	  } 
+	  
+	  stack[newlevel].push(w);
+	  b=newlevel;
+	  
+	}
+	
       } // while(b)
-
-
+      
+      
       value = excess.get(t);
       /*Max flow value.*/
 
@@ -271,7 +280,7 @@
       For the maximum flow x found by the algorithm, it returns the flow value on Edge e, i.e. x(e). 
     */
 
-    T flowonedge(EdgeIt e) {
+    T flowonedge(const EdgeIt e) {
       return flow.get(e);
     }
 
@@ -281,21 +290,61 @@
       Returns the maximum flow x found by the algorithm.
     */
 
-    typename Graph::EdgeMap<T> allflow() {
+    FlowMap allflow() {
       return flow;
     }
 
 
 
+
     /*
-      Returns a minimum cut by using a reverse bfs from t in the residual graph.
+      Returns the minimum min cut, by a bfs from s in the residual graph.
     */
     
-    typename Graph::NodeMap<bool> mincut() {
+    template<typename CutMap>
+    void mincut(CutMap& M) {
     
       std::queue<NodeIt> queue;
       
-      mincutvector.set(t,false);      
+      M.set(s,true);      
+      queue.push(s);
+
+      while (!queue.empty()) {
+        NodeIt w=queue.front();
+	queue.pop();
+	
+	for(OutEdgeIt e=G.template first<OutEdgeIt>(w) ; e.valid(); ++e) {
+	  NodeIt v=G.head(e);
+	  if (!M.get(v) && flow.get(e) < capacity.get(e) ) {
+	    queue.push(v);
+	    M.set(v, true);
+	  }
+	} 
+
+	for(InEdgeIt e=G.template first<InEdgeIt>(w) ; e.valid(); ++e) {
+	  NodeIt v=G.tail(e);
+	  if (!M.get(v) && flow.get(e) > 0 ) {
+	    queue.push(v);
+	    M.set(v, true);
+	  }
+	}
+
+      }
+    }
+
+
+
+    /*
+      Returns the maximum min cut, by a reverse bfs 
+      from t in the residual graph.
+    */
+    
+    template<typename CutMap>
+    void max_mincut(CutMap& M) {
+    
+      std::queue<NodeIt> queue;
+      
+      M.set(t,true);        
       queue.push(t);
 
       while (!queue.empty()) {
@@ -304,25 +353,36 @@
 
 	for(InEdgeIt e=G.template first<InEdgeIt>(w) ; e.valid(); ++e) {
 	  NodeIt v=G.tail(e);
-	  if (mincutvector.get(v) && flow.get(e) < capacity.get(e) ) {
+	  if (!M.get(v) && flow.get(e) < capacity.get(e) ) {
 	    queue.push(v);
-	    mincutvector.set(v, false);
+	    M.set(v, true);
 	  }
-	} // for
+	}
 
 	for(OutEdgeIt e=G.template first<OutEdgeIt>(w) ; e.valid(); ++e) {
 	  NodeIt v=G.head(e);
-	  if (mincutvector.get(v) && flow.get(e) > 0 ) {
+	  if (!M.get(v) && flow.get(e) > 0 ) {
 	    queue.push(v);
-	    mincutvector.set(v, false);
+	    M.set(v, true);
 	  }
-	} // for
+	}
+      }
 
+      for(EachNodeIt v=G.template first<EachNodeIt>() ; v.valid(); ++v) {
+	M.set(v, !M.get(v));
       }
 
-      return mincutvector;
-    
     }
+
+
+
+    template<typename CutMap>
+    void min_mincut(CutMap& M) {
+      mincut(M);
+    }
+
+
+
   };
 }//namespace marci
 #endif 

Modified: hugo/trunk/src/work/jacint/preflow_push_max_flow.h
==============================================================================
--- hugo/trunk/src/work/jacint/preflow_push_max_flow.h	(original)
+++ hugo/trunk/src/work/jacint/preflow_push_max_flow.h	Wed Feb 18 15:42:38 2004
@@ -1,3 +1,4 @@
+// -*- C++ -*-
 /*
 preflow_push_max_flow_h
 by jacint. 
@@ -15,13 +16,16 @@
 
 T maxflow() : returns the value of a maximum flow
 
-NodeMap<bool> mincut(): returns a 
-     characteristic vector of a minimum cut.
+void mincut(CutMap& M) : sets M to the characteristic vector of a 
+     minimum cut. M should be a map of bools initialized to false.
+
 */
 
 #ifndef PREFLOW_PUSH_MAX_FLOW_H
 #define PREFLOW_PUSH_MAX_FLOW_H
 
+#define A 1
+
 #include <algorithm>
 #include <vector>
 #include <stack>
@@ -31,7 +35,9 @@
 
 namespace marci {
 
-  template <typename Graph, typename T>
+  template <typename Graph, typename T,  
+    typename FlowMap=typename Graph::EdgeMap<T>, typename CapMap=typename Graph::EdgeMap<T>, 
+    typename IntMap=typename Graph::NodeMap<int>, typename TMap=typename Graph::NodeMap<T> >
   class preflow_push_max_flow {
     
     typedef typename Graph::NodeIt NodeIt;
@@ -42,17 +48,15 @@
     Graph& G;
     NodeIt s;
     NodeIt t;
-    typename Graph::EdgeMap<T>& capacity; 
-    T value;
-    typename Graph::NodeMap<bool> mincutvector;    
-
-
-     
+    IntMap level;
+    CapMap& capacity;  
+    int empty_level;    //an empty level in the end of run()
+    T value; 
+    
   public:
-        
-    preflow_push_max_flow ( Graph& _G, NodeIt _s, NodeIt _t, 
-			    typename Graph::EdgeMap<T>& _capacity) : 
-      G(_G), s(_s), t(_t), capacity(_capacity), mincutvector(_G, false) { }
+      
+    preflow_push_max_flow(Graph& _G, NodeIt _s, NodeIt _t, CapMap& _capacity) :
+      G(_G), s(_s), t(_t), level(_G), capacity(_capacity) { }
 
 
     /*
@@ -62,223 +66,200 @@
     */
     void run() {
  
-      typename Graph::EdgeMap<T> flow(G, 0); 
-      typename Graph::NodeMap<int> level(G);   
-      typename Graph::NodeMap<T> excess(G);    
-            
-      int n=G.nodeNum();                       
+      int n=G.nodeNum(); 
       int b=n-2; 
       /*
-	b is a bound on the highest level of an active Node. 
-	In the beginning it is at most n-2.
+	b is a bound on the highest level of an active node. 
       */
-      
-      std::vector<int> numb(n);     //The number of Nodes on level i < n.
-      std::vector<std::stack<NodeIt> > stack(2*n-1);    
-      //Stack of the active Nodes in level i.
+
+      IntMap level(G,n);      
+      TMap excess(G); 
+      FlowMap flow(G,0);
+
+      std::vector<int> numb(n);    
+      /*
+	The number of nodes on level i < n. It is
+	initialized to n+1, because of the reverse_bfs-part.
+      */
+
+      std::vector<std::stack<NodeIt> > stack(n);    
+      //Stack of the active nodes in level i.
+
 
       /*Reverse_bfs from t, to find the starting level.*/
-      reverse_bfs<Graph> bfs(G, t);
-      bfs.run();
-      for(EachNodeIt v=G.template first<EachNodeIt>(); v.valid(); ++v) 
-	{
-	  int dist=bfs.dist(v);
-	  level.set(v, dist); 
-	  ++numb[dist];
+      level.set(t,0);
+      std::queue<NodeIt> bfs_queue;
+      bfs_queue.push(t);
+
+      while (!bfs_queue.empty()) {
+
+	NodeIt v=bfs_queue.front();	
+	bfs_queue.pop();
+	int l=level.get(v)+1;
+
+	for(InEdgeIt e=G.template first<InEdgeIt>(v); e.valid(); ++e) {
+	  NodeIt w=G.tail(e);
+	  if ( level.get(w) == n ) {
+	    bfs_queue.push(w);
+	    ++numb[l];
+	    level.set(w, l);
+	  }
 	}
-
+      }
+	
       level.set(s,n);
 
-      /* Starting flow. It is everywhere 0 at the moment. */
+
+
+      /* Starting flow. It is everywhere 0 at the moment. */     
       for(OutEdgeIt e=G.template first<OutEdgeIt>(s); e.valid(); ++e) 
 	{
-	  if ( capacity.get(e) > 0 ) {
-	    NodeIt w=G.head(e);
+	  if ( capacity.get(e) == 0 ) continue;
+	  NodeIt w=G.head(e);
+	  if ( level.get(w) < n ) {	  
+	    if ( excess.get(w) == 0 && w!=t ) stack[level.get(w)].push(w); 
 	    flow.set(e, capacity.get(e)); 
-	    stack[level.get(w)].push(w); 
 	    excess.set(w, excess.get(w)+capacity.get(e));
 	  }
 	}
-
+      
       /* 
 	 End of preprocessing 
       */
 
 
-
       /*
-	Push/relabel on the highest level active Nodes.
+	Push/relabel on the highest level active nodes.
       */
-	
-      /*While there exists an active Node.*/
+      /*While there exists an active node.*/
       while (b) { 
-
-	/*We decrease the bound if there is no active node of level b.*/
-	if (stack[b].empty()) {
+	if ( stack[b].empty() ) { 
 	  --b;
-	} else {
-
-	  NodeIt w=stack[b].top();    //w is the highest label active Node.
-	  stack[b].pop();                    //We delete w from the stack.
+	  continue;
+	} 
 	
-	  int newlevel=2*n-2;                //In newlevel we maintain the next level of w.
+	NodeIt w=stack[b].top();        //w is a highest label active node.
+	stack[b].pop();           
+	int lev=level.get(w);
+	int exc=excess.get(w);
+	int newlevel=2*n-2;      //In newlevel we bound the next level of w.
 	
+	//  if ( level.get(w) < n ) { //Nem tudom ez mukodik-e
 	  for(OutEdgeIt e=G.template first<OutEdgeIt>(w); e.valid(); ++e) {
-	    NodeIt v=G.head(e);
-	    /*e is the Edge wv.*/
-
-	    if (flow.get(e)<capacity.get(e)) {              
-	      /*e is an Edge of the residual graph */
-
-	      if(level.get(w)==level.get(v)+1) {      
-		/*Push is allowed now*/
-
-		if (capacity.get(e)-flow.get(e) > excess.get(w)) {       
-		  /*A nonsaturating push.*/
-		  
-		  if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); 
-		  /*v becomes active.*/
-		  
-		  flow.set(e, flow.get(e)+excess.get(w));
-		  excess.set(v, excess.get(v)+excess.get(w));
-		  excess.set(w,0);
-		  //std::cout << w << " " << v <<" elore elen nonsat pump "  << std::endl;
-		  break; 
-		} else { 
-		  /*A saturating push.*/
-
-		  if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); 
-		  /*v becomes active.*/
-
-		  excess.set(v, excess.get(v)+capacity.get(e)-flow.get(e));
-		  excess.set(w, excess.get(w)-capacity.get(e)+flow.get(e));
-		  flow.set(e, capacity.get(e));
-		  //std::cout << w <<" " << v <<" elore elen sat pump "   << std::endl;
-		  if (excess.get(w)==0) break; 
-		  /*If w is not active any more, then we go on to the next Node.*/
-		  
-		} // if (capacity.get(e)-flow.get(e) > excess.get(w))
-	      } // if (level.get(w)==level.get(v)+1)
 	    
-	      else {newlevel = newlevel < level.get(v) ? newlevel : level.get(v);}
+	    if ( flow.get(e) == capacity.get(e) ) continue; 
+	    NodeIt v=G.head(e);            
+	    //e=wv	    
 	    
-	    } //if (flow.get(e)<capacity.get(e))
-	 
-	  } //for(OutEdgeIt e=G.first_OutEdge(w); e.valid(); ++e) 
-	  
-
-
-	  for(InEdgeIt e=G.template first<InEdgeIt>(w); e.valid(); ++e) {
-	    NodeIt v=G.tail(e);
-	    /*e is the Edge vw.*/
-
-	    if (excess.get(w)==0) break;
-	    /*It may happen, that w became inactive in the first 'for' cycle.*/		
-  
-	    if(flow.get(e)>0) {             
-	      /*e is an Edge of the residual graph */
-
-	      if(level.get(w)==level.get(v)+1) {  
-		/*Push is allowed now*/
-		
-		if (flow.get(e) > excess.get(w)) { 
-		  /*A nonsaturating push.*/
-		  
-		  if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); 
-		  /*v becomes active.*/
-
-		  flow.set(e, flow.get(e)-excess.get(w));
-		  excess.set(v, excess.get(v)+excess.get(w));
-		  excess.set(w,0);
-		  //std::cout << v << " " << w << " vissza elen nonsat pump "     << std::endl;
-		  break; 
-		} else {                                               
-		  /*A saturating push.*/
-		  
-		  if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); 
-		  /*v becomes active.*/
-		  
-		  flow.set(e,0);
-		  excess.set(v, excess.get(v)+flow.get(e));
-		  excess.set(w, excess.get(w)-flow.get(e));
-		  //std::cout << v <<" " << w << " vissza elen sat pump "     << std::endl;
-		  if (excess.get(w)==0) { break;}
-		} //if (flow.get(e) > excess.get(v)) 
-	      } //if(level.get(w)==level.get(v)+1)
+	    if( lev > level.get(v) ) {      
+	      /*Push is allowed now*/
 	      
-	      else {newlevel = newlevel < level.get(v) ? newlevel : level.get(v);}
-	      //std::cout << "Leveldecrease of Node " << w << " to " << newlevel << std::endl; 
-
-	    } //if (flow.get(e)>0)
-
-	  } //for in-Edge
-
-
-
-
-	  /*
-	    Relabel
-	  */
-	  if (excess.get(w)>0) {
-	    /*Now newlevel <= n*/
-
-	    int l=level.get(w);	        //l is the old level of w.
-	    --numb[l];
-	   
-	    if (newlevel == n) {
-	      level.set(w,n);
+	      if ( excess.get(v)==0 && v != s && v !=t ) 
+		stack[level.get(v)].push(v); 
+	      /*v becomes active.*/
 	      
-	    } else {
+	      int cap=capacity.get(e);
+	      int flo=flow.get(e);
+	      int remcap=cap-flo;
 	      
-	      if (numb[l]) {
-		/*If the level of w remains nonempty.*/
+	      if ( remcap >= exc ) {       
+		/*A nonsaturating push.*/
+		
+		flow.set(e, flo+exc);
+		excess.set(v, excess.get(v)+exc);
+		exc=0;
+		break; 
 		
-		level.set(w,++newlevel);
-		++numb[newlevel];
-		stack[newlevel].push(w);
-		b=newlevel;
 	      } else { 
-		/*If the level of w gets empty.*/
+		/*A saturating push.*/
+		
+		flow.set(e, cap );
+		excess.set(v, excess.get(v)+remcap);
+		exc-=remcap;
+	      }
+	    } else if ( newlevel > level.get(v) ) newlevel = level.get(v);
+	    
+	  } //for out edges wv 
+	
+	
+	if ( exc > 0 ) {	
+	  for( InEdgeIt e=G.template first<InEdgeIt>(w); e.valid(); ++e) {
+	    
+	    if( flow.get(e) == 0 ) continue; 
+	    NodeIt v=G.tail(e);  
+	    //e=vw
+	    
+	    if( lev > level.get(v) ) {  
+	      /*Push is allowed now*/
 	      
-		for (EachNodeIt v=G.template first<EachNodeIt>(); v.valid() ; ++v) {
-		  if (level.get(v) >= l ) { 
-		    level.set(v,n);  
-		  }
-		}
+	      if ( excess.get(v)==0 && v != s && v !=t) 
+		stack[level.get(v)].push(v); 
+	      /*v becomes active.*/
+	      
+	      int flo=flow.get(e);
+	      
+	      if ( flo >= exc ) { 
+		/*A nonsaturating push.*/
+		
+		flow.set(e, flo-exc);
+		excess.set(v, excess.get(v)+exc);
+		exc=0;
+		break; 
+	      } else {                                               
+		/*A saturating push.*/
 		
-		for (int i=l+1 ; i!=n ; ++i) numb[i]=0; 
-	      } //if (numb[l])
+		excess.set(v, excess.get(v)+flo);
+		exc-=flo;
+		flow.set(e,0);
+	      }  
+	    } else if ( newlevel > level.get(v) ) newlevel = level.get(v);
+	    
+	  } //for in edges vw
+	  
+	} // if w still has excess after the out edge for cycle
 	
-	    } // if (newlevel = n)
-	 
-	  } // if (excess.get(w)>0)
+	excess.set(w, exc);
+	
+	
+	/*
+	  Relabel
+	*/
+	  
+	if ( exc > 0 ) {
+	  //now 'lev' is the old level of w
+	  level.set(w,++newlevel);
+	  --numb[lev];
+	    
+	  if ( !numb[lev] && lev < A*n ) {  //If the level of w gets empty. 
+	      
+	    for (EachNodeIt v=G.template first<EachNodeIt>(); v.valid() ; ++v) {
+	      if (level.get(v) > lev ) level.set(v,n);  
+	    }
+	    for (int i=lev+1 ; i!=n ; ++i) numb[i]=0; 
+	    if ( newlevel < n ) newlevel=n; 
+	  } else if ( newlevel < n ) {
+	    ++numb[newlevel]; 
+	    stack[newlevel].push(w);
+	    b=newlevel;
+	  }
+	}
+
 
 
-	} //else
-       
       } //while(b)
 
       value=excess.get(t);
       /*Max flow value.*/
       
 
-
-      /*
-	We find an empty level, e. The Nodes above this level give 
-	a minimum cut.
+      /* 
+	 We count empty_level. The nodes above this level is a mincut.
       */
-      
-      int e=1;
-      
-      while(e) {
-	if(numb[e]) ++e;
+      while(true) {
+	if(numb[empty_level]) ++empty_level;
 	else break;
       } 
-      for (EachNodeIt v=G.template first<EachNodeIt>(); v.valid(); ++v) {
-	if (level.get(v) > e) mincutvector.set(v, true);
-      }
       
-
     } // void run()
 
 
@@ -295,12 +276,15 @@
 
     /*
       Returns a minimum cut.
-    */
-    
-    typename Graph::NodeMap<bool> mincut() {
-      return mincutvector;
+    */    
+    template<typename CutMap>
+    void mincut(CutMap& M) {
+
+      for (EachNodeIt v=G.template first<EachNodeIt>(); v.valid(); ++v) {
+	if ( level.get(v) > empty_level ) M.set(v, true);
+      }
     }
-    
+
 
   };
 }//namespace marci



More information about the Lemon-commits mailing list