[Lemon-commits] [lemon_svn] jacint: r135 - hugo/trunk/src/work/jacint
Lemon SVN
svn at lemon.cs.elte.hu
Mon Nov 6 20:37:31 CET 2006
Author: jacint
Date: Thu Feb 19 23:28:33 2004
New Revision: 135
Added:
hugo/trunk/src/work/jacint/preflow_hl4.h
Log:
The best etik-ol flow alg so far.
Added: hugo/trunk/src/work/jacint/preflow_hl4.h
==============================================================================
--- (empty file)
+++ hugo/trunk/src/work/jacint/preflow_hl4.h Thu Feb 19 23:28:33 2004
@@ -0,0 +1,486 @@
+// -*- C++ -*-
+/*
+preflow_hl4.h
+by jacint.
+Runs the two phase highest label preflow push algorithm. In phase 0
+we maintain in a list the nodes in level i < n, and we maintain a
+bound k on the max level i < n containing a node, so we can do
+the gap heuristic fast. Phase 1 is the same. (The algorithm is the
+same as preflow.hl3, the only diff is that here we use the gap
+heuristic with the list of the nodes on level i, and not a bfs form the
+upgraded node.)
+
+In phase 1 we shift everything downwards by n.
+
+Member functions:
+
+void run() : runs the algorithm
+
+ The following functions should be used after run() was already run.
+
+T maxflow() : returns the value of a maximum flow
+
+T flowonedge(EdgeIt e) : for a fixed maximum flow x it returns x(e)
+
+FlowMap allflow() : returns a maximum flow
+
+void allflow(FlowMap& _flow ) : returns a maximum flow
+
+void mincut(CutMap& M) : sets M to the characteristic vector of a
+ minimum cut. M should be a map of bools initialized to false.
+
+void min_mincut(CutMap& M) : sets M to the characteristic vector of the
+ minimum min cut. M should be a map of bools initialized to false.
+
+void max_mincut(CutMap& M) : sets M to the characteristic vector of the
+ maximum min cut. M should be a map of bools initialized to false.
+
+*/
+
+#ifndef PREFLOW_HL4_H
+#define PREFLOW_HL4_H
+
+#include <vector>
+#include <stack>
+#include <queue>
+
+namespace marci {
+
+ template <typename Graph, typename T,
+ typename FlowMap=typename Graph::EdgeMap<T>,
+ typename CapMap=typename Graph::EdgeMap<T> >
+ class preflow_hl4 {
+
+ typedef typename Graph::NodeIt NodeIt;
+ typedef typename Graph::EdgeIt EdgeIt;
+ typedef typename Graph::EachNodeIt EachNodeIt;
+ typedef typename Graph::OutEdgeIt OutEdgeIt;
+ typedef typename Graph::InEdgeIt InEdgeIt;
+
+ Graph& G;
+ NodeIt s;
+ NodeIt t;
+ FlowMap flow;
+ CapMap& capacity;
+ T value;
+
+ public:
+
+ preflow_hl4(Graph& _G, NodeIt _s, NodeIt _t, CapMap& _capacity) :
+ G(_G), s(_s), t(_t), flow(_G, 0), capacity(_capacity) { }
+
+
+ void run() {
+
+ bool phase=0;
+ int n=G.nodeNum();
+ int k=n-2;
+ int b=k;
+ /*
+ b is a bound on the highest level of the stack.
+ k is a bound on the highest nonempty level i < n.
+ */
+
+ typename Graph::NodeMap<int> level(G,n);
+ typename Graph::NodeMap<T> excess(G);
+ std::vector<std::stack<NodeIt> > stack(n);
+ //Stack of the active nodes in level i < n.
+ //We use it in both phases.
+
+ typename Graph::NodeMap<NodeIt> left(G);
+ typename Graph::NodeMap<NodeIt> right(G);
+ std::vector<NodeIt> level_list(n);
+ /*
+ Needed for the list of the nodes in level i.
+ */
+
+ /*Reverse_bfs from t, to find the starting level.*/
+ level.set(t,0);
+ std::queue<NodeIt> bfs_queue;
+ bfs_queue.push(t);
+
+ while (!bfs_queue.empty()) {
+
+ NodeIt v=bfs_queue.front();
+ bfs_queue.pop();
+ int l=level.get(v)+1;
+
+ for(InEdgeIt e=G.template first<InEdgeIt>(v); e.valid(); ++e) {
+ NodeIt w=G.tail(e);
+ if ( level.get(w) == n ) {
+ bfs_queue.push(w);
+ NodeIt first=level_list[l];
+ if ( first != 0 ) left.set(first,w);
+ right.set(w,first);
+ level_list[l]=w;
+ level.set(w, l);
+ }
+ }
+ }
+
+ level.set(s,n);
+
+
+ /* Starting flow. It is everywhere 0 at the moment. */
+ for(OutEdgeIt e=G.template first<OutEdgeIt>(s); e.valid(); ++e)
+ {
+ T c=capacity.get(e);
+ if ( c == 0 ) continue;
+ NodeIt w=G.head(e);
+ if ( level.get(w) < n ) {
+ if ( excess.get(w) == 0 && w!=t ) stack[level.get(w)].push(w);
+ flow.set(e, c);
+ excess.set(w, excess.get(w)+c);
+ }
+ }
+ /*
+ End of preprocessing
+ */
+
+
+ /*
+ Push/relabel on the highest level active nodes.
+ */
+ while ( true ) {
+
+ if ( b == 0 ) {
+ if ( phase ) break;
+
+ /*
+ In the end of phase 0 we apply a bfs from s in
+ the residual graph.
+ */
+ phase=1;
+ level.set(s,0);
+ std::queue<NodeIt> bfs_queue;
+ bfs_queue.push(s);
+
+ while (!bfs_queue.empty()) {
+
+ NodeIt v=bfs_queue.front();
+ bfs_queue.pop();
+ int l=level.get(v)+1;
+
+ for(InEdgeIt e=G.template first<InEdgeIt>(v); e.valid(); ++e) {
+ if ( capacity.get(e) == flow.get(e) ) continue;
+ NodeIt u=G.tail(e);
+ if ( level.get(u) >= n ) {
+ bfs_queue.push(u);
+ level.set(u, l);
+ if ( excess.get(u) > 0 ) stack[l].push(u);
+ }
+ }
+
+ for(OutEdgeIt e=G.template first<OutEdgeIt>(v); e.valid(); ++e) {
+ if ( 0 == flow.get(e) ) continue;
+ NodeIt u=G.head(e);
+ if ( level.get(u) >= n ) {
+ bfs_queue.push(u);
+ level.set(u, l);
+ if ( excess.get(u) > 0 ) stack[l].push(u);
+ }
+ }
+ }
+ b=n-2;
+ }
+
+
+ if ( stack[b].empty() ) --b;
+ else {
+
+ NodeIt w=stack[b].top(); //w is a highest label active node.
+ stack[b].pop();
+ int lev=level.get(w);
+ T exc=excess.get(w);
+ int newlevel=n; //In newlevel we bound the next level of w.
+
+ for(OutEdgeIt e=G.template first<OutEdgeIt>(w); e.valid(); ++e) {
+
+ if ( flow.get(e) == capacity.get(e) ) continue;
+ NodeIt v=G.head(e);
+ //e=wv
+
+ if( lev > level.get(v) ) {
+ /*Push is allowed now*/
+
+ if ( excess.get(v)==0 && v!=t && v!=s )
+ stack[level.get(v)].push(v);
+ /*v becomes active.*/
+
+ T cap=capacity.get(e);
+ T flo=flow.get(e);
+ T remcap=cap-flo;
+
+ if ( remcap >= exc ) {
+ /*A nonsaturating push.*/
+
+ flow.set(e, flo+exc);
+ excess.set(v, excess.get(v)+exc);
+ exc=0;
+ break;
+
+ } else {
+ /*A saturating push.*/
+
+ flow.set(e, cap);
+ excess.set(v, excess.get(v)+remcap);
+ exc-=remcap;
+ }
+ } else if ( newlevel > level.get(v) ){
+ newlevel = level.get(v);
+ }
+
+ } //for out edges wv
+
+
+ if ( exc > 0 ) {
+ for( InEdgeIt e=G.template first<InEdgeIt>(w); e.valid(); ++e) {
+
+ if( flow.get(e) == 0 ) continue;
+ NodeIt v=G.tail(e);
+ //e=vw
+
+ if( lev > level.get(v) ) {
+ /*Push is allowed now*/
+
+ if ( excess.get(v)==0 && v!=t && v!=s )
+ stack[level.get(v)].push(v);
+ /*v becomes active.*/
+
+ T flo=flow.get(e);
+
+ if ( flo >= exc ) {
+ /*A nonsaturating push.*/
+
+ flow.set(e, flo-exc);
+ excess.set(v, excess.get(v)+exc);
+ exc=0;
+ break;
+ } else {
+ /*A saturating push.*/
+
+ excess.set(v, excess.get(v)+flo);
+ exc-=flo;
+ flow.set(e,0);
+ }
+ } else if ( newlevel > level.get(v) ) {
+ newlevel = level.get(v);
+ }
+ } //for in edges vw
+
+ } // if w still has excess after the out edge for cycle
+
+ excess.set(w, exc);
+
+ /*
+ Relabel
+ */
+
+ if ( exc > 0 ) {
+ //now 'lev' is the old level of w
+
+ if ( phase ) {
+ level.set(w,++newlevel);
+ stack[newlevel].push(w);
+ b=newlevel;
+ } else {
+ //unlacing
+ NodeIt right_n=right.get(w);
+ NodeIt left_n=left.get(w);
+
+ if ( right_n != 0 ) {
+ if ( left_n != 0 ) {
+ right.set(left_n, right_n);
+ left.set(right_n, left_n);
+ } else {
+ level_list[lev]=right_n;
+ left.set(right_n, 0);
+ }
+ } else {
+ if ( left_n != 0 ) {
+ right.set(left_n, 0);
+ } else {
+ level_list[lev]=0;
+ }
+ }
+
+
+ if ( level_list[lev]==0 ) {
+
+ for (int i=lev; i!=k ; ) {
+ NodeIt v=level_list[++i];
+ while ( v != 0 ) {
+ level.set(v,n);
+ v=right.get(v);
+ }
+ level_list[i]=0;
+ }
+
+ level.set(w,n);
+
+ b=--lev;
+ k=b;
+
+ } else {
+
+ if ( newlevel == n ) {
+ level.set(w,n);
+ } else {
+
+ level.set(w,++newlevel);
+ stack[newlevel].push(w);
+ b=newlevel;
+ if ( k < newlevel ) ++k;
+ NodeIt first=level_list[newlevel];
+ if ( first != 0 ) left.set(first,w);
+ right.set(w,first);
+ left.set(w,0);
+ level_list[newlevel]=w;
+ }
+ }
+ } //phase 0
+ } // if ( exc > 0 )
+
+
+ } // if stack[b] is nonempty
+
+ } // while(true)
+
+
+ value = excess.get(t);
+ /*Max flow value.*/
+
+
+ } //void run()
+
+
+
+
+
+ /*
+ Returns the maximum value of a flow.
+ */
+
+ T maxflow() {
+ return value;
+ }
+
+
+
+ /*
+ For the maximum flow x found by the algorithm, it returns the flow value on Edge e, i.e. x(e).
+ */
+
+ T flowonedge(EdgeIt e) {
+ return flow.get(e);
+ }
+
+
+
+ FlowMap allflow() {
+ return flow;
+ }
+
+
+
+ void allflow(FlowMap& _flow ) {
+ for(EachNodeIt v=G.template first<EachNodeIt>() ; v.valid(); ++v)
+ _flow.set(v,flow.get(v));
+ }
+
+
+
+ /*
+ Returns the minimum min cut, by a bfs from s in the residual graph.
+ */
+
+ template<typename CutMap>
+ void mincut(CutMap& M) {
+
+ std::queue<NodeIt> queue;
+
+ M.set(s,true);
+ queue.push(s);
+
+ while (!queue.empty()) {
+ NodeIt w=queue.front();
+ queue.pop();
+
+ for(OutEdgeIt e=G.template first<OutEdgeIt>(w) ; e.valid(); ++e) {
+ NodeIt v=G.head(e);
+ if (!M.get(v) && flow.get(e) < capacity.get(e) ) {
+ queue.push(v);
+ M.set(v, true);
+ }
+ }
+
+ for(InEdgeIt e=G.template first<InEdgeIt>(w) ; e.valid(); ++e) {
+ NodeIt v=G.tail(e);
+ if (!M.get(v) && flow.get(e) > 0 ) {
+ queue.push(v);
+ M.set(v, true);
+ }
+ }
+
+ }
+
+ }
+
+
+
+ /*
+ Returns the maximum min cut, by a reverse bfs
+ from t in the residual graph.
+ */
+
+ template<typename CutMap>
+ void max_mincut(CutMap& M) {
+
+ std::queue<NodeIt> queue;
+
+ M.set(t,true);
+ queue.push(t);
+
+ while (!queue.empty()) {
+ NodeIt w=queue.front();
+ queue.pop();
+
+ for(InEdgeIt e=G.template first<InEdgeIt>(w) ; e.valid(); ++e) {
+ NodeIt v=G.tail(e);
+ if (!M.get(v) && flow.get(e) < capacity.get(e) ) {
+ queue.push(v);
+ M.set(v, true);
+ }
+ }
+
+ for(OutEdgeIt e=G.template first<OutEdgeIt>(w) ; e.valid(); ++e) {
+ NodeIt v=G.head(e);
+ if (!M.get(v) && flow.get(e) > 0 ) {
+ queue.push(v);
+ M.set(v, true);
+ }
+ }
+ }
+
+ for(EachNodeIt v=G.template first<EachNodeIt>() ; v.valid(); ++v) {
+ M.set(v, !M.get(v));
+ }
+
+ }
+
+
+
+ template<typename CutMap>
+ void min_mincut(CutMap& M) {
+ mincut(M);
+ }
+
+
+
+ };
+}//namespace marci
+#endif
+
+
+
+
More information about the Lemon-commits
mailing list