[Lemon-commits] [lemon_svn] marci: r395 - hugo/trunk/src/work/marci/experiment
Lemon SVN
svn at lemon.cs.elte.hu
Mon Nov 6 20:39:12 CET 2006
Author: marci
Date: Sat Apr 3 19:26:46 2004
New Revision: 395
Added:
hugo/trunk/src/work/marci/experiment/
hugo/trunk/src/work/marci/experiment/bfs_iterator.h
hugo/trunk/src/work/marci/experiment/bfs_iterator_1.h
hugo/trunk/src/work/marci/experiment/deref_vs_optimization
hugo/trunk/src/work/marci/experiment/deref_vs_optimization_lenyeg
hugo/trunk/src/work/marci/experiment/edmonds_karp.h
hugo/trunk/src/work/marci/experiment/edmonds_karp_1.h
hugo/trunk/src/work/marci/experiment/edmonds_karp_demo.cc
hugo/trunk/src/work/marci/experiment/edmonds_karp_demo_1.cc
hugo/trunk/src/work/marci/experiment/graph_wrapper.h
hugo/trunk/src/work/marci/experiment/graph_wrapper_1.h
hugo/trunk/src/work/marci/experiment/iterator_bfs_demo.cc
hugo/trunk/src/work/marci/experiment/iterator_bfs_demo_1.cc
hugo/trunk/src/work/marci/experiment/list_graph.h
hugo/trunk/src/work/marci/experiment/makefile
Log:
One more experimental study about dereferation vs optimization
Added: hugo/trunk/src/work/marci/experiment/bfs_iterator.h
==============================================================================
--- (empty file)
+++ hugo/trunk/src/work/marci/experiment/bfs_iterator.h Sat Apr 3 19:26:46 2004
@@ -0,0 +1,841 @@
+// -*- c++ -*-
+#ifndef HUGO_BFS_ITERATOR_H
+#define HUGO_BFS_ITERATOR_H
+
+#include <queue>
+#include <stack>
+#include <utility>
+#include <graph_wrapper.h>
+
+namespace hugo {
+
+// template <typename Graph>
+// struct bfs {
+// typedef typename Graph::Node Node;
+// typedef typename Graph::Edge Edge;
+// typedef typename Graph::NodeIt NodeIt;
+// typedef typename Graph::OutEdgeIt OutEdgeIt;
+// Graph& G;
+// Node s;
+// typename Graph::NodeMap<bool> reached;
+// typename Graph::NodeMap<Edge> pred;
+// typename Graph::NodeMap<int> dist;
+// std::queue<Node> bfs_queue;
+// bfs(Graph& _G, Node _s) : G(_G), s(_s), reached(_G), pred(_G), dist(_G) {
+// bfs_queue.push(s);
+// for(NodeIt i=G.template first<NodeIt>(); i.valid(); ++i)
+// reached.set(i, false);
+// reached.set(s, true);
+// dist.set(s, 0);
+// }
+
+// void run() {
+// while (!bfs_queue.empty()) {
+// Node v=bfs_queue.front();
+// OutEdgeIt e=G.template first<OutEdgeIt>(v);
+// bfs_queue.pop();
+// for( ; e.valid(); ++e) {
+// Node w=G.bNode(e);
+// std::cout << "scan node " << G.id(w) << " from node " << G.id(v) << std::endl;
+// if (!reached.get(w)) {
+// std::cout << G.id(w) << " is newly reached :-)" << std::endl;
+// bfs_queue.push(w);
+// dist.set(w, dist.get(v)+1);
+// pred.set(w, e);
+// reached.set(w, true);
+// } else {
+// std::cout << G.id(w) << " is already reached" << std::endl;
+// }
+// }
+// }
+// }
+// };
+
+// template <typename Graph>
+// struct bfs_visitor {
+// typedef typename Graph::Node Node;
+// typedef typename Graph::Edge Edge;
+// typedef typename Graph::OutEdgeIt OutEdgeIt;
+// Graph& G;
+// bfs_visitor(Graph& _G) : G(_G) { }
+// void at_previously_reached(OutEdgeIt& e) {
+// //Node v=G.aNode(e);
+// Node w=G.bNode(e);
+// std::cout << G.id(w) << " is already reached" << std::endl;
+// }
+// void at_newly_reached(OutEdgeIt& e) {
+// //Node v=G.aNode(e);
+// Node w=G.bNode(e);
+// std::cout << G.id(w) << " is newly reached :-)" << std::endl;
+// }
+// };
+
+// template <typename Graph, typename ReachedMap, typename visitor_type>
+// struct bfs_iterator {
+// typedef typename Graph::Node Node;
+// typedef typename Graph::Edge Edge;
+// typedef typename Graph::OutEdgeIt OutEdgeIt;
+// Graph& G;
+// std::queue<OutEdgeIt>& bfs_queue;
+// ReachedMap& reached;
+// visitor_type& visitor;
+// void process() {
+// while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); }
+// if (bfs_queue.empty()) return;
+// OutEdgeIt e=bfs_queue.front();
+// //Node v=G.aNode(e);
+// Node w=G.bNode(e);
+// if (!reached.get(w)) {
+// visitor.at_newly_reached(e);
+// bfs_queue.push(G.template first<OutEdgeIt>(w));
+// reached.set(w, true);
+// } else {
+// visitor.at_previously_reached(e);
+// }
+// }
+// bfs_iterator(Graph& _G, std::queue<OutEdgeIt>& _bfs_queue, ReachedMap& _reached, visitor_type& _visitor) : G(_G), bfs_queue(_bfs_queue), reached(_reached), visitor(_visitor) {
+// //while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); }
+// valid();
+// }
+// bfs_iterator<Graph, ReachedMap, visitor_type>& operator++() {
+// //while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); }
+// //if (bfs_queue.empty()) return *this;
+// if (!valid()) return *this;
+// ++(bfs_queue.front());
+// //while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); }
+// valid();
+// return *this;
+// }
+// //void next() {
+// // while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); }
+// // if (bfs_queue.empty()) return;
+// // ++(bfs_queue.front());
+// // while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); }
+// //}
+// bool valid() {
+// while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); }
+// if (bfs_queue.empty()) return false; else return true;
+// }
+// //bool finished() {
+// // while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); }
+// // if (bfs_queue.empty()) return true; else return false;
+// //}
+// operator Edge () { return bfs_queue.front(); }
+
+// };
+
+// template <typename Graph, typename ReachedMap>
+// struct bfs_iterator1 {
+// typedef typename Graph::Node Node;
+// typedef typename Graph::Edge Edge;
+// typedef typename Graph::OutEdgeIt OutEdgeIt;
+// Graph& G;
+// std::queue<OutEdgeIt>& bfs_queue;
+// ReachedMap& reached;
+// bool _newly_reached;
+// bfs_iterator1(Graph& _G, std::queue<OutEdgeIt>& _bfs_queue, ReachedMap& _reached) : G(_G), bfs_queue(_bfs_queue), reached(_reached) {
+// valid();
+// if (!bfs_queue.empty() && bfs_queue.front().valid()) {
+// OutEdgeIt e=bfs_queue.front();
+// Node w=G.bNode(e);
+// if (!reached.get(w)) {
+// bfs_queue.push(G.template first<OutEdgeIt>(w));
+// reached.set(w, true);
+// _newly_reached=true;
+// } else {
+// _newly_reached=false;
+// }
+// }
+// }
+// bfs_iterator1<Graph, ReachedMap>& operator++() {
+// if (!valid()) return *this;
+// ++(bfs_queue.front());
+// valid();
+// if (!bfs_queue.empty() && bfs_queue.front().valid()) {
+// OutEdgeIt e=bfs_queue.front();
+// Node w=G.bNode(e);
+// if (!reached.get(w)) {
+// bfs_queue.push(G.template first<OutEdgeIt>(w));
+// reached.set(w, true);
+// _newly_reached=true;
+// } else {
+// _newly_reached=false;
+// }
+// }
+// return *this;
+// }
+// bool valid() {
+// while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); }
+// if (bfs_queue.empty()) return false; else return true;
+// }
+// operator OutEdgeIt() { return bfs_queue.front(); }
+// //ize
+// bool newly_reached() { return _newly_reached; }
+
+// };
+
+// template <typename Graph, typename OutEdgeIt, typename ReachedMap>
+// struct BfsIterator {
+// typedef typename Graph::Node Node;
+// Graph& G;
+// std::queue<OutEdgeIt>& bfs_queue;
+// ReachedMap& reached;
+// bool b_node_newly_reached;
+// OutEdgeIt actual_edge;
+// BfsIterator(Graph& _G,
+// std::queue<OutEdgeIt>& _bfs_queue,
+// ReachedMap& _reached) :
+// G(_G), bfs_queue(_bfs_queue), reached(_reached) {
+// actual_edge=bfs_queue.front();
+// if (actual_edge.valid()) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(G.firstOutEdge(w));
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// b_node_newly_reached=false;
+// }
+// }
+// }
+// BfsIterator<Graph, OutEdgeIt, ReachedMap>&
+// operator++() {
+// if (bfs_queue.front().valid()) {
+// ++(bfs_queue.front());
+// actual_edge=bfs_queue.front();
+// if (actual_edge.valid()) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(G.firstOutEdge(w));
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// b_node_newly_reached=false;
+// }
+// }
+// } else {
+// bfs_queue.pop();
+// actual_edge=bfs_queue.front();
+// if (actual_edge.valid()) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(G.firstOutEdge(w));
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// b_node_newly_reached=false;
+// }
+// }
+// }
+// return *this;
+// }
+// bool finished() { return bfs_queue.empty(); }
+// operator OutEdgeIt () { return actual_edge; }
+// bool bNodeIsNewlyReached() { return b_node_newly_reached; }
+// bool aNodeIsExamined() { return !(actual_edge.valid()); }
+// };
+
+
+// template <typename Graph, typename OutEdgeIt, typename ReachedMap>
+// struct DfsIterator {
+// typedef typename Graph::Node Node;
+// Graph& G;
+// std::stack<OutEdgeIt>& bfs_queue;
+// ReachedMap& reached;
+// bool b_node_newly_reached;
+// OutEdgeIt actual_edge;
+// DfsIterator(Graph& _G,
+// std::stack<OutEdgeIt>& _bfs_queue,
+// ReachedMap& _reached) :
+// G(_G), bfs_queue(_bfs_queue), reached(_reached) {
+// actual_edge=bfs_queue.top();
+// if (actual_edge.valid()) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(G.firstOutEdge(w));
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// ++(bfs_queue.top());
+// b_node_newly_reached=false;
+// }
+// } else {
+// bfs_queue.pop();
+// }
+// }
+// DfsIterator<Graph, OutEdgeIt, ReachedMap>&
+// operator++() {
+// actual_edge=bfs_queue.top();
+// if (actual_edge.valid()) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(G.firstOutEdge(w));
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// ++(bfs_queue.top());
+// b_node_newly_reached=false;
+// }
+// } else {
+// bfs_queue.pop();
+// }
+// return *this;
+// }
+// bool finished() { return bfs_queue.empty(); }
+// operator OutEdgeIt () { return actual_edge; }
+// bool bNodeIsNewlyReached() { return b_node_newly_reached; }
+// bool aNodeIsExamined() { return !(actual_edge.valid()); }
+// };
+
+// template <typename Graph, typename OutEdgeIt, typename ReachedMap>
+// struct BfsIterator1 {
+// typedef typename Graph::Node Node;
+// Graph& G;
+// std::queue<OutEdgeIt>& bfs_queue;
+// ReachedMap& reached;
+// bool b_node_newly_reached;
+// OutEdgeIt actual_edge;
+// BfsIterator1(Graph& _G,
+// std::queue<OutEdgeIt>& _bfs_queue,
+// ReachedMap& _reached) :
+// G(_G), bfs_queue(_bfs_queue), reached(_reached) {
+// actual_edge=bfs_queue.front();
+// if (actual_edge.valid()) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(OutEdgeIt(G, w));
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// b_node_newly_reached=false;
+// }
+// }
+// }
+// void next() {
+// if (bfs_queue.front().valid()) {
+// ++(bfs_queue.front());
+// actual_edge=bfs_queue.front();
+// if (actual_edge.valid()) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(OutEdgeIt(G, w));
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// b_node_newly_reached=false;
+// }
+// }
+// } else {
+// bfs_queue.pop();
+// actual_edge=bfs_queue.front();
+// if (actual_edge.valid()) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(OutEdgeIt(G, w));
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// b_node_newly_reached=false;
+// }
+// }
+// }
+// //return *this;
+// }
+// bool finished() { return bfs_queue.empty(); }
+// operator OutEdgeIt () { return actual_edge; }
+// bool bNodeIsNewlyReached() { return b_node_newly_reached; }
+// bool aNodeIsExamined() { return !(actual_edge.valid()); }
+// };
+
+
+// template <typename Graph, typename OutEdgeIt, typename ReachedMap>
+// struct DfsIterator1 {
+// typedef typename Graph::Node Node;
+// Graph& G;
+// std::stack<OutEdgeIt>& bfs_queue;
+// ReachedMap& reached;
+// bool b_node_newly_reached;
+// OutEdgeIt actual_edge;
+// DfsIterator1(Graph& _G,
+// std::stack<OutEdgeIt>& _bfs_queue,
+// ReachedMap& _reached) :
+// G(_G), bfs_queue(_bfs_queue), reached(_reached) {
+// //actual_edge=bfs_queue.top();
+// //if (actual_edge.valid()) {
+// // Node w=G.bNode(actual_edge);
+// //if (!reached.get(w)) {
+// // bfs_queue.push(OutEdgeIt(G, w));
+// // reached.set(w, true);
+// // b_node_newly_reached=true;
+// //} else {
+// // ++(bfs_queue.top());
+// // b_node_newly_reached=false;
+// //}
+// //} else {
+// // bfs_queue.pop();
+// //}
+// }
+// void next() {
+// actual_edge=bfs_queue.top();
+// if (actual_edge.valid()) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(OutEdgeIt(G, w));
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// ++(bfs_queue.top());
+// b_node_newly_reached=false;
+// }
+// } else {
+// bfs_queue.pop();
+// }
+// //return *this;
+// }
+// bool finished() { return bfs_queue.empty(); }
+// operator OutEdgeIt () { return actual_edge; }
+// bool bNodeIsNewlyReached() { return b_node_newly_reached; }
+// bool aNodeIsLeaved() { return !(actual_edge.valid()); }
+// };
+
+// template <typename Graph, typename OutEdgeIt, typename ReachedMap>
+// class BfsIterator2 {
+// typedef typename Graph::Node Node;
+// const Graph& G;
+// std::queue<OutEdgeIt> bfs_queue;
+// ReachedMap reached;
+// bool b_node_newly_reached;
+// OutEdgeIt actual_edge;
+// public:
+// BfsIterator2(const Graph& _G) : G(_G), reached(G, false) { }
+// void pushAndSetReached(Node s) {
+// reached.set(s, true);
+// if (bfs_queue.empty()) {
+// bfs_queue.push(G.template first<OutEdgeIt>(s));
+// actual_edge=bfs_queue.front();
+// if (actual_edge.valid()) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(G.template first<OutEdgeIt>(w));
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// b_node_newly_reached=false;
+// }
+// } //else {
+// //}
+// } else {
+// bfs_queue.push(G.template first<OutEdgeIt>(s));
+// }
+// }
+// BfsIterator2<Graph, OutEdgeIt, ReachedMap>&
+// operator++() {
+// if (bfs_queue.front().valid()) {
+// ++(bfs_queue.front());
+// actual_edge=bfs_queue.front();
+// if (actual_edge.valid()) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(G.template first<OutEdgeIt>(w));
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// b_node_newly_reached=false;
+// }
+// }
+// } else {
+// bfs_queue.pop();
+// if (!bfs_queue.empty()) {
+// actual_edge=bfs_queue.front();
+// if (actual_edge.valid()) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(G.template first<OutEdgeIt>(w));
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// b_node_newly_reached=false;
+// }
+// }
+// }
+// }
+// return *this;
+// }
+// bool finished() const { return bfs_queue.empty(); }
+// operator OutEdgeIt () const { return actual_edge; }
+// bool isBNodeNewlyReached() const { return b_node_newly_reached; }
+// bool isANodeExamined() const { return !(actual_edge.valid()); }
+// const ReachedMap& getReachedMap() const { return reached; }
+// const std::queue<OutEdgeIt>& getBfsQueue() const { return bfs_queue; }
+// };
+
+
+// template <typename Graph, typename OutEdgeIt, typename ReachedMap>
+// class BfsIterator3 {
+// typedef typename Graph::Node Node;
+// const Graph& G;
+// std::queue< std::pair<Node, OutEdgeIt> > bfs_queue;
+// ReachedMap reached;
+// bool b_node_newly_reached;
+// OutEdgeIt actual_edge;
+// public:
+// BfsIterator3(const Graph& _G) : G(_G), reached(G, false) { }
+// void pushAndSetReached(Node s) {
+// reached.set(s, true);
+// if (bfs_queue.empty()) {
+// bfs_queue.push(std::pair<Node, OutEdgeIt>(s, G.template first<OutEdgeIt>(s)));
+// actual_edge=bfs_queue.front().second;
+// if (actual_edge.valid()) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(std::pair<Node, OutEdgeIt>(w, G.template first<OutEdgeIt>(w)));
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// b_node_newly_reached=false;
+// }
+// } //else {
+// //}
+// } else {
+// bfs_queue.push(std::pair<Node, OutEdgeIt>(s, G.template first<OutEdgeIt>(s)));
+// }
+// }
+// BfsIterator3<Graph, OutEdgeIt, ReachedMap>&
+// operator++() {
+// if (bfs_queue.front().second.valid()) {
+// ++(bfs_queue.front().second);
+// actual_edge=bfs_queue.front().second;
+// if (actual_edge.valid()) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(std::pair<Node, OutEdgeIt>(w, G.template first<OutEdgeIt>(w)));
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// b_node_newly_reached=false;
+// }
+// }
+// } else {
+// bfs_queue.pop();
+// if (!bfs_queue.empty()) {
+// actual_edge=bfs_queue.front().second;
+// if (actual_edge.valid()) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(std::pair<Node, OutEdgeIt>(w, G.template first<OutEdgeIt>(w)));
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// b_node_newly_reached=false;
+// }
+// }
+// }
+// }
+// return *this;
+// }
+// bool finished() const { return bfs_queue.empty(); }
+// operator OutEdgeIt () const { return actual_edge; }
+// bool isBNodeNewlyReached() const { return b_node_newly_reached; }
+// bool isANodeExamined() const { return !(actual_edge.valid()); }
+// Node aNode() const { return bfs_queue.front().first; }
+// Node bNode() const { return G.bNode(actual_edge); }
+// const ReachedMap& getReachedMap() const { return reached; }
+// //const std::queue< std::pair<Node, OutEdgeIt> >& getBfsQueue() const { return bfs_queue; }
+// };
+
+
+// template <typename Graph, typename OutEdgeIt,
+// typename ReachedMap/*=typename Graph::NodeMap<bool>*/ >
+// class BfsIterator4 {
+// typedef typename Graph::Node Node;
+// const Graph& G;
+// std::queue<Node> bfs_queue;
+// ReachedMap& reached;
+// bool b_node_newly_reached;
+// OutEdgeIt actual_edge;
+// bool own_reached_map;
+// public:
+// BfsIterator4(const Graph& _G, ReachedMap& _reached) :
+// G(_G), reached(_reached),
+// own_reached_map(false) { }
+// BfsIterator4(const Graph& _G) :
+// G(_G), reached(*(new ReachedMap(G /*, false*/))),
+// own_reached_map(true) { }
+// ~BfsIterator4() { if (own_reached_map) delete &reached; }
+// void pushAndSetReached(Node s) {
+// //std::cout << "mimi" << &reached << std::endl;
+// reached.set(s, true);
+// //std::cout << "mumus" << std::endl;
+// if (bfs_queue.empty()) {
+// //std::cout << "bibi1" << std::endl;
+// bfs_queue.push(s);
+// //std::cout << "zizi" << std::endl;
+// G./*getF*/first(actual_edge, s);
+// //std::cout << "kiki" << std::endl;
+// if (G.valid(actual_edge)/*.valid()*/) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(w);
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// b_node_newly_reached=false;
+// }
+// }
+// } else {
+// //std::cout << "bibi2" << std::endl;
+// bfs_queue.push(s);
+// }
+// }
+// BfsIterator4<Graph, OutEdgeIt, ReachedMap>&
+// operator++() {
+// if (G.valid(actual_edge)/*.valid()*/) {
+// /*++*/G.next(actual_edge);
+// if (G.valid(actual_edge)/*.valid()*/) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(w);
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// b_node_newly_reached=false;
+// }
+// }
+// } else {
+// bfs_queue.pop();
+// if (!bfs_queue.empty()) {
+// G./*getF*/first(actual_edge, bfs_queue.front());
+// if (G.valid(actual_edge)/*.valid()*/) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(w);
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// b_node_newly_reached=false;
+// }
+// }
+// }
+// }
+// return *this;
+// }
+// bool finished() const { return bfs_queue.empty(); }
+// operator OutEdgeIt () const { return actual_edge; }
+// bool isBNodeNewlyReached() const { return b_node_newly_reached; }
+// bool isANodeExamined() const { return !(G.valid(actual_edge)/*.valid()*/); }
+// Node aNode() const { return bfs_queue.front(); }
+// Node bNode() const { return G.bNode(actual_edge); }
+// const ReachedMap& getReachedMap() const { return reached; }
+// const std::queue<Node>& getBfsQueue() const { return bfs_queue; }
+// };
+
+
+ template <typename GraphWrapper, /*typename OutEdgeIt,*/
+ typename ReachedMap/*=typename GraphWrapper::NodeMap<bool>*/ >
+ class BfsIterator5 {
+ typedef typename GraphWrapper::Node Node;
+ typedef typename GraphWrapper::OutEdgeIt OutEdgeIt;
+ GraphWrapper G;
+ std::queue<Node> bfs_queue;
+ ReachedMap& reached;
+ bool b_node_newly_reached;
+ OutEdgeIt actual_edge;
+ bool own_reached_map;
+ public:
+ BfsIterator5(const GraphWrapper& _G, ReachedMap& _reached) :
+ G(_G), reached(_reached),
+ own_reached_map(false) { }
+ BfsIterator5(const GraphWrapper& _G) :
+ G(_G), reached(*(new ReachedMap(G /*, false*/))),
+ own_reached_map(true) { }
+// BfsIterator5(const typename GraphWrapper::BaseGraph& _G,
+// ReachedMap& _reached) :
+// G(_G), reached(_reached),
+// own_reached_map(false) { }
+// BfsIterator5(const typename GraphWrapper::BaseGraph& _G) :
+// G(_G), reached(*(new ReachedMap(G /*, false*/))),
+// own_reached_map(true) { }
+ ~BfsIterator5() { if (own_reached_map) delete &reached; }
+ void pushAndSetReached(Node s) {
+ reached.set(s, true);
+ if (bfs_queue.empty()) {
+ bfs_queue.push(s);
+ G./*getF*/first(actual_edge, s);
+ if (G.valid(actual_edge)/*.valid()*/) {
+ Node w=G.bNode(actual_edge);
+ if (!reached.get(w)) {
+ bfs_queue.push(w);
+ reached.set(w, true);
+ b_node_newly_reached=true;
+ } else {
+ b_node_newly_reached=false;
+ }
+ }
+ } else {
+ bfs_queue.push(s);
+ }
+ }
+ BfsIterator5<GraphWrapper, /*OutEdgeIt,*/ ReachedMap>&
+ operator++() {
+ if (G.valid(actual_edge)/*.valid()*/) {
+ /*++*/G.next(actual_edge);
+ if (G.valid(actual_edge)/*.valid()*/) {
+ Node w=G.bNode(actual_edge);
+ if (!reached.get(w)) {
+ bfs_queue.push(w);
+ reached.set(w, true);
+ b_node_newly_reached=true;
+ } else {
+ b_node_newly_reached=false;
+ }
+ }
+ } else {
+ bfs_queue.pop();
+ if (!bfs_queue.empty()) {
+ G./*getF*/first(actual_edge, bfs_queue.front());
+ if (G.valid(actual_edge)/*.valid()*/) {
+ Node w=G.bNode(actual_edge);
+ if (!reached.get(w)) {
+ bfs_queue.push(w);
+ reached.set(w, true);
+ b_node_newly_reached=true;
+ } else {
+ b_node_newly_reached=false;
+ }
+ }
+ }
+ }
+ return *this;
+ }
+ bool finished() const { return bfs_queue.empty(); }
+ operator OutEdgeIt () const { return actual_edge; }
+ bool isBNodeNewlyReached() const { return b_node_newly_reached; }
+ bool isANodeExamined() const { return !(G.valid(actual_edge)/*.valid()*/); }
+ Node aNode() const { return bfs_queue.front(); }
+ Node bNode() const { return G.bNode(actual_edge); }
+ const ReachedMap& getReachedMap() const { return reached; }
+ const std::queue<Node>& getBfsQueue() const { return bfs_queue; }
+ };
+
+// template <typename Graph, typename OutEdgeIt,
+// typename ReachedMap/*=typename Graph::NodeMap<bool>*/ >
+// class DfsIterator4 {
+// typedef typename Graph::Node Node;
+// const Graph& G;
+// std::stack<OutEdgeIt> dfs_stack;
+// bool b_node_newly_reached;
+// OutEdgeIt actual_edge;
+// Node actual_node;
+// ReachedMap& reached;
+// bool own_reached_map;
+// public:
+// DfsIterator4(const Graph& _G, ReachedMap& _reached) :
+// G(_G), reached(_reached),
+// own_reached_map(false) { }
+// DfsIterator4(const Graph& _G) :
+// G(_G), reached(*(new ReachedMap(G /*, false*/))),
+// own_reached_map(true) { }
+// ~DfsIterator4() { if (own_reached_map) delete &reached; }
+// void pushAndSetReached(Node s) {
+// actual_node=s;
+// reached.set(s, true);
+// dfs_stack.push(G.template first<OutEdgeIt>(s));
+// }
+// DfsIterator4<Graph, OutEdgeIt, ReachedMap>&
+// operator++() {
+// actual_edge=dfs_stack.top();
+// //actual_node=G.aNode(actual_edge);
+// if (G.valid(actual_edge)/*.valid()*/) {
+// Node w=G.bNode(actual_edge);
+// actual_node=w;
+// if (!reached.get(w)) {
+// dfs_stack.push(G.template first<OutEdgeIt>(w));
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// actual_node=G.aNode(actual_edge);
+// /*++*/G.next(dfs_stack.top());
+// b_node_newly_reached=false;
+// }
+// } else {
+// //actual_node=G.aNode(dfs_stack.top());
+// dfs_stack.pop();
+// }
+// return *this;
+// }
+// bool finished() const { return dfs_stack.empty(); }
+// operator OutEdgeIt () const { return actual_edge; }
+// bool isBNodeNewlyReached() const { return b_node_newly_reached; }
+// bool isANodeExamined() const { return !(G.valid(actual_edge)/*.valid()*/); }
+// Node aNode() const { return actual_node; /*FIXME*/}
+// Node bNode() const { return G.bNode(actual_edge); }
+// const ReachedMap& getReachedMap() const { return reached; }
+// const std::stack<OutEdgeIt>& getDfsStack() const { return dfs_stack; }
+// };
+
+ template <typename GraphWrapper, /*typename OutEdgeIt,*/
+ typename ReachedMap/*=typename GraphWrapper::NodeMap<bool>*/ >
+ class DfsIterator5 {
+ typedef typename GraphWrapper::Node Node;
+ typedef typename GraphWrapper::OutEdgeIt OutEdgeIt;
+ GraphWrapper G;
+ std::stack<OutEdgeIt> dfs_stack;
+ bool b_node_newly_reached;
+ OutEdgeIt actual_edge;
+ Node actual_node;
+ ReachedMap& reached;
+ bool own_reached_map;
+ public:
+ DfsIterator5(const GraphWrapper& _G, ReachedMap& _reached) :
+ G(_G), reached(_reached),
+ own_reached_map(false) { }
+ DfsIterator5(const GraphWrapper& _G) :
+ G(_G), reached(*(new ReachedMap(G /*, false*/))),
+ own_reached_map(true) { }
+ ~DfsIterator5() { if (own_reached_map) delete &reached; }
+ void pushAndSetReached(Node s) {
+ actual_node=s;
+ reached.set(s, true);
+ OutEdgeIt e;
+ G.first(e, s);
+ dfs_stack.push(e);
+ }
+ DfsIterator5<GraphWrapper, /*OutEdgeIt,*/ ReachedMap>&
+ operator++() {
+ actual_edge=dfs_stack.top();
+ //actual_node=G.aNode(actual_edge);
+ if (G.valid(actual_edge)/*.valid()*/) {
+ Node w=G.bNode(actual_edge);
+ actual_node=w;
+ if (!reached.get(w)) {
+ OutEdgeIt e;
+ G.first(e, w);
+ dfs_stack.push(e);
+ reached.set(w, true);
+ b_node_newly_reached=true;
+ } else {
+ actual_node=G.aNode(actual_edge);
+ /*++*/G.next(dfs_stack.top());
+ b_node_newly_reached=false;
+ }
+ } else {
+ //actual_node=G.aNode(dfs_stack.top());
+ dfs_stack.pop();
+ }
+ return *this;
+ }
+ bool finished() const { return dfs_stack.empty(); }
+ operator OutEdgeIt () const { return actual_edge; }
+ bool isBNodeNewlyReached() const { return b_node_newly_reached; }
+ bool isANodeExamined() const { return !(G.valid(actual_edge)/*.valid()*/); }
+ Node aNode() const { return actual_node; /*FIXME*/}
+ Node bNode() const { return G.bNode(actual_edge); }
+ const ReachedMap& getReachedMap() const { return reached; }
+ const std::stack<OutEdgeIt>& getDfsStack() const { return dfs_stack; }
+ };
+
+
+
+} // namespace hugo
+
+#endif //HUGO_BFS_ITERATOR_H
Added: hugo/trunk/src/work/marci/experiment/bfs_iterator_1.h
==============================================================================
--- (empty file)
+++ hugo/trunk/src/work/marci/experiment/bfs_iterator_1.h Sat Apr 3 19:26:46 2004
@@ -0,0 +1,841 @@
+// -*- c++ -*-
+#ifndef HUGO_BFS_ITERATOR_H
+#define HUGO_BFS_ITERATOR_H
+
+#include <queue>
+#include <stack>
+#include <utility>
+#include <graph_wrapper_1.h>
+
+namespace hugo {
+
+// template <typename Graph>
+// struct bfs {
+// typedef typename Graph::Node Node;
+// typedef typename Graph::Edge Edge;
+// typedef typename Graph::NodeIt NodeIt;
+// typedef typename Graph::OutEdgeIt OutEdgeIt;
+// Graph& G;
+// Node s;
+// typename Graph::NodeMap<bool> reached;
+// typename Graph::NodeMap<Edge> pred;
+// typename Graph::NodeMap<int> dist;
+// std::queue<Node> bfs_queue;
+// bfs(Graph& _G, Node _s) : G(_G), s(_s), reached(_G), pred(_G), dist(_G) {
+// bfs_queue.push(s);
+// for(NodeIt i=G.template first<NodeIt>(); i.valid(); ++i)
+// reached.set(i, false);
+// reached.set(s, true);
+// dist.set(s, 0);
+// }
+
+// void run() {
+// while (!bfs_queue.empty()) {
+// Node v=bfs_queue.front();
+// OutEdgeIt e=G.template first<OutEdgeIt>(v);
+// bfs_queue.pop();
+// for( ; e.valid(); ++e) {
+// Node w=G.bNode(e);
+// std::cout << "scan node " << G.id(w) << " from node " << G.id(v) << std::endl;
+// if (!reached.get(w)) {
+// std::cout << G.id(w) << " is newly reached :-)" << std::endl;
+// bfs_queue.push(w);
+// dist.set(w, dist.get(v)+1);
+// pred.set(w, e);
+// reached.set(w, true);
+// } else {
+// std::cout << G.id(w) << " is already reached" << std::endl;
+// }
+// }
+// }
+// }
+// };
+
+// template <typename Graph>
+// struct bfs_visitor {
+// typedef typename Graph::Node Node;
+// typedef typename Graph::Edge Edge;
+// typedef typename Graph::OutEdgeIt OutEdgeIt;
+// Graph& G;
+// bfs_visitor(Graph& _G) : G(_G) { }
+// void at_previously_reached(OutEdgeIt& e) {
+// //Node v=G.aNode(e);
+// Node w=G.bNode(e);
+// std::cout << G.id(w) << " is already reached" << std::endl;
+// }
+// void at_newly_reached(OutEdgeIt& e) {
+// //Node v=G.aNode(e);
+// Node w=G.bNode(e);
+// std::cout << G.id(w) << " is newly reached :-)" << std::endl;
+// }
+// };
+
+// template <typename Graph, typename ReachedMap, typename visitor_type>
+// struct bfs_iterator {
+// typedef typename Graph::Node Node;
+// typedef typename Graph::Edge Edge;
+// typedef typename Graph::OutEdgeIt OutEdgeIt;
+// Graph& G;
+// std::queue<OutEdgeIt>& bfs_queue;
+// ReachedMap& reached;
+// visitor_type& visitor;
+// void process() {
+// while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); }
+// if (bfs_queue.empty()) return;
+// OutEdgeIt e=bfs_queue.front();
+// //Node v=G.aNode(e);
+// Node w=G.bNode(e);
+// if (!reached.get(w)) {
+// visitor.at_newly_reached(e);
+// bfs_queue.push(G.template first<OutEdgeIt>(w));
+// reached.set(w, true);
+// } else {
+// visitor.at_previously_reached(e);
+// }
+// }
+// bfs_iterator(Graph& _G, std::queue<OutEdgeIt>& _bfs_queue, ReachedMap& _reached, visitor_type& _visitor) : G(_G), bfs_queue(_bfs_queue), reached(_reached), visitor(_visitor) {
+// //while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); }
+// valid();
+// }
+// bfs_iterator<Graph, ReachedMap, visitor_type>& operator++() {
+// //while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); }
+// //if (bfs_queue.empty()) return *this;
+// if (!valid()) return *this;
+// ++(bfs_queue.front());
+// //while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); }
+// valid();
+// return *this;
+// }
+// //void next() {
+// // while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); }
+// // if (bfs_queue.empty()) return;
+// // ++(bfs_queue.front());
+// // while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); }
+// //}
+// bool valid() {
+// while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); }
+// if (bfs_queue.empty()) return false; else return true;
+// }
+// //bool finished() {
+// // while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); }
+// // if (bfs_queue.empty()) return true; else return false;
+// //}
+// operator Edge () { return bfs_queue.front(); }
+
+// };
+
+// template <typename Graph, typename ReachedMap>
+// struct bfs_iterator1 {
+// typedef typename Graph::Node Node;
+// typedef typename Graph::Edge Edge;
+// typedef typename Graph::OutEdgeIt OutEdgeIt;
+// Graph& G;
+// std::queue<OutEdgeIt>& bfs_queue;
+// ReachedMap& reached;
+// bool _newly_reached;
+// bfs_iterator1(Graph& _G, std::queue<OutEdgeIt>& _bfs_queue, ReachedMap& _reached) : G(_G), bfs_queue(_bfs_queue), reached(_reached) {
+// valid();
+// if (!bfs_queue.empty() && bfs_queue.front().valid()) {
+// OutEdgeIt e=bfs_queue.front();
+// Node w=G.bNode(e);
+// if (!reached.get(w)) {
+// bfs_queue.push(G.template first<OutEdgeIt>(w));
+// reached.set(w, true);
+// _newly_reached=true;
+// } else {
+// _newly_reached=false;
+// }
+// }
+// }
+// bfs_iterator1<Graph, ReachedMap>& operator++() {
+// if (!valid()) return *this;
+// ++(bfs_queue.front());
+// valid();
+// if (!bfs_queue.empty() && bfs_queue.front().valid()) {
+// OutEdgeIt e=bfs_queue.front();
+// Node w=G.bNode(e);
+// if (!reached.get(w)) {
+// bfs_queue.push(G.template first<OutEdgeIt>(w));
+// reached.set(w, true);
+// _newly_reached=true;
+// } else {
+// _newly_reached=false;
+// }
+// }
+// return *this;
+// }
+// bool valid() {
+// while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); }
+// if (bfs_queue.empty()) return false; else return true;
+// }
+// operator OutEdgeIt() { return bfs_queue.front(); }
+// //ize
+// bool newly_reached() { return _newly_reached; }
+
+// };
+
+// template <typename Graph, typename OutEdgeIt, typename ReachedMap>
+// struct BfsIterator {
+// typedef typename Graph::Node Node;
+// Graph& G;
+// std::queue<OutEdgeIt>& bfs_queue;
+// ReachedMap& reached;
+// bool b_node_newly_reached;
+// OutEdgeIt actual_edge;
+// BfsIterator(Graph& _G,
+// std::queue<OutEdgeIt>& _bfs_queue,
+// ReachedMap& _reached) :
+// G(_G), bfs_queue(_bfs_queue), reached(_reached) {
+// actual_edge=bfs_queue.front();
+// if (actual_edge.valid()) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(G.firstOutEdge(w));
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// b_node_newly_reached=false;
+// }
+// }
+// }
+// BfsIterator<Graph, OutEdgeIt, ReachedMap>&
+// operator++() {
+// if (bfs_queue.front().valid()) {
+// ++(bfs_queue.front());
+// actual_edge=bfs_queue.front();
+// if (actual_edge.valid()) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(G.firstOutEdge(w));
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// b_node_newly_reached=false;
+// }
+// }
+// } else {
+// bfs_queue.pop();
+// actual_edge=bfs_queue.front();
+// if (actual_edge.valid()) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(G.firstOutEdge(w));
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// b_node_newly_reached=false;
+// }
+// }
+// }
+// return *this;
+// }
+// bool finished() { return bfs_queue.empty(); }
+// operator OutEdgeIt () { return actual_edge; }
+// bool bNodeIsNewlyReached() { return b_node_newly_reached; }
+// bool aNodeIsExamined() { return !(actual_edge.valid()); }
+// };
+
+
+// template <typename Graph, typename OutEdgeIt, typename ReachedMap>
+// struct DfsIterator {
+// typedef typename Graph::Node Node;
+// Graph& G;
+// std::stack<OutEdgeIt>& bfs_queue;
+// ReachedMap& reached;
+// bool b_node_newly_reached;
+// OutEdgeIt actual_edge;
+// DfsIterator(Graph& _G,
+// std::stack<OutEdgeIt>& _bfs_queue,
+// ReachedMap& _reached) :
+// G(_G), bfs_queue(_bfs_queue), reached(_reached) {
+// actual_edge=bfs_queue.top();
+// if (actual_edge.valid()) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(G.firstOutEdge(w));
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// ++(bfs_queue.top());
+// b_node_newly_reached=false;
+// }
+// } else {
+// bfs_queue.pop();
+// }
+// }
+// DfsIterator<Graph, OutEdgeIt, ReachedMap>&
+// operator++() {
+// actual_edge=bfs_queue.top();
+// if (actual_edge.valid()) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(G.firstOutEdge(w));
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// ++(bfs_queue.top());
+// b_node_newly_reached=false;
+// }
+// } else {
+// bfs_queue.pop();
+// }
+// return *this;
+// }
+// bool finished() { return bfs_queue.empty(); }
+// operator OutEdgeIt () { return actual_edge; }
+// bool bNodeIsNewlyReached() { return b_node_newly_reached; }
+// bool aNodeIsExamined() { return !(actual_edge.valid()); }
+// };
+
+// template <typename Graph, typename OutEdgeIt, typename ReachedMap>
+// struct BfsIterator1 {
+// typedef typename Graph::Node Node;
+// Graph& G;
+// std::queue<OutEdgeIt>& bfs_queue;
+// ReachedMap& reached;
+// bool b_node_newly_reached;
+// OutEdgeIt actual_edge;
+// BfsIterator1(Graph& _G,
+// std::queue<OutEdgeIt>& _bfs_queue,
+// ReachedMap& _reached) :
+// G(_G), bfs_queue(_bfs_queue), reached(_reached) {
+// actual_edge=bfs_queue.front();
+// if (actual_edge.valid()) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(OutEdgeIt(G, w));
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// b_node_newly_reached=false;
+// }
+// }
+// }
+// void next() {
+// if (bfs_queue.front().valid()) {
+// ++(bfs_queue.front());
+// actual_edge=bfs_queue.front();
+// if (actual_edge.valid()) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(OutEdgeIt(G, w));
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// b_node_newly_reached=false;
+// }
+// }
+// } else {
+// bfs_queue.pop();
+// actual_edge=bfs_queue.front();
+// if (actual_edge.valid()) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(OutEdgeIt(G, w));
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// b_node_newly_reached=false;
+// }
+// }
+// }
+// //return *this;
+// }
+// bool finished() { return bfs_queue.empty(); }
+// operator OutEdgeIt () { return actual_edge; }
+// bool bNodeIsNewlyReached() { return b_node_newly_reached; }
+// bool aNodeIsExamined() { return !(actual_edge.valid()); }
+// };
+
+
+// template <typename Graph, typename OutEdgeIt, typename ReachedMap>
+// struct DfsIterator1 {
+// typedef typename Graph::Node Node;
+// Graph& G;
+// std::stack<OutEdgeIt>& bfs_queue;
+// ReachedMap& reached;
+// bool b_node_newly_reached;
+// OutEdgeIt actual_edge;
+// DfsIterator1(Graph& _G,
+// std::stack<OutEdgeIt>& _bfs_queue,
+// ReachedMap& _reached) :
+// G(_G), bfs_queue(_bfs_queue), reached(_reached) {
+// //actual_edge=bfs_queue.top();
+// //if (actual_edge.valid()) {
+// // Node w=G.bNode(actual_edge);
+// //if (!reached.get(w)) {
+// // bfs_queue.push(OutEdgeIt(G, w));
+// // reached.set(w, true);
+// // b_node_newly_reached=true;
+// //} else {
+// // ++(bfs_queue.top());
+// // b_node_newly_reached=false;
+// //}
+// //} else {
+// // bfs_queue.pop();
+// //}
+// }
+// void next() {
+// actual_edge=bfs_queue.top();
+// if (actual_edge.valid()) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(OutEdgeIt(G, w));
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// ++(bfs_queue.top());
+// b_node_newly_reached=false;
+// }
+// } else {
+// bfs_queue.pop();
+// }
+// //return *this;
+// }
+// bool finished() { return bfs_queue.empty(); }
+// operator OutEdgeIt () { return actual_edge; }
+// bool bNodeIsNewlyReached() { return b_node_newly_reached; }
+// bool aNodeIsLeaved() { return !(actual_edge.valid()); }
+// };
+
+// template <typename Graph, typename OutEdgeIt, typename ReachedMap>
+// class BfsIterator2 {
+// typedef typename Graph::Node Node;
+// const Graph& G;
+// std::queue<OutEdgeIt> bfs_queue;
+// ReachedMap reached;
+// bool b_node_newly_reached;
+// OutEdgeIt actual_edge;
+// public:
+// BfsIterator2(const Graph& _G) : G(_G), reached(G, false) { }
+// void pushAndSetReached(Node s) {
+// reached.set(s, true);
+// if (bfs_queue.empty()) {
+// bfs_queue.push(G.template first<OutEdgeIt>(s));
+// actual_edge=bfs_queue.front();
+// if (actual_edge.valid()) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(G.template first<OutEdgeIt>(w));
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// b_node_newly_reached=false;
+// }
+// } //else {
+// //}
+// } else {
+// bfs_queue.push(G.template first<OutEdgeIt>(s));
+// }
+// }
+// BfsIterator2<Graph, OutEdgeIt, ReachedMap>&
+// operator++() {
+// if (bfs_queue.front().valid()) {
+// ++(bfs_queue.front());
+// actual_edge=bfs_queue.front();
+// if (actual_edge.valid()) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(G.template first<OutEdgeIt>(w));
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// b_node_newly_reached=false;
+// }
+// }
+// } else {
+// bfs_queue.pop();
+// if (!bfs_queue.empty()) {
+// actual_edge=bfs_queue.front();
+// if (actual_edge.valid()) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(G.template first<OutEdgeIt>(w));
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// b_node_newly_reached=false;
+// }
+// }
+// }
+// }
+// return *this;
+// }
+// bool finished() const { return bfs_queue.empty(); }
+// operator OutEdgeIt () const { return actual_edge; }
+// bool isBNodeNewlyReached() const { return b_node_newly_reached; }
+// bool isANodeExamined() const { return !(actual_edge.valid()); }
+// const ReachedMap& getReachedMap() const { return reached; }
+// const std::queue<OutEdgeIt>& getBfsQueue() const { return bfs_queue; }
+// };
+
+
+// template <typename Graph, typename OutEdgeIt, typename ReachedMap>
+// class BfsIterator3 {
+// typedef typename Graph::Node Node;
+// const Graph& G;
+// std::queue< std::pair<Node, OutEdgeIt> > bfs_queue;
+// ReachedMap reached;
+// bool b_node_newly_reached;
+// OutEdgeIt actual_edge;
+// public:
+// BfsIterator3(const Graph& _G) : G(_G), reached(G, false) { }
+// void pushAndSetReached(Node s) {
+// reached.set(s, true);
+// if (bfs_queue.empty()) {
+// bfs_queue.push(std::pair<Node, OutEdgeIt>(s, G.template first<OutEdgeIt>(s)));
+// actual_edge=bfs_queue.front().second;
+// if (actual_edge.valid()) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(std::pair<Node, OutEdgeIt>(w, G.template first<OutEdgeIt>(w)));
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// b_node_newly_reached=false;
+// }
+// } //else {
+// //}
+// } else {
+// bfs_queue.push(std::pair<Node, OutEdgeIt>(s, G.template first<OutEdgeIt>(s)));
+// }
+// }
+// BfsIterator3<Graph, OutEdgeIt, ReachedMap>&
+// operator++() {
+// if (bfs_queue.front().second.valid()) {
+// ++(bfs_queue.front().second);
+// actual_edge=bfs_queue.front().second;
+// if (actual_edge.valid()) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(std::pair<Node, OutEdgeIt>(w, G.template first<OutEdgeIt>(w)));
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// b_node_newly_reached=false;
+// }
+// }
+// } else {
+// bfs_queue.pop();
+// if (!bfs_queue.empty()) {
+// actual_edge=bfs_queue.front().second;
+// if (actual_edge.valid()) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(std::pair<Node, OutEdgeIt>(w, G.template first<OutEdgeIt>(w)));
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// b_node_newly_reached=false;
+// }
+// }
+// }
+// }
+// return *this;
+// }
+// bool finished() const { return bfs_queue.empty(); }
+// operator OutEdgeIt () const { return actual_edge; }
+// bool isBNodeNewlyReached() const { return b_node_newly_reached; }
+// bool isANodeExamined() const { return !(actual_edge.valid()); }
+// Node aNode() const { return bfs_queue.front().first; }
+// Node bNode() const { return G.bNode(actual_edge); }
+// const ReachedMap& getReachedMap() const { return reached; }
+// //const std::queue< std::pair<Node, OutEdgeIt> >& getBfsQueue() const { return bfs_queue; }
+// };
+
+
+// template <typename Graph, typename OutEdgeIt,
+// typename ReachedMap/*=typename Graph::NodeMap<bool>*/ >
+// class BfsIterator4 {
+// typedef typename Graph::Node Node;
+// const Graph& G;
+// std::queue<Node> bfs_queue;
+// ReachedMap& reached;
+// bool b_node_newly_reached;
+// OutEdgeIt actual_edge;
+// bool own_reached_map;
+// public:
+// BfsIterator4(const Graph& _G, ReachedMap& _reached) :
+// G(_G), reached(_reached),
+// own_reached_map(false) { }
+// BfsIterator4(const Graph& _G) :
+// G(_G), reached(*(new ReachedMap(G /*, false*/))),
+// own_reached_map(true) { }
+// ~BfsIterator4() { if (own_reached_map) delete &reached; }
+// void pushAndSetReached(Node s) {
+// //std::cout << "mimi" << &reached << std::endl;
+// reached.set(s, true);
+// //std::cout << "mumus" << std::endl;
+// if (bfs_queue.empty()) {
+// //std::cout << "bibi1" << std::endl;
+// bfs_queue.push(s);
+// //std::cout << "zizi" << std::endl;
+// G./*getF*/first(actual_edge, s);
+// //std::cout << "kiki" << std::endl;
+// if (G.valid(actual_edge)/*.valid()*/) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(w);
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// b_node_newly_reached=false;
+// }
+// }
+// } else {
+// //std::cout << "bibi2" << std::endl;
+// bfs_queue.push(s);
+// }
+// }
+// BfsIterator4<Graph, OutEdgeIt, ReachedMap>&
+// operator++() {
+// if (G.valid(actual_edge)/*.valid()*/) {
+// /*++*/G.next(actual_edge);
+// if (G.valid(actual_edge)/*.valid()*/) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(w);
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// b_node_newly_reached=false;
+// }
+// }
+// } else {
+// bfs_queue.pop();
+// if (!bfs_queue.empty()) {
+// G./*getF*/first(actual_edge, bfs_queue.front());
+// if (G.valid(actual_edge)/*.valid()*/) {
+// Node w=G.bNode(actual_edge);
+// if (!reached.get(w)) {
+// bfs_queue.push(w);
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// b_node_newly_reached=false;
+// }
+// }
+// }
+// }
+// return *this;
+// }
+// bool finished() const { return bfs_queue.empty(); }
+// operator OutEdgeIt () const { return actual_edge; }
+// bool isBNodeNewlyReached() const { return b_node_newly_reached; }
+// bool isANodeExamined() const { return !(G.valid(actual_edge)/*.valid()*/); }
+// Node aNode() const { return bfs_queue.front(); }
+// Node bNode() const { return G.bNode(actual_edge); }
+// const ReachedMap& getReachedMap() const { return reached; }
+// const std::queue<Node>& getBfsQueue() const { return bfs_queue; }
+// };
+
+
+ template <typename GraphWrapper, /*typename OutEdgeIt,*/
+ typename ReachedMap/*=typename GraphWrapper::NodeMap<bool>*/ >
+ class BfsIterator5 {
+ typedef typename GraphWrapper::Node Node;
+ typedef typename GraphWrapper::OutEdgeIt OutEdgeIt;
+ const GraphWrapper* g;
+ std::queue<Node> bfs_queue;
+ ReachedMap& reached;
+ bool b_node_newly_reached;
+ OutEdgeIt actual_edge;
+ bool own_reached_map;
+ public:
+ BfsIterator5(const GraphWrapper& _g, ReachedMap& _reached) :
+ g(&_g), reached(_reached),
+ own_reached_map(false) { }
+ BfsIterator5(const GraphWrapper& _g) :
+ g(&_g), reached(*(new ReachedMap(*g /*, false*/))),
+ own_reached_map(true) { }
+// BfsIterator5(const typename GraphWrapper::BaseGraph& _G,
+// ReachedMap& _reached) :
+// G(_G), reached(_reached),
+// own_reached_map(false) { }
+// BfsIterator5(const typename GraphWrapper::BaseGraph& _G) :
+// G(_G), reached(*(new ReachedMap(G /*, false*/))),
+// own_reached_map(true) { }
+ ~BfsIterator5() { if (own_reached_map) delete &reached; }
+ void pushAndSetReached(Node s) {
+ reached.set(s, true);
+ if (bfs_queue.empty()) {
+ bfs_queue.push(s);
+ g->first(actual_edge, s);
+ if (g->valid(actual_edge)) {
+ Node w=g->bNode(actual_edge);
+ if (!reached.get(w)) {
+ bfs_queue.push(w);
+ reached.set(w, true);
+ b_node_newly_reached=true;
+ } else {
+ b_node_newly_reached=false;
+ }
+ }
+ } else {
+ bfs_queue.push(s);
+ }
+ }
+ BfsIterator5<GraphWrapper, /*OutEdgeIt,*/ ReachedMap>&
+ operator++() {
+ if (g->valid(actual_edge)) {
+ g->next(actual_edge);
+ if (g->valid(actual_edge)) {
+ Node w=g->bNode(actual_edge);
+ if (!reached.get(w)) {
+ bfs_queue.push(w);
+ reached.set(w, true);
+ b_node_newly_reached=true;
+ } else {
+ b_node_newly_reached=false;
+ }
+ }
+ } else {
+ bfs_queue.pop();
+ if (!bfs_queue.empty()) {
+ g->first(actual_edge, bfs_queue.front());
+ if (g->valid(actual_edge)) {
+ Node w=g->bNode(actual_edge);
+ if (!reached.get(w)) {
+ bfs_queue.push(w);
+ reached.set(w, true);
+ b_node_newly_reached=true;
+ } else {
+ b_node_newly_reached=false;
+ }
+ }
+ }
+ }
+ return *this;
+ }
+ bool finished() const { return bfs_queue.empty(); }
+ operator OutEdgeIt () const { return actual_edge; }
+ bool isBNodeNewlyReached() const { return b_node_newly_reached; }
+ bool isANodeExamined() const { return !(g->valid(actual_edge)); }
+ Node aNode() const { return bfs_queue.front(); }
+ Node bNode() const { return g->bNode(actual_edge); }
+ const ReachedMap& getReachedMap() const { return reached; }
+ const std::queue<Node>& getBfsQueue() const { return bfs_queue; }
+ };
+
+// template <typename Graph, typename OutEdgeIt,
+// typename ReachedMap/*=typename Graph::NodeMap<bool>*/ >
+// class DfsIterator4 {
+// typedef typename Graph::Node Node;
+// const Graph& G;
+// std::stack<OutEdgeIt> dfs_stack;
+// bool b_node_newly_reached;
+// OutEdgeIt actual_edge;
+// Node actual_node;
+// ReachedMap& reached;
+// bool own_reached_map;
+// public:
+// DfsIterator4(const Graph& _G, ReachedMap& _reached) :
+// G(_G), reached(_reached),
+// own_reached_map(false) { }
+// DfsIterator4(const Graph& _G) :
+// G(_G), reached(*(new ReachedMap(G /*, false*/))),
+// own_reached_map(true) { }
+// ~DfsIterator4() { if (own_reached_map) delete &reached; }
+// void pushAndSetReached(Node s) {
+// actual_node=s;
+// reached.set(s, true);
+// dfs_stack.push(G.template first<OutEdgeIt>(s));
+// }
+// DfsIterator4<Graph, OutEdgeIt, ReachedMap>&
+// operator++() {
+// actual_edge=dfs_stack.top();
+// //actual_node=G.aNode(actual_edge);
+// if (G.valid(actual_edge)/*.valid()*/) {
+// Node w=G.bNode(actual_edge);
+// actual_node=w;
+// if (!reached.get(w)) {
+// dfs_stack.push(G.template first<OutEdgeIt>(w));
+// reached.set(w, true);
+// b_node_newly_reached=true;
+// } else {
+// actual_node=G.aNode(actual_edge);
+// /*++*/G.next(dfs_stack.top());
+// b_node_newly_reached=false;
+// }
+// } else {
+// //actual_node=G.aNode(dfs_stack.top());
+// dfs_stack.pop();
+// }
+// return *this;
+// }
+// bool finished() const { return dfs_stack.empty(); }
+// operator OutEdgeIt () const { return actual_edge; }
+// bool isBNodeNewlyReached() const { return b_node_newly_reached; }
+// bool isANodeExamined() const { return !(G.valid(actual_edge)/*.valid()*/); }
+// Node aNode() const { return actual_node; /*FIXME*/}
+// Node bNode() const { return G.bNode(actual_edge); }
+// const ReachedMap& getReachedMap() const { return reached; }
+// const std::stack<OutEdgeIt>& getDfsStack() const { return dfs_stack; }
+// };
+
+ template <typename GraphWrapper, /*typename OutEdgeIt,*/
+ typename ReachedMap/*=typename GraphWrapper::NodeMap<bool>*/ >
+ class DfsIterator5 {
+ typedef typename GraphWrapper::Node Node;
+ typedef typename GraphWrapper::OutEdgeIt OutEdgeIt;
+ const GraphWrapper* g;
+ std::stack<OutEdgeIt> dfs_stack;
+ bool b_node_newly_reached;
+ OutEdgeIt actual_edge;
+ Node actual_node;
+ ReachedMap& reached;
+ bool own_reached_map;
+ public:
+ DfsIterator5(const GraphWrapper& _g, ReachedMap& _reached) :
+ g(&_g), reached(_reached),
+ own_reached_map(false) { }
+ DfsIterator5(const GraphWrapper& _g) :
+ g(&_g), reached(*(new ReachedMap(*g /*, false*/))),
+ own_reached_map(true) { }
+ ~DfsIterator5() { if (own_reached_map) delete &reached; }
+ void pushAndSetReached(Node s) {
+ actual_node=s;
+ reached.set(s, true);
+ OutEdgeIt e;
+ g->first(e, s);
+ dfs_stack.push(e);
+ }
+ DfsIterator5<GraphWrapper, /*OutEdgeIt,*/ ReachedMap>&
+ operator++() {
+ actual_edge=dfs_stack.top();
+ //actual_node=G.aNode(actual_edge);
+ if (g->valid(actual_edge)/*.valid()*/) {
+ Node w=g->bNode(actual_edge);
+ actual_node=w;
+ if (!reached.get(w)) {
+ OutEdgeIt e;
+ g->first(e, w);
+ dfs_stack.push(e);
+ reached.set(w, true);
+ b_node_newly_reached=true;
+ } else {
+ actual_node=g->aNode(actual_edge);
+ g->next(dfs_stack.top());
+ b_node_newly_reached=false;
+ }
+ } else {
+ //actual_node=G.aNode(dfs_stack.top());
+ dfs_stack.pop();
+ }
+ return *this;
+ }
+ bool finished() const { return dfs_stack.empty(); }
+ operator OutEdgeIt () const { return actual_edge; }
+ bool isBNodeNewlyReached() const { return b_node_newly_reached; }
+ bool isANodeExamined() const { return !(g->valid(actual_edge)); }
+ Node aNode() const { return actual_node; /*FIXME*/}
+ Node bNode() const { return G.bNode(actual_edge); }
+ const ReachedMap& getReachedMap() const { return reached; }
+ const std::stack<OutEdgeIt>& getDfsStack() const { return dfs_stack; }
+ };
+
+
+
+} // namespace hugo
+
+#endif //HUGO_BFS_ITERATOR_H
Added: hugo/trunk/src/work/marci/experiment/deref_vs_optimization
==============================================================================
--- (empty file)
+++ hugo/trunk/src/work/marci/experiment/deref_vs_optimization Sat Apr 3 19:26:46 2004
@@ -0,0 +1,147 @@
+-O0:
+
+marci at karp:~/etik-ol/src/demo/marci/experiment$ ./edmonds_karp_demo < ../flow-1.dim
+edmonds karp demo (physical blocking flow augmentation)...
+elapsed time: u: 1.11s, s: 0.02s, cu: 0s, cs: 0s, real: 1.23456s
+number of augmentation phases: 3
+flow value: 6068
+edmonds karp demo (physical blocking flow 1 augmentation)...
+elapsed time: u: 0.78s, s: 0s, cu: 0s, cs: 0s, real: 0.851246s
+number of augmentation phases: 3
+flow value: 6068
+edmonds karp demo (on-the-fly blocking flow augmentation)...
+elapsed time: u: 1.02s, s: 0s, cu: 0s, cs: 0s, real: 1.12829s
+number of augmentation phases: 3
+flow value: 6068
+edmonds karp demo (on-the-fly shortest path augmentation)...
+elapsed time: u: 76.09s, s: 0.77s, cu: 0s, cs: 0s, real: 127.892s
+number of augmentation phases: 1854
+flow value: 6068
+
+marci at karp:~/etik-ol/src/demo/marci/experiment$ ./edmonds_karp_demo_1 < ../flow-1.dim
+edmonds karp demo (physical blocking flow augmentation)...
+elapsed time: u: 1.04s, s: 0.01s, cu: 0s, cs: 0s, real: 1.1643s
+number of augmentation phases: 3
+flow value: 6068
+edmonds karp demo (physical blocking flow 1 augmentation)...
+elapsed time: u: 0.73s, s: 0s, cu: 0s, cs: 0s, real: 1.29574s
+number of augmentation phases: 3
+flow value: 6068
+edmonds karp demo (on-the-fly blocking flow augmentation)...
+elapsed time: u: 0.96s, s: 0.01s, cu: 0s, cs: 0s, real: 1.05265s
+number of augmentation phases: 3
+flow value: 6068
+edmonds karp demo (on-the-fly shortest path augmentation)...
+elapsed time: u: 72.65s, s: 0.67s, cu: 0s, cs: 0s, real: 79.8199s
+number of augmentation phases: 1854
+flow value: 6068
+
+marci at linux:~/etik-ol/src/demo/marci/experiment> ./edmonds_karp_demo < ../flow-1.dim
+edmonds karp demo (physical blocking flow augmentation)...
+elapsed time: u: 3.04s, s: 0.01s, cu: 0s, cs: 0s, real: 3.09736s
+number of augmentation phases: 3
+flow value: 6068
+edmonds karp demo (physical blocking flow 1 augmentation)...
+elapsed time: u: 2.22s, s: 0.02s, cu: 0s, cs: 0s, real: 2.26504s
+number of augmentation phases: 3
+flow value: 6068
+edmonds karp demo (on-the-fly blocking flow augmentation)...
+elapsed time: u: 2.88s, s: 0.01s, cu: 0s, cs: 0s, real: 3.03116s
+number of augmentation phases: 3
+flow value: 6068
+edmonds karp demo (on-the-fly shortest path augmentation)...
+elapsed time: u: 201.69s, s: 0.08s, cu: 0s, cs: 0s, real: 203.99s
+number of augmentation phases: 1854
+flow value: 6068
+
+marci at linux:~/etik-ol/src/demo/marci/experiment> ./edmonds_karp_demo_1 < ../flow-1.dim
+edmonds karp demo (physical blocking flow augmentation)...
+elapsed time: u: 3s, s: 0.04s, cu: 0s, cs: 0s, real: 3.19728s
+number of augmentation phases: 3
+flow value: 6068
+edmonds karp demo (physical blocking flow 1 augmentation)...
+elapsed time: u: 2.21s, s: 0.03s, cu: 0s, cs: 0s, real: 2.25725s
+number of augmentation phases: 3
+flow value: 6068
+edmonds karp demo (on-the-fly blocking flow augmentation)...
+elapsed time: u: 2.82s, s: 0s, cu: 0s, cs: 0s, real: 2.83294s
+number of augmentation phases: 3
+flow value: 6068
+edmonds karp demo (on-the-fly shortest path augmentation)...
+elapsed time: u: 203.39s, s: 0.07s, cu: 0s, cs: 0s, real: 204.401s
+number of augmentation phases: 1854
+flow value: 6068
+
+-03:
+
+marci at karp:~/etik-ol/src/demo/marci/experiment$ ./edmonds_karp_demo < ../flow-1.dim
+edmonds karp demo (physical blocking flow augmentation)...
+elapsed time: u: 0.36s, s: 0.01s, cu: 0s, cs: 0s, real: 1.13854s
+number of augmentation phases: 3
+flow value: 6068
+edmonds karp demo (physical blocking flow 1 augmentation)...
+elapsed time: u: 0.23s, s: 0s, cu: 0s, cs: 0s, real: 0.243452s
+number of augmentation phases: 3
+flow value: 6068
+edmonds karp demo (on-the-fly blocking flow augmentation)...
+elapsed time: u: 0.32s, s: 0.01s, cu: 0s, cs: 0s, real: 0.339224s
+number of augmentation phases: 3
+flow value: 6068
+edmonds karp demo (on-the-fly shortest path augmentation)...
+elapsed time: u: 26.98s, s: 0.29s, cu: 0s, cs: 0s, real: 32.2458s
+number of augmentation phases: 1854
+flow value: 6068
+
+marci at karp:~/etik-ol/src/demo/marci/experiment$ ./edmonds_karp_demo_1 < ../flow-1.dim
+edmonds karp demo (physical blocking flow augmentation)...
+elapsed time: u: 0.37s, s: 0.01s, cu: 0s, cs: 0s, real: 0.402523s
+number of augmentation phases: 3
+flow value: 6068
+edmonds karp demo (physical blocking flow 1 augmentation)...
+elapsed time: u: 0.22s, s: 0s, cu: 0s, cs: 0s, real: 0.244878s
+number of augmentation phases: 3
+flow value: 6068
+edmonds karp demo (on-the-fly blocking flow augmentation)...
+elapsed time: u: 0.32s, s: 0.01s, cu: 0s, cs: 0s, real: 0.353093s
+number of augmentation phases: 3
+flow value: 6068
+edmonds karp demo (on-the-fly shortest path augmentation)...
+elapsed time: u: 27.02s, s: 0.34s, cu: 0s, cs: 0s, real: 30.0516s
+number of augmentation phases: 1854
+flow value: 6068
+
+marci at linux:~/etik-ol/src/demo/marci/experiment> ./edmonds_karp_demo < ../flow-1.dim
+edmonds karp demo (physical blocking flow augmentation)...
+elapsed time: u: 0.91s, s: 0.01s, cu: 0s, cs: 0s, real: 0.938415s
+number of augmentation phases: 3
+flow value: 6068
+edmonds karp demo (physical blocking flow 1 augmentation)...
+elapsed time: u: 0.61s, s: 0.01s, cu: 0s, cs: 0s, real: 0.62244s
+number of augmentation phases: 3
+flow value: 6068
+edmonds karp demo (on-the-fly blocking flow augmentation)...
+elapsed time: u: 0.88s, s: 0s, cu: 0s, cs: 0s, real: 0.914984s
+number of augmentation phases: 3
+flow value: 6068
+edmonds karp demo (on-the-fly shortest path augmentation)...
+elapsed time: u: 66.55s, s: 0.09s, cu: 0s, cs: 0s, real: 67.5525s
+number of augmentation phases: 1854
+flow value: 6068
+
+marci at linux:~/etik-ol/src/demo/marci/experiment> ./edmonds_karp_demo_1 < ../flow-1.dim
+edmonds karp demo (physical blocking flow augmentation)...
+elapsed time: u: 0.85s, s: 0s, cu: 0s, cs: 0s, real: 0.858786s
+number of augmentation phases: 3
+flow value: 6068
+edmonds karp demo (physical blocking flow 1 augmentation)...
+elapsed time: u: 0.58s, s: 0.03s, cu: 0s, cs: 0s, real: 0.61541s
+number of augmentation phases: 3
+flow value: 6068
+edmonds karp demo (on-the-fly blocking flow augmentation)...
+elapsed time: u: 0.85s, s: 0s, cu: 0s, cs: 0s, real: 0.85847s
+number of augmentation phases: 3
+flow value: 6068
+edmonds karp demo (on-the-fly shortest path augmentation)...
+elapsed time: u: 66.71s, s: 0.06s, cu: 0s, cs: 0s, real: 68.0292s
+number of augmentation phases: 1854
+flow value: 6068
Added: hugo/trunk/src/work/marci/experiment/deref_vs_optimization_lenyeg
==============================================================================
--- (empty file)
+++ hugo/trunk/src/work/marci/experiment/deref_vs_optimization_lenyeg Sat Apr 3 19:26:46 2004
@@ -0,0 +1,83 @@
+-O0:
+
+marci at karp:~/etik-ol/src/demo/marci/experiment$ ./edmonds_karp_demo < ../flow-1.dim
+edmonds karp demo (physical blocking flow augmentation)...
+elapsed time: u: 1.11s, s: 0.02s, cu: 0s, cs: 0s, real: 1.23456s
+edmonds karp demo (physical blocking flow 1 augmentation)...
+elapsed time: u: 0.78s, s: 0s, cu: 0s, cs: 0s, real: 0.851246s
+edmonds karp demo (on-the-fly blocking flow augmentation)...
+elapsed time: u: 1.02s, s: 0s, cu: 0s, cs: 0s, real: 1.12829s
+edmonds karp demo (on-the-fly shortest path augmentation)...
+elapsed time: u: 76.09s, s: 0.77s, cu: 0s, cs: 0s, real: 127.892s
+
+marci at karp:~/etik-ol/src/demo/marci/experiment$ ./edmonds_karp_demo_1 < ../flow-1.dim
+edmonds karp demo (physical blocking flow augmentation)...
+elapsed time: u: 1.04s, s: 0.01s, cu: 0s, cs: 0s, real: 1.1643s
+edmonds karp demo (physical blocking flow 1 augmentation)...
+elapsed time: u: 0.73s, s: 0s, cu: 0s, cs: 0s, real: 1.29574s
+edmonds karp demo (on-the-fly blocking flow augmentation)...
+elapsed time: u: 0.96s, s: 0.01s, cu: 0s, cs: 0s, real: 1.05265s
+edmonds karp demo (on-the-fly shortest path augmentation)...
+elapsed time: u: 72.65s, s: 0.67s, cu: 0s, cs: 0s, real: 79.8199s
+
+marci at linux:~/etik-ol/src/demo/marci/experiment> ./edmonds_karp_demo < ../flow-1.dim
+edmonds karp demo (physical blocking flow augmentation)...
+elapsed time: u: 3.04s, s: 0.01s, cu: 0s, cs: 0s, real: 3.09736s
+edmonds karp demo (physical blocking flow 1 augmentation)...
+elapsed time: u: 2.22s, s: 0.02s, cu: 0s, cs: 0s, real: 2.26504s
+edmonds karp demo (on-the-fly blocking flow augmentation)...
+elapsed time: u: 2.88s, s: 0.01s, cu: 0s, cs: 0s, real: 3.03116s
+edmonds karp demo (on-the-fly shortest path augmentation)...
+elapsed time: u: 201.69s, s: 0.08s, cu: 0s, cs: 0s, real: 203.99s
+
+marci at linux:~/etik-ol/src/demo/marci/experiment> ./edmonds_karp_demo_1 < ../flow-1.dim
+edmonds karp demo (physical blocking flow augmentation)...
+elapsed time: u: 3s, s: 0.04s, cu: 0s, cs: 0s, real: 3.19728s
+edmonds karp demo (physical blocking flow 1 augmentation)...
+elapsed time: u: 2.21s, s: 0.03s, cu: 0s, cs: 0s, real: 2.25725s
+edmonds karp demo (on-the-fly blocking flow augmentation)...
+elapsed time: u: 2.82s, s: 0s, cu: 0s, cs: 0s, real: 2.83294s
+edmonds karp demo (on-the-fly shortest path augmentation)...
+elapsed time: u: 203.39s, s: 0.07s, cu: 0s, cs: 0s, real: 204.401s
+
+-03:
+
+marci at karp:~/etik-ol/src/demo/marci/experiment$ ./edmonds_karp_demo < ../flow-1.dim
+edmonds karp demo (physical blocking flow augmentation)...
+elapsed time: u: 0.36s, s: 0.01s, cu: 0s, cs: 0s, real: 1.13854s
+edmonds karp demo (physical blocking flow 1 augmentation)...
+elapsed time: u: 0.23s, s: 0s, cu: 0s, cs: 0s, real: 0.243452s
+edmonds karp demo (on-the-fly blocking flow augmentation)...
+elapsed time: u: 0.32s, s: 0.01s, cu: 0s, cs: 0s, real: 0.339224s
+edmonds karp demo (on-the-fly shortest path augmentation)...
+elapsed time: u: 26.98s, s: 0.29s, cu: 0s, cs: 0s, real: 32.2458s
+
+marci at karp:~/etik-ol/src/demo/marci/experiment$ ./edmonds_karp_demo_1 < ../flow-1.dim
+edmonds karp demo (physical blocking flow augmentation)...
+elapsed time: u: 0.37s, s: 0.01s, cu: 0s, cs: 0s, real: 0.402523s
+edmonds karp demo (physical blocking flow 1 augmentation)...
+elapsed time: u: 0.22s, s: 0s, cu: 0s, cs: 0s, real: 0.244878s
+edmonds karp demo (on-the-fly blocking flow augmentation)...
+elapsed time: u: 0.32s, s: 0.01s, cu: 0s, cs: 0s, real: 0.353093s
+edmonds karp demo (on-the-fly shortest path augmentation)...
+elapsed time: u: 27.02s, s: 0.34s, cu: 0s, cs: 0s, real: 30.0516s
+
+marci at linux:~/etik-ol/src/demo/marci/experiment> ./edmonds_karp_demo < ../flow-1.dim
+edmonds karp demo (physical blocking flow augmentation)...
+elapsed time: u: 0.91s, s: 0.01s, cu: 0s, cs: 0s, real: 0.938415s
+edmonds karp demo (physical blocking flow 1 augmentation)...
+elapsed time: u: 0.61s, s: 0.01s, cu: 0s, cs: 0s, real: 0.62244s
+edmonds karp demo (on-the-fly blocking flow augmentation)...
+elapsed time: u: 0.88s, s: 0s, cu: 0s, cs: 0s, real: 0.914984s
+edmonds karp demo (on-the-fly shortest path augmentation)...
+elapsed time: u: 66.55s, s: 0.09s, cu: 0s, cs: 0s, real: 67.5525s
+
+marci at linux:~/etik-ol/src/demo/marci/experiment> ./edmonds_karp_demo_1 < ../flow-1.dim
+edmonds karp demo (physical blocking flow augmentation)...
+elapsed time: u: 0.85s, s: 0s, cu: 0s, cs: 0s, real: 0.858786s
+edmonds karp demo (physical blocking flow 1 augmentation)...
+elapsed time: u: 0.58s, s: 0.03s, cu: 0s, cs: 0s, real: 0.61541s
+edmonds karp demo (on-the-fly blocking flow augmentation)...
+elapsed time: u: 0.85s, s: 0s, cu: 0s, cs: 0s, real: 0.85847s
+edmonds karp demo (on-the-fly shortest path augmentation)...
+elapsed time: u: 66.71s, s: 0.06s, cu: 0s, cs: 0s, real: 68.0292s
Added: hugo/trunk/src/work/marci/experiment/edmonds_karp.h
==============================================================================
--- (empty file)
+++ hugo/trunk/src/work/marci/experiment/edmonds_karp.h Sat Apr 3 19:26:46 2004
@@ -0,0 +1,1238 @@
+// -*- c++ -*-
+#ifndef HUGO_EDMONDS_KARP_H
+#define HUGO_EDMONDS_KARP_H
+
+#include <algorithm>
+#include <list>
+#include <iterator>
+
+#include <bfs_iterator.h>
+#include <invalid.h>
+
+namespace hugo {
+
+ template<typename Graph, typename Number, typename FlowMap, typename CapacityMap>
+ class ResGraph {
+ public:
+ typedef typename Graph::Node Node;
+ typedef typename Graph::NodeIt NodeIt;
+ private:
+ typedef typename Graph::SymEdgeIt OldSymEdgeIt;
+ const Graph& G;
+ FlowMap& flow;
+ const CapacityMap& capacity;
+ public:
+ ResGraph(const Graph& _G, FlowMap& _flow,
+ const CapacityMap& _capacity) :
+ G(_G), flow(_flow), capacity(_capacity) { }
+
+ class Edge;
+ class OutEdgeIt;
+ friend class Edge;
+ friend class OutEdgeIt;
+
+ class Edge {
+ friend class ResGraph<Graph, Number, FlowMap, CapacityMap>;
+ protected:
+ const ResGraph<Graph, Number, FlowMap, CapacityMap>* resG;
+ OldSymEdgeIt sym;
+ public:
+ Edge() { }
+ //Edge(const Edge& e) : resG(e.resG), sym(e.sym) { }
+ Number free() const {
+ if (resG->G.aNode(sym)==resG->G.tail(sym)) {
+ return (resG->capacity.get(sym)-resG->flow.get(sym));
+ } else {
+ return (resG->flow.get(sym));
+ }
+ }
+ bool valid() const { return sym.valid(); }
+ void augment(Number a) const {
+ if (resG->G.aNode(sym)==resG->G.tail(sym)) {
+ resG->flow.set(sym, resG->flow.get(sym)+a);
+ //resG->flow[sym]+=a;
+ } else {
+ resG->flow.set(sym, resG->flow.get(sym)-a);
+ //resG->flow[sym]-=a;
+ }
+ }
+ };
+
+ class OutEdgeIt : public Edge {
+ friend class ResGraph<Graph, Number, FlowMap, CapacityMap>;
+ public:
+ OutEdgeIt() { }
+ //OutEdgeIt(const OutEdgeIt& e) { resG=e.resG; sym=e.sym; }
+ private:
+ OutEdgeIt(const ResGraph<Graph, Number, FlowMap, CapacityMap>& _resG, Node v) {
+ resG=&_resG;
+ sym=resG->G.template first<OldSymEdgeIt>(v);
+ while( sym.valid() && !(free()>0) ) { ++sym; }
+ }
+ public:
+ OutEdgeIt& operator++() {
+ ++sym;
+ while( sym.valid() && !(free()>0) ) { ++sym; }
+ return *this;
+ }
+ };
+
+ void /*getF*/first(OutEdgeIt& e, Node v) const {
+ e=OutEdgeIt(*this, v);
+ }
+ void /*getF*/first(NodeIt& v) const { G./*getF*/first(v); }
+
+ template< typename It >
+ It first() const {
+ It e;
+ /*getF*/first(e);
+ return e;
+ }
+
+ template< typename It >
+ It first(Node v) const {
+ It e;
+ /*getF*/first(e, v);
+ return e;
+ }
+
+ Node tail(Edge e) const { return G.aNode(e.sym); }
+ Node head(Edge e) const { return G.bNode(e.sym); }
+
+ Node aNode(OutEdgeIt e) const { return G.aNode(e.sym); }
+ Node bNode(OutEdgeIt e) const { return G.bNode(e.sym); }
+
+ int id(Node v) const { return G.id(v); }
+
+ template <typename S>
+ class NodeMap {
+ typename Graph::NodeMap<S> node_map;
+ public:
+ NodeMap(const ResGraph<Graph, Number, FlowMap, CapacityMap>& _G) : node_map(_G.G) { }
+ NodeMap(const ResGraph<Graph, Number, FlowMap, CapacityMap>& _G, S a) : node_map(_G.G, a) { }
+ void set(Node nit, S a) { node_map.set(nit, a); }
+ S get(Node nit) const { return node_map.get(nit); }
+ S& operator[](Node nit) { return node_map[nit]; }
+ const S& operator[](Node nit) const { return node_map[nit]; }
+ };
+
+ };
+
+
+ template<typename Graph, typename Number, typename FlowMap, typename CapacityMap>
+ class ResGraph2 {
+ public:
+ typedef typename Graph::Node Node;
+ typedef typename Graph::NodeIt NodeIt;
+ private:
+ //typedef typename Graph::SymEdgeIt OldSymEdgeIt;
+ typedef typename Graph::OutEdgeIt OldOutEdgeIt;
+ typedef typename Graph::InEdgeIt OldInEdgeIt;
+
+ const Graph& G;
+ FlowMap& flow;
+ const CapacityMap& capacity;
+ public:
+ ResGraph2(const Graph& _G, FlowMap& _flow,
+ const CapacityMap& _capacity) :
+ G(_G), flow(_flow), capacity(_capacity) { }
+
+ class Edge;
+ class OutEdgeIt;
+ friend class Edge;
+ friend class OutEdgeIt;
+
+ class Edge {
+ friend class ResGraph2<Graph, Number, FlowMap, CapacityMap>;
+ protected:
+ const ResGraph2<Graph, Number, FlowMap, CapacityMap>* resG;
+ //OldSymEdgeIt sym;
+ OldOutEdgeIt out;
+ OldInEdgeIt in;
+ bool out_or_in; //true, iff out
+ public:
+ Edge() : out_or_in(true) { }
+ Number free() const {
+ if (out_or_in) {
+ return (resG->capacity.get(out)-resG->flow.get(out));
+ } else {
+ return (resG->flow.get(in));
+ }
+ }
+ bool valid() const {
+ return out_or_in && out.valid() || in.valid(); }
+ void augment(Number a) const {
+ if (out_or_in) {
+ resG->flow.set(out, resG->flow.get(out)+a);
+ } else {
+ resG->flow.set(in, resG->flow.get(in)-a);
+ }
+ }
+ };
+
+ class OutEdgeIt : public Edge {
+ friend class ResGraph2<Graph, Number, FlowMap, CapacityMap>;
+ public:
+ OutEdgeIt() { }
+ private:
+ OutEdgeIt(const ResGraph2<Graph, Number, FlowMap, CapacityMap>& _resG, Node v) {
+ resG=&_resG;
+ out=resG->G.template first<OldOutEdgeIt>(v);
+ while( out.valid() && !(free()>0) ) { ++out; }
+ if (!out.valid()) {
+ out_or_in=0;
+ in=resG->G.template first<OldInEdgeIt>(v);
+ while( in.valid() && !(free()>0) ) { ++in; }
+ }
+ }
+ public:
+ OutEdgeIt& operator++() {
+ if (out_or_in) {
+ Node v=resG->G.aNode(out);
+ ++out;
+ while( out.valid() && !(free()>0) ) { ++out; }
+ if (!out.valid()) {
+ out_or_in=0;
+ in=resG->G.template first<OldInEdgeIt>(v);
+ while( in.valid() && !(free()>0) ) { ++in; }
+ }
+ } else {
+ ++in;
+ while( in.valid() && !(free()>0) ) { ++in; }
+ }
+ return *this;
+ }
+ };
+
+ void /*getF*/first(OutEdgeIt& e, Node v) const {
+ e=OutEdgeIt(*this, v);
+ }
+ void /*getF*/first(NodeIt& v) const { G./*getF*/first(v); }
+
+ template< typename It >
+ It first() const {
+ It e;
+ /*getF*/first(e);
+ return e;
+ }
+
+ template< typename It >
+ It first(Node v) const {
+ It e;
+ /*getF*/first(e, v);
+ return e;
+ }
+
+ Node tail(Edge e) const {
+ return ((e.out_or_in) ? G.aNode(e.out) : G.aNode(e.in)); }
+ Node head(Edge e) const {
+ return ((e.out_or_in) ? G.bNode(e.out) : G.bNode(e.in)); }
+
+ Node aNode(OutEdgeIt e) const {
+ return ((e.out_or_in) ? G.aNode(e.out) : G.aNode(e.in)); }
+ Node bNode(OutEdgeIt e) const {
+ return ((e.out_or_in) ? G.bNode(e.out) : G.bNode(e.in)); }
+
+ int id(Node v) const { return G.id(v); }
+
+ template <typename S>
+ class NodeMap {
+ typename Graph::NodeMap<S> node_map;
+ public:
+ NodeMap(const ResGraph2<Graph, Number, FlowMap, CapacityMap>& _G) : node_map(_G.G) { }
+ NodeMap(const ResGraph2<Graph, Number, FlowMap, CapacityMap>& _G, S a) : node_map(_G.G, a) { }
+ void set(Node nit, S a) { node_map.set(nit, a); }
+ S get(Node nit) const { return node_map.get(nit); }
+ };
+ };
+
+
+ template <typename GraphWrapper, typename Number, typename FlowMap, typename CapacityMap>
+ class MaxFlow {
+ protected:
+ typedef GraphWrapper GW;
+ typedef typename GW::Node Node;
+ typedef typename GW::Edge Edge;
+ typedef typename GW::EdgeIt EdgeIt;
+ typedef typename GW::OutEdgeIt OutEdgeIt;
+ typedef typename GW::InEdgeIt InEdgeIt;
+ //const Graph* G;
+ GW gw;
+ Node s;
+ Node t;
+ FlowMap* flow;
+ const CapacityMap* capacity;
+ typedef ResGraphWrapper<GW, Number, FlowMap, CapacityMap > ResGW;
+ typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
+ typedef typename ResGW::Edge ResGWEdge;
+ public:
+
+ MaxFlow(const GW& _gw, Node _s, Node _t, FlowMap& _flow, const CapacityMap& _capacity) :
+ gw(_gw), s(_s), t(_t), flow(&_flow), capacity(&_capacity) { }
+
+ bool augmentOnShortestPath() {
+ ResGW res_graph(gw, *flow, *capacity);
+ bool _augment=false;
+
+ typedef typename ResGW::NodeMap<bool> ReachedMap;
+ BfsIterator5< ResGW, ReachedMap > bfs(res_graph);
+ bfs.pushAndSetReached(s);
+
+ typename ResGW::NodeMap<ResGWEdge> pred(res_graph);
+ pred.set(s, INVALID);
+
+ typename ResGW::NodeMap<Number> free(res_graph);
+
+ //searching for augmenting path
+ while ( !bfs.finished() ) {
+ ResGWOutEdgeIt e=bfs;
+ if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
+ Node v=res_graph.tail(e);
+ Node w=res_graph.head(e);
+ pred.set(w, e);
+ if (res_graph.valid(pred.get(v))) {
+ free.set(w, std::min(free.get(v), res_graph.resCap(e)));
+ } else {
+ free.set(w, res_graph.resCap(e));
+ }
+ if (res_graph.head(e)==t) { _augment=true; break; }
+ }
+
+ ++bfs;
+ } //end of searching augmenting path
+
+ if (_augment) {
+ Node n=t;
+ Number augment_value=free.get(t);
+ while (res_graph.valid(pred.get(n))) {
+ ResGWEdge e=pred.get(n);
+ res_graph.augment(e, augment_value);
+ n=res_graph.tail(e);
+ }
+ }
+
+ return _augment;
+ }
+
+ template<typename MapGraphWrapper>
+ class DistanceMap {
+ protected:
+ MapGraphWrapper gw;
+ typename MapGraphWrapper::NodeMap<int> dist;
+ public:
+ DistanceMap(MapGraphWrapper& _gw) : gw(_gw), dist(_gw, _gw.nodeNum()) { }
+ void set(const typename MapGraphWrapper::Node& n, int a) { dist[n]=a; }
+ int get(const typename MapGraphWrapper::Node& n) const { return dist[n]; }
+ bool get(const typename MapGraphWrapper::Edge& e) const {
+ return (dist.get(gw.tail(e))<dist.get(gw.head(e)));
+ }
+ };
+
+ template<typename MutableGraph> bool augmentOnBlockingFlow() {
+ typedef MutableGraph MG;
+ bool _augment=false;
+
+ ResGW res_graph(gw, *flow, *capacity);
+
+ typedef typename ResGW::NodeMap<bool> ReachedMap;
+ BfsIterator5< ResGW, ReachedMap > bfs(res_graph);
+
+ bfs.pushAndSetReached(s);
+ //typename ResGW::NodeMap<int> dist(res_graph); //filled up with 0's
+ DistanceMap<ResGW> dist(res_graph);
+ while ( !bfs.finished() ) {
+ ResGWOutEdgeIt e=bfs;
+ if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
+ dist.set(res_graph.head(e), dist.get(res_graph.tail(e))+1);
+ }
+ ++bfs;
+ } //computing distances from s in the residual graph
+
+ MG F;
+ typedef SubGraphWrapper<ResGW, DistanceMap<ResGW> > FilterResGW;
+ FilterResGW filter_res_graph(res_graph, dist);
+ typename ResGW::NodeMap<typename MG::Node> res_graph_to_F(res_graph);
+ {
+ typename ResGW::NodeIt n;
+ for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) {
+ res_graph_to_F.set(n, F.addNode());
+ }
+ }
+
+ typename MG::Node sF=res_graph_to_F.get(s);
+ typename MG::Node tF=res_graph_to_F.get(t);
+ typename MG::EdgeMap<ResGWEdge> original_edge(F);
+ typename MG::EdgeMap<Number> residual_capacity(F);
+
+ //Making F to the graph containing the edges of the residual graph
+ //which are in some shortest paths
+ {
+ typename FilterResGW::EdgeIt e;
+ for(filter_res_graph.first(e); filter_res_graph.valid(e); filter_res_graph.next(e)) {
+ //if (dist.get(res_graph.head(e))==dist.get(res_graph.tail(e))+1) {
+ typename MG::Edge f=F.addEdge(res_graph_to_F.get(res_graph.tail(e)), res_graph_to_F.get(res_graph.head(e)));
+ original_edge.update();
+ original_edge.set(f, e);
+ residual_capacity.update();
+ residual_capacity.set(f, res_graph.resCap(e));
+ //}
+ }
+ }
+
+ bool __augment=true;
+
+ while (__augment) {
+ __augment=false;
+ //computing blocking flow with dfs
+ typedef typename TrivGraphWrapper<MG>::NodeMap<bool> BlockingReachedMap;
+ DfsIterator5< TrivGraphWrapper<MG>, BlockingReachedMap > dfs(F);
+ typename MG::NodeMap<typename MG::Edge> pred(F);
+ pred.set(sF, INVALID);
+ //invalid iterators for sources
+
+ typename MG::NodeMap<Number> free(F);
+
+ dfs.pushAndSetReached(sF);
+ while (!dfs.finished()) {
+ ++dfs;
+ if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) {
+ if (dfs.isBNodeNewlyReached()) {
+ typename MG::Node v=F.aNode(dfs);
+ typename MG::Node w=F.bNode(dfs);
+ pred.set(w, dfs);
+ if (F.valid(pred.get(v))) {
+ free.set(w, std::min(free.get(v), residual_capacity.get(dfs)));
+ } else {
+ free.set(w, residual_capacity.get(dfs));
+ }
+ if (w==tF) {
+ __augment=true;
+ _augment=true;
+ break;
+ }
+
+ } else {
+ F.erase(/*typename MG::OutEdgeIt*/(dfs));
+ }
+ }
+ }
+
+ if (__augment) {
+ typename MG::Node n=tF;
+ Number augment_value=free.get(tF);
+ while (F.valid(pred.get(n))) {
+ typename MG::Edge e=pred.get(n);
+ res_graph.augment(original_edge.get(e), augment_value);
+ n=F.tail(e);
+ if (residual_capacity.get(e)==augment_value)
+ F.erase(e);
+ else
+ residual_capacity.set(e, residual_capacity.get(e)-augment_value);
+ }
+ }
+
+ }
+
+ return _augment;
+ }
+
+ template<typename MutableGraph> bool augmentOnBlockingFlow1() {
+ typedef MutableGraph MG;
+ bool _augment=false;
+
+ ResGW res_graph(gw, *flow, *capacity);
+
+ //bfs for distances on the residual graph
+ typedef typename ResGW::NodeMap<bool> ReachedMap;
+ BfsIterator5< ResGW, ReachedMap > bfs(res_graph);
+ bfs.pushAndSetReached(s);
+ typename ResGW::NodeMap<int> dist(res_graph); //filled up with 0's
+
+ //F will contain the physical copy of the residual graph
+ //with the set of edges which are on shortest paths
+ MG F;
+ typename ResGW::NodeMap<typename MG::Node> res_graph_to_F(res_graph);
+ {
+ typename ResGW::NodeIt n;
+ for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) {
+ res_graph_to_F.set(n, F.addNode());
+ }
+ }
+
+ typename MG::Node sF=res_graph_to_F.get(s);
+ typename MG::Node tF=res_graph_to_F.get(t);
+ typename MG::EdgeMap<ResGWEdge> original_edge(F);
+ typename MG::EdgeMap<Number> residual_capacity(F);
+
+ while ( !bfs.finished() ) {
+ ResGWOutEdgeIt e=bfs;
+ if (res_graph.valid(e)) {
+ if (bfs.isBNodeNewlyReached()) {
+ dist.set(res_graph.head(e), dist.get(res_graph.tail(e))+1);
+ typename MG::Edge f=F.addEdge(res_graph_to_F.get(res_graph.tail(e)), res_graph_to_F.get(res_graph.head(e)));
+ original_edge.update();
+ original_edge.set(f, e);
+ residual_capacity.update();
+ residual_capacity.set(f, res_graph.resCap(e));
+ } else {
+ if (dist.get(res_graph.head(e))==(dist.get(res_graph.tail(e))+1)) {
+ typename MG::Edge f=F.addEdge(res_graph_to_F.get(res_graph.tail(e)), res_graph_to_F.get(res_graph.head(e)));
+ original_edge.update();
+ original_edge.set(f, e);
+ residual_capacity.update();
+ residual_capacity.set(f, res_graph.resCap(e));
+ }
+ }
+ }
+ ++bfs;
+ } //computing distances from s in the residual graph
+
+ bool __augment=true;
+
+ while (__augment) {
+ __augment=false;
+ //computing blocking flow with dfs
+ typedef typename TrivGraphWrapper<MG>::NodeMap<bool> BlockingReachedMap;
+ DfsIterator5< TrivGraphWrapper<MG>, BlockingReachedMap > dfs(F);
+ typename MG::NodeMap<typename MG::Edge> pred(F);
+ pred.set(sF, INVALID);
+ //invalid iterators for sources
+
+ typename MG::NodeMap<Number> free(F);
+
+ dfs.pushAndSetReached(sF);
+ while (!dfs.finished()) {
+ ++dfs;
+ if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) {
+ if (dfs.isBNodeNewlyReached()) {
+ typename MG::Node v=F.aNode(dfs);
+ typename MG::Node w=F.bNode(dfs);
+ pred.set(w, dfs);
+ if (F.valid(pred.get(v))) {
+ free.set(w, std::min(free.get(v), residual_capacity.get(dfs)));
+ } else {
+ free.set(w, residual_capacity.get(dfs));
+ }
+ if (w==tF) {
+ __augment=true;
+ _augment=true;
+ break;
+ }
+
+ } else {
+ F.erase(/*typename MG::OutEdgeIt*/(dfs));
+ }
+ }
+ }
+
+ if (__augment) {
+ typename MG::Node n=tF;
+ Number augment_value=free.get(tF);
+ while (F.valid(pred.get(n))) {
+ typename MG::Edge e=pred.get(n);
+ res_graph.augment(original_edge.get(e), augment_value);
+ n=F.tail(e);
+ if (residual_capacity.get(e)==augment_value)
+ F.erase(e);
+ else
+ residual_capacity.set(e, residual_capacity.get(e)-augment_value);
+ }
+ }
+
+ }
+
+ return _augment;
+ }
+
+ bool augmentOnBlockingFlow2() {
+ bool _augment=false;
+
+ ResGW res_graph(gw, *flow, *capacity);
+
+ typedef typename ResGW::NodeMap<bool> ReachedMap;
+ BfsIterator5< ResGW, ReachedMap > bfs(res_graph);
+
+ bfs.pushAndSetReached(s);
+ DistanceMap<ResGW> dist(res_graph);
+ while ( !bfs.finished() ) {
+ ResGWOutEdgeIt e=bfs;
+ if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
+ dist.set(res_graph.head(e), dist.get(res_graph.tail(e))+1);
+ }
+ ++bfs;
+ } //computing distances from s in the residual graph
+
+ //Subgraph containing the edges on some shortest paths
+ typedef SubGraphWrapper<ResGW, DistanceMap<ResGW> > FilterResGW;
+ FilterResGW filter_res_graph(res_graph, dist);
+
+ //Subgraph, which is able to delete edges which are already
+ //met by the dfs
+ typename FilterResGW::NodeMap<typename FilterResGW::OutEdgeIt>
+ first_out_edges(filter_res_graph);
+ typename FilterResGW::NodeIt v;
+ for(filter_res_graph.first(v); filter_res_graph.valid(v);
+ filter_res_graph.next(v))
+ {
+ typename FilterResGW::OutEdgeIt e;
+ filter_res_graph.first(e, v);
+ first_out_edges.set(v, e);
+ }
+ typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW::
+ NodeMap<typename FilterResGW::OutEdgeIt> > ErasingResGW;
+ ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges);
+
+ bool __augment=true;
+
+ while (__augment) {
+
+ __augment=false;
+ //computing blocking flow with dfs
+ typedef typename ErasingResGW::NodeMap<bool> BlockingReachedMap;
+ DfsIterator5< ErasingResGW, BlockingReachedMap >
+ dfs(erasing_res_graph);
+ typename ErasingResGW::NodeMap<typename ErasingResGW::OutEdgeIt>
+ pred(erasing_res_graph);
+ pred.set(s, INVALID);
+ //invalid iterators for sources
+
+ typename ErasingResGW::NodeMap<Number> free(erasing_res_graph);
+
+ dfs.pushAndSetReached(s);
+ while (!dfs.finished()) {
+ ++dfs;
+ if (erasing_res_graph.valid(
+ /*typename ErasingResGW::OutEdgeIt*/(dfs)))
+ {
+ if (dfs.isBNodeNewlyReached()) {
+
+ typename ErasingResGW::Node v=erasing_res_graph.aNode(dfs);
+ typename ErasingResGW::Node w=erasing_res_graph.bNode(dfs);
+
+ pred.set(w, /*typename ErasingResGW::OutEdgeIt*/(dfs));
+ if (erasing_res_graph.valid(pred.get(v))) {
+ free.set(w, std::min(free.get(v), res_graph.resCap(dfs)));
+ } else {
+ free.set(w, res_graph.resCap(dfs));
+ }
+
+ if (w==t) {
+ __augment=true;
+ _augment=true;
+ break;
+ }
+ } else {
+ erasing_res_graph.erase(dfs);
+ }
+ }
+ }
+
+ if (__augment) {
+ typename ErasingResGW::Node n=t;
+ Number augment_value=free.get(n);
+ while (erasing_res_graph.valid(pred.get(n))) {
+ typename ErasingResGW::OutEdgeIt e=pred.get(n);
+ res_graph.augment(e, augment_value);
+ n=erasing_res_graph.tail(e);
+ if (res_graph.resCap(e)==0)
+ erasing_res_graph.erase(e);
+ }
+ }
+
+ } //while (__augment)
+
+ return _augment;
+ }
+
+// bool augmentOnBlockingFlow2() {
+// bool _augment=false;
+
+// //typedef ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap> EAugGraph;
+// typedef FilterGraphWrapper< ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap> > EAugGraph;
+// typedef typename EAugGraph::OutEdgeIt EAugOutEdgeIt;
+// typedef typename EAugGraph::Edge EAugEdge;
+
+// EAugGraph res_graph(*G, *flow, *capacity);
+
+// //typedef typename EAugGraph::NodeMap<bool> ReachedMap;
+// BfsIterator5<
+// ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>,
+// /*typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::OutEdgeIt,*/
+// ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::NodeMap<bool> > bfs(res_graph);
+
+// bfs.pushAndSetReached(s);
+
+// typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::
+// NodeMap<int>& dist=res_graph.dist;
+
+// while ( !bfs.finished() ) {
+// typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::OutEdgeIt e=bfs;
+// if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
+// dist.set(res_graph.head(e), dist.get(res_graph.tail(e))+1);
+// }
+// ++bfs;
+// } //computing distances from s in the residual graph
+
+// bool __augment=true;
+
+// while (__augment) {
+
+// __augment=false;
+// //computing blocking flow with dfs
+// typedef typename EAugGraph::NodeMap<bool> BlockingReachedMap;
+// DfsIterator5< EAugGraph/*, EAugOutEdgeIt*/, BlockingReachedMap >
+// dfs(res_graph);
+// typename EAugGraph::NodeMap<EAugEdge> pred(res_graph);
+// pred.set(s, EAugEdge(INVALID));
+// //invalid iterators for sources
+
+// typename EAugGraph::NodeMap<Number> free(res_graph);
+
+// dfs.pushAndSetReached(s);
+// while (!dfs.finished()) {
+// ++dfs;
+// if (res_graph.valid(EAugOutEdgeIt(dfs))) {
+// if (dfs.isBNodeNewlyReached()) {
+
+// typename EAugGraph::Node v=res_graph.aNode(dfs);
+// typename EAugGraph::Node w=res_graph.bNode(dfs);
+
+// pred.set(w, EAugOutEdgeIt(dfs));
+// if (res_graph.valid(pred.get(v))) {
+// free.set(w, std::min(free.get(v), res_graph.free(dfs)));
+// } else {
+// free.set(w, res_graph.free(dfs));
+// }
+
+// if (w==t) {
+// __augment=true;
+// _augment=true;
+// break;
+// }
+// } else {
+// res_graph.erase(dfs);
+// }
+// }
+
+// }
+
+// if (__augment) {
+// typename EAugGraph::Node n=t;
+// Number augment_value=free.get(t);
+// while (res_graph.valid(pred.get(n))) {
+// EAugEdge e=pred.get(n);
+// res_graph.augment(e, augment_value);
+// n=res_graph.tail(e);
+// if (res_graph.free(e)==0)
+// res_graph.erase(e);
+// }
+// }
+
+// }
+
+// return _augment;
+// }
+
+ void run() {
+ //int num_of_augmentations=0;
+ while (augmentOnShortestPath()) {
+ //while (augmentOnBlockingFlow<MutableGraph>()) {
+ //std::cout << ++num_of_augmentations << " ";
+ //std::cout<<std::endl;
+ }
+ }
+
+ template<typename MutableGraph> void run() {
+ //int num_of_augmentations=0;
+ //while (augmentOnShortestPath()) {
+ while (augmentOnBlockingFlow<MutableGraph>()) {
+ //std::cout << ++num_of_augmentations << " ";
+ //std::cout<<std::endl;
+ }
+ }
+
+ Number flowValue() {
+ Number a=0;
+ OutEdgeIt e;
+ for(gw.first(e, s); gw.valid(e); gw.next(e)) {
+ a+=flow->get(e);
+ }
+ return a;
+ }
+
+ };
+
+
+// template <typename Graph, typename Number, typename FlowMap, typename CapacityMap>
+// class MaxMatching {
+// public:
+// typedef typename Graph::Node Node;
+// typedef typename Graph::NodeIt NodeIt;
+// typedef typename Graph::Edge Edge;
+// typedef typename Graph::EdgeIt EdgeIt;
+// typedef typename Graph::OutEdgeIt OutEdgeIt;
+// typedef typename Graph::InEdgeIt InEdgeIt;
+
+// typedef typename Graph::NodeMap<bool> SMap;
+// typedef typename Graph::NodeMap<bool> TMap;
+// private:
+// const Graph* G;
+// SMap* S;
+// TMap* T;
+// //Node s;
+// //Node t;
+// FlowMap* flow;
+// const CapacityMap* capacity;
+// typedef ResGraphWrapper<Graph, Number, FlowMap, CapacityMap > AugGraph;
+// typedef typename AugGraph::OutEdgeIt AugOutEdgeIt;
+// typedef typename AugGraph::Edge AugEdge;
+// typename Graph::NodeMap<int> used; //0
+
+// public:
+// MaxMatching(const Graph& _G, SMap& _S, TMap& _T, FlowMap& _flow, const CapacityMap& _capacity) :
+// G(&_G), S(&_S), T(&_T), flow(&_flow), capacity(&_capacity), used(_G) { }
+// bool augmentOnShortestPath() {
+// AugGraph res_graph(*G, *flow, *capacity);
+// bool _augment=false;
+
+// typedef typename AugGraph::NodeMap<bool> ReachedMap;
+// BfsIterator5< AugGraph, /*AugOutEdgeIt,*/ ReachedMap > bfs(res_graph);
+// typename AugGraph::NodeMap<AugEdge> pred(res_graph);
+// for(NodeIt s=G->template first<NodeIt>(); G->valid(s); G->next(s)) {
+// if ((S->get(s)) && (used.get(s)<1) ) {
+// //Number u=0;
+// //for(OutEdgeIt e=G->template first<OutEdgeIt>(s); G->valid(e); G->next(e))
+// //u+=flow->get(e);
+// //if (u<1) {
+// bfs.pushAndSetReached(s);
+// pred.set(s, AugEdge(INVALID));
+// //}
+// }
+// }
+
+// typename AugGraph::NodeMap<Number> free(res_graph);
+
+// Node n;
+// //searching for augmenting path
+// while ( !bfs.finished() ) {
+// AugOutEdgeIt e=bfs;
+// if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
+// Node v=res_graph.tail(e);
+// Node w=res_graph.head(e);
+// pred.set(w, e);
+// if (res_graph.valid(pred.get(v))) {
+// free.set(w, std::min(free.get(v), res_graph.free(e)));
+// } else {
+// free.set(w, res_graph.free(e));
+// }
+// n=res_graph.head(e);
+// if (T->get(n) && (used.get(n)<1) ) {
+// //Number u=0;
+// //for(InEdgeIt f=G->template first<InEdgeIt>(n); G->valid(f); G->next(f))
+// //u+=flow->get(f);
+// //if (u<1) {
+// _augment=true;
+// break;
+// //}
+// }
+// }
+
+// ++bfs;
+// } //end of searching augmenting path
+
+// if (_augment) {
+// //Node n=t;
+// used.set(n, 1); //mind2 vegen jav
+// Number augment_value=free.get(n);
+// while (res_graph.valid(pred.get(n))) {
+// AugEdge e=pred.get(n);
+// res_graph.augment(e, augment_value);
+// n=res_graph.tail(e);
+// }
+// used.set(n, 1); //mind2 vegen jav
+// }
+
+// return _augment;
+// }
+
+// // template<typename MutableGraph> bool augmentOnBlockingFlow() {
+// // bool _augment=false;
+
+// // AugGraph res_graph(*G, *flow, *capacity);
+
+// // typedef typename AugGraph::NodeMap<bool> ReachedMap;
+// // BfsIterator4< AugGraph, AugOutEdgeIt, ReachedMap > bfs(res_graph);
+
+
+
+
+
+// // //typename AugGraph::NodeMap<AugEdge> pred(res_graph);
+// // for(NodeIt s=G->template first<NodeIt>(); G->valid(s); G->next(s)) {
+// // if (S->get(s)) {
+// // Number u=0;
+// // for(OutEdgeIt e=G->template first<OutEdgeIt>(s); G->valid(e); G->next(e))
+// // u+=flow->get(e);
+// // if (u<1) {
+// // bfs.pushAndSetReached(s);
+// // //pred.set(s, AugEdge(INVALID));
+// // }
+// // }
+// // }
+
+
+
+
+// // //bfs.pushAndSetReached(s);
+// // typename AugGraph::NodeMap<int> dist(res_graph); //filled up with 0's
+// // while ( !bfs.finished() ) {
+// // AugOutEdgeIt e=bfs;
+// // if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
+// // dist.set(res_graph.head(e), dist.get(res_graph.tail(e))+1);
+// // }
+
+// // ++bfs;
+// // } //computing distances from s in the residual graph
+
+// // MutableGraph F;
+// // typename AugGraph::NodeMap<typename MutableGraph::Node>
+// // res_graph_to_F(res_graph);
+// // for(typename AugGraph::NodeIt n=res_graph.template first<typename AugGraph::NodeIt>(); res_graph.valid(n); res_graph.next(n)) {
+// // res_graph_to_F.set(n, F.addNode());
+// // }
+
+// // typename MutableGraph::Node sF=res_graph_to_F.get(s);
+// // typename MutableGraph::Node tF=res_graph_to_F.get(t);
+
+// // typename MutableGraph::EdgeMap<AugEdge> original_edge(F);
+// // typename MutableGraph::EdgeMap<Number> residual_capacity(F);
+
+// // //Making F to the graph containing the edges of the residual graph
+// // //which are in some shortest paths
+// // for(typename AugGraph::EdgeIt e=res_graph.template first<typename AugGraph::EdgeIt>(); res_graph.valid(e); res_graph.next(e)) {
+// // if (dist.get(res_graph.head(e))==dist.get(res_graph.tail(e))+1) {
+// // typename MutableGraph::Edge f=F.addEdge(res_graph_to_F.get(res_graph.tail(e)), res_graph_to_F.get(res_graph.head(e)));
+// // original_edge.update();
+// // original_edge.set(f, e);
+// // residual_capacity.update();
+// // residual_capacity.set(f, res_graph.free(e));
+// // }
+// // }
+
+// // bool __augment=true;
+
+// // while (__augment) {
+// // __augment=false;
+// // //computing blocking flow with dfs
+// // typedef typename MutableGraph::NodeMap<bool> BlockingReachedMap;
+// // DfsIterator4< MutableGraph, typename MutableGraph::OutEdgeIt, BlockingReachedMap > dfs(F);
+// // typename MutableGraph::NodeMap<typename MutableGraph::Edge> pred(F);
+// // pred.set(sF, typename MutableGraph::Edge(INVALID));
+// // //invalid iterators for sources
+
+// // typename MutableGraph::NodeMap<Number> free(F);
+
+// // dfs.pushAndSetReached(sF);
+// // while (!dfs.finished()) {
+// // ++dfs;
+// // if (F.valid(typename MutableGraph::OutEdgeIt(dfs))) {
+// // if (dfs.isBNodeNewlyReached()) {
+// // typename MutableGraph::Node v=F.aNode(dfs);
+// // typename MutableGraph::Node w=F.bNode(dfs);
+// // pred.set(w, dfs);
+// // if (F.valid(pred.get(v))) {
+// // free.set(w, std::min(free.get(v), residual_capacity.get(dfs)));
+// // } else {
+// // free.set(w, residual_capacity.get(dfs));
+// // }
+// // if (w==tF) {
+// // __augment=true;
+// // _augment=true;
+// // break;
+// // }
+
+// // } else {
+// // F.erase(typename MutableGraph::OutEdgeIt(dfs));
+// // }
+// // }
+// // }
+
+// // if (__augment) {
+// // typename MutableGraph::Node n=tF;
+// // Number augment_value=free.get(tF);
+// // while (F.valid(pred.get(n))) {
+// // typename MutableGraph::Edge e=pred.get(n);
+// // res_graph.augment(original_edge.get(e), augment_value);
+// // n=F.tail(e);
+// // if (residual_capacity.get(e)==augment_value)
+// // F.erase(e);
+// // else
+// // residual_capacity.set(e, residual_capacity.get(e)-augment_value);
+// // }
+// // }
+
+// // }
+
+// // return _augment;
+// // }
+// bool augmentOnBlockingFlow2() {
+// bool _augment=false;
+
+// //typedef ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap> EAugGraph;
+// typedef FilterGraphWrapper< ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap> > EAugGraph;
+// typedef typename EAugGraph::OutEdgeIt EAugOutEdgeIt;
+// typedef typename EAugGraph::Edge EAugEdge;
+
+// EAugGraph res_graph(*G, *flow, *capacity);
+
+// //typedef typename EAugGraph::NodeMap<bool> ReachedMap;
+// BfsIterator5<
+// ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>,
+// /*typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::OutEdgeIt,*/
+// ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::NodeMap<bool> > bfs(res_graph);
+
+
+// //typename AugGraph::NodeMap<AugEdge> pred(res_graph);
+// for(NodeIt s=G->template first<NodeIt>(); G->valid(s); G->next(s)) {
+// if (S->get(s)) {
+// Number u=0;
+// for(OutEdgeIt e=G->template first<OutEdgeIt>(s); G->valid(e); G->next(e))
+// u+=flow->get(e);
+// if (u<1) {
+// bfs.pushAndSetReached(s);
+// //pred.set(s, AugEdge(INVALID));
+// }
+// }
+// }
+
+
+// //bfs.pushAndSetReached(s);
+
+// typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::
+// NodeMap<int>& dist=res_graph.dist;
+
+// while ( !bfs.finished() ) {
+// typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::OutEdgeIt e=bfs;
+// if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
+// dist.set(res_graph.head(e), dist.get(res_graph.tail(e))+1);
+// }
+// ++bfs;
+// } //computing distances from s in the residual graph
+
+// bool __augment=true;
+
+// while (__augment) {
+
+// __augment=false;
+// //computing blocking flow with dfs
+// typedef typename EAugGraph::NodeMap<bool> BlockingReachedMap;
+// DfsIterator5< EAugGraph/*, EAugOutEdgeIt*/, BlockingReachedMap >
+// dfs(res_graph);
+// typename EAugGraph::NodeMap<EAugEdge> pred(res_graph, INVALID);
+// //pred.set(s, EAugEdge(INVALID));
+// //invalid iterators for sources
+
+// typename EAugGraph::NodeMap<Number> free(res_graph);
+
+
+// //typename AugGraph::NodeMap<AugEdge> pred(res_graph);
+// for(NodeIt s=G->template first<NodeIt>(); G->valid(s); G->next(s)) {
+// if (S->get(s)) {
+// Number u=0;
+// for(OutEdgeIt e=G->template first<OutEdgeIt>(s); G->valid(e); G->next(e))
+// u+=flow->get(e);
+// if (u<1) {
+// dfs.pushAndSetReached(s);
+// //pred.set(s, AugEdge(INVALID));
+// }
+// }
+// }
+
+
+
+// //dfs.pushAndSetReached(s);
+// typename EAugGraph::Node n;
+// while (!dfs.finished()) {
+// ++dfs;
+// if (res_graph.valid(EAugOutEdgeIt(dfs))) {
+// if (dfs.isBNodeNewlyReached()) {
+
+// typename EAugGraph::Node v=res_graph.aNode(dfs);
+// typename EAugGraph::Node w=res_graph.bNode(dfs);
+
+// pred.set(w, EAugOutEdgeIt(dfs));
+// if (res_graph.valid(pred.get(v))) {
+// free.set(w, std::min(free.get(v), res_graph.free(dfs)));
+// } else {
+// free.set(w, res_graph.free(dfs));
+// }
+
+// n=w;
+// if (T->get(w)) {
+// Number u=0;
+// for(InEdgeIt f=G->template first<InEdgeIt>(n); G->valid(f); G->next(f))
+// u+=flow->get(f);
+// if (u<1) {
+// __augment=true;
+// _augment=true;
+// break;
+// }
+// }
+// } else {
+// res_graph.erase(dfs);
+// }
+// }
+
+// }
+
+// if (__augment) {
+// // typename EAugGraph::Node n=t;
+// Number augment_value=free.get(n);
+// while (res_graph.valid(pred.get(n))) {
+// EAugEdge e=pred.get(n);
+// res_graph.augment(e, augment_value);
+// n=res_graph.tail(e);
+// if (res_graph.free(e)==0)
+// res_graph.erase(e);
+// }
+// }
+
+// }
+
+// return _augment;
+// }
+// void run() {
+// //int num_of_augmentations=0;
+// while (augmentOnShortestPath()) {
+// //while (augmentOnBlockingFlow<MutableGraph>()) {
+// //std::cout << ++num_of_augmentations << " ";
+// //std::cout<<std::endl;
+// }
+// }
+// // template<typename MutableGraph> void run() {
+// // //int num_of_augmentations=0;
+// // //while (augmentOnShortestPath()) {
+// // while (augmentOnBlockingFlow<MutableGraph>()) {
+// // //std::cout << ++num_of_augmentations << " ";
+// // //std::cout<<std::endl;
+// // }
+// // }
+// Number flowValue() {
+// Number a=0;
+// EdgeIt e;
+// for(G->/*getF*/first(e); G->valid(e); G->next(e)) {
+// a+=flow->get(e);
+// }
+// return a;
+// }
+// };
+
+
+
+
+
+
+// // template <typename Graph, typename Number, typename FlowMap, typename CapacityMap>
+// // class MaxFlow2 {
+// // public:
+// // typedef typename Graph::Node Node;
+// // typedef typename Graph::Edge Edge;
+// // typedef typename Graph::EdgeIt EdgeIt;
+// // typedef typename Graph::OutEdgeIt OutEdgeIt;
+// // typedef typename Graph::InEdgeIt InEdgeIt;
+// // private:
+// // const Graph& G;
+// // std::list<Node>& S;
+// // std::list<Node>& T;
+// // FlowMap& flow;
+// // const CapacityMap& capacity;
+// // typedef ResGraphWrapper<Graph, Number, FlowMap, CapacityMap > AugGraph;
+// // typedef typename AugGraph::OutEdgeIt AugOutEdgeIt;
+// // typedef typename AugGraph::Edge AugEdge;
+// // typename Graph::NodeMap<bool> SMap;
+// // typename Graph::NodeMap<bool> TMap;
+// // public:
+// // MaxFlow2(const Graph& _G, std::list<Node>& _S, std::list<Node>& _T, FlowMap& _flow, const CapacityMap& _capacity) : G(_G), S(_S), T(_T), flow(_flow), capacity(_capacity), SMap(_G), TMap(_G) {
+// // for(typename std::list<Node>::const_iterator i=S.begin();
+// // i!=S.end(); ++i) {
+// // SMap.set(*i, true);
+// // }
+// // for (typename std::list<Node>::const_iterator i=T.begin();
+// // i!=T.end(); ++i) {
+// // TMap.set(*i, true);
+// // }
+// // }
+// // bool augment() {
+// // AugGraph res_graph(G, flow, capacity);
+// // bool _augment=false;
+// // Node reached_t_node;
+
+// // typedef typename AugGraph::NodeMap<bool> ReachedMap;
+// // BfsIterator4< AugGraph, AugOutEdgeIt, ReachedMap > bfs(res_graph);
+// // for(typename std::list<Node>::const_iterator i=S.begin();
+// // i!=S.end(); ++i) {
+// // bfs.pushAndSetReached(*i);
+// // }
+// // //bfs.pushAndSetReached(s);
+
+// // typename AugGraph::NodeMap<AugEdge> pred(res_graph);
+// // //filled up with invalid iterators
+
+// // typename AugGraph::NodeMap<Number> free(res_graph);
+
+// // //searching for augmenting path
+// // while ( !bfs.finished() ) {
+// // AugOutEdgeIt e=/*AugOutEdgeIt*/(bfs);
+// // if (e.valid() && bfs.isBNodeNewlyReached()) {
+// // Node v=res_graph.tail(e);
+// // Node w=res_graph.head(e);
+// // pred.set(w, e);
+// // if (pred.get(v).valid()) {
+// // free.set(w, std::min(free.get(v), e.free()));
+// // } else {
+// // free.set(w, e.free());
+// // }
+// // if (TMap.get(res_graph.head(e))) {
+// // _augment=true;
+// // reached_t_node=res_graph.head(e);
+// // break;
+// // }
+// // }
+
+// // ++bfs;
+// // } //end of searching augmenting path
+
+// // if (_augment) {
+// // Node n=reached_t_node;
+// // Number augment_value=free.get(reached_t_node);
+// // while (pred.get(n).valid()) {
+// // AugEdge e=pred.get(n);
+// // e.augment(augment_value);
+// // n=res_graph.tail(e);
+// // }
+// // }
+
+// // return _augment;
+// // }
+// // void run() {
+// // while (augment()) { }
+// // }
+// // Number flowValue() {
+// // Number a=0;
+// // for(typename std::list<Node>::const_iterator i=S.begin();
+// // i!=S.end(); ++i) {
+// // for(OutEdgeIt e=G.template first<OutEdgeIt>(*i); e.valid(); ++e) {
+// // a+=flow.get(e);
+// // }
+// // for(InEdgeIt e=G.template first<InEdgeIt>(*i); e.valid(); ++e) {
+// // a-=flow.get(e);
+// // }
+// // }
+// // return a;
+// // }
+// // };
+
+
+} // namespace hugo
+
+#endif //HUGO_EDMONDS_KARP_H
Added: hugo/trunk/src/work/marci/experiment/edmonds_karp_1.h
==============================================================================
--- (empty file)
+++ hugo/trunk/src/work/marci/experiment/edmonds_karp_1.h Sat Apr 3 19:26:46 2004
@@ -0,0 +1,1240 @@
+// -*- c++ -*-
+#ifndef HUGO_EDMONDS_KARP_H
+#define HUGO_EDMONDS_KARP_H
+
+#include <algorithm>
+#include <list>
+#include <iterator>
+
+#include <bfs_iterator_1.h>
+#include <invalid.h>
+#include <graph_wrapper_1.h>
+
+namespace hugo {
+
+ template<typename Graph, typename Number, typename FlowMap, typename CapacityMap>
+ class ResGraph {
+ public:
+ typedef typename Graph::Node Node;
+ typedef typename Graph::NodeIt NodeIt;
+ private:
+ typedef typename Graph::SymEdgeIt OldSymEdgeIt;
+ const Graph& G;
+ FlowMap& flow;
+ const CapacityMap& capacity;
+ public:
+ ResGraph(const Graph& _G, FlowMap& _flow,
+ const CapacityMap& _capacity) :
+ G(_G), flow(_flow), capacity(_capacity) { }
+
+ class Edge;
+ class OutEdgeIt;
+ friend class Edge;
+ friend class OutEdgeIt;
+
+ class Edge {
+ friend class ResGraph<Graph, Number, FlowMap, CapacityMap>;
+ protected:
+ const ResGraph<Graph, Number, FlowMap, CapacityMap>* resG;
+ OldSymEdgeIt sym;
+ public:
+ Edge() { }
+ //Edge(const Edge& e) : resG(e.resG), sym(e.sym) { }
+ Number free() const {
+ if (resG->G.aNode(sym)==resG->G.tail(sym)) {
+ return (resG->capacity.get(sym)-resG->flow.get(sym));
+ } else {
+ return (resG->flow.get(sym));
+ }
+ }
+ bool valid() const { return sym.valid(); }
+ void augment(Number a) const {
+ if (resG->G.aNode(sym)==resG->G.tail(sym)) {
+ resG->flow.set(sym, resG->flow.get(sym)+a);
+ //resG->flow[sym]+=a;
+ } else {
+ resG->flow.set(sym, resG->flow.get(sym)-a);
+ //resG->flow[sym]-=a;
+ }
+ }
+ };
+
+ class OutEdgeIt : public Edge {
+ friend class ResGraph<Graph, Number, FlowMap, CapacityMap>;
+ public:
+ OutEdgeIt() { }
+ //OutEdgeIt(const OutEdgeIt& e) { resG=e.resG; sym=e.sym; }
+ private:
+ OutEdgeIt(const ResGraph<Graph, Number, FlowMap, CapacityMap>& _resG, Node v) {
+ resG=&_resG;
+ sym=resG->G.template first<OldSymEdgeIt>(v);
+ while( sym.valid() && !(free()>0) ) { ++sym; }
+ }
+ public:
+ OutEdgeIt& operator++() {
+ ++sym;
+ while( sym.valid() && !(free()>0) ) { ++sym; }
+ return *this;
+ }
+ };
+
+ void /*getF*/first(OutEdgeIt& e, Node v) const {
+ e=OutEdgeIt(*this, v);
+ }
+ void /*getF*/first(NodeIt& v) const { G./*getF*/first(v); }
+
+ template< typename It >
+ It first() const {
+ It e;
+ /*getF*/first(e);
+ return e;
+ }
+
+ template< typename It >
+ It first(Node v) const {
+ It e;
+ /*getF*/first(e, v);
+ return e;
+ }
+
+ Node tail(Edge e) const { return G.aNode(e.sym); }
+ Node head(Edge e) const { return G.bNode(e.sym); }
+
+ Node aNode(OutEdgeIt e) const { return G.aNode(e.sym); }
+ Node bNode(OutEdgeIt e) const { return G.bNode(e.sym); }
+
+ int id(Node v) const { return G.id(v); }
+
+ template <typename S>
+ class NodeMap {
+ typename Graph::NodeMap<S> node_map;
+ public:
+ NodeMap(const ResGraph<Graph, Number, FlowMap, CapacityMap>& _G) : node_map(_G.G) { }
+ NodeMap(const ResGraph<Graph, Number, FlowMap, CapacityMap>& _G, S a) : node_map(_G.G, a) { }
+ void set(Node nit, S a) { node_map.set(nit, a); }
+ S get(Node nit) const { return node_map.get(nit); }
+ S& operator[](Node nit) { return node_map[nit]; }
+ const S& operator[](Node nit) const { return node_map[nit]; }
+ };
+
+ };
+
+
+ template<typename Graph, typename Number, typename FlowMap, typename CapacityMap>
+ class ResGraph2 {
+ public:
+ typedef typename Graph::Node Node;
+ typedef typename Graph::NodeIt NodeIt;
+ private:
+ //typedef typename Graph::SymEdgeIt OldSymEdgeIt;
+ typedef typename Graph::OutEdgeIt OldOutEdgeIt;
+ typedef typename Graph::InEdgeIt OldInEdgeIt;
+
+ const Graph& G;
+ FlowMap& flow;
+ const CapacityMap& capacity;
+ public:
+ ResGraph2(const Graph& _G, FlowMap& _flow,
+ const CapacityMap& _capacity) :
+ G(_G), flow(_flow), capacity(_capacity) { }
+
+ class Edge;
+ class OutEdgeIt;
+ friend class Edge;
+ friend class OutEdgeIt;
+
+ class Edge {
+ friend class ResGraph2<Graph, Number, FlowMap, CapacityMap>;
+ protected:
+ const ResGraph2<Graph, Number, FlowMap, CapacityMap>* resG;
+ //OldSymEdgeIt sym;
+ OldOutEdgeIt out;
+ OldInEdgeIt in;
+ bool out_or_in; //true, iff out
+ public:
+ Edge() : out_or_in(true) { }
+ Number free() const {
+ if (out_or_in) {
+ return (resG->capacity.get(out)-resG->flow.get(out));
+ } else {
+ return (resG->flow.get(in));
+ }
+ }
+ bool valid() const {
+ return out_or_in && out.valid() || in.valid(); }
+ void augment(Number a) const {
+ if (out_or_in) {
+ resG->flow.set(out, resG->flow.get(out)+a);
+ } else {
+ resG->flow.set(in, resG->flow.get(in)-a);
+ }
+ }
+ };
+
+ class OutEdgeIt : public Edge {
+ friend class ResGraph2<Graph, Number, FlowMap, CapacityMap>;
+ public:
+ OutEdgeIt() { }
+ private:
+ OutEdgeIt(const ResGraph2<Graph, Number, FlowMap, CapacityMap>& _resG, Node v) {
+ resG=&_resG;
+ out=resG->G.template first<OldOutEdgeIt>(v);
+ while( out.valid() && !(free()>0) ) { ++out; }
+ if (!out.valid()) {
+ out_or_in=0;
+ in=resG->G.template first<OldInEdgeIt>(v);
+ while( in.valid() && !(free()>0) ) { ++in; }
+ }
+ }
+ public:
+ OutEdgeIt& operator++() {
+ if (out_or_in) {
+ Node v=resG->G.aNode(out);
+ ++out;
+ while( out.valid() && !(free()>0) ) { ++out; }
+ if (!out.valid()) {
+ out_or_in=0;
+ in=resG->G.template first<OldInEdgeIt>(v);
+ while( in.valid() && !(free()>0) ) { ++in; }
+ }
+ } else {
+ ++in;
+ while( in.valid() && !(free()>0) ) { ++in; }
+ }
+ return *this;
+ }
+ };
+
+ void /*getF*/first(OutEdgeIt& e, Node v) const {
+ e=OutEdgeIt(*this, v);
+ }
+ void /*getF*/first(NodeIt& v) const { G./*getF*/first(v); }
+
+ template< typename It >
+ It first() const {
+ It e;
+ /*getF*/first(e);
+ return e;
+ }
+
+ template< typename It >
+ It first(Node v) const {
+ It e;
+ /*getF*/first(e, v);
+ return e;
+ }
+
+ Node tail(Edge e) const {
+ return ((e.out_or_in) ? G.aNode(e.out) : G.aNode(e.in)); }
+ Node head(Edge e) const {
+ return ((e.out_or_in) ? G.bNode(e.out) : G.bNode(e.in)); }
+
+ Node aNode(OutEdgeIt e) const {
+ return ((e.out_or_in) ? G.aNode(e.out) : G.aNode(e.in)); }
+ Node bNode(OutEdgeIt e) const {
+ return ((e.out_or_in) ? G.bNode(e.out) : G.bNode(e.in)); }
+
+ int id(Node v) const { return G.id(v); }
+
+ template <typename S>
+ class NodeMap {
+ typename Graph::NodeMap<S> node_map;
+ public:
+ NodeMap(const ResGraph2<Graph, Number, FlowMap, CapacityMap>& _G) : node_map(_G.G) { }
+ NodeMap(const ResGraph2<Graph, Number, FlowMap, CapacityMap>& _G, S a) : node_map(_G.G, a) { }
+ void set(Node nit, S a) { node_map.set(nit, a); }
+ S get(Node nit) const { return node_map.get(nit); }
+ };
+ };
+
+
+ template <typename GraphWrapper, typename Number, typename FlowMap, typename CapacityMap>
+ class MaxFlow {
+ protected:
+ typedef GraphWrapper GW;
+ typedef typename GW::Node Node;
+ typedef typename GW::Edge Edge;
+ typedef typename GW::EdgeIt EdgeIt;
+ typedef typename GW::OutEdgeIt OutEdgeIt;
+ typedef typename GW::InEdgeIt InEdgeIt;
+ //const Graph* G;
+ //GW gw;
+ const GW* g;
+ Node s;
+ Node t;
+ FlowMap* flow;
+ const CapacityMap* capacity;
+ typedef ResGraphWrapper<const GW, Number, FlowMap, CapacityMap > ResGW;
+ typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
+ typedef typename ResGW::Edge ResGWEdge;
+ public:
+
+ MaxFlow(const GW& _g, Node _s, Node _t, FlowMap& _flow, const CapacityMap& _capacity) :
+ g(&_g), s(_s), t(_t), flow(&_flow), capacity(&_capacity) { }
+
+ bool augmentOnShortestPath() {
+ ResGW res_graph(*g, *flow, *capacity);
+ bool _augment=false;
+
+ typedef typename ResGW::NodeMap<bool> ReachedMap;
+ BfsIterator5< ResGW, ReachedMap > bfs(res_graph);
+ bfs.pushAndSetReached(s);
+
+ typename ResGW::NodeMap<ResGWEdge> pred(res_graph);
+ pred.set(s, INVALID);
+
+ typename ResGW::NodeMap<Number> free(res_graph);
+
+ //searching for augmenting path
+ while ( !bfs.finished() ) {
+ ResGWOutEdgeIt e=bfs;
+ if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
+ Node v=res_graph.tail(e);
+ Node w=res_graph.head(e);
+ pred.set(w, e);
+ if (res_graph.valid(pred.get(v))) {
+ free.set(w, std::min(free.get(v), res_graph.resCap(e)));
+ } else {
+ free.set(w, res_graph.resCap(e));
+ }
+ if (res_graph.head(e)==t) { _augment=true; break; }
+ }
+
+ ++bfs;
+ } //end of searching augmenting path
+
+ if (_augment) {
+ Node n=t;
+ Number augment_value=free.get(t);
+ while (res_graph.valid(pred.get(n))) {
+ ResGWEdge e=pred.get(n);
+ res_graph.augment(e, augment_value);
+ n=res_graph.tail(e);
+ }
+ }
+
+ return _augment;
+ }
+
+ template<typename MapGraphWrapper>
+ class DistanceMap {
+ protected:
+ const MapGraphWrapper* g;
+ typename MapGraphWrapper::NodeMap<int> dist;
+ public:
+ DistanceMap(MapGraphWrapper& _g) : g(&_g), dist(*g, g->nodeNum()) { }
+ void set(const typename MapGraphWrapper::Node& n, int a) { dist[n]=a; }
+ int get(const typename MapGraphWrapper::Node& n) const { return dist[n]; }
+ bool get(const typename MapGraphWrapper::Edge& e) const {
+ return (dist.get(g->tail(e))<dist.get(g->head(e)));
+ }
+ };
+
+ template<typename MutableGraph> bool augmentOnBlockingFlow() {
+ typedef MutableGraph MG;
+ bool _augment=false;
+
+ ResGW res_graph(*g, *flow, *capacity);
+
+ typedef typename ResGW::NodeMap<bool> ReachedMap;
+ BfsIterator5< ResGW, ReachedMap > bfs(res_graph);
+
+ bfs.pushAndSetReached(s);
+ //typename ResGW::NodeMap<int> dist(res_graph); //filled up with 0's
+ DistanceMap<ResGW> dist(res_graph);
+ while ( !bfs.finished() ) {
+ ResGWOutEdgeIt e=bfs;
+ if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
+ dist.set(res_graph.head(e), dist.get(res_graph.tail(e))+1);
+ }
+ ++bfs;
+ } //computing distances from s in the residual graph
+
+ MG F;
+ typedef SubGraphWrapper<ResGW, DistanceMap<ResGW> > FilterResGW;
+ FilterResGW filter_res_graph(res_graph, dist);
+ typename ResGW::NodeMap<typename MG::Node> res_graph_to_F(res_graph);
+ {
+ typename ResGW::NodeIt n;
+ for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) {
+ res_graph_to_F.set(n, F.addNode());
+ }
+ }
+
+ typename MG::Node sF=res_graph_to_F.get(s);
+ typename MG::Node tF=res_graph_to_F.get(t);
+ typename MG::EdgeMap<ResGWEdge> original_edge(F);
+ typename MG::EdgeMap<Number> residual_capacity(F);
+
+ //Making F to the graph containing the edges of the residual graph
+ //which are in some shortest paths
+ {
+ typename FilterResGW::EdgeIt e;
+ for(filter_res_graph.first(e); filter_res_graph.valid(e); filter_res_graph.next(e)) {
+ //if (dist.get(res_graph.head(e))==dist.get(res_graph.tail(e))+1) {
+ typename MG::Edge f=F.addEdge(res_graph_to_F.get(res_graph.tail(e)), res_graph_to_F.get(res_graph.head(e)));
+ original_edge.update();
+ original_edge.set(f, e);
+ residual_capacity.update();
+ residual_capacity.set(f, res_graph.resCap(e));
+ //}
+ }
+ }
+
+ bool __augment=true;
+
+ while (__augment) {
+ __augment=false;
+ //computing blocking flow with dfs
+ typedef typename TrivGraphWrapper<MG>::NodeMap<bool> BlockingReachedMap;
+ DfsIterator5< TrivGraphWrapper<MG>, BlockingReachedMap > dfs(F);
+ typename MG::NodeMap<typename MG::Edge> pred(F);
+ pred.set(sF, INVALID);
+ //invalid iterators for sources
+
+ typename MG::NodeMap<Number> free(F);
+
+ dfs.pushAndSetReached(sF);
+ while (!dfs.finished()) {
+ ++dfs;
+ if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) {
+ if (dfs.isBNodeNewlyReached()) {
+ typename MG::Node v=F.aNode(dfs);
+ typename MG::Node w=F.bNode(dfs);
+ pred.set(w, dfs);
+ if (F.valid(pred.get(v))) {
+ free.set(w, std::min(free.get(v), residual_capacity.get(dfs)));
+ } else {
+ free.set(w, residual_capacity.get(dfs));
+ }
+ if (w==tF) {
+ __augment=true;
+ _augment=true;
+ break;
+ }
+
+ } else {
+ F.erase(/*typename MG::OutEdgeIt*/(dfs));
+ }
+ }
+ }
+
+ if (__augment) {
+ typename MG::Node n=tF;
+ Number augment_value=free.get(tF);
+ while (F.valid(pred.get(n))) {
+ typename MG::Edge e=pred.get(n);
+ res_graph.augment(original_edge.get(e), augment_value);
+ n=F.tail(e);
+ if (residual_capacity.get(e)==augment_value)
+ F.erase(e);
+ else
+ residual_capacity.set(e, residual_capacity.get(e)-augment_value);
+ }
+ }
+
+ }
+
+ return _augment;
+ }
+
+ template<typename MutableGraph> bool augmentOnBlockingFlow1() {
+ typedef MutableGraph MG;
+ bool _augment=false;
+
+ ResGW res_graph(*g, *flow, *capacity);
+
+ //bfs for distances on the residual graph
+ typedef typename ResGW::NodeMap<bool> ReachedMap;
+ BfsIterator5< ResGW, ReachedMap > bfs(res_graph);
+ bfs.pushAndSetReached(s);
+ typename ResGW::NodeMap<int> dist(res_graph); //filled up with 0's
+
+ //F will contain the physical copy of the residual graph
+ //with the set of edges which are on shortest paths
+ MG F;
+ typename ResGW::NodeMap<typename MG::Node> res_graph_to_F(res_graph);
+ {
+ typename ResGW::NodeIt n;
+ for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) {
+ res_graph_to_F.set(n, F.addNode());
+ }
+ }
+
+ typename MG::Node sF=res_graph_to_F.get(s);
+ typename MG::Node tF=res_graph_to_F.get(t);
+ typename MG::EdgeMap<ResGWEdge> original_edge(F);
+ typename MG::EdgeMap<Number> residual_capacity(F);
+
+ while ( !bfs.finished() ) {
+ ResGWOutEdgeIt e=bfs;
+ if (res_graph.valid(e)) {
+ if (bfs.isBNodeNewlyReached()) {
+ dist.set(res_graph.head(e), dist.get(res_graph.tail(e))+1);
+ typename MG::Edge f=F.addEdge(res_graph_to_F.get(res_graph.tail(e)), res_graph_to_F.get(res_graph.head(e)));
+ original_edge.update();
+ original_edge.set(f, e);
+ residual_capacity.update();
+ residual_capacity.set(f, res_graph.resCap(e));
+ } else {
+ if (dist.get(res_graph.head(e))==(dist.get(res_graph.tail(e))+1)) {
+ typename MG::Edge f=F.addEdge(res_graph_to_F.get(res_graph.tail(e)), res_graph_to_F.get(res_graph.head(e)));
+ original_edge.update();
+ original_edge.set(f, e);
+ residual_capacity.update();
+ residual_capacity.set(f, res_graph.resCap(e));
+ }
+ }
+ }
+ ++bfs;
+ } //computing distances from s in the residual graph
+
+ bool __augment=true;
+
+ while (__augment) {
+ __augment=false;
+ //computing blocking flow with dfs
+ typedef typename TrivGraphWrapper<MG>::NodeMap<bool> BlockingReachedMap;
+ DfsIterator5< TrivGraphWrapper<MG>, BlockingReachedMap > dfs(F);
+ typename MG::NodeMap<typename MG::Edge> pred(F);
+ pred.set(sF, INVALID);
+ //invalid iterators for sources
+
+ typename MG::NodeMap<Number> free(F);
+
+ dfs.pushAndSetReached(sF);
+ while (!dfs.finished()) {
+ ++dfs;
+ if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) {
+ if (dfs.isBNodeNewlyReached()) {
+ typename MG::Node v=F.aNode(dfs);
+ typename MG::Node w=F.bNode(dfs);
+ pred.set(w, dfs);
+ if (F.valid(pred.get(v))) {
+ free.set(w, std::min(free.get(v), residual_capacity.get(dfs)));
+ } else {
+ free.set(w, residual_capacity.get(dfs));
+ }
+ if (w==tF) {
+ __augment=true;
+ _augment=true;
+ break;
+ }
+
+ } else {
+ F.erase(/*typename MG::OutEdgeIt*/(dfs));
+ }
+ }
+ }
+
+ if (__augment) {
+ typename MG::Node n=tF;
+ Number augment_value=free.get(tF);
+ while (F.valid(pred.get(n))) {
+ typename MG::Edge e=pred.get(n);
+ res_graph.augment(original_edge.get(e), augment_value);
+ n=F.tail(e);
+ if (residual_capacity.get(e)==augment_value)
+ F.erase(e);
+ else
+ residual_capacity.set(e, residual_capacity.get(e)-augment_value);
+ }
+ }
+
+ }
+
+ return _augment;
+ }
+
+ bool augmentOnBlockingFlow2() {
+ bool _augment=false;
+
+ ResGW res_graph(*g, *flow, *capacity);
+
+ typedef typename ResGW::NodeMap<bool> ReachedMap;
+ BfsIterator5< ResGW, ReachedMap > bfs(res_graph);
+
+ bfs.pushAndSetReached(s);
+ DistanceMap<ResGW> dist(res_graph);
+ while ( !bfs.finished() ) {
+ ResGWOutEdgeIt e=bfs;
+ if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
+ dist.set(res_graph.head(e), dist.get(res_graph.tail(e))+1);
+ }
+ ++bfs;
+ } //computing distances from s in the residual graph
+
+ //Subgraph containing the edges on some shortest paths
+ typedef SubGraphWrapper<ResGW, DistanceMap<ResGW> > FilterResGW;
+ FilterResGW filter_res_graph(res_graph, dist);
+
+ //Subgraph, which is able to delete edges which are already
+ //met by the dfs
+ typename FilterResGW::NodeMap<typename FilterResGW::OutEdgeIt>
+ first_out_edges(filter_res_graph);
+ typename FilterResGW::NodeIt v;
+ for(filter_res_graph.first(v); filter_res_graph.valid(v);
+ filter_res_graph.next(v))
+ {
+ typename FilterResGW::OutEdgeIt e;
+ filter_res_graph.first(e, v);
+ first_out_edges.set(v, e);
+ }
+ typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW::
+ NodeMap<typename FilterResGW::OutEdgeIt> > ErasingResGW;
+ ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges);
+
+ bool __augment=true;
+
+ while (__augment) {
+
+ __augment=false;
+ //computing blocking flow with dfs
+ typedef typename ErasingResGW::NodeMap<bool> BlockingReachedMap;
+ DfsIterator5< ErasingResGW, BlockingReachedMap >
+ dfs(erasing_res_graph);
+ typename ErasingResGW::NodeMap<typename ErasingResGW::OutEdgeIt>
+ pred(erasing_res_graph);
+ pred.set(s, INVALID);
+ //invalid iterators for sources
+
+ typename ErasingResGW::NodeMap<Number> free(erasing_res_graph);
+
+ dfs.pushAndSetReached(s);
+ while (!dfs.finished()) {
+ ++dfs;
+ if (erasing_res_graph.valid(
+ /*typename ErasingResGW::OutEdgeIt*/(dfs)))
+ {
+ if (dfs.isBNodeNewlyReached()) {
+
+ typename ErasingResGW::Node v=erasing_res_graph.aNode(dfs);
+ typename ErasingResGW::Node w=erasing_res_graph.bNode(dfs);
+
+ pred.set(w, /*typename ErasingResGW::OutEdgeIt*/(dfs));
+ if (erasing_res_graph.valid(pred.get(v))) {
+ free.set(w, std::min(free.get(v), res_graph.resCap(dfs)));
+ } else {
+ free.set(w, res_graph.resCap(dfs));
+ }
+
+ if (w==t) {
+ __augment=true;
+ _augment=true;
+ break;
+ }
+ } else {
+ erasing_res_graph.erase(dfs);
+ }
+ }
+ }
+
+ if (__augment) {
+ typename ErasingResGW::Node n=t;
+ Number augment_value=free.get(n);
+ while (erasing_res_graph.valid(pred.get(n))) {
+ typename ErasingResGW::OutEdgeIt e=pred.get(n);
+ res_graph.augment(e, augment_value);
+ n=erasing_res_graph.tail(e);
+ if (res_graph.resCap(e)==0)
+ erasing_res_graph.erase(e);
+ }
+ }
+
+ } //while (__augment)
+
+ return _augment;
+ }
+
+// bool augmentOnBlockingFlow2() {
+// bool _augment=false;
+
+// //typedef ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap> EAugGraph;
+// typedef FilterGraphWrapper< ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap> > EAugGraph;
+// typedef typename EAugGraph::OutEdgeIt EAugOutEdgeIt;
+// typedef typename EAugGraph::Edge EAugEdge;
+
+// EAugGraph res_graph(*G, *flow, *capacity);
+
+// //typedef typename EAugGraph::NodeMap<bool> ReachedMap;
+// BfsIterator5<
+// ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>,
+// /*typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::OutEdgeIt,*/
+// ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::NodeMap<bool> > bfs(res_graph);
+
+// bfs.pushAndSetReached(s);
+
+// typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::
+// NodeMap<int>& dist=res_graph.dist;
+
+// while ( !bfs.finished() ) {
+// typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::OutEdgeIt e=bfs;
+// if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
+// dist.set(res_graph.head(e), dist.get(res_graph.tail(e))+1);
+// }
+// ++bfs;
+// } //computing distances from s in the residual graph
+
+// bool __augment=true;
+
+// while (__augment) {
+
+// __augment=false;
+// //computing blocking flow with dfs
+// typedef typename EAugGraph::NodeMap<bool> BlockingReachedMap;
+// DfsIterator5< EAugGraph/*, EAugOutEdgeIt*/, BlockingReachedMap >
+// dfs(res_graph);
+// typename EAugGraph::NodeMap<EAugEdge> pred(res_graph);
+// pred.set(s, EAugEdge(INVALID));
+// //invalid iterators for sources
+
+// typename EAugGraph::NodeMap<Number> free(res_graph);
+
+// dfs.pushAndSetReached(s);
+// while (!dfs.finished()) {
+// ++dfs;
+// if (res_graph.valid(EAugOutEdgeIt(dfs))) {
+// if (dfs.isBNodeNewlyReached()) {
+
+// typename EAugGraph::Node v=res_graph.aNode(dfs);
+// typename EAugGraph::Node w=res_graph.bNode(dfs);
+
+// pred.set(w, EAugOutEdgeIt(dfs));
+// if (res_graph.valid(pred.get(v))) {
+// free.set(w, std::min(free.get(v), res_graph.free(dfs)));
+// } else {
+// free.set(w, res_graph.free(dfs));
+// }
+
+// if (w==t) {
+// __augment=true;
+// _augment=true;
+// break;
+// }
+// } else {
+// res_graph.erase(dfs);
+// }
+// }
+
+// }
+
+// if (__augment) {
+// typename EAugGraph::Node n=t;
+// Number augment_value=free.get(t);
+// while (res_graph.valid(pred.get(n))) {
+// EAugEdge e=pred.get(n);
+// res_graph.augment(e, augment_value);
+// n=res_graph.tail(e);
+// if (res_graph.free(e)==0)
+// res_graph.erase(e);
+// }
+// }
+
+// }
+
+// return _augment;
+// }
+
+ void run() {
+ //int num_of_augmentations=0;
+ while (augmentOnShortestPath()) {
+ //while (augmentOnBlockingFlow<MutableGraph>()) {
+ //std::cout << ++num_of_augmentations << " ";
+ //std::cout<<std::endl;
+ }
+ }
+
+ template<typename MutableGraph> void run() {
+ //int num_of_augmentations=0;
+ //while (augmentOnShortestPath()) {
+ while (augmentOnBlockingFlow<MutableGraph>()) {
+ //std::cout << ++num_of_augmentations << " ";
+ //std::cout<<std::endl;
+ }
+ }
+
+ Number flowValue() {
+ Number a=0;
+ OutEdgeIt e;
+ for(g->first(e, s); g->valid(e); g->next(e)) {
+ a+=flow->get(e);
+ }
+ return a;
+ }
+
+ };
+
+
+// template <typename Graph, typename Number, typename FlowMap, typename CapacityMap>
+// class MaxMatching {
+// public:
+// typedef typename Graph::Node Node;
+// typedef typename Graph::NodeIt NodeIt;
+// typedef typename Graph::Edge Edge;
+// typedef typename Graph::EdgeIt EdgeIt;
+// typedef typename Graph::OutEdgeIt OutEdgeIt;
+// typedef typename Graph::InEdgeIt InEdgeIt;
+
+// typedef typename Graph::NodeMap<bool> SMap;
+// typedef typename Graph::NodeMap<bool> TMap;
+// private:
+// const Graph* G;
+// SMap* S;
+// TMap* T;
+// //Node s;
+// //Node t;
+// FlowMap* flow;
+// const CapacityMap* capacity;
+// typedef ResGraphWrapper<Graph, Number, FlowMap, CapacityMap > AugGraph;
+// typedef typename AugGraph::OutEdgeIt AugOutEdgeIt;
+// typedef typename AugGraph::Edge AugEdge;
+// typename Graph::NodeMap<int> used; //0
+
+// public:
+// MaxMatching(const Graph& _G, SMap& _S, TMap& _T, FlowMap& _flow, const CapacityMap& _capacity) :
+// G(&_G), S(&_S), T(&_T), flow(&_flow), capacity(&_capacity), used(_G) { }
+// bool augmentOnShortestPath() {
+// AugGraph res_graph(*G, *flow, *capacity);
+// bool _augment=false;
+
+// typedef typename AugGraph::NodeMap<bool> ReachedMap;
+// BfsIterator5< AugGraph, /*AugOutEdgeIt,*/ ReachedMap > bfs(res_graph);
+// typename AugGraph::NodeMap<AugEdge> pred(res_graph);
+// for(NodeIt s=G->template first<NodeIt>(); G->valid(s); G->next(s)) {
+// if ((S->get(s)) && (used.get(s)<1) ) {
+// //Number u=0;
+// //for(OutEdgeIt e=G->template first<OutEdgeIt>(s); G->valid(e); G->next(e))
+// //u+=flow->get(e);
+// //if (u<1) {
+// bfs.pushAndSetReached(s);
+// pred.set(s, AugEdge(INVALID));
+// //}
+// }
+// }
+
+// typename AugGraph::NodeMap<Number> free(res_graph);
+
+// Node n;
+// //searching for augmenting path
+// while ( !bfs.finished() ) {
+// AugOutEdgeIt e=bfs;
+// if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
+// Node v=res_graph.tail(e);
+// Node w=res_graph.head(e);
+// pred.set(w, e);
+// if (res_graph.valid(pred.get(v))) {
+// free.set(w, std::min(free.get(v), res_graph.free(e)));
+// } else {
+// free.set(w, res_graph.free(e));
+// }
+// n=res_graph.head(e);
+// if (T->get(n) && (used.get(n)<1) ) {
+// //Number u=0;
+// //for(InEdgeIt f=G->template first<InEdgeIt>(n); G->valid(f); G->next(f))
+// //u+=flow->get(f);
+// //if (u<1) {
+// _augment=true;
+// break;
+// //}
+// }
+// }
+
+// ++bfs;
+// } //end of searching augmenting path
+
+// if (_augment) {
+// //Node n=t;
+// used.set(n, 1); //mind2 vegen jav
+// Number augment_value=free.get(n);
+// while (res_graph.valid(pred.get(n))) {
+// AugEdge e=pred.get(n);
+// res_graph.augment(e, augment_value);
+// n=res_graph.tail(e);
+// }
+// used.set(n, 1); //mind2 vegen jav
+// }
+
+// return _augment;
+// }
+
+// // template<typename MutableGraph> bool augmentOnBlockingFlow() {
+// // bool _augment=false;
+
+// // AugGraph res_graph(*G, *flow, *capacity);
+
+// // typedef typename AugGraph::NodeMap<bool> ReachedMap;
+// // BfsIterator4< AugGraph, AugOutEdgeIt, ReachedMap > bfs(res_graph);
+
+
+
+
+
+// // //typename AugGraph::NodeMap<AugEdge> pred(res_graph);
+// // for(NodeIt s=G->template first<NodeIt>(); G->valid(s); G->next(s)) {
+// // if (S->get(s)) {
+// // Number u=0;
+// // for(OutEdgeIt e=G->template first<OutEdgeIt>(s); G->valid(e); G->next(e))
+// // u+=flow->get(e);
+// // if (u<1) {
+// // bfs.pushAndSetReached(s);
+// // //pred.set(s, AugEdge(INVALID));
+// // }
+// // }
+// // }
+
+
+
+
+// // //bfs.pushAndSetReached(s);
+// // typename AugGraph::NodeMap<int> dist(res_graph); //filled up with 0's
+// // while ( !bfs.finished() ) {
+// // AugOutEdgeIt e=bfs;
+// // if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
+// // dist.set(res_graph.head(e), dist.get(res_graph.tail(e))+1);
+// // }
+
+// // ++bfs;
+// // } //computing distances from s in the residual graph
+
+// // MutableGraph F;
+// // typename AugGraph::NodeMap<typename MutableGraph::Node>
+// // res_graph_to_F(res_graph);
+// // for(typename AugGraph::NodeIt n=res_graph.template first<typename AugGraph::NodeIt>(); res_graph.valid(n); res_graph.next(n)) {
+// // res_graph_to_F.set(n, F.addNode());
+// // }
+
+// // typename MutableGraph::Node sF=res_graph_to_F.get(s);
+// // typename MutableGraph::Node tF=res_graph_to_F.get(t);
+
+// // typename MutableGraph::EdgeMap<AugEdge> original_edge(F);
+// // typename MutableGraph::EdgeMap<Number> residual_capacity(F);
+
+// // //Making F to the graph containing the edges of the residual graph
+// // //which are in some shortest paths
+// // for(typename AugGraph::EdgeIt e=res_graph.template first<typename AugGraph::EdgeIt>(); res_graph.valid(e); res_graph.next(e)) {
+// // if (dist.get(res_graph.head(e))==dist.get(res_graph.tail(e))+1) {
+// // typename MutableGraph::Edge f=F.addEdge(res_graph_to_F.get(res_graph.tail(e)), res_graph_to_F.get(res_graph.head(e)));
+// // original_edge.update();
+// // original_edge.set(f, e);
+// // residual_capacity.update();
+// // residual_capacity.set(f, res_graph.free(e));
+// // }
+// // }
+
+// // bool __augment=true;
+
+// // while (__augment) {
+// // __augment=false;
+// // //computing blocking flow with dfs
+// // typedef typename MutableGraph::NodeMap<bool> BlockingReachedMap;
+// // DfsIterator4< MutableGraph, typename MutableGraph::OutEdgeIt, BlockingReachedMap > dfs(F);
+// // typename MutableGraph::NodeMap<typename MutableGraph::Edge> pred(F);
+// // pred.set(sF, typename MutableGraph::Edge(INVALID));
+// // //invalid iterators for sources
+
+// // typename MutableGraph::NodeMap<Number> free(F);
+
+// // dfs.pushAndSetReached(sF);
+// // while (!dfs.finished()) {
+// // ++dfs;
+// // if (F.valid(typename MutableGraph::OutEdgeIt(dfs))) {
+// // if (dfs.isBNodeNewlyReached()) {
+// // typename MutableGraph::Node v=F.aNode(dfs);
+// // typename MutableGraph::Node w=F.bNode(dfs);
+// // pred.set(w, dfs);
+// // if (F.valid(pred.get(v))) {
+// // free.set(w, std::min(free.get(v), residual_capacity.get(dfs)));
+// // } else {
+// // free.set(w, residual_capacity.get(dfs));
+// // }
+// // if (w==tF) {
+// // __augment=true;
+// // _augment=true;
+// // break;
+// // }
+
+// // } else {
+// // F.erase(typename MutableGraph::OutEdgeIt(dfs));
+// // }
+// // }
+// // }
+
+// // if (__augment) {
+// // typename MutableGraph::Node n=tF;
+// // Number augment_value=free.get(tF);
+// // while (F.valid(pred.get(n))) {
+// // typename MutableGraph::Edge e=pred.get(n);
+// // res_graph.augment(original_edge.get(e), augment_value);
+// // n=F.tail(e);
+// // if (residual_capacity.get(e)==augment_value)
+// // F.erase(e);
+// // else
+// // residual_capacity.set(e, residual_capacity.get(e)-augment_value);
+// // }
+// // }
+
+// // }
+
+// // return _augment;
+// // }
+// bool augmentOnBlockingFlow2() {
+// bool _augment=false;
+
+// //typedef ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap> EAugGraph;
+// typedef FilterGraphWrapper< ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap> > EAugGraph;
+// typedef typename EAugGraph::OutEdgeIt EAugOutEdgeIt;
+// typedef typename EAugGraph::Edge EAugEdge;
+
+// EAugGraph res_graph(*G, *flow, *capacity);
+
+// //typedef typename EAugGraph::NodeMap<bool> ReachedMap;
+// BfsIterator5<
+// ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>,
+// /*typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::OutEdgeIt,*/
+// ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::NodeMap<bool> > bfs(res_graph);
+
+
+// //typename AugGraph::NodeMap<AugEdge> pred(res_graph);
+// for(NodeIt s=G->template first<NodeIt>(); G->valid(s); G->next(s)) {
+// if (S->get(s)) {
+// Number u=0;
+// for(OutEdgeIt e=G->template first<OutEdgeIt>(s); G->valid(e); G->next(e))
+// u+=flow->get(e);
+// if (u<1) {
+// bfs.pushAndSetReached(s);
+// //pred.set(s, AugEdge(INVALID));
+// }
+// }
+// }
+
+
+// //bfs.pushAndSetReached(s);
+
+// typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::
+// NodeMap<int>& dist=res_graph.dist;
+
+// while ( !bfs.finished() ) {
+// typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::OutEdgeIt e=bfs;
+// if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
+// dist.set(res_graph.head(e), dist.get(res_graph.tail(e))+1);
+// }
+// ++bfs;
+// } //computing distances from s in the residual graph
+
+// bool __augment=true;
+
+// while (__augment) {
+
+// __augment=false;
+// //computing blocking flow with dfs
+// typedef typename EAugGraph::NodeMap<bool> BlockingReachedMap;
+// DfsIterator5< EAugGraph/*, EAugOutEdgeIt*/, BlockingReachedMap >
+// dfs(res_graph);
+// typename EAugGraph::NodeMap<EAugEdge> pred(res_graph, INVALID);
+// //pred.set(s, EAugEdge(INVALID));
+// //invalid iterators for sources
+
+// typename EAugGraph::NodeMap<Number> free(res_graph);
+
+
+// //typename AugGraph::NodeMap<AugEdge> pred(res_graph);
+// for(NodeIt s=G->template first<NodeIt>(); G->valid(s); G->next(s)) {
+// if (S->get(s)) {
+// Number u=0;
+// for(OutEdgeIt e=G->template first<OutEdgeIt>(s); G->valid(e); G->next(e))
+// u+=flow->get(e);
+// if (u<1) {
+// dfs.pushAndSetReached(s);
+// //pred.set(s, AugEdge(INVALID));
+// }
+// }
+// }
+
+
+
+// //dfs.pushAndSetReached(s);
+// typename EAugGraph::Node n;
+// while (!dfs.finished()) {
+// ++dfs;
+// if (res_graph.valid(EAugOutEdgeIt(dfs))) {
+// if (dfs.isBNodeNewlyReached()) {
+
+// typename EAugGraph::Node v=res_graph.aNode(dfs);
+// typename EAugGraph::Node w=res_graph.bNode(dfs);
+
+// pred.set(w, EAugOutEdgeIt(dfs));
+// if (res_graph.valid(pred.get(v))) {
+// free.set(w, std::min(free.get(v), res_graph.free(dfs)));
+// } else {
+// free.set(w, res_graph.free(dfs));
+// }
+
+// n=w;
+// if (T->get(w)) {
+// Number u=0;
+// for(InEdgeIt f=G->template first<InEdgeIt>(n); G->valid(f); G->next(f))
+// u+=flow->get(f);
+// if (u<1) {
+// __augment=true;
+// _augment=true;
+// break;
+// }
+// }
+// } else {
+// res_graph.erase(dfs);
+// }
+// }
+
+// }
+
+// if (__augment) {
+// // typename EAugGraph::Node n=t;
+// Number augment_value=free.get(n);
+// while (res_graph.valid(pred.get(n))) {
+// EAugEdge e=pred.get(n);
+// res_graph.augment(e, augment_value);
+// n=res_graph.tail(e);
+// if (res_graph.free(e)==0)
+// res_graph.erase(e);
+// }
+// }
+
+// }
+
+// return _augment;
+// }
+// void run() {
+// //int num_of_augmentations=0;
+// while (augmentOnShortestPath()) {
+// //while (augmentOnBlockingFlow<MutableGraph>()) {
+// //std::cout << ++num_of_augmentations << " ";
+// //std::cout<<std::endl;
+// }
+// }
+// // template<typename MutableGraph> void run() {
+// // //int num_of_augmentations=0;
+// // //while (augmentOnShortestPath()) {
+// // while (augmentOnBlockingFlow<MutableGraph>()) {
+// // //std::cout << ++num_of_augmentations << " ";
+// // //std::cout<<std::endl;
+// // }
+// // }
+// Number flowValue() {
+// Number a=0;
+// EdgeIt e;
+// for(G->/*getF*/first(e); G->valid(e); G->next(e)) {
+// a+=flow->get(e);
+// }
+// return a;
+// }
+// };
+
+
+
+
+
+
+// // template <typename Graph, typename Number, typename FlowMap, typename CapacityMap>
+// // class MaxFlow2 {
+// // public:
+// // typedef typename Graph::Node Node;
+// // typedef typename Graph::Edge Edge;
+// // typedef typename Graph::EdgeIt EdgeIt;
+// // typedef typename Graph::OutEdgeIt OutEdgeIt;
+// // typedef typename Graph::InEdgeIt InEdgeIt;
+// // private:
+// // const Graph& G;
+// // std::list<Node>& S;
+// // std::list<Node>& T;
+// // FlowMap& flow;
+// // const CapacityMap& capacity;
+// // typedef ResGraphWrapper<Graph, Number, FlowMap, CapacityMap > AugGraph;
+// // typedef typename AugGraph::OutEdgeIt AugOutEdgeIt;
+// // typedef typename AugGraph::Edge AugEdge;
+// // typename Graph::NodeMap<bool> SMap;
+// // typename Graph::NodeMap<bool> TMap;
+// // public:
+// // MaxFlow2(const Graph& _G, std::list<Node>& _S, std::list<Node>& _T, FlowMap& _flow, const CapacityMap& _capacity) : G(_G), S(_S), T(_T), flow(_flow), capacity(_capacity), SMap(_G), TMap(_G) {
+// // for(typename std::list<Node>::const_iterator i=S.begin();
+// // i!=S.end(); ++i) {
+// // SMap.set(*i, true);
+// // }
+// // for (typename std::list<Node>::const_iterator i=T.begin();
+// // i!=T.end(); ++i) {
+// // TMap.set(*i, true);
+// // }
+// // }
+// // bool augment() {
+// // AugGraph res_graph(G, flow, capacity);
+// // bool _augment=false;
+// // Node reached_t_node;
+
+// // typedef typename AugGraph::NodeMap<bool> ReachedMap;
+// // BfsIterator4< AugGraph, AugOutEdgeIt, ReachedMap > bfs(res_graph);
+// // for(typename std::list<Node>::const_iterator i=S.begin();
+// // i!=S.end(); ++i) {
+// // bfs.pushAndSetReached(*i);
+// // }
+// // //bfs.pushAndSetReached(s);
+
+// // typename AugGraph::NodeMap<AugEdge> pred(res_graph);
+// // //filled up with invalid iterators
+
+// // typename AugGraph::NodeMap<Number> free(res_graph);
+
+// // //searching for augmenting path
+// // while ( !bfs.finished() ) {
+// // AugOutEdgeIt e=/*AugOutEdgeIt*/(bfs);
+// // if (e.valid() && bfs.isBNodeNewlyReached()) {
+// // Node v=res_graph.tail(e);
+// // Node w=res_graph.head(e);
+// // pred.set(w, e);
+// // if (pred.get(v).valid()) {
+// // free.set(w, std::min(free.get(v), e.free()));
+// // } else {
+// // free.set(w, e.free());
+// // }
+// // if (TMap.get(res_graph.head(e))) {
+// // _augment=true;
+// // reached_t_node=res_graph.head(e);
+// // break;
+// // }
+// // }
+
+// // ++bfs;
+// // } //end of searching augmenting path
+
+// // if (_augment) {
+// // Node n=reached_t_node;
+// // Number augment_value=free.get(reached_t_node);
+// // while (pred.get(n).valid()) {
+// // AugEdge e=pred.get(n);
+// // e.augment(augment_value);
+// // n=res_graph.tail(e);
+// // }
+// // }
+
+// // return _augment;
+// // }
+// // void run() {
+// // while (augment()) { }
+// // }
+// // Number flowValue() {
+// // Number a=0;
+// // for(typename std::list<Node>::const_iterator i=S.begin();
+// // i!=S.end(); ++i) {
+// // for(OutEdgeIt e=G.template first<OutEdgeIt>(*i); e.valid(); ++e) {
+// // a+=flow.get(e);
+// // }
+// // for(InEdgeIt e=G.template first<InEdgeIt>(*i); e.valid(); ++e) {
+// // a-=flow.get(e);
+// // }
+// // }
+// // return a;
+// // }
+// // };
+
+
+} // namespace hugo
+
+#endif //HUGO_EDMONDS_KARP_H
Added: hugo/trunk/src/work/marci/experiment/edmonds_karp_demo.cc
==============================================================================
--- (empty file)
+++ hugo/trunk/src/work/marci/experiment/edmonds_karp_demo.cc Sat Apr 3 19:26:46 2004
@@ -0,0 +1,218 @@
+// -*- c++ -*-
+#include <iostream>
+#include <fstream>
+
+#include <list_graph.h>
+#include <smart_graph.h>
+#include <dimacs.h>
+#include <edmonds_karp.h>
+#include <time_measure.h>
+#include <graph_wrapper.h>
+
+class CM {
+public:
+ template<typename T> int get(T) const {return 1;}
+};
+
+using namespace hugo;
+
+// Use a DIMACS max flow file as stdin.
+// read_dimacs_demo < dimacs_max_flow_file
+
+
+// struct Ize {
+// };
+
+// struct Mize {
+// Ize bumm;
+// };
+
+// template <typename B>
+// class Huha {
+// public:
+// int u;
+// B brr;
+// };
+
+
+int main(int, char **) {
+
+ typedef ListGraph MutableGraph;
+
+ //typedef SmartGraph Graph;
+ typedef ListGraph Graph;
+ typedef Graph::Node Node;
+ typedef Graph::EdgeIt EdgeIt;
+
+
+// Mize mize[10];
+// Mize bize[0];
+// Mize zize;
+// typedef Mize Tize[0];
+
+// std::cout << &zize << " " << sizeof(mize) << sizeof(Tize) << std::endl;
+// std::cout << sizeof(bize) << std::endl;
+
+
+// Huha<Tize> k;
+// std::cout << sizeof(k) << std::endl;
+
+
+// struct Bumm {
+// //int a;
+// bool b;
+// };
+
+// std::cout << sizeof(Bumm) << std::endl;
+
+
+ Graph G;
+ Node s, t;
+ Graph::EdgeMap<int> cap(G);
+ readDimacsMaxFlow(std::cin, G, s, t, cap);
+
+// typedef TrivGraphWrapper<Graph> TGW;
+// TGW gw(G);
+// TGW::NodeIt sw;
+// gw./*getF*/first(sw);
+// std::cout << "p1:" << gw.nodeNum() << std::endl;
+// gw.erase(sw);
+// std::cout << "p2:" << gw.nodeNum() << std::endl;
+
+// typedef const Graph cLG;
+// typedef TrivGraphWrapper<const cLG> CTGW;
+// CTGW cgw(G);
+// CTGW::NodeIt csw;
+// cgw./*getF*/first(csw);
+// std::cout << "p1:" << cgw.nodeNum() << std::endl;
+// //cgw.erase(csw);
+// std::cout << "p2:" << cgw.nodeNum() << std::endl;
+
+
+ {
+ typedef TrivGraphWrapper<const Graph> GW;
+ GW gw(G);
+ std::cout << "edmonds karp demo (physical blocking flow augmentation)..." << std::endl;
+ GW::EdgeMap<int> flow(gw); //0 flow
+
+ Timer ts;
+ ts.reset();
+
+ typedef GW::EdgeMapWrapper< Graph::EdgeMap<int>, int > EMW;
+ EMW cw(cap);
+ MaxFlow<GW, int, GW::EdgeMap<int>, EMW > max_flow_test(gw, s, t, flow, cw);
+ int i=0;
+ while (max_flow_test.augmentOnBlockingFlow<MutableGraph>()) {
+// for(EdgeIt e=G.template first<EdgeIt>(); e.valid(); ++e) {
+// std::cout<<"("<<G.tail(e)<< "-"<<flow.get(e)<<"->"<<G.head(e)<<") ";
+// }
+// std::cout<<std::endl;
+ ++i;
+ }
+
+// std::cout << "maximum flow: "<< std::endl;
+// for(EdgeIt e=G.first<EdgeIt>(); e.valid(); ++e) {
+// std::cout<<"("<<G.tail(e)<< "-"<<flow.get(e)<<"->"<<G.head(e)<<") ";
+// }
+// std::cout<<std::endl;
+ std::cout << "elapsed time: " << ts << std::endl;
+ std::cout << "number of augmentation phases: " << i << std::endl;
+ std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
+ }
+
+ {
+ typedef TrivGraphWrapper<const Graph> GW;
+ GW gw(G);
+ std::cout << "edmonds karp demo (physical blocking flow 1 augmentation)..." << std::endl;
+ GW::EdgeMap<int> flow(gw); //0 flow
+
+ Timer ts;
+ ts.reset();
+
+ typedef GW::EdgeMapWrapper< Graph::EdgeMap<int>, int > EMW;
+ EMW cw(cap);
+ MaxFlow<GW, int, GW::EdgeMap<int>, EMW > max_flow_test(gw, s, t, flow, cw);
+ int i=0;
+ while (max_flow_test.augmentOnBlockingFlow1<MutableGraph>()) {
+// for(EdgeIt e=G.template first<EdgeIt>(); e.valid(); ++e) {
+// std::cout<<"("<<G.tail(e)<< "-"<<flow.get(e)<<"->"<<G.head(e)<<") ";
+// }
+// std::cout<<std::endl;
+ ++i;
+ }
+
+// std::cout << "maximum flow: "<< std::endl;
+// for(EdgeIt e=G.first<EdgeIt>(); e.valid(); ++e) {
+// std::cout<<"("<<G.tail(e)<< "-"<<flow.get(e)<<"->"<<G.head(e)<<") ";
+// }
+// std::cout<<std::endl;
+ std::cout << "elapsed time: " << ts << std::endl;
+ std::cout << "number of augmentation phases: " << i << std::endl;
+ std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
+ }
+
+ {
+ typedef TrivGraphWrapper<const Graph> GW;
+ GW gw(G);
+ std::cout << "edmonds karp demo (on-the-fly blocking flow augmentation)..." << std::endl;
+ GW::EdgeMap<int> flow(gw); //0 flow
+
+ Timer ts;
+ ts.reset();
+
+ typedef GW::EdgeMapWrapper< Graph::EdgeMap<int>, int > EMW;
+ EMW cw(cap);
+ MaxFlow<GW, int, GW::EdgeMap<int>, EMW > max_flow_test(gw, s, t, flow, cw);
+ int i=0;
+ while (max_flow_test.augmentOnBlockingFlow2()) {
+// for(EdgeIt e=G.template first<EdgeIt>(); e.valid(); ++e) {
+// std::cout<<"("<<G.tail(e)<< "-"<<flow.get(e)<<"->"<<G.head(e)<<") ";
+// }
+// std::cout<<std::endl;
+ ++i;
+ }
+
+// std::cout << "maximum flow: "<< std::endl;
+// for(EdgeIt e=G.first<EdgeIt>(); e.valid(); ++e) {
+// std::cout<<"("<<G.tail(e)<< "-"<<flow.get(e)<<"->"<<G.head(e)<<") ";
+// }
+// std::cout<<std::endl;
+ std::cout << "elapsed time: " << ts << std::endl;
+ std::cout << "number of augmentation phases: " << i << std::endl;
+ std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
+ }
+
+ {
+ typedef TrivGraphWrapper<const Graph> GW;
+ GW gw(G);
+ std::cout << "edmonds karp demo (on-the-fly shortest path augmentation)..." << std::endl;
+ GW::EdgeMap<int> flow(gw); //0 flow
+
+ Timer ts;
+ ts.reset();
+
+ typedef GW::EdgeMapWrapper< Graph::EdgeMap<int>, int > EMW;
+ EMW cw(cap);
+ MaxFlow<GW, int, GW::EdgeMap<int>, EMW> max_flow_test(gw, s, t, flow, cw);
+ int i=0;
+ while (max_flow_test.augmentOnShortestPath()) {
+// for(EdgeIt e=G.template first<EdgeIt>(); e.valid(); ++e) {
+// std::cout<<"("<<G.tail(e)<< "-"<<flow.get(e)<<"->"<<G.head(e)<<") ";
+// }
+// std::cout<<std::endl;
+ ++i;
+ }
+
+// std::cout << "maximum flow: "<< std::endl;
+// for(EdgeIt e=G.first<EdgeIt>(); e.valid(); ++e) {
+// std::cout<<"("<<G.tail(e)<< "-"<<flow.get(e)<<"->"<<G.head(e)<<") ";
+// }
+// std::cout<<std::endl;
+ std::cout << "elapsed time: " << ts << std::endl;
+ std::cout << "number of augmentation phases: " << i << std::endl;
+ std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
+ }
+
+
+ return 0;
+}
Added: hugo/trunk/src/work/marci/experiment/edmonds_karp_demo_1.cc
==============================================================================
--- (empty file)
+++ hugo/trunk/src/work/marci/experiment/edmonds_karp_demo_1.cc Sat Apr 3 19:26:46 2004
@@ -0,0 +1,218 @@
+// -*- c++ -*-
+#include <iostream>
+#include <fstream>
+
+#include <list_graph.h>
+//#include <smart_graph.h>
+#include <dimacs.h>
+#include <edmonds_karp_1.h>
+#include <time_measure.h>
+#include <graph_wrapper_1.h>
+
+class CM {
+public:
+ template<typename T> int get(T) const {return 1;}
+};
+
+using namespace hugo;
+
+// Use a DIMACS max flow file as stdin.
+// read_dimacs_demo < dimacs_max_flow_file
+
+
+// struct Ize {
+// };
+
+// struct Mize {
+// Ize bumm;
+// };
+
+// template <typename B>
+// class Huha {
+// public:
+// int u;
+// B brr;
+// };
+
+
+int main(int, char **) {
+
+ typedef ListGraph MutableGraph;
+
+ //typedef SmartGraph Graph;
+ typedef ListGraph Graph;
+ typedef Graph::Node Node;
+ typedef Graph::EdgeIt EdgeIt;
+
+
+// Mize mize[10];
+// Mize bize[0];
+// Mize zize;
+// typedef Mize Tize[0];
+
+// std::cout << &zize << " " << sizeof(mize) << sizeof(Tize) << std::endl;
+// std::cout << sizeof(bize) << std::endl;
+
+
+// Huha<Tize> k;
+// std::cout << sizeof(k) << std::endl;
+
+
+// struct Bumm {
+// //int a;
+// bool b;
+// };
+
+// std::cout << sizeof(Bumm) << std::endl;
+
+
+ Graph G;
+ Node s, t;
+ Graph::EdgeMap<int> cap(G);
+ readDimacsMaxFlow(std::cin, G, s, t, cap);
+
+// typedef TrivGraphWrapper<Graph> TGW;
+// TGW gw(G);
+// TGW::NodeIt sw;
+// gw./*getF*/first(sw);
+// std::cout << "p1:" << gw.nodeNum() << std::endl;
+// gw.erase(sw);
+// std::cout << "p2:" << gw.nodeNum() << std::endl;
+
+// typedef const Graph cLG;
+// typedef TrivGraphWrapper<const cLG> CTGW;
+// CTGW cgw(G);
+// CTGW::NodeIt csw;
+// cgw./*getF*/first(csw);
+// std::cout << "p1:" << cgw.nodeNum() << std::endl;
+// //cgw.erase(csw);
+// std::cout << "p2:" << cgw.nodeNum() << std::endl;
+
+
+ {
+ typedef TrivGraphWrapper<const Graph> GW;
+ GW gw(G);
+ std::cout << "edmonds karp demo (physical blocking flow augmentation)..." << std::endl;
+ GW::EdgeMap<int> flow(gw); //0 flow
+
+ Timer ts;
+ ts.reset();
+
+ typedef GW::EdgeMapWrapper< Graph::EdgeMap<int>, int > EMW;
+ EMW cw(cap);
+ MaxFlow<GW, int, GW::EdgeMap<int>, EMW > max_flow_test(gw, s, t, flow, cw);
+ int i=0;
+ while (max_flow_test.augmentOnBlockingFlow<MutableGraph>()) {
+// for(EdgeIt e=G.template first<EdgeIt>(); e.valid(); ++e) {
+// std::cout<<"("<<G.tail(e)<< "-"<<flow.get(e)<<"->"<<G.head(e)<<") ";
+// }
+// std::cout<<std::endl;
+ ++i;
+ }
+
+// std::cout << "maximum flow: "<< std::endl;
+// for(EdgeIt e=G.first<EdgeIt>(); e.valid(); ++e) {
+// std::cout<<"("<<G.tail(e)<< "-"<<flow.get(e)<<"->"<<G.head(e)<<") ";
+// }
+// std::cout<<std::endl;
+ std::cout << "elapsed time: " << ts << std::endl;
+ std::cout << "number of augmentation phases: " << i << std::endl;
+ std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
+ }
+
+ {
+ typedef TrivGraphWrapper<const Graph> GW;
+ GW gw(G);
+ std::cout << "edmonds karp demo (physical blocking flow 1 augmentation)..." << std::endl;
+ GW::EdgeMap<int> flow(gw); //0 flow
+
+ Timer ts;
+ ts.reset();
+
+ typedef GW::EdgeMapWrapper< Graph::EdgeMap<int>, int > EMW;
+ EMW cw(cap);
+ MaxFlow<GW, int, GW::EdgeMap<int>, EMW > max_flow_test(gw, s, t, flow, cw);
+ int i=0;
+ while (max_flow_test.augmentOnBlockingFlow1<MutableGraph>()) {
+// for(EdgeIt e=G.template first<EdgeIt>(); e.valid(); ++e) {
+// std::cout<<"("<<G.tail(e)<< "-"<<flow.get(e)<<"->"<<G.head(e)<<") ";
+// }
+// std::cout<<std::endl;
+ ++i;
+ }
+
+// std::cout << "maximum flow: "<< std::endl;
+// for(EdgeIt e=G.first<EdgeIt>(); e.valid(); ++e) {
+// std::cout<<"("<<G.tail(e)<< "-"<<flow.get(e)<<"->"<<G.head(e)<<") ";
+// }
+// std::cout<<std::endl;
+ std::cout << "elapsed time: " << ts << std::endl;
+ std::cout << "number of augmentation phases: " << i << std::endl;
+ std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
+ }
+
+ {
+ typedef TrivGraphWrapper<const Graph> GW;
+ GW gw(G);
+ std::cout << "edmonds karp demo (on-the-fly blocking flow augmentation)..." << std::endl;
+ GW::EdgeMap<int> flow(gw); //0 flow
+
+ Timer ts;
+ ts.reset();
+
+ typedef GW::EdgeMapWrapper< Graph::EdgeMap<int>, int > EMW;
+ EMW cw(cap);
+ MaxFlow<GW, int, GW::EdgeMap<int>, EMW > max_flow_test(gw, s, t, flow, cw);
+ int i=0;
+ while (max_flow_test.augmentOnBlockingFlow2()) {
+// for(EdgeIt e=G.template first<EdgeIt>(); e.valid(); ++e) {
+// std::cout<<"("<<G.tail(e)<< "-"<<flow.get(e)<<"->"<<G.head(e)<<") ";
+// }
+// std::cout<<std::endl;
+ ++i;
+ }
+
+// std::cout << "maximum flow: "<< std::endl;
+// for(EdgeIt e=G.first<EdgeIt>(); e.valid(); ++e) {
+// std::cout<<"("<<G.tail(e)<< "-"<<flow.get(e)<<"->"<<G.head(e)<<") ";
+// }
+// std::cout<<std::endl;
+ std::cout << "elapsed time: " << ts << std::endl;
+ std::cout << "number of augmentation phases: " << i << std::endl;
+ std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
+ }
+
+ {
+ typedef TrivGraphWrapper<const Graph> GW;
+ GW gw(G);
+ std::cout << "edmonds karp demo (on-the-fly shortest path augmentation)..." << std::endl;
+ GW::EdgeMap<int> flow(gw); //0 flow
+
+ Timer ts;
+ ts.reset();
+
+ typedef GW::EdgeMapWrapper< Graph::EdgeMap<int>, int > EMW;
+ EMW cw(cap);
+ MaxFlow<GW, int, GW::EdgeMap<int>, EMW> max_flow_test(gw, s, t, flow, cw);
+ int i=0;
+ while (max_flow_test.augmentOnShortestPath()) {
+// for(EdgeIt e=G.template first<EdgeIt>(); e.valid(); ++e) {
+// std::cout<<"("<<G.tail(e)<< "-"<<flow.get(e)<<"->"<<G.head(e)<<") ";
+// }
+// std::cout<<std::endl;
+ ++i;
+ }
+
+// std::cout << "maximum flow: "<< std::endl;
+// for(EdgeIt e=G.first<EdgeIt>(); e.valid(); ++e) {
+// std::cout<<"("<<G.tail(e)<< "-"<<flow.get(e)<<"->"<<G.head(e)<<") ";
+// }
+// std::cout<<std::endl;
+ std::cout << "elapsed time: " << ts << std::endl;
+ std::cout << "number of augmentation phases: " << i << std::endl;
+ std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
+ }
+
+
+ return 0;
+}
Added: hugo/trunk/src/work/marci/experiment/graph_wrapper.h
==============================================================================
--- (empty file)
+++ hugo/trunk/src/work/marci/experiment/graph_wrapper.h Sat Apr 3 19:26:46 2004
@@ -0,0 +1,1707 @@
+// -*- c++ -*-
+#ifndef HUGO_GRAPH_WRAPPER_H
+#define HUGO_GRAPH_WRAPPER_H
+
+#include <invalid.h>
+
+namespace hugo {
+
+ template<typename Graph>
+ class TrivGraphWrapper {
+ protected:
+ Graph* graph;
+
+ public:
+ typedef Graph BaseGraph;
+
+ typedef typename Graph::Node Node;
+ class NodeIt : public Graph::NodeIt {
+ public:
+ NodeIt() { }
+ NodeIt(const typename Graph::NodeIt& n) : Graph::NodeIt(n) { }
+ NodeIt(const Invalid& i) : Graph::NodeIt(i) { }
+ NodeIt(const TrivGraphWrapper<Graph>& _G) :
+ Graph::NodeIt(*(_G.graph)) { }
+ };
+ typedef typename Graph::Edge Edge;
+ //typedef typename Graph::OutEdgeIt OutEdgeIt;
+ class OutEdgeIt : public Graph::OutEdgeIt {
+ public:
+ OutEdgeIt() { }
+ OutEdgeIt(const typename Graph::OutEdgeIt& e) : Graph::OutEdgeIt(e) { }
+ OutEdgeIt(const Invalid& i) : Graph::OutEdgeIt(i) { }
+ OutEdgeIt(const TrivGraphWrapper<Graph>& _G, const Node& n) :
+ Graph::OutEdgeIt(*(_G.graph), n) { }
+ };
+ //typedef typename Graph::InEdgeIt InEdgeIt;
+ class InEdgeIt : public Graph::InEdgeIt {
+ public:
+ InEdgeIt() { }
+ InEdgeIt(const typename Graph::InEdgeIt& e) : Graph::InEdgeIt(e) { }
+ InEdgeIt(const Invalid& i) : Graph::InEdgeIt(i) { }
+ InEdgeIt(const TrivGraphWrapper<Graph>& _G, const Node& n) :
+ Graph::InEdgeIt(*(_G.graph), n) { }
+ };
+ //typedef typename Graph::SymEdgeIt SymEdgeIt;
+ //typedef typename Graph::EdgeIt EdgeIt;
+ class EdgeIt : public Graph::EdgeIt {
+ public:
+ EdgeIt() { }
+ EdgeIt(const typename Graph::EdgeIt& e) : Graph::EdgeIt(e) { }
+ EdgeIt(const Invalid& i) : Graph::EdgeIt(i) { }
+ EdgeIt(const TrivGraphWrapper<Graph>& _G) :
+ Graph::EdgeIt(*(_G.graph)) { }
+ };
+
+ //TrivGraphWrapper() : graph(0) { }
+ TrivGraphWrapper(Graph& _graph) : graph(&_graph) { }
+
+// void setGraph(Graph& _graph) { graph = &_graph; }
+// Graph& getGraph() const { return (*graph); }
+
+ NodeIt& first(NodeIt& i) const {
+ i=NodeIt(*this);
+ return i;
+ }
+ EdgeIt& first(EdgeIt& i) const {
+ i=EdgeIt(*this);
+ return i;
+ }
+// template<typename I> I& first(I& i) const {
+// //return graph->first(i);
+// i=I(*this);
+// return i;
+// }
+ OutEdgeIt& first(OutEdgeIt& i, const Node& p) const {
+ i=OutEdgeIt(*this, p);
+ return i;
+ }
+ InEdgeIt& first(InEdgeIt& i, const Node& p) const {
+ i=InEdgeIt(*this, p);
+ return i;
+ }
+// template<typename I, typename P> I& first(I& i, const P& p) const {
+// //return graph->first(i, p);
+// i=I(*this, p);
+// return i;
+// }
+
+// template<typename I> I getNext(const I& i) const {
+// return graph->getNext(i); }
+ template<typename I> I& next(I &i) const { graph->next(i); return i; }
+
+ template< typename It > It first() const {
+ It e; first(e); return e; }
+
+ template< typename It > It first(const Node& v) const {
+ It e; first(e, v); return e; }
+
+ Node head(const Edge& e) const { return graph->head(e); }
+ Node tail(const Edge& e) const { return graph->tail(e); }
+
+ template<typename I> bool valid(const I& i) const
+ { return graph->valid(i); }
+
+ //template<typename I> void setInvalid(const I &i);
+ //{ return graph->setInvalid(i); }
+
+ int nodeNum() const { return graph->nodeNum(); }
+ int edgeNum() const { return graph->edgeNum(); }
+
+ template<typename I> Node aNode(const I& e) const {
+ return graph->aNode(e); }
+ template<typename I> Node bNode(const I& e) const {
+ return graph->bNode(e); }
+
+ Node addNode() const { return graph->addNode(); }
+ Edge addEdge(const Node& tail, const Node& head) const {
+ return graph->addEdge(tail, head); }
+
+ template<typename I> void erase(const I& i) const { graph->erase(i); }
+
+ void clear() const { graph->clear(); }
+
+ template<typename T> class NodeMap : public Graph::NodeMap<T> {
+ public:
+ NodeMap(const TrivGraphWrapper<Graph>& _G) :
+ Graph::NodeMap<T>(*(_G.graph)) { }
+ NodeMap(const TrivGraphWrapper<Graph>& _G, T a) :
+ Graph::NodeMap<T>(*(_G.graph), a) { }
+ };
+
+ template<typename T> class EdgeMap : public Graph::EdgeMap<T> {
+ public:
+ EdgeMap(const TrivGraphWrapper<Graph>& _G) :
+ Graph::EdgeMap<T>(*(_G.graph)) { }
+ EdgeMap(const TrivGraphWrapper<Graph>& _G, T a) :
+ Graph::EdgeMap<T>(*(_G.graph), a) { }
+ };
+
+ template<typename Map, typename T> class NodeMapWrapper {
+ protected:
+ Map* map;
+ public:
+ NodeMapWrapper(Map& _map) : map(&_map) { }
+ //template<typename T>
+ void set(Node n, T a) { map->set(n, a); }
+ //template<typename T>
+ T get(Node n) const { return map->get(n); }
+ };
+
+ template<typename Map, typename T> class EdgeMapWrapper {
+ protected:
+ Map* map;
+ public:
+ EdgeMapWrapper(Map& _map) : map(&_map) { }
+ //template<typename T>
+ void set(Edge n, T a) { map->set(n, a); }
+ //template<typename T>
+ T get(Edge n) const { return map->get(n); }
+ };
+ };
+
+ template<typename GraphWrapper>
+ class GraphWrapperSkeleton {
+ protected:
+ GraphWrapper gw;
+
+ public:
+ //typedef typename GraphWrapper::BaseGraph BaseGraph;
+
+// typedef typename GraphWrapper::Node Node;
+// typedef typename GraphWrapper::NodeIt NodeIt;
+
+// typedef typename GraphWrapper::Edge Edge;
+// typedef typename GraphWrapper::OutEdgeIt OutEdgeIt;
+// typedef typename GraphWrapper::InEdgeIt InEdgeIt;
+// //typedef typename GraphWrapper::SymEdgeIt SymEdgeIt;
+// typedef typename GraphWrapper::EdgeIt EdgeIt;
+
+ typedef typename GraphWrapper::Node Node;
+ class NodeIt : public GraphWrapper::NodeIt {
+ public:
+ NodeIt() { }
+ NodeIt(const typename GraphWrapper::NodeIt& n) :
+ GraphWrapper::NodeIt(n) { }
+ NodeIt(const Invalid& i) : GraphWrapper::NodeIt(i) { }
+ NodeIt(const GraphWrapperSkeleton<GraphWrapper>& _G) :
+ GraphWrapper::NodeIt(_G.gw) { }
+ };
+ typedef typename GraphWrapper::Edge Edge;
+ //typedef typename GraphWrapper::OutEdgeIt OutEdgeIt;
+ class OutEdgeIt : public GraphWrapper::OutEdgeIt {
+ public:
+ OutEdgeIt() { }
+ OutEdgeIt(const typename GraphWrapper::OutEdgeIt& e) :
+ GraphWrapper::OutEdgeIt(e) { }
+ OutEdgeIt(const Invalid& i) : GraphWrapper::OutEdgeIt(i) { }
+ OutEdgeIt(const GraphWrapperSkeleton<GraphWrapper>& _G, const Node& n) :
+ GraphWrapper::OutEdgeIt(_G.gw, n) { }
+ };
+ //typedef typename GraphWrapper::InEdgeIt InEdgeIt;
+ class InEdgeIt : public GraphWrapper::InEdgeIt {
+ public:
+ InEdgeIt() { }
+ InEdgeIt(const typename GraphWrapper::InEdgeIt& e) :
+ GraphWrapper::InEdgeIt(e) { }
+ InEdgeIt(const Invalid& i) : GraphWrapper::InEdgeIt(i) { }
+ InEdgeIt(const GraphWrapperSkeleton<GraphWrapper>& _G, const Node& n) :
+ GraphWrapper::InEdgeIt(_G.gw, n) { }
+ };
+ //typedef typename GraphWrapper::SymEdgeIt SymEdgeIt;
+ //typedef typename GraphWrapper::EdgeIt EdgeIt;
+ class EdgeIt : public GraphWrapper::EdgeIt {
+ public:
+ EdgeIt() { }
+ EdgeIt(const typename GraphWrapper::EdgeIt& e) :
+ GraphWrapper::EdgeIt(e) { }
+ EdgeIt(const Invalid& i) : GraphWrapper::EdgeIt(i) { }
+ EdgeIt(const GraphWrapperSkeleton<GraphWrapper>& _G) :
+ GraphWrapper::EdgeIt(_G.gw) { }
+ };
+
+
+ //GraphWrapperSkeleton() : gw() { }
+ GraphWrapperSkeleton(GraphWrapper _gw) : gw(_gw) { }
+
+ //void setGraph(BaseGraph& _graph) { gw.setGraph(_graph); }
+ //BaseGraph& getGraph() const { return gw.getGraph(); }
+
+ template<typename I> I& first(I& i) const {
+ i=I(*this);
+ return i;
+ }
+ template<typename I, typename P> I& first(I& i, const P& p) const {
+ i=I(*this, p);
+ return i;
+ }
+
+// template<typename I> I getNext(const I& i) const { return gw.getNext(i); }
+ template<typename I> I& next(I &i) const { gw.next(i); return i; }
+
+ template< typename It > It first() const {
+ It e; this->first(e); return e; }
+
+ template< typename It > It first(const Node& v) const {
+ It e; this->first(e, v); return e; }
+
+ Node head(const Edge& e) const { return gw.head(e); }
+ Node tail(const Edge& e) const { return gw.tail(e); }
+
+ template<typename I> bool valid(const I& i) const { return gw.valid(i); }
+
+ //template<typename I> void setInvalid(const I &i);
+ //{ return graph->setInvalid(i); }
+
+ int nodeNum() const { return gw.nodeNum(); }
+ int edgeNum() const { return gw.edgeNum(); }
+
+ template<typename I> Node aNode(const I& e) const { return gw.aNode(e); }
+ template<typename I> Node bNode(const I& e) const { return gw.bNode(e); }
+
+ Node addNode() const { return gw.addNode(); }
+ Edge addEdge(const Node& tail, const Node& head) const {
+ return gw.addEdge(tail, head); }
+
+ template<typename I> void erase(const I& i) const { gw.erase(i); }
+
+ void clear() const { gw.clear(); }
+
+ template<typename T> class NodeMap : public GraphWrapper::NodeMap<T> {
+ public:
+ NodeMap(const GraphWrapperSkeleton<GraphWrapper>& _G) :
+ GraphWrapper::NodeMap<T>(_G.gw) { }
+ NodeMap(const GraphWrapperSkeleton<GraphWrapper>& _G, T a) :
+ GraphWrapper::NodeMap<T>(_G.gw, a) { }
+ };
+
+ template<typename T> class EdgeMap : public GraphWrapper::EdgeMap<T> {
+ public:
+ EdgeMap(const GraphWrapperSkeleton<GraphWrapper>& _G) :
+ GraphWrapper::EdgeMap<T>(_G.gw) { }
+ EdgeMap(const GraphWrapperSkeleton<GraphWrapper>& _G, T a) :
+ GraphWrapper::EdgeMap<T>(_G.gw, a) { }
+ };
+ };
+
+// template<typename Graph>
+// class RevGraphWrapper
+// {
+// protected:
+// Graph* graph;
+
+// public:
+// typedef Graph BaseGraph;
+
+// typedef typename Graph::Node Node;
+// typedef typename Graph::NodeIt NodeIt;
+
+// typedef typename Graph::Edge Edge;
+// typedef typename Graph::OutEdgeIt InEdgeIt;
+// typedef typename Graph::InEdgeIt OutEdgeIt;
+// //typedef typename Graph::SymEdgeIt SymEdgeIt;
+// typedef typename Graph::EdgeIt EdgeIt;
+
+// //RevGraphWrapper() : graph(0) { }
+// RevGraphWrapper(Graph& _graph) : graph(&_graph) { }
+
+// void setGraph(Graph& _graph) { graph = &_graph; }
+// Graph& getGraph() const { return (*graph); }
+
+// template<typename I> I& first(I& i) const { return graph->first(i); }
+// template<typename I, typename P> I& first(I& i, const P& p) const {
+// return graph->first(i, p); }
+
+// template<typename I> I getNext(const I& i) const {
+// return graph->getNext(i); }
+// template<typename I> I& next(I &i) const { return graph->next(i); }
+
+// template< typename It > It first() const {
+// It e; first(e); return e; }
+
+// template< typename It > It first(const Node& v) const {
+// It e; first(e, v); return e; }
+
+// Node head(const Edge& e) const { return graph->tail(e); }
+// Node tail(const Edge& e) const { return graph->head(e); }
+
+// template<typename I> bool valid(const I& i) const
+// { return graph->valid(i); }
+
+// //template<typename I> void setInvalid(const I &i);
+// //{ return graph->setInvalid(i); }
+
+// template<typename I> Node aNode(const I& e) const {
+// return graph->aNode(e); }
+// template<typename I> Node bNode(const I& e) const {
+// return graph->bNode(e); }
+
+// Node addNode() const { return graph->addNode(); }
+// Edge addEdge(const Node& tail, const Node& head) const {
+// return graph->addEdge(tail, head); }
+
+// int nodeNum() const { return graph->nodeNum(); }
+// int edgeNum() const { return graph->edgeNum(); }
+
+// template<typename I> void erase(const I& i) const { graph->erase(i); }
+
+// void clear() const { graph->clear(); }
+
+// template<typename T> class NodeMap : public Graph::NodeMap<T> {
+// public:
+// NodeMap(const RevGraphWrapper<Graph>& _G) :
+// Graph::NodeMap<T>(_G.getGraph()) { }
+// NodeMap(const RevGraphWrapper<Graph>& _G, T a) :
+// Graph::NodeMap<T>(_G.getGraph(), a) { }
+// };
+
+// template<typename T> class EdgeMap : public Graph::EdgeMap<T> {
+// public:
+// EdgeMap(const RevGraphWrapper<Graph>& _G) :
+// Graph::EdgeMap<T>(_G.getGraph()) { }
+// EdgeMap(const RevGraphWrapper<Graph>& _G, T a) :
+// Graph::EdgeMap<T>(_G.getGraph(), a) { }
+// };
+// };
+
+// template<typename /*Graph*/GraphWrapper
+// /*=typename GraphWrapperSkeleton< TrivGraphWrapper<Graph>*/ >
+// class RevGraphWrapper :
+// public GraphWrapper/*GraphWrapperSkeleton< TrivGraphWrapper<Graph> >*/ {
+// protected:
+// //Graph* graph;
+
+// public:
+// //typedef Graph BaseGraph;
+
+// //typedef typename Graph::Node Node;
+// //typedef typename Graph::NodeIt NodeIt;
+
+// //typedef typename Graph::Edge Edge;
+// typedef typename GraphWrapper/*typename GraphWrapperSkeleton< TrivGraphWrapper<Graph> >*/::OutEdgeIt InEdgeIt;
+// typedef typename GraphWrapper/*typename GraphWrapperSkeleton< TrivGraphWrapper<Graph> >*/::InEdgeIt OutEdgeIt;
+// //typedef typename Graph::SymEdgeIt SymEdgeIt;
+// //typedef typename Graph::EdgeIt EdgeIt;
+
+// //RevGraphWrapper() : graph(0) { }
+// RevGraphWrapper(GraphWrapper _gw/*BaseGraph& _graph*/) : GraphWrapper/*GraphWrapperSkeleton< TrivGraphWrapper<Graph> >*/(_gw/*TrivGraphWrapper<Graph>(_graph)*/) { }
+
+// //void setGraph(Graph& _graph) { graph = &_graph; }
+// //Graph& getGraph() const { return (*graph); }
+
+// //template<typename I> I& first(I& i) const { return graph->first(i); }
+// //template<typename I, typename P> I& first(I& i, const P& p) const {
+// // return graph->first(i, p); }
+
+// //template<typename I> I getNext(const I& i) const {
+// // return graph->getNext(i); }
+// //template<typename I> I& next(I &i) const { return graph->next(i); }
+
+// //template< typename It > It first() const {
+// // It e; first(e); return e; }
+
+// //template< typename It > It first(const Node& v) const {
+// // It e; first(e, v); return e; }
+
+// //Node head(const Edge& e) const { return graph->tail(e); }
+// //Node tail(const Edge& e) const { return graph->head(e); }
+
+// //template<typename I> bool valid(const I& i) const
+// // { return graph->valid(i); }
+
+// //template<typename I> void setInvalid(const I &i);
+// //{ return graph->setInvalid(i); }
+
+// //template<typename I> Node aNode(const I& e) const {
+// // return graph->aNode(e); }
+// //template<typename I> Node bNode(const I& e) const {
+// // return graph->bNode(e); }
+
+// //Node addNode() const { return graph->addNode(); }
+// //Edge addEdge(const Node& tail, const Node& head) const {
+// // return graph->addEdge(tail, head); }
+
+// //int nodeNum() const { return graph->nodeNum(); }
+// //int edgeNum() const { return graph->edgeNum(); }
+
+// //template<typename I> void erase(const I& i) const { graph->erase(i); }
+
+// //void clear() const { graph->clear(); }
+
+// template<typename T> class NodeMap :
+// public GraphWrapper/*Skeleton< TrivGraphWrapper<Graph> >*/::NodeMap<T>
+// {
+// public:
+// NodeMap(const RevGraphWrapper<GraphWrapper>& _gw) :
+// GraphWrapper/*Skeleton< TrivGraphWrapper<Graph> >*/::NodeMap<T>(_gw) { }
+// NodeMap(const RevGraphWrapper<GraphWrapper>& _gw, T a) :
+// GraphWrapper/*Skeleton< TrivGraphWrapper<Graph> >*/::NodeMap<T>(_gw, a) { }
+// };
+
+// template<typename T> class EdgeMap :
+// public GraphWrapper/*Skeleton< TrivGraphWrapper<Graph> >*/::EdgeMap<T> {
+// public:
+// EdgeMap(const RevGraphWrapper<GraphWrapper>& _gw) :
+// GraphWrapper/*Skeleton< TrivGraphWrapper<Graph> >*/::EdgeMap<T>(_gw) { }
+// EdgeMap(const RevGraphWrapper<GraphWrapper>& _gw, T a) :
+// GraphWrapper/*Skeleton< TrivGraphWrapper<Graph> >*/::EdgeMap<T>(_gw, a) { }
+// };
+// };
+
+ template<typename GraphWrapper>
+ class RevGraphWrapper : public GraphWrapperSkeleton<GraphWrapper> {
+ public:
+ typedef typename GraphWrapperSkeleton<GraphWrapper>::Node Node;
+ typedef typename GraphWrapperSkeleton<GraphWrapper>::Edge Edge;
+ //FIXME
+ //If GraphWrapper::OutEdgeIt is not defined
+ //and we do not want to use RevGraphWrapper::InEdgeIt,
+ //this won't work, because of typedef
+ //OR
+ //graphs have to define their non-existing iterators to void
+ //Unfortunately all the typedefs are instantiated in templates,
+ //unlike other stuff
+ typedef typename GraphWrapperSkeleton<GraphWrapper>::OutEdgeIt InEdgeIt;
+ typedef typename GraphWrapperSkeleton<GraphWrapper>::InEdgeIt OutEdgeIt;
+
+ RevGraphWrapper(GraphWrapper _gw) :
+ GraphWrapperSkeleton<GraphWrapper>(_gw) { }
+
+ Node head(const Edge& e) const
+ { return GraphWrapperSkeleton<GraphWrapper>::tail(e); }
+ Node tail(const Edge& e) const
+ { return GraphWrapperSkeleton<GraphWrapper>::head(e); }
+ };
+
+ //Subgraph on the same node-set and partial edge-set
+ template<typename GraphWrapper, typename EdgeFilterMap>
+ class SubGraphWrapper : public GraphWrapperSkeleton<GraphWrapper> {
+ protected:
+ EdgeFilterMap* filter_map;
+ public:
+ typedef typename GraphWrapperSkeleton<GraphWrapper>::Node Node;
+ typedef typename GraphWrapperSkeleton<GraphWrapper>::NodeIt NodeIt;
+ typedef typename GraphWrapperSkeleton<GraphWrapper>::Edge Edge;
+ typedef typename GraphWrapperSkeleton<GraphWrapper>::EdgeIt EdgeIt;
+ typedef typename GraphWrapperSkeleton<GraphWrapper>::InEdgeIt InEdgeIt;
+ typedef typename GraphWrapperSkeleton<GraphWrapper>::OutEdgeIt OutEdgeIt;
+
+ SubGraphWrapper(GraphWrapper _gw, EdgeFilterMap& _filter_map) :
+ GraphWrapperSkeleton<GraphWrapper>(_gw), filter_map(&_filter_map) { }
+
+ template<typename I> I& first(I& i) const {
+ gw.first(i);
+ while (gw.valid(i) && !filter_map->get(i)) { gw.next(i); }
+ return i;
+ }
+ template<typename I, typename P> I& first(I& i, const P& p) const {
+ gw.first(i, p);
+ while (gw.valid(i) && !filter_map->get(i)) { gw.next(i); }
+ return i;
+ }
+
+ //template<typename I> I getNext(const I& i) const {
+ // return gw.getNext(i);
+ //}
+ template<typename I> I& next(I &i) const {
+ gw.next(i);
+ while (gw.valid(i) && !filter_map->get(i)) { gw.next(i); }
+ return i;
+ }
+
+ template< typename It > It first() const {
+ It e; this->first(e); return e; }
+
+ template< typename It > It first(const Node& v) const {
+ It e; this->first(e, v); return e; }
+ };
+
+// template<typename GraphWrapper>
+// class UndirGraphWrapper {
+// protected:
+// //Graph* graph;
+// GraphWrapper gw;
+
+// public:
+// typedef GraphWrapper BaseGraph;
+
+// typedef typename GraphWrapper::Node Node;
+// typedef typename GraphWrapper::NodeIt NodeIt;
+
+// //typedef typename Graph::Edge Edge;
+// //typedef typename Graph::OutEdgeIt OutEdgeIt;
+// //typedef typename Graph::InEdgeIt InEdgeIt;
+// //typedef typename Graph::SymEdgeIt SymEdgeIt;
+// //typedef typename Graph::EdgeIt EdgeIt;
+
+// //private:
+// typedef typename GraphWrapper::Edge GraphEdge;
+// typedef typename GraphWrapper::OutEdgeIt GraphOutEdgeIt;
+// typedef typename GraphWrapper::InEdgeIt GraphInEdgeIt;
+// //public:
+
+// //UndirGraphWrapper() : graph(0) { }
+// UndirGraphWrapper(GraphWrapper _gw) : gw(_gw) { }
+
+// //void setGraph(Graph& _graph) { graph = &_graph; }
+// //Graph& getGraph() const { return (*graph); }
+
+// class Edge {
+// friend class UndirGraphWrapper<GraphWrapper>;
+// bool out_or_in; //true iff out
+// GraphOutEdgeIt out;
+// GraphInEdgeIt in;
+// public:
+// Edge() : out_or_in(), out(), in() { }
+// Edge(const Invalid& i) : out_or_in(false), out(), in(i) { }
+// operator GraphEdge() const {
+// if (out_or_in) return(out); else return(in);
+// }
+// friend bool operator==(const Edge& u, const Edge& v) {
+// if (v.out_or_in)
+// return (u.out_or_in && u.out==v.out);
+// else
+// return (!u.out_or_in && u.in==v.in);
+// }
+// friend bool operator!=(const Edge& u, const Edge& v) {
+// if (v.out_or_in)
+// return (!u.out_or_in || u.out!=v.out);
+// else
+// return (u.out_or_in || u.in!=v.in);
+// }
+// };
+
+// class OutEdgeIt : public Edge {
+// friend class UndirGraphWrapper<GraphWrapper>;
+// public:
+// OutEdgeIt() : Edge() { }
+// OutEdgeIt(const Invalid& i) : Edge(i) { }
+// OutEdgeIt(const UndirGraphWrapper<GraphWrapper>& _G, const Node& n)
+// : Edge() {
+// out_or_in=true;
+// _G.gw.first(out, n);
+// if (!(_G.gw.valid(out))) {
+// out_or_in=false;
+// _G.gw.first(in, n);
+// }
+// }
+// };
+
+// OutEdgeIt& first(OutEdgeIt& e, const Node& n) const {
+// e.out_or_in=true;
+// gw.first(e.out, n);
+// if (!(gw.valid(e.out))) {
+// e.out_or_in=false;
+// gw.first(e.in, n);
+// }
+// return e;
+// }
+
+// OutEdgeIt& next(OutEdgeIt& e) const {
+// if (e.out_or_in) {
+// Node n=gw.tail(e.out);
+// gw.next(e.out);
+// if (!gw.valid(e.out)) {
+// e.out_or_in=false;
+// gw.first(e.in, n);
+// }
+// } else {
+// gw.next(e.in);
+// }
+// return e;
+// }
+
+// Node aNode(const OutEdgeIt& e) const {
+// if (e.out_or_in) return gw.tail(e); else return gw.head(e); }
+// Node bNode(const OutEdgeIt& e) const {
+// if (e.out_or_in) return gw.head(e); else return gw.tail(e); }
+
+// typedef OutEdgeIt InEdgeIt;
+
+// template<typename I> I& first(I& i) const { return gw.first(i); }
+// // template<typename I, typename P> I& first(I& i, const P& p) const {
+// // return graph->first(i, p); }
+
+// template<typename I> I getNext(const I& i) const {
+// return gw.getNext(i); }
+// template<typename I> I& next(I &i) const { return gw.next(i); }
+
+// template< typename It > It first() const {
+// It e; first(e); return e; }
+
+// template< typename It > It first(const Node& v) const {
+// It e; first(e, v); return e; }
+
+// Node head(const Edge& e) const { return gw.head(e); }
+// Node tail(const Edge& e) const { return gw.tail(e); }
+
+// template<typename I> bool valid(const I& i) const
+// { return gw.valid(i); }
+
+// //template<typename I> void setInvalid(const I &i);
+// //{ return graph->setInvalid(i); }
+
+// int nodeNum() const { return gw.nodeNum(); }
+// int edgeNum() const { return gw.edgeNum(); }
+
+// // template<typename I> Node aNode(const I& e) const {
+// // return graph->aNode(e); }
+// // template<typename I> Node bNode(const I& e) const {
+// // return graph->bNode(e); }
+
+// Node addNode() const { return gw.addNode(); }
+// // FIXME: ez igy nem jo, mert nem
+// // Edge addEdge(const Node& tail, const Node& head) const {
+// // return graph->addEdge(tail, head); }
+
+// template<typename I> void erase(const I& i) const { gw.erase(i); }
+
+// void clear() const { gw.clear(); }
+
+// template<typename T> class NodeMap : public GraphWrapper::NodeMap<T> {
+// public:
+// NodeMap(const UndirGraphWrapper<GraphWrapper>& _G) :
+// GraphWrapper::NodeMap<T>(_G.gw) { }
+// NodeMap(const UndirGraphWrapper<GraphWrapper>& _G, T a) :
+// GraphWrapper::NodeMap<T>(_G.gw, a) { }
+// };
+
+// template<typename T> class EdgeMap : public GraphWrapper::EdgeMap<T> {
+// public:
+// EdgeMap(const UndirGraphWrapper<GraphWrapper>& _G) :
+// GraphWrapper::EdgeMap<T>(_G.gw) { }
+// EdgeMap(const UndirGraphWrapper<GraphWrapper>& _G, T a) :
+// GraphWrapper::EdgeMap<T>(_G.gw, a) { }
+// };
+// };
+
+
+ template<typename GraphWrapper>
+ class UndirGraphWrapper : public GraphWrapperSkeleton<GraphWrapper> {
+ protected:
+// GraphWrapper gw;
+
+ public:
+ //typedef GraphWrapper BaseGraph;
+
+ typedef typename GraphWrapperSkeleton<GraphWrapper>::Node Node;
+ typedef typename GraphWrapperSkeleton<GraphWrapper>::NodeIt NodeIt;
+
+ //private:
+ //FIXME ezeknek valojaban a GraphWrapper megfelelo dolgai kellene hogy
+ //legyenek, at kell irni
+ typedef typename /*GraphWrapperSkeleton<GraphWrapper>*/
+ GraphWrapper::Edge GraphEdge;
+ typedef typename /*GraphWrapperSkeleton<GraphWrapper>*/
+ GraphWrapper::OutEdgeIt GraphOutEdgeIt;
+ typedef typename /*GraphWrapperSkeleton<GraphWrapper>*/
+ GraphWrapper::InEdgeIt GraphInEdgeIt;
+ //public:
+
+ //UndirGraphWrapper() : graph(0) { }
+ UndirGraphWrapper(GraphWrapper _gw) :
+ GraphWrapperSkeleton<GraphWrapper>(_gw) { }
+
+ //UndirGraphWrapper(GraphWrapper _gw) : gw(_gw) { }
+
+ //void setGraph(Graph& _graph) { graph = &_graph; }
+ //Graph& getGraph() const { return (*graph); }
+
+ class Edge {
+ friend class UndirGraphWrapper<GraphWrapper>;
+ protected:
+ bool out_or_in; //true iff out
+ GraphOutEdgeIt out;
+ GraphInEdgeIt in;
+ public:
+ Edge() : out_or_in(), out(), in() { }
+ Edge(const Invalid& i) : out_or_in(false), out(), in(i) { }
+ operator GraphEdge() const {
+ if (out_or_in) return(out); else return(in);
+ }
+//FIXME
+//2 edges are equal if they "refer" to the same physical edge
+//is it good?
+ friend bool operator==(const Edge& u, const Edge& v) {
+ if (v.out_or_in)
+ if (u.out_or_in) return (u.out==v.out); else return (u.out==v.in);
+ //return (u.out_or_in && u.out==v.out);
+ else
+ if (u.out_or_in) return (u.out==v.in); else return (u.in==v.in);
+ //return (!u.out_or_in && u.in==v.in);
+ }
+ friend bool operator!=(const Edge& u, const Edge& v) {
+ if (v.out_or_in)
+ if (u.out_or_in) return (u.out!=v.out); else return (u.out!=v.in);
+ //return (!u.out_or_in || u.out!=v.out);
+ else
+ if (u.out_or_in) return (u.out!=v.in); else return (u.in!=v.in);
+ //return (u.out_or_in || u.in!=v.in);
+ }
+ };
+
+ class OutEdgeIt : public Edge {
+ friend class UndirGraphWrapper<GraphWrapper>;
+ public:
+ OutEdgeIt() : Edge() { }
+ OutEdgeIt(const Invalid& i) : Edge(i) { }
+ OutEdgeIt(const UndirGraphWrapper<GraphWrapper>& _G, const Node& n)
+ : Edge() {
+ out_or_in=true; _G.gw.first(out, n);
+ if (!(_G.gw.valid(out))) { out_or_in=false; _G.gw.first(in, n); }
+ }
+ };
+
+ typedef OutEdgeIt InEdgeIt;
+
+ class EdgeIt : public Edge {
+ friend class UndirGraphWrapper<GraphWrapper>;
+ protected:
+ NodeIt v;
+ public:
+ EdgeIt() : Edge() { }
+ EdgeIt(const Invalid& i) : Edge(i) { }
+ EdgeIt(const UndirGraphWrapper<GraphWrapper>& _G)
+ : Edge() {
+ out_or_in=true;
+ //Node v;
+ _G.first(v);
+ if (_G.valid(v)) _G.gw.first(out); else out=INVALID;
+ while (_G.valid(v) && !_G.gw.valid(out)) {
+ _G.gw.next(v);
+ if (_G.valid(v)) _G.gw.first(out);
+ }
+ }
+ };
+
+ OutEdgeIt& first(OutEdgeIt& e, const Node& n) const {
+ e.out_or_in=true; gw.first(e.out, n);
+ if (!(gw.valid(e.out))) { e.out_or_in=false; gw.first(e.in, n); }
+ return e;
+ }
+
+ EdgeIt& first(EdgeIt& e) const {
+ e.out_or_in=true;
+ //NodeIt v;
+ first(e.v);
+ if (valid(e.v)) gw.first(e.out, e.v); else e.out=INVALID;
+ while (valid(e.v) && !gw.valid(e.out)) {
+ gw.next(e.v);
+ if (valid(e.v)) gw.first(e.out, e.v);
+ }
+ return e;
+ }
+
+ template<typename I> I& first(I& i) const { gw.first(i); return i; }
+ template<typename I, typename P> I& first(I& i, const P& p) const {
+ gw.first(i, p); return i; }
+
+ OutEdgeIt& next(OutEdgeIt& e) const {
+ if (e.out_or_in) {
+ Node n=gw.tail(e.out);
+ gw.next(e.out);
+ if (!gw.valid(e.out)) { e.out_or_in=false; gw.first(e.in, n); }
+ } else {
+ gw.next(e.in);
+ }
+ return e;
+ }
+
+ EdgeIt& next(EdgeIt& e) const {
+ //NodeIt v=tail(e);
+ gw.next(e.out);
+ while (valid(e.v) && !gw.valid(e.out)) {
+ next(e.v);
+ if (valid(e.v)) gw.first(e.out, e.v);
+ }
+ return e;
+ }
+
+ template<typename I> I& next(I &i) const { return gw.next(i); }
+// template<typename I> I getNext(const I& i) const { return gw.getNext(i); }
+
+ template< typename It > It first() const {
+ It e; first(e); return e; }
+
+ template< typename It > It first(const Node& v) const {
+ It e; first(e, v); return e; }
+
+// Node head(const Edge& e) const { return gw.head(e); }
+// Node tail(const Edge& e) const { return gw.tail(e); }
+
+// template<typename I> bool valid(const I& i) const
+// { return gw.valid(i); }
+
+// int nodeNum() const { return gw.nodeNum(); }
+// int edgeNum() const { return gw.edgeNum(); }
+
+// template<typename I> Node aNode(const I& e) const {
+// return graph->aNode(e); }
+// template<typename I> Node bNode(const I& e) const {
+// return graph->bNode(e); }
+
+ Node aNode(const OutEdgeIt& e) const {
+ if (e.out_or_in) return gw.tail(e); else return gw.head(e); }
+ Node bNode(const OutEdgeIt& e) const {
+ if (e.out_or_in) return gw.head(e); else return gw.tail(e); }
+
+// Node addNode() const { return gw.addNode(); }
+
+// FIXME: ez igy nem jo, mert nem
+// Edge addEdge(const Node& tail, const Node& head) const {
+// return graph->addEdge(tail, head); }
+
+// template<typename I> void erase(const I& i) const { gw.erase(i); }
+
+// void clear() const { gw.clear(); }
+
+// template<typename T> class NodeMap : public GraphWrapper::NodeMap<T> {
+// public:
+// NodeMap(const UndirGraphWrapper<GraphWrapper>& _G) :
+// GraphWrapper::NodeMap<T>(_G.gw) { }
+// NodeMap(const UndirGraphWrapper<GraphWrapper>& _G, T a) :
+// GraphWrapper::NodeMap<T>(_G.gw, a) { }
+// };
+
+// template<typename T> class EdgeMap :
+// public GraphWrapperSkeleton<GraphWrapper>::EdgeMap<T> {
+// public:
+// EdgeMap(const UndirGraphWrapper<GraphWrapper>& _G) :
+// GraphWrapperSkeleton<GraphWrapper>::EdgeMap<T>(_G.gw) { }
+// EdgeMap(const UndirGraphWrapper<GraphWrapper>& _G, T a) :
+// GraphWrapper::EdgeMap<T>(_G.gw, a) { }
+// };
+ };
+
+
+
+
+
+// template<typename Graph>
+// class SymGraphWrapper
+// {
+// Graph* graph;
+
+// public:
+// typedef Graph BaseGraph;
+
+// typedef typename Graph::Node Node;
+// typedef typename Graph::Edge Edge;
+
+// typedef typename Graph::NodeIt NodeIt;
+
+// //FIXME tag-ekkel megcsinalni, hogy abbol csinaljon
+// //iranyitatlant, ami van
+// //mert csak 1 dolgot lehet be typedef-elni
+// typedef typename Graph::OutEdgeIt SymEdgeIt;
+// //typedef typename Graph::InEdgeIt SymEdgeIt;
+// //typedef typename Graph::SymEdgeIt SymEdgeIt;
+// typedef typename Graph::EdgeIt EdgeIt;
+
+// int nodeNum() const { return graph->nodeNum(); }
+// int edgeNum() const { return graph->edgeNum(); }
+
+// template<typename I> I& first(I& i) const { return graph->first(i); }
+// template<typename I, typename P> I& first(I& i, const P& p) const {
+// return graph->first(i, p); }
+// //template<typename I> I next(const I i); { return graph->goNext(i); }
+// //template<typename I> I &goNext(I &i); { return graph->goNext(i); }
+
+// template< typename It > It first() const {
+// It e; first(e); return e; }
+
+// template< typename It > It first(Node v) const {
+// It e; first(e, v); return e; }
+
+// Node head(const Edge& e) const { return graph->head(e); }
+// Node tail(const Edge& e) const { return graph->tail(e); }
+
+// template<typename I> Node aNode(const I& e) const {
+// return graph->aNode(e); }
+// template<typename I> Node bNode(const I& e) const {
+// return graph->bNode(e); }
+
+// //template<typename I> bool valid(const I i);
+// //{ return graph->valid(i); }
+
+// //template<typename I> void setInvalid(const I &i);
+// //{ return graph->setInvalid(i); }
+
+// Node addNode() { return graph->addNode(); }
+// Edge addEdge(const Node& tail, const Node& head) {
+// return graph->addEdge(tail, head); }
+
+// template<typename I> void erase(const I& i) { graph->erase(i); }
+
+// void clear() { graph->clear(); }
+
+// template<typename T> class NodeMap : public Graph::NodeMap<T> { };
+// template<typename T> class EdgeMap : public Graph::EdgeMap<T> { };
+
+// void setGraph(Graph& _graph) { graph = &_graph; }
+// Graph& getGraph() { return (*graph); }
+
+// //SymGraphWrapper() : graph(0) { }
+// SymGraphWrapper(Graph& _graph) : graph(&_graph) { }
+// };
+
+
+ template<typename GraphWrapper, typename Number, typename FlowMap, typename CapacityMap>
+ class ResGraphWrapper : public GraphWrapperSkeleton<GraphWrapper>{
+ public:
+ //typedef Graph BaseGraph;
+ //typedef TrivGraphWrapper<const Graph> GraphWrapper;
+ typedef typename GraphWrapperSkeleton<GraphWrapper>::Node Node;
+ typedef typename GraphWrapperSkeleton<GraphWrapper>::NodeIt NodeIt;
+ private:
+ typedef typename /*GraphWrapperSkeleton<GraphWrapper>*/
+ GraphWrapper::OutEdgeIt OldOutEdgeIt;
+ typedef typename /*GraphWrapperSkeleton<GraphWrapper>*/
+ GraphWrapper::InEdgeIt OldInEdgeIt;
+ protected:
+ //const Graph* graph;
+ //GraphWrapper gw;
+ FlowMap* flow;
+ const CapacityMap* capacity;
+ public:
+
+ ResGraphWrapper(const GraphWrapper& _gw, FlowMap& _flow,
+ const CapacityMap& _capacity) :
+ GraphWrapperSkeleton<GraphWrapper>(_gw),
+ flow(&_flow), capacity(&_capacity) { }
+
+ //void setGraph(const Graph& _graph) { graph = &_graph; }
+ //const Graph& getGraph() const { return (*graph); }
+
+ class Edge;
+ class OutEdgeIt;
+ friend class Edge;
+ friend class OutEdgeIt;
+
+ class Edge {
+ friend class ResGraphWrapper<GraphWrapper, Number, FlowMap, CapacityMap>;
+ protected:
+ bool out_or_in; //true, iff out
+ OldOutEdgeIt out;
+ OldInEdgeIt in;
+ public:
+ Edge() : out_or_in(true) { }
+ Edge(const Invalid& i) : out_or_in(false), out(), in(i) { }
+// bool valid() const {
+// return out_or_in && out.valid() || in.valid(); }
+ friend bool operator==(const Edge& u, const Edge& v) {
+ if (v.out_or_in)
+ return (u.out_or_in && u.out==v.out);
+ else
+ return (!u.out_or_in && u.in==v.in);
+ }
+ friend bool operator!=(const Edge& u, const Edge& v) {
+ if (v.out_or_in)
+ return (!u.out_or_in || u.out!=v.out);
+ else
+ return (u.out_or_in || u.in!=v.in);
+ }
+ };
+
+
+ class OutEdgeIt : public Edge {
+ friend class ResGraphWrapper<GraphWrapper, Number, FlowMap, CapacityMap>;
+ public:
+ OutEdgeIt() { }
+ //FIXME
+ OutEdgeIt(const Edge& e) : Edge(e) { }
+ OutEdgeIt(const Invalid& i) : Edge(i) { }
+ protected:
+ OutEdgeIt(const ResGraphWrapper<GraphWrapper, Number, FlowMap, CapacityMap>& resG, Node v) : Edge() {
+ resG.gw.first(out, v);
+ while( resG.gw.valid(out) && !(resG.resCap(out)>0) ) { resG.gw.next(out); }
+ if (!resG.gw.valid(out)) {
+ out_or_in=0;
+ resG.gw.first(in, v);
+ while( resG.gw.valid(in) && !(resG.resCap(in)>0) ) { resG.gw.next(in); }
+ }
+ }
+// public:
+// OutEdgeIt& operator++() {
+// if (out_or_in) {
+// Node v=/*resG->*/G->aNode(out);
+// ++out;
+// while( out.valid() && !(Edge::resCap()>0) ) { ++out; }
+// if (!out.valid()) {
+// out_or_in=0;
+// G->first(in, v);
+// while( in.valid() && !(Edge::resCap()>0) ) { ++in; }
+// }
+// } else {
+// ++in;
+// while( in.valid() && !(Edge::resCap()>0) ) { ++in; }
+// }
+// return *this;
+// }
+ };
+
+ //FIXME This is just for having InEdgeIt
+ typedef void InEdgeIt;
+
+ class EdgeIt : public Edge {
+ friend class ResGraphWrapper<GraphWrapper, Number, FlowMap, CapacityMap>;
+ NodeIt v;
+ public:
+ EdgeIt() { }
+ //EdgeIt(const EdgeIt& e) : Edge(e), v(e.v) { }
+ EdgeIt(const Invalid& i) : Edge(i) { }
+ EdgeIt(const ResGraphWrapper<GraphWrapper, Number, FlowMap, CapacityMap>& resG) : Edge() {
+ resG.gw.first(v);
+ if (resG.gw.valid(v)) resG.gw.first(out, v); else out=INVALID;
+ while (resG.gw.valid(out) && !(resG.resCap(out)>0) ) { resG.gw.next(out); }
+ while (resG.gw.valid(v) && !resG.gw.valid(out)) {
+ resG.gw.next(v);
+ if (resG.gw.valid(v)) resG.gw.first(out, v);
+ while (resG.gw.valid(out) && !(resG.resCap(out)>0) ) { resG.gw.next(out); }
+ }
+ if (!resG.gw.valid(out)) {
+ out_or_in=0;
+ resG.gw.first(v);
+ if (resG.gw.valid(v)) resG.gw.first(in, v); else in=INVALID;
+ while (resG.gw.valid(in) && !(resG.resCap(in)>0) ) { resG.gw.next(in); }
+ while (resG.gw.valid(v) && !resG.gw.valid(in)) {
+ resG.gw.next(v);
+ if (resG.gw.valid(v)) resG.gw.first(in, v);
+ while (resG.gw.valid(in) && !(resG.resCap(in)>0) ) { resG.gw.next(in); }
+ }
+ }
+ }
+// EdgeIt& operator++() {
+// if (out_or_in) {
+// ++out;
+// while (out.valid() && !(Edge::resCap()>0) ) { ++out; }
+// while (v.valid() && !out.valid()) {
+// ++v;
+// if (v.valid()) G->first(out, v);
+// while (out.valid() && !(Edge::resCap()>0) ) { ++out; }
+// }
+// if (!out.valid()) {
+// out_or_in=0;
+// G->first(v);
+// if (v.valid()) G->first(in, v); else in=OldInEdgeIt();
+// while (in.valid() && !(Edge::resCap()>0) ) { ++in; }
+// while (v.valid() && !in.valid()) {
+// ++v;
+// if (v.valid()) G->first(in, v);
+// while (in.valid() && !(Edge::resCap()>0) ) { ++in; }
+// }
+// }
+// } else {
+// ++in;
+// while (in.valid() && !(Edge::resCap()>0) ) { ++in; }
+// while (v.valid() && !in.valid()) {
+// ++v;
+// if (v.valid()) G->first(in, v);
+// while (in.valid() && !(Edge::resCap()>0) ) { ++in; }
+// }
+// }
+// return *this;
+// }
+ };
+
+ NodeIt& first(NodeIt& v) const { gw.first(v); return v; }
+ OutEdgeIt& first(OutEdgeIt& e, Node v) const {
+ e=OutEdgeIt(*this, v);
+ return e;
+ }
+ EdgeIt& first(EdgeIt& e) const {
+ e=EdgeIt(*this);
+ return e;
+ }
+
+ NodeIt& next(NodeIt& n) const { return gw.next(n); }
+
+ OutEdgeIt& next(OutEdgeIt& e) const {
+ if (e.out_or_in) {
+ Node v=gw.aNode(e.out);
+ gw.next(e.out);
+ while( gw.valid(e.out) && !(resCap(e.out)>0) ) { gw.next(e.out); }
+ if (!gw.valid(e.out)) {
+ e.out_or_in=0;
+ gw.first(e.in, v);
+ while( gw.valid(e.in) && !(resCap(e.in)>0) ) { gw.next(e.in); }
+ }
+ } else {
+ gw.next(e.in);
+ while( gw.valid(e.in) && !(resCap(e.in)>0) ) { gw.next(e.in); }
+ }
+ return e;
+ }
+
+ EdgeIt& next(EdgeIt& e) const {
+ if (e.out_or_in) {
+ gw.next(e.out);
+ while (gw.valid(e.out) && !(resCap(e.out)>0) ) { gw.next(e.out); }
+ while (gw.valid(e.v) && !gw.valid(e.out)) {
+ gw.next(e.v);
+ if (gw.valid(e.v)) gw.first(e.out, e.v);
+ while (gw.valid(e.out) && !(resCap(e.out)>0) ) { gw.next(e.out); }
+ }
+ if (!gw.valid(e.out)) {
+ e.out_or_in=0;
+ gw.first(e.v);
+ if (gw.valid(e.v)) gw.first(e.in, e.v); else e.in=INVALID;
+ while (gw.valid(e.in) && !(resCap(e.in)>0) ) { gw.next(e.in); }
+ while (gw.valid(e.v) && !gw.valid(e.in)) {
+ gw.next(e.v);
+ if (gw.valid(e.v)) gw.first(e.in, e.v);
+ while (gw.valid(e.in) && !(resCap(e.in)>0) ) { gw.next(e.in); }
+ }
+ }
+ } else {
+ gw.next(e.in);
+ while (gw.valid(e.in) && !(resCap(e.in)>0) ) { gw.next(e.in); }
+ while (gw.valid(e.v) && !gw.valid(e.in)) {
+ gw.next(e.v);
+ if (gw.valid(e.v)) gw.first(e.in, e.v);
+ while (gw.valid(e.in) && !(resCap(e.in)>0) ) { gw.next(e.in); }
+ }
+ }
+ return e;
+ }
+
+
+ template< typename It >
+ It first() const {
+ It e;
+ first(e);
+ return e;
+ }
+
+ template< typename It >
+ It first(Node v) const {
+ It e;
+ first(e, v);
+ return e;
+ }
+
+ Node tail(Edge e) const {
+ return ((e.out_or_in) ? gw.aNode(e.out) : gw.aNode(e.in)); }
+ Node head(Edge e) const {
+ return ((e.out_or_in) ? gw.bNode(e.out) : gw.bNode(e.in)); }
+
+ Node aNode(OutEdgeIt e) const {
+ return ((e.out_or_in) ? gw.aNode(e.out) : gw.aNode(e.in)); }
+ Node bNode(OutEdgeIt e) const {
+ return ((e.out_or_in) ? gw.bNode(e.out) : gw.bNode(e.in)); }
+
+ int nodeNum() const { return gw.nodeNum(); }
+ //FIXME
+ //int edgeNum() const { return gw.edgeNum(); }
+
+
+ int id(Node v) const { return gw.id(v); }
+
+ bool valid(Node n) const { return gw.valid(n); }
+ bool valid(Edge e) const {
+ return e.out_or_in ? gw.valid(e.out) : gw.valid(e.in); }
+
+ void augment(const Edge& e, Number a) const {
+ if (e.out_or_in)
+ flow->set(e.out, flow->get(e.out)+a);
+ else
+ flow->set(e.in, flow->get(e.in)-a);
+ }
+
+ Number resCap(const Edge& e) const {
+ if (e.out_or_in)
+ return (capacity->get(e.out)-flow->get(e.out));
+ else
+ return (flow->get(e.in));
+ }
+
+ Number resCap(OldOutEdgeIt out) const {
+ return (capacity->get(out)-flow->get(out));
+ }
+
+ Number resCap(OldInEdgeIt in) const {
+ return (flow->get(in));
+ }
+
+// template<typename T> class NodeMap : public GraphWrapper::NodeMap<T> {
+// public:
+// NodeMap(const ResGraphWrapper<GraphWrapper, Number, FlowMap, CapacityMap>& _G)
+// : GraphWrapper::NodeMap<T>(_G.gw) { }
+// NodeMap(const ResGraphWrapper<GraphWrapper, Number, FlowMap, CapacityMap>& _G,
+// T a) : GraphWrapper::NodeMap<T>(_G.gw, a) { }
+// };
+
+// template <typename T>
+// class NodeMap {
+// typename Graph::NodeMap<T> node_map;
+// public:
+// NodeMap(const ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>& _G) : node_map(*(_G.graph)) { }
+// NodeMap(const ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>& _G, T a) : node_map(*(_G.graph), a) { }
+// void set(Node nit, T a) { node_map.set(nit, a); }
+// T get(Node nit) const { return node_map.get(nit); }
+// };
+
+ template <typename T>
+ class EdgeMap {
+ typename GraphWrapper::EdgeMap<T> forward_map, backward_map;
+ public:
+ EdgeMap(const ResGraphWrapper<GraphWrapper, Number, FlowMap, CapacityMap>& _G) : forward_map(_G.gw), backward_map(_G.gw) { }
+ EdgeMap(const ResGraphWrapper<GraphWrapper, Number, FlowMap, CapacityMap>& _G, T a) : forward_map(_G.gw, a), backward_map(_G.gw, a) { }
+ void set(Edge e, T a) {
+ if (e.out_or_in)
+ forward_map.set(e.out, a);
+ else
+ backward_map.set(e.in, a);
+ }
+ T get(Edge e) {
+ if (e.out_or_in)
+ return forward_map.get(e.out);
+ else
+ return backward_map.get(e.in);
+ }
+ };
+ };
+
+ //Subgraph on the same node-set and partial edge-set
+ template<typename GraphWrapper, typename FirstOutEdgesMap>
+ class ErasingFirstGraphWrapper : public GraphWrapperSkeleton<GraphWrapper> {
+ protected:
+ FirstOutEdgesMap* first_out_edges;
+ public:
+ typedef typename GraphWrapperSkeleton<GraphWrapper>::Node Node;
+ typedef typename GraphWrapperSkeleton<GraphWrapper>::NodeIt NodeIt;
+ typedef typename GraphWrapperSkeleton<GraphWrapper>::Edge Edge;
+ typedef typename GraphWrapperSkeleton<GraphWrapper>::EdgeIt EdgeIt;
+ typedef typename GraphWrapperSkeleton<GraphWrapper>::InEdgeIt InEdgeIt;
+ typedef typename GraphWrapperSkeleton<GraphWrapper>::OutEdgeIt OutEdgeIt;
+
+ ErasingFirstGraphWrapper(GraphWrapper _gw, FirstOutEdgesMap& _first_out_edges) :
+ GraphWrapperSkeleton<GraphWrapper>(_gw), first_out_edges(&_first_out_edges) { }
+
+ template<typename I> I& first(I& i) const {
+ gw.first(i);
+ //while (gw.valid(i) && !filter_map->get(i)) { gw.next(i); }
+ return i;
+ }
+ OutEdgeIt& first(OutEdgeIt& e, const Node& n) const {
+ e=first_out_edges->get(n);
+ return e;
+ }
+ template<typename I, typename P> I& first(I& i, const P& p) const {
+ gw.first(i, p);
+ //while (gw.valid(i) && !filter_map->get(i)) { gw.next(i); }
+ return i;
+ }
+
+ //template<typename I> I getNext(const I& i) const {
+ // return gw.getNext(i);
+ //}
+ template<typename I> I& next(I &i) const {
+ gw.next(i);
+ //while (gw.valid(i) && !filter_map->get(i)) { gw.next(i); }
+ return i;
+ }
+
+ template< typename It > It first() const {
+ It e; this->first(e); return e; }
+
+ template< typename It > It first(const Node& v) const {
+ It e; this->first(e, v); return e; }
+
+ void erase(const OutEdgeIt& e) const {
+ OutEdgeIt f=e;
+ this->next(f);
+ first_out_edges->set(this->tail(e), f);
+ }
+ };
+
+// template<typename Graph, typename Number, typename FlowMap, typename CapacityMap>
+// class ErasingResGraphWrapper : public ResGraphWrapper<Graph, Number, FlowMap, CapacityMap> {
+// protected:
+// ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::NodeMap<typename ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::OutEdgeIt> first_out_edges;
+// //ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::NodeMap<int> dist;
+// public:
+// ErasingResGraphWrapper(const Graph& _G, FlowMap& _flow,
+// const CapacityMap& _capacity) :
+// ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>(_G, _flow, _capacity),
+// first_out_edges(*this) /*, dist(*this)*/ {
+// for(NodeIt n=this->template first<NodeIt>(); this->valid(n); this->next(n)) {
+// OutEdgeIt e;
+// ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::first(e, n);
+// first_out_edges.set(n, e);
+// }
+// }
+
+// //void setGraph(Graph& _graph) { graph = &_graph; }
+// //Graph& getGraph() const { return (*graph); }
+
+// //TrivGraphWrapper() : graph(0) { }
+// //ErasingResGraphWrapper(Graph& _graph) : graph(&_graph) { }
+
+// //typedef Graph BaseGraph;
+
+// //typedef typename Graph::Node Node;
+// //typedef typename Graph::NodeIt NodeIt;
+
+// //typedef typename Graph::Edge Edge;
+// //typedef typename Graph::OutEdgeIt OutEdgeIt;
+// //typedef typename Graph::InEdgeIt InEdgeIt;
+// //typedef typename Graph::SymEdgeIt SymEdgeIt;
+// //typedef typename Graph::EdgeIt EdgeIt;
+
+// typedef typename ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::Node Node;
+// typedef typename ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::NodeIt NodeIt;
+
+// typedef typename ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::Edge Edge;
+// typedef typename ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::OutEdgeIt OutEdgeIt;
+// //typedef typename ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::InEdgeIt InEdgeIt;
+// //typedef typename Graph::SymEdgeIt SymEdgeIt;
+// //typedef typename ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::EdgeIt EdgeIt;
+
+// NodeIt& first(NodeIt& n) const {
+// return ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::first(n);
+// }
+
+// OutEdgeIt& first(OutEdgeIt& e, const Node& n) const {
+// e=first_out_edges.get(n);
+// return e;
+// }
+
+// //ROSSZ template<typename I> I& first(I& i) const { return first(i); }
+// //ROSSZ template<typename I, typename P> I& first(I& i, const P& p) const {
+// // return first(i, p); }
+
+// //template<typename I> I getNext(const I& i) const {
+// // return gw.getNext(i); }
+// //template<typename I> I& next(I &i) const { return gw.next(i); }
+
+// template< typename It > It first() const {
+// It e; first(e); return e; }
+
+// template< typename It > It first(const Node& v) const {
+// It e; first(e, v); return e; }
+
+// //Node head(const Edge& e) const { return gw.head(e); }
+// //Node tail(const Edge& e) const { return gw.tail(e); }
+
+// //template<typename I> bool valid(const I& i) const
+// // { return gw.valid(i); }
+
+// //int nodeNum() const { return gw.nodeNum(); }
+// //int edgeNum() const { return gw.edgeNum(); }
+
+// //template<typename I> Node aNode(const I& e) const {
+// // return gw.aNode(e); }
+// //template<typename I> Node bNode(const I& e) const {
+// // return gw.bNode(e); }
+
+// //Node addNode() const { return gw.addNode(); }
+// //Edge addEdge(const Node& tail, const Node& head) const {
+// // return gw.addEdge(tail, head); }
+
+// //void erase(const OutEdgeIt& e) {
+// // first_out_edge(this->tail(e))=e;
+// //}
+// void erase(const Edge& e) {
+// OutEdgeIt f(e);
+// next(f);
+// first_out_edges.set(this->tail(e), f);
+// }
+// //template<typename I> void erase(const I& i) const { gw.erase(i); }
+
+// //void clear() const { gw.clear(); }
+
+// template<typename T> class NodeMap : public ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::NodeMap<T> {
+// public:
+// NodeMap(const ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>& _G) :
+// ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::NodeMap<T>(_G /*_G.getGraph()*/) { }
+// NodeMap(const ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>& _G, T a) :
+// ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::NodeMap<T>(_G /*_G.getGraph()*/, a) { }
+// };
+
+// template<typename T> class EdgeMap : public ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::EdgeMap<T> {
+// public:
+// EdgeMap(const ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>& _G) :
+// ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::EdgeMap<T>(_G /*_G.getGraph()*/) { }
+// EdgeMap(const ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>& _G, T a) :
+// ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::EdgeMap<T>(_G /*_G.getGraph()*/, a) { }
+// };
+// };
+
+// template<typename GraphWrapper>
+// class FilterGraphWrapper {
+// };
+
+// template<typename Graph, typename Number, typename FlowMap, typename CapacityMap>
+// class FilterGraphWrapper<ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap> > : public ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap> {
+
+// //Graph* graph;
+
+// public:
+// //typedef Graph BaseGraph;
+
+// typedef typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::Node Node;
+// typedef typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::NodeIt NodeIt;
+
+// typedef typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::Edge Edge;
+// typedef typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::OutEdgeIt OutEdgeIt;
+// //typedef typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::InEdgeIt InEdgeIt;
+// //typedef typename Graph::SymEdgeIt SymEdgeIt;
+// typedef typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::EdgeIt EdgeIt;
+
+// //FilterGraphWrapper<Graph, Number, FlowMap, CapacityMap>::NodeMap<typename ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::OutEdgeIt> first_out_edges;
+
+// public:
+// FilterGraphWrapper(const Graph& _G, FlowMap& _flow,
+// const CapacityMap& _capacity) :
+// ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>(_G, _flow, _capacity), dist(*this, gw.nodeNum()) {
+// }
+
+// OutEdgeIt& first(OutEdgeIt& e, const Node& n) const {
+// ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::first(e, n);
+// while (valid(e) && (dist.get(tail(e))/*+1!=*/>=dist.get(head(e))))
+// ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::next(e);
+// return e;
+// }
+
+// NodeIt& next(NodeIt& e) const {
+// return ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::next(e);
+// }
+
+// OutEdgeIt& next(OutEdgeIt& e) const {
+// ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::next(e);
+// while (valid(e) && (dist.get(tail(e))/*+1!*/>=dist.get(head(e))))
+// ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::next(e);
+// return e;
+// }
+
+// NodeIt& first(NodeIt& n) const {
+// return ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::first(n);
+// }
+
+// void erase(const Edge& e) {
+// OutEdgeIt f(e);
+// ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::next(f);
+// while (valid(f) && (dist.get(tail(f))/*+1!=*/>=dist.get(head(f))))
+// ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::next(f);
+// first_out_edges.set(this->tail(e), f);
+// }
+
+// //TrivGraphWrapper() : graph(0) { }
+// //TrivGraphWrapper(Graph& _graph) : graph(&_graph) { }
+
+// //void setGraph(Graph& _graph) { graph = &_graph; }
+// //Graph& getGraph() const { return (*graph); }
+
+// //template<typename I> I& first(I& i) const { return gw.first(i); }
+// //template<typename I, typename P> I& first(I& i, const P& p) const {
+// // return gw.first(i, p); }
+
+// //template<typename I> I getNext(const I& i) const {
+// // return gw.getNext(i); }
+// //template<typename I> I& next(I &i) const { return gw.next(i); }
+
+// template< typename It > It first() const {
+// It e; first(e); return e; }
+
+// template< typename It > It first(const Node& v) const {
+// It e; first(e, v); return e; }
+
+// //Node head(const Edge& e) const { return gw.head(e); }
+// //Node tail(const Edge& e) const { return gw.tail(e); }
+
+// //template<typename I> bool valid(const I& i) const
+// // { return gw.valid(i); }
+
+// //template<typename I> void setInvalid(const I &i);
+// //{ return gw.setInvalid(i); }
+
+// //int nodeNum() const { return gw.nodeNum(); }
+// //int edgeNum() const { return gw.edgeNum(); }
+
+// //template<typename I> Node aNode(const I& e) const {
+// // return gw.aNode(e); }
+// //template<typename I> Node bNode(const I& e) const {
+// // return gw.bNode(e); }
+
+// //Node addNode() const { return gw.addNode(); }
+// //Edge addEdge(const Node& tail, const Node& head) const {
+// // return gw.addEdge(tail, head); }
+
+// //template<typename I> void erase(const I& i) const { gw.erase(i); }
+
+// //void clear() const { gw.clear(); }
+
+// template<typename T> class NodeMap : public ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::NodeMap<T> {
+// public:
+// NodeMap(const FilterGraphWrapper<ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap> >& _G) :
+// ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::NodeMap<T>(_G /*_G.getGraph()*/) { }
+// NodeMap(const FilterGraphWrapper<ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap> >& _G, T a) :
+// ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::NodeMap<T>(_G /*_G.getGraph()*/, a) { }
+// };
+
+// template<typename T> class EdgeMap : public ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::EdgeMap<T> {
+// public:
+// EdgeMap(const FilterGraphWrapper<ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap> >& _G) :
+// ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::EdgeMap<T>(_G /*_G.getGraph()*/) { }
+// EdgeMap(const FilterGraphWrapper<ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap> >& _G, T a) :
+// ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::EdgeMap<T>(_G /*_G.getGraph()*/, a) { }
+// };
+
+// public:
+// ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::NodeMap<int> dist;
+
+// };
+
+
+
+// // FIXME: comparison should be made better!!!
+// template<typename Graph, typename T, typename LowerMap, typename FlowMap, typename UpperMap>
+// class ResGraphWrapper
+// {
+// Graph* graph;
+
+// public:
+// typedef Graph BaseGraph;
+
+// typedef typename Graph::Node Node;
+// typedef typename Graph::Edge Edge;
+
+// typedef typename Graph::NodeIt NodeIt;
+
+// class OutEdgeIt {
+// public:
+// //Graph::Node n;
+// bool out_or_in;
+// typename Graph::OutEdgeIt o;
+// typename Graph::InEdgeIt i;
+// };
+// class InEdgeIt {
+// public:
+// //Graph::Node n;
+// bool out_or_in;
+// typename Graph::OutEdgeIt o;
+// typename Graph::InEdgeIt i;
+// };
+// typedef typename Graph::SymEdgeIt SymEdgeIt;
+// typedef typename Graph::EdgeIt EdgeIt;
+
+// int nodeNum() const { return gw.nodeNum(); }
+// int edgeNum() const { return gw.edgeNum(); }
+
+// Node& first(Node& n) const { return gw.first(n); }
+
+// // Edge and SymEdge is missing!!!!
+// // Edge <-> In/OutEdgeIt conversion is missing!!!!
+
+// //FIXME
+// OutEdgeIt& first(OutEdgeIt& e, const Node& n) const
+// {
+// e.n=n;
+// gw.first(e.o,n);
+// while(gw.valid(e.o) && fmap.get(e.o)>=himap.get(e.o))
+// gw.goNext(e.o);
+// if(!gw.valid(e.o)) {
+// gw.first(e.i,n);
+// while(gw.valid(e.i) && fmap.get(e.i)<=lomap.get(e.i))
+// gw.goNext(e.i);
+// }
+// return e;
+// }
+// /*
+// OutEdgeIt &goNext(OutEdgeIt &e)
+// {
+// if(gw.valid(e.o)) {
+// while(gw.valid(e.o) && fmap.get(e.o)>=himap.get(e.o))
+// gw.goNext(e.o);
+// if(gw.valid(e.o)) return e;
+// else gw.first(e.i,e.n);
+// }
+// else {
+// while(gw.valid(e.i) && fmap.get(e.i)<=lomap.get(e.i))
+// gw.goNext(e.i);
+// return e;
+// }
+// }
+// OutEdgeIt Next(const OutEdgeIt &e) {OutEdgeIt t(e); return goNext(t);}
+// */
+// //bool valid(const OutEdgeIt e) { return gw.valid(e.o)||gw.valid(e.i);}
+
+// //FIXME
+// InEdgeIt& first(InEdgeIt& e, const Node& n) const
+// {
+// e.n=n;
+// gw.first(e.i,n);
+// while(gw.valid(e.i) && fmap.get(e.i)>=himap.get(e.i))
+// gw.goNext(e.i);
+// if(!gw.valid(e.i)) {
+// gw.first(e.o,n);
+// while(gw.valid(e.o) && fmap.get(e.o)<=lomap.get(e.o))
+// gw.goNext(e.o);
+// }
+// return e;
+// }
+// /*
+// InEdgeIt &goNext(InEdgeIt &e)
+// {
+// if(gw.valid(e.i)) {
+// while(gw.valid(e.i) && fmap.get(e.i)>=himap.get(e.i))
+// gw.goNext(e.i);
+// if(gw.valid(e.i)) return e;
+// else gw.first(e.o,e.n);
+// }
+// else {
+// while(gw.valid(e.o) && fmap.get(e.o)<=lomap.get(e.o))
+// gw.goNext(e.o);
+// return e;
+// }
+// }
+// InEdgeIt Next(const InEdgeIt &e) {InEdgeIt t(e); return goNext(t);}
+// */
+// //bool valid(const InEdgeIt e) { return gw.valid(e.i)||gw.valid(e.o);}
+
+// //template<typename I> I &goNext(I &i); { return gw.goNext(i); }
+// //template<typename I> I next(const I i); { return gw.goNext(i); }
+
+// template< typename It > It first() const {
+// It e; first(e); return e; }
+
+// template< typename It > It first(Node v) const {
+// It e; first(e, v); return e; }
+
+// Node head(const Edge& e) const { return gw.head(e); }
+// Node tail(const Edge& e) const { return gw.tail(e); }
+
+// template<typename I> Node aNode(const I& e) const {
+// return gw.aNode(e); }
+// template<typename I> Node bNode(const I& e) const {
+// return gw.bNode(e); }
+
+// //template<typename I> bool valid(const I i);
+// //{ return gw.valid(i); }
+
+// //template<typename I> void setInvalid(const I &i);
+// //{ return gw.setInvalid(i); }
+
+// Node addNode() { return gw.addNode(); }
+// Edge addEdge(const Node& tail, const Node& head) {
+// return gw.addEdge(tail, head); }
+
+// template<typename I> void erase(const I& i) { gw.erase(i); }
+
+// void clear() { gw.clear(); }
+
+// template<typename S> class NodeMap : public Graph::NodeMap<S> { };
+// template<typename S> class EdgeMap : public Graph::EdgeMap<S> { };
+
+// void setGraph(Graph& _graph) { graph = &_graph; }
+// Graph& getGraph() { return (*graph); }
+
+// //ResGraphWrapper() : graph(0) { }
+// ResGraphWrapper(Graph& _graph) : graph(&_graph) { }
+// };
+
+} //namespace hugo
+
+#endif //HUGO_GRAPH_WRAPPER_H
+
Added: hugo/trunk/src/work/marci/experiment/graph_wrapper_1.h
==============================================================================
--- (empty file)
+++ hugo/trunk/src/work/marci/experiment/graph_wrapper_1.h Sat Apr 3 19:26:46 2004
@@ -0,0 +1,1832 @@
+// -*- c++ -*-
+#ifndef HUGO_GRAPH_WRAPPER_H
+#define HUGO_GRAPH_WRAPPER_H
+
+#include <invalid.h>
+
+namespace hugo {
+
+ template<typename Graph>
+ class TrivGraphWrapper {
+ protected:
+ Graph* graph;
+
+ public:
+ typedef Graph BaseGraph;
+
+ typedef typename Graph::Node Node;
+ class NodeIt : public Graph::NodeIt {
+ public:
+ NodeIt() { }
+ NodeIt(const typename Graph::NodeIt& n) : Graph::NodeIt(n) { }
+ NodeIt(const Invalid& i) : Graph::NodeIt(i) { }
+ NodeIt(const TrivGraphWrapper<Graph>& _G) :
+ Graph::NodeIt(*(_G.graph)) { }
+ };
+ typedef typename Graph::Edge Edge;
+ //typedef typename Graph::OutEdgeIt OutEdgeIt;
+ class OutEdgeIt : public Graph::OutEdgeIt {
+ public:
+ OutEdgeIt() { }
+ OutEdgeIt(const typename Graph::OutEdgeIt& e) : Graph::OutEdgeIt(e) { }
+ OutEdgeIt(const Invalid& i) : Graph::OutEdgeIt(i) { }
+ OutEdgeIt(const TrivGraphWrapper<Graph>& _G, const Node& n) :
+ Graph::OutEdgeIt(*(_G.graph), n) { }
+ };
+ //typedef typename Graph::InEdgeIt InEdgeIt;
+ class InEdgeIt : public Graph::InEdgeIt {
+ public:
+ InEdgeIt() { }
+ InEdgeIt(const typename Graph::InEdgeIt& e) : Graph::InEdgeIt(e) { }
+ InEdgeIt(const Invalid& i) : Graph::InEdgeIt(i) { }
+ InEdgeIt(const TrivGraphWrapper<Graph>& _G, const Node& n) :
+ Graph::InEdgeIt(*(_G.graph), n) { }
+ };
+ //typedef typename Graph::SymEdgeIt SymEdgeIt;
+ //typedef typename Graph::EdgeIt EdgeIt;
+ class EdgeIt : public Graph::EdgeIt {
+ public:
+ EdgeIt() { }
+ EdgeIt(const typename Graph::EdgeIt& e) : Graph::EdgeIt(e) { }
+ EdgeIt(const Invalid& i) : Graph::EdgeIt(i) { }
+ EdgeIt(const TrivGraphWrapper<Graph>& _G) :
+ Graph::EdgeIt(*(_G.graph)) { }
+ };
+
+ //TrivGraphWrapper() : graph(0) { }
+ TrivGraphWrapper(Graph& _graph) : graph(&_graph) { }
+
+// void setGraph(Graph& _graph) { graph = &_graph; }
+// Graph& getGraph() const { return (*graph); }
+
+ NodeIt& first(NodeIt& i) const {
+ i=NodeIt(*this);
+ return i;
+ }
+ EdgeIt& first(EdgeIt& i) const {
+ i=EdgeIt(*this);
+ return i;
+ }
+// template<typename I> I& first(I& i) const {
+// //return graph->first(i);
+// i=I(*this);
+// return i;
+// }
+ OutEdgeIt& first(OutEdgeIt& i, const Node& p) const {
+ i=OutEdgeIt(*this, p);
+ return i;
+ }
+ InEdgeIt& first(InEdgeIt& i, const Node& p) const {
+ i=InEdgeIt(*this, p);
+ return i;
+ }
+// template<typename I, typename P> I& first(I& i, const P& p) const {
+// //return graph->first(i, p);
+// i=I(*this, p);
+// return i;
+// }
+
+// template<typename I> I getNext(const I& i) const {
+// return graph->getNext(i); }
+ template<typename I> I& next(I &i) const { graph->next(i); return i; }
+
+ template< typename It > It first() const {
+ It e; first(e); return e; }
+
+ template< typename It > It first(const Node& v) const {
+ It e; first(e, v); return e; }
+
+ Node head(const Edge& e) const { return graph->head(e); }
+ Node tail(const Edge& e) const { return graph->tail(e); }
+
+ template<typename I> bool valid(const I& i) const
+ { return graph->valid(i); }
+
+ //template<typename I> void setInvalid(const I &i);
+ //{ return graph->setInvalid(i); }
+
+ int nodeNum() const { return graph->nodeNum(); }
+ int edgeNum() const { return graph->edgeNum(); }
+
+ template<typename I> Node aNode(const I& e) const {
+ return graph->aNode(e); }
+ template<typename I> Node bNode(const I& e) const {
+ return graph->bNode(e); }
+
+ Node addNode() const { return graph->addNode(); }
+ Edge addEdge(const Node& tail, const Node& head) const {
+ return graph->addEdge(tail, head); }
+
+ template<typename I> void erase(const I& i) const { graph->erase(i); }
+
+ void clear() const { graph->clear(); }
+
+ template<typename T> class NodeMap : public Graph::NodeMap<T> {
+ public:
+ NodeMap(const TrivGraphWrapper<Graph>& _G) :
+ Graph::NodeMap<T>(*(_G.graph)) { }
+ NodeMap(const TrivGraphWrapper<Graph>& _G, T a) :
+ Graph::NodeMap<T>(*(_G.graph), a) { }
+ };
+
+ template<typename T> class EdgeMap : public Graph::EdgeMap<T> {
+ public:
+ EdgeMap(const TrivGraphWrapper<Graph>& _G) :
+ Graph::EdgeMap<T>(*(_G.graph)) { }
+ EdgeMap(const TrivGraphWrapper<Graph>& _G, T a) :
+ Graph::EdgeMap<T>(*(_G.graph), a) { }
+ };
+
+ template<typename Map, typename T> class NodeMapWrapper {
+ protected:
+ Map* map;
+ public:
+ NodeMapWrapper(Map& _map) : map(&_map) { }
+ //template<typename T>
+ void set(Node n, T a) { map->set(n, a); }
+ //template<typename T>
+ T get(Node n) const { return map->get(n); }
+ };
+
+ template<typename Map, typename T> class EdgeMapWrapper {
+ protected:
+ Map* map;
+ public:
+ EdgeMapWrapper(Map& _map) : map(&_map) { }
+ //template<typename T>
+ void set(Edge n, T a) { map->set(n, a); }
+ //template<typename T>
+ T get(Edge n) const { return map->get(n); }
+ };
+ };
+
+ template<typename GraphWrapper>
+ class GraphWrapperSkeleton {
+ protected:
+ GraphWrapper gw;
+
+ public:
+ //typedef typename GraphWrapper::BaseGraph BaseGraph;
+
+// typedef typename GraphWrapper::Node Node;
+// typedef typename GraphWrapper::NodeIt NodeIt;
+
+// typedef typename GraphWrapper::Edge Edge;
+// typedef typename GraphWrapper::OutEdgeIt OutEdgeIt;
+// typedef typename GraphWrapper::InEdgeIt InEdgeIt;
+// //typedef typename GraphWrapper::SymEdgeIt SymEdgeIt;
+// typedef typename GraphWrapper::EdgeIt EdgeIt;
+
+ typedef typename GraphWrapper::Node Node;
+ class NodeIt : public GraphWrapper::NodeIt {
+ public:
+ NodeIt() { }
+ NodeIt(const typename GraphWrapper::NodeIt& n) :
+ GraphWrapper::NodeIt(n) { }
+ NodeIt(const Invalid& i) : GraphWrapper::NodeIt(i) { }
+ NodeIt(const GraphWrapperSkeleton<GraphWrapper>& _G) :
+ GraphWrapper::NodeIt(_G.gw) { }
+ };
+ typedef typename GraphWrapper::Edge Edge;
+ //typedef typename GraphWrapper::OutEdgeIt OutEdgeIt;
+ class OutEdgeIt : public GraphWrapper::OutEdgeIt {
+ public:
+ OutEdgeIt() { }
+ OutEdgeIt(const typename GraphWrapper::OutEdgeIt& e) :
+ GraphWrapper::OutEdgeIt(e) { }
+ OutEdgeIt(const Invalid& i) : GraphWrapper::OutEdgeIt(i) { }
+ OutEdgeIt(const GraphWrapperSkeleton<GraphWrapper>& _G, const Node& n) :
+ GraphWrapper::OutEdgeIt(_G.gw, n) { }
+ };
+ //typedef typename GraphWrapper::InEdgeIt InEdgeIt;
+ class InEdgeIt : public GraphWrapper::InEdgeIt {
+ public:
+ InEdgeIt() { }
+ InEdgeIt(const typename GraphWrapper::InEdgeIt& e) :
+ GraphWrapper::InEdgeIt(e) { }
+ InEdgeIt(const Invalid& i) : GraphWrapper::InEdgeIt(i) { }
+ InEdgeIt(const GraphWrapperSkeleton<GraphWrapper>& _G, const Node& n) :
+ GraphWrapper::InEdgeIt(_G.gw, n) { }
+ };
+ //typedef typename GraphWrapper::SymEdgeIt SymEdgeIt;
+ //typedef typename GraphWrapper::EdgeIt EdgeIt;
+ class EdgeIt : public GraphWrapper::EdgeIt {
+ public:
+ EdgeIt() { }
+ EdgeIt(const typename GraphWrapper::EdgeIt& e) :
+ GraphWrapper::EdgeIt(e) { }
+ EdgeIt(const Invalid& i) : GraphWrapper::EdgeIt(i) { }
+ EdgeIt(const GraphWrapperSkeleton<GraphWrapper>& _G) :
+ GraphWrapper::EdgeIt(_G.gw) { }
+ };
+
+
+ //GraphWrapperSkeleton() : gw() { }
+ GraphWrapperSkeleton(GraphWrapper _gw) : gw(_gw) { }
+
+ //void setGraph(BaseGraph& _graph) { gw.setGraph(_graph); }
+ //BaseGraph& getGraph() const { return gw.getGraph(); }
+
+ template<typename I> I& first(I& i) const {
+ i=I(*this);
+ return i;
+ }
+ template<typename I, typename P> I& first(I& i, const P& p) const {
+ i=I(*this, p);
+ return i;
+ }
+
+// template<typename I> I getNext(const I& i) const { return gw.getNext(i); }
+ template<typename I> I& next(I &i) const { gw.next(i); return i; }
+
+ template< typename It > It first() const {
+ It e; this->first(e); return e; }
+
+ template< typename It > It first(const Node& v) const {
+ It e; this->first(e, v); return e; }
+
+ Node head(const Edge& e) const { return gw.head(e); }
+ Node tail(const Edge& e) const { return gw.tail(e); }
+
+ template<typename I> bool valid(const I& i) const { return gw.valid(i); }
+
+ //template<typename I> void setInvalid(const I &i);
+ //{ return graph->setInvalid(i); }
+
+ int nodeNum() const { return gw.nodeNum(); }
+ int edgeNum() const { return gw.edgeNum(); }
+
+ template<typename I> Node aNode(const I& e) const { return gw.aNode(e); }
+ template<typename I> Node bNode(const I& e) const { return gw.bNode(e); }
+
+ Node addNode() const { return gw.addNode(); }
+ Edge addEdge(const Node& tail, const Node& head) const {
+ return gw.addEdge(tail, head); }
+
+ template<typename I> void erase(const I& i) const { gw.erase(i); }
+
+ void clear() const { gw.clear(); }
+
+ template<typename T> class NodeMap : public GraphWrapper::NodeMap<T> {
+ public:
+ NodeMap(const GraphWrapperSkeleton<GraphWrapper>& _G) :
+ GraphWrapper::NodeMap<T>(_G.gw) { }
+ NodeMap(const GraphWrapperSkeleton<GraphWrapper>& _G, T a) :
+ GraphWrapper::NodeMap<T>(_G.gw, a) { }
+ };
+
+ template<typename T> class EdgeMap : public GraphWrapper::EdgeMap<T> {
+ public:
+ EdgeMap(const GraphWrapperSkeleton<GraphWrapper>& _G) :
+ GraphWrapper::EdgeMap<T>(_G.gw) { }
+ EdgeMap(const GraphWrapperSkeleton<GraphWrapper>& _G, T a) :
+ GraphWrapper::EdgeMap<T>(_G.gw, a) { }
+ };
+ };
+
+ template<typename GraphWrapper>
+ class GraphWrapperSkeleton1 {
+ protected:
+ GraphWrapper* g;
+
+ public:
+ //typedef typename GraphWrapper::BaseGraph BaseGraph;
+
+// typedef typename GraphWrapper::Node Node;
+// typedef typename GraphWrapper::NodeIt NodeIt;
+
+// typedef typename GraphWrapper::Edge Edge;
+// typedef typename GraphWrapper::OutEdgeIt OutEdgeIt;
+// typedef typename GraphWrapper::InEdgeIt InEdgeIt;
+// //typedef typename GraphWrapper::SymEdgeIt SymEdgeIt;
+// typedef typename GraphWrapper::EdgeIt EdgeIt;
+
+ typedef typename GraphWrapper::Node Node;
+ class NodeIt : public GraphWrapper::NodeIt {
+ public:
+ NodeIt() { }
+ NodeIt(const typename GraphWrapper::NodeIt& n) :
+ GraphWrapper::NodeIt(n) { }
+ NodeIt(const Invalid& i) : GraphWrapper::NodeIt(i) { }
+ NodeIt(const GraphWrapperSkeleton1<GraphWrapper>& _G) :
+ GraphWrapper::NodeIt(*(_G.g)) { }
+ };
+ typedef typename GraphWrapper::Edge Edge;
+ //typedef typename GraphWrapper::OutEdgeIt OutEdgeIt;
+ class OutEdgeIt : public GraphWrapper::OutEdgeIt {
+ public:
+ OutEdgeIt() { }
+ OutEdgeIt(const typename GraphWrapper::OutEdgeIt& e) :
+ GraphWrapper::OutEdgeIt(e) { }
+ OutEdgeIt(const Invalid& i) : GraphWrapper::OutEdgeIt(i) { }
+ OutEdgeIt(const GraphWrapperSkeleton1<GraphWrapper>& _G, const Node& n) :
+ GraphWrapper::OutEdgeIt(*(_G.g), n) { }
+ };
+ //typedef typename GraphWrapper::InEdgeIt InEdgeIt;
+ class InEdgeIt : public GraphWrapper::InEdgeIt {
+ public:
+ InEdgeIt() { }
+ InEdgeIt(const typename GraphWrapper::InEdgeIt& e) :
+ GraphWrapper::InEdgeIt(e) { }
+ InEdgeIt(const Invalid& i) : GraphWrapper::InEdgeIt(i) { }
+ InEdgeIt(const GraphWrapperSkeleton1<GraphWrapper>& _G, const Node& n) :
+ GraphWrapper::InEdgeIt(*(_G.g), n) { }
+ };
+ //typedef typename GraphWrapper::SymEdgeIt SymEdgeIt;
+ //typedef typename GraphWrapper::EdgeIt EdgeIt;
+ class EdgeIt : public GraphWrapper::EdgeIt {
+ public:
+ EdgeIt() { }
+ EdgeIt(const typename GraphWrapper::EdgeIt& e) :
+ GraphWrapper::EdgeIt(e) { }
+ EdgeIt(const Invalid& i) : GraphWrapper::EdgeIt(i) { }
+ EdgeIt(const GraphWrapperSkeleton1<GraphWrapper>& _G) :
+ GraphWrapper::EdgeIt(*(_G.g)) { }
+ };
+
+
+ //GraphWrapperSkeleton() : gw() { }
+ GraphWrapperSkeleton1(GraphWrapper& _gw) : g(&_gw) { }
+
+ //void setGraph(BaseGraph& _graph) { gw.setGraph(_graph); }
+ //BaseGraph& getGraph() const { return gw.getGraph(); }
+
+ template<typename I> I& first(I& i) const {
+ i=I(*this);
+ return i;
+ }
+ template<typename I, typename P> I& first(I& i, const P& p) const {
+ i=I(*this, p);
+ return i;
+ }
+
+// template<typename I> I getNext(const I& i) const { return gw.getNext(i); }
+ template<typename I> I& next(I &i) const { g->next(i); return i; }
+
+ template< typename It > It first() const {
+ It e; this->first(e); return e; }
+
+ template< typename It > It first(const Node& v) const {
+ It e; this->first(e, v); return e; }
+
+ Node head(const Edge& e) const { return g->head(e); }
+ Node tail(const Edge& e) const { return g->tail(e); }
+
+ template<typename I> bool valid(const I& i) const { return g->valid(i); }
+
+ //template<typename I> void setInvalid(const I &i);
+ //{ return graph->setInvalid(i); }
+
+ int nodeNum() const { return g->nodeNum(); }
+ int edgeNum() const { return g->edgeNum(); }
+
+ template<typename I> Node aNode(const I& e) const { return g->aNode(e); }
+ template<typename I> Node bNode(const I& e) const { return g->bNode(e); }
+
+ Node addNode() const { return g->addNode(); }
+ Edge addEdge(const Node& tail, const Node& head) const {
+ return g->addEdge(tail, head); }
+
+ template<typename I> void erase(const I& i) const { g->erase(i); }
+
+ void clear() const { g->clear(); }
+
+ template<typename T> class NodeMap : public GraphWrapper::NodeMap<T> {
+ public:
+ NodeMap(const GraphWrapperSkeleton1<GraphWrapper>& _G) :
+ GraphWrapper::NodeMap<T>(*(_G.g)) { }
+ NodeMap(const GraphWrapperSkeleton1<GraphWrapper>& _G, T a) :
+ GraphWrapper::NodeMap<T>(*(_G.g), a) { }
+ };
+
+ template<typename T> class EdgeMap : public GraphWrapper::EdgeMap<T> {
+ public:
+ EdgeMap(const GraphWrapperSkeleton1<GraphWrapper>& _G) :
+ GraphWrapper::EdgeMap<T>(*(_G.g)) { }
+ EdgeMap(const GraphWrapperSkeleton1<GraphWrapper>& _G, T a) :
+ GraphWrapper::EdgeMap<T>(*(_G.g), a) { }
+ };
+ };
+
+
+// template<typename Graph>
+// class RevGraphWrapper
+// {
+// protected:
+// Graph* graph;
+
+// public:
+// typedef Graph BaseGraph;
+
+// typedef typename Graph::Node Node;
+// typedef typename Graph::NodeIt NodeIt;
+
+// typedef typename Graph::Edge Edge;
+// typedef typename Graph::OutEdgeIt InEdgeIt;
+// typedef typename Graph::InEdgeIt OutEdgeIt;
+// //typedef typename Graph::SymEdgeIt SymEdgeIt;
+// typedef typename Graph::EdgeIt EdgeIt;
+
+// //RevGraphWrapper() : graph(0) { }
+// RevGraphWrapper(Graph& _graph) : graph(&_graph) { }
+
+// void setGraph(Graph& _graph) { graph = &_graph; }
+// Graph& getGraph() const { return (*graph); }
+
+// template<typename I> I& first(I& i) const { return graph->first(i); }
+// template<typename I, typename P> I& first(I& i, const P& p) const {
+// return graph->first(i, p); }
+
+// template<typename I> I getNext(const I& i) const {
+// return graph->getNext(i); }
+// template<typename I> I& next(I &i) const { return graph->next(i); }
+
+// template< typename It > It first() const {
+// It e; first(e); return e; }
+
+// template< typename It > It first(const Node& v) const {
+// It e; first(e, v); return e; }
+
+// Node head(const Edge& e) const { return graph->tail(e); }
+// Node tail(const Edge& e) const { return graph->head(e); }
+
+// template<typename I> bool valid(const I& i) const
+// { return graph->valid(i); }
+
+// //template<typename I> void setInvalid(const I &i);
+// //{ return graph->setInvalid(i); }
+
+// template<typename I> Node aNode(const I& e) const {
+// return graph->aNode(e); }
+// template<typename I> Node bNode(const I& e) const {
+// return graph->bNode(e); }
+
+// Node addNode() const { return graph->addNode(); }
+// Edge addEdge(const Node& tail, const Node& head) const {
+// return graph->addEdge(tail, head); }
+
+// int nodeNum() const { return graph->nodeNum(); }
+// int edgeNum() const { return graph->edgeNum(); }
+
+// template<typename I> void erase(const I& i) const { graph->erase(i); }
+
+// void clear() const { graph->clear(); }
+
+// template<typename T> class NodeMap : public Graph::NodeMap<T> {
+// public:
+// NodeMap(const RevGraphWrapper<Graph>& _G) :
+// Graph::NodeMap<T>(_G.getGraph()) { }
+// NodeMap(const RevGraphWrapper<Graph>& _G, T a) :
+// Graph::NodeMap<T>(_G.getGraph(), a) { }
+// };
+
+// template<typename T> class EdgeMap : public Graph::EdgeMap<T> {
+// public:
+// EdgeMap(const RevGraphWrapper<Graph>& _G) :
+// Graph::EdgeMap<T>(_G.getGraph()) { }
+// EdgeMap(const RevGraphWrapper<Graph>& _G, T a) :
+// Graph::EdgeMap<T>(_G.getGraph(), a) { }
+// };
+// };
+
+// template<typename /*Graph*/GraphWrapper
+// /*=typename GraphWrapperSkeleton< TrivGraphWrapper<Graph>*/ >
+// class RevGraphWrapper :
+// public GraphWrapper/*GraphWrapperSkeleton< TrivGraphWrapper<Graph> >*/ {
+// protected:
+// //Graph* graph;
+
+// public:
+// //typedef Graph BaseGraph;
+
+// //typedef typename Graph::Node Node;
+// //typedef typename Graph::NodeIt NodeIt;
+
+// //typedef typename Graph::Edge Edge;
+// typedef typename GraphWrapper/*typename GraphWrapperSkeleton< TrivGraphWrapper<Graph> >*/::OutEdgeIt InEdgeIt;
+// typedef typename GraphWrapper/*typename GraphWrapperSkeleton< TrivGraphWrapper<Graph> >*/::InEdgeIt OutEdgeIt;
+// //typedef typename Graph::SymEdgeIt SymEdgeIt;
+// //typedef typename Graph::EdgeIt EdgeIt;
+
+// //RevGraphWrapper() : graph(0) { }
+// RevGraphWrapper(GraphWrapper _gw/*BaseGraph& _graph*/) : GraphWrapper/*GraphWrapperSkeleton< TrivGraphWrapper<Graph> >*/(_gw/*TrivGraphWrapper<Graph>(_graph)*/) { }
+
+// //void setGraph(Graph& _graph) { graph = &_graph; }
+// //Graph& getGraph() const { return (*graph); }
+
+// //template<typename I> I& first(I& i) const { return graph->first(i); }
+// //template<typename I, typename P> I& first(I& i, const P& p) const {
+// // return graph->first(i, p); }
+
+// //template<typename I> I getNext(const I& i) const {
+// // return graph->getNext(i); }
+// //template<typename I> I& next(I &i) const { return graph->next(i); }
+
+// //template< typename It > It first() const {
+// // It e; first(e); return e; }
+
+// //template< typename It > It first(const Node& v) const {
+// // It e; first(e, v); return e; }
+
+// //Node head(const Edge& e) const { return graph->tail(e); }
+// //Node tail(const Edge& e) const { return graph->head(e); }
+
+// //template<typename I> bool valid(const I& i) const
+// // { return graph->valid(i); }
+
+// //template<typename I> void setInvalid(const I &i);
+// //{ return graph->setInvalid(i); }
+
+// //template<typename I> Node aNode(const I& e) const {
+// // return graph->aNode(e); }
+// //template<typename I> Node bNode(const I& e) const {
+// // return graph->bNode(e); }
+
+// //Node addNode() const { return graph->addNode(); }
+// //Edge addEdge(const Node& tail, const Node& head) const {
+// // return graph->addEdge(tail, head); }
+
+// //int nodeNum() const { return graph->nodeNum(); }
+// //int edgeNum() const { return graph->edgeNum(); }
+
+// //template<typename I> void erase(const I& i) const { graph->erase(i); }
+
+// //void clear() const { graph->clear(); }
+
+// template<typename T> class NodeMap :
+// public GraphWrapper/*Skeleton< TrivGraphWrapper<Graph> >*/::NodeMap<T>
+// {
+// public:
+// NodeMap(const RevGraphWrapper<GraphWrapper>& _gw) :
+// GraphWrapper/*Skeleton< TrivGraphWrapper<Graph> >*/::NodeMap<T>(_gw) { }
+// NodeMap(const RevGraphWrapper<GraphWrapper>& _gw, T a) :
+// GraphWrapper/*Skeleton< TrivGraphWrapper<Graph> >*/::NodeMap<T>(_gw, a) { }
+// };
+
+// template<typename T> class EdgeMap :
+// public GraphWrapper/*Skeleton< TrivGraphWrapper<Graph> >*/::EdgeMap<T> {
+// public:
+// EdgeMap(const RevGraphWrapper<GraphWrapper>& _gw) :
+// GraphWrapper/*Skeleton< TrivGraphWrapper<Graph> >*/::EdgeMap<T>(_gw) { }
+// EdgeMap(const RevGraphWrapper<GraphWrapper>& _gw, T a) :
+// GraphWrapper/*Skeleton< TrivGraphWrapper<Graph> >*/::EdgeMap<T>(_gw, a) { }
+// };
+// };
+
+ template<typename GraphWrapper>
+ class RevGraphWrapper : public GraphWrapperSkeleton1<GraphWrapper> {
+ public:
+ typedef typename GraphWrapperSkeleton1<GraphWrapper>::Node Node;
+ typedef typename GraphWrapperSkeleton1<GraphWrapper>::Edge Edge;
+ //FIXME
+ //If GraphWrapper::OutEdgeIt is not defined
+ //and we do not want to use RevGraphWrapper::InEdgeIt,
+ //this won't work, because of typedef
+ //OR
+ //graphs have to define their non-existing iterators to void
+ //Unfortunately all the typedefs are instantiated in templates,
+ //unlike other stuff
+ typedef typename GraphWrapperSkeleton1<GraphWrapper>::OutEdgeIt InEdgeIt;
+ typedef typename GraphWrapperSkeleton1<GraphWrapper>::InEdgeIt OutEdgeIt;
+
+ RevGraphWrapper(GraphWrapper& _gw) :
+ GraphWrapperSkeleton1<GraphWrapper>(_gw) { }
+
+ Node head(const Edge& e) const
+ { return GraphWrapperSkeleton1<GraphWrapper>::tail(e); }
+ Node tail(const Edge& e) const
+ { return GraphWrapperSkeleton1<GraphWrapper>::head(e); }
+ };
+
+ //Subgraph on the same node-set and partial edge-set
+ template<typename GraphWrapper, typename EdgeFilterMap>
+ class SubGraphWrapper : public GraphWrapperSkeleton1<GraphWrapper> {
+ protected:
+ EdgeFilterMap* filter_map;
+ public:
+ typedef typename GraphWrapperSkeleton1<GraphWrapper>::Node Node;
+ typedef typename GraphWrapperSkeleton1<GraphWrapper>::NodeIt NodeIt;
+ typedef typename GraphWrapperSkeleton1<GraphWrapper>::Edge Edge;
+ typedef typename GraphWrapperSkeleton1<GraphWrapper>::EdgeIt EdgeIt;
+ typedef typename GraphWrapperSkeleton1<GraphWrapper>::InEdgeIt InEdgeIt;
+ typedef typename GraphWrapperSkeleton1<GraphWrapper>::OutEdgeIt OutEdgeIt;
+
+ SubGraphWrapper(GraphWrapper& _gw, EdgeFilterMap& _filter_map) :
+ GraphWrapperSkeleton1<GraphWrapper>(_gw), filter_map(&_filter_map) { }
+
+ template<typename I> I& first(I& i) const {
+ g->first(i);
+ while (g->valid(i) && !filter_map->get(i)) { g->next(i); }
+ return i;
+ }
+ template<typename I, typename P> I& first(I& i, const P& p) const {
+ g->first(i, p);
+ while (g->valid(i) && !filter_map->get(i)) { g->next(i); }
+ return i;
+ }
+
+ //template<typename I> I getNext(const I& i) const {
+ // return gw.getNext(i);
+ //}
+ template<typename I> I& next(I &i) const {
+ g->next(i);
+ while (g->valid(i) && !filter_map->get(i)) { g->next(i); }
+ return i;
+ }
+
+ template< typename It > It first() const {
+ It e; this->first(e); return e; }
+
+ template< typename It > It first(const Node& v) const {
+ It e; this->first(e, v); return e; }
+ };
+
+// template<typename GraphWrapper>
+// class UndirGraphWrapper {
+// protected:
+// //Graph* graph;
+// GraphWrapper gw;
+
+// public:
+// typedef GraphWrapper BaseGraph;
+
+// typedef typename GraphWrapper::Node Node;
+// typedef typename GraphWrapper::NodeIt NodeIt;
+
+// //typedef typename Graph::Edge Edge;
+// //typedef typename Graph::OutEdgeIt OutEdgeIt;
+// //typedef typename Graph::InEdgeIt InEdgeIt;
+// //typedef typename Graph::SymEdgeIt SymEdgeIt;
+// //typedef typename Graph::EdgeIt EdgeIt;
+
+// //private:
+// typedef typename GraphWrapper::Edge GraphEdge;
+// typedef typename GraphWrapper::OutEdgeIt GraphOutEdgeIt;
+// typedef typename GraphWrapper::InEdgeIt GraphInEdgeIt;
+// //public:
+
+// //UndirGraphWrapper() : graph(0) { }
+// UndirGraphWrapper(GraphWrapper _gw) : gw(_gw) { }
+
+// //void setGraph(Graph& _graph) { graph = &_graph; }
+// //Graph& getGraph() const { return (*graph); }
+
+// class Edge {
+// friend class UndirGraphWrapper<GraphWrapper>;
+// bool out_or_in; //true iff out
+// GraphOutEdgeIt out;
+// GraphInEdgeIt in;
+// public:
+// Edge() : out_or_in(), out(), in() { }
+// Edge(const Invalid& i) : out_or_in(false), out(), in(i) { }
+// operator GraphEdge() const {
+// if (out_or_in) return(out); else return(in);
+// }
+// friend bool operator==(const Edge& u, const Edge& v) {
+// if (v.out_or_in)
+// return (u.out_or_in && u.out==v.out);
+// else
+// return (!u.out_or_in && u.in==v.in);
+// }
+// friend bool operator!=(const Edge& u, const Edge& v) {
+// if (v.out_or_in)
+// return (!u.out_or_in || u.out!=v.out);
+// else
+// return (u.out_or_in || u.in!=v.in);
+// }
+// };
+
+// class OutEdgeIt : public Edge {
+// friend class UndirGraphWrapper<GraphWrapper>;
+// public:
+// OutEdgeIt() : Edge() { }
+// OutEdgeIt(const Invalid& i) : Edge(i) { }
+// OutEdgeIt(const UndirGraphWrapper<GraphWrapper>& _G, const Node& n)
+// : Edge() {
+// out_or_in=true;
+// _G.gw.first(out, n);
+// if (!(_G.gw.valid(out))) {
+// out_or_in=false;
+// _G.gw.first(in, n);
+// }
+// }
+// };
+
+// OutEdgeIt& first(OutEdgeIt& e, const Node& n) const {
+// e.out_or_in=true;
+// gw.first(e.out, n);
+// if (!(gw.valid(e.out))) {
+// e.out_or_in=false;
+// gw.first(e.in, n);
+// }
+// return e;
+// }
+
+// OutEdgeIt& next(OutEdgeIt& e) const {
+// if (e.out_or_in) {
+// Node n=gw.tail(e.out);
+// gw.next(e.out);
+// if (!gw.valid(e.out)) {
+// e.out_or_in=false;
+// gw.first(e.in, n);
+// }
+// } else {
+// gw.next(e.in);
+// }
+// return e;
+// }
+
+// Node aNode(const OutEdgeIt& e) const {
+// if (e.out_or_in) return gw.tail(e); else return gw.head(e); }
+// Node bNode(const OutEdgeIt& e) const {
+// if (e.out_or_in) return gw.head(e); else return gw.tail(e); }
+
+// typedef OutEdgeIt InEdgeIt;
+
+// template<typename I> I& first(I& i) const { return gw.first(i); }
+// // template<typename I, typename P> I& first(I& i, const P& p) const {
+// // return graph->first(i, p); }
+
+// template<typename I> I getNext(const I& i) const {
+// return gw.getNext(i); }
+// template<typename I> I& next(I &i) const { return gw.next(i); }
+
+// template< typename It > It first() const {
+// It e; first(e); return e; }
+
+// template< typename It > It first(const Node& v) const {
+// It e; first(e, v); return e; }
+
+// Node head(const Edge& e) const { return gw.head(e); }
+// Node tail(const Edge& e) const { return gw.tail(e); }
+
+// template<typename I> bool valid(const I& i) const
+// { return gw.valid(i); }
+
+// //template<typename I> void setInvalid(const I &i);
+// //{ return graph->setInvalid(i); }
+
+// int nodeNum() const { return gw.nodeNum(); }
+// int edgeNum() const { return gw.edgeNum(); }
+
+// // template<typename I> Node aNode(const I& e) const {
+// // return graph->aNode(e); }
+// // template<typename I> Node bNode(const I& e) const {
+// // return graph->bNode(e); }
+
+// Node addNode() const { return gw.addNode(); }
+// // FIXME: ez igy nem jo, mert nem
+// // Edge addEdge(const Node& tail, const Node& head) const {
+// // return graph->addEdge(tail, head); }
+
+// template<typename I> void erase(const I& i) const { gw.erase(i); }
+
+// void clear() const { gw.clear(); }
+
+// template<typename T> class NodeMap : public GraphWrapper::NodeMap<T> {
+// public:
+// NodeMap(const UndirGraphWrapper<GraphWrapper>& _G) :
+// GraphWrapper::NodeMap<T>(_G.gw) { }
+// NodeMap(const UndirGraphWrapper<GraphWrapper>& _G, T a) :
+// GraphWrapper::NodeMap<T>(_G.gw, a) { }
+// };
+
+// template<typename T> class EdgeMap : public GraphWrapper::EdgeMap<T> {
+// public:
+// EdgeMap(const UndirGraphWrapper<GraphWrapper>& _G) :
+// GraphWrapper::EdgeMap<T>(_G.gw) { }
+// EdgeMap(const UndirGraphWrapper<GraphWrapper>& _G, T a) :
+// GraphWrapper::EdgeMap<T>(_G.gw, a) { }
+// };
+// };
+
+
+ template<typename GraphWrapper>
+ class UndirGraphWrapper : public GraphWrapperSkeleton1<GraphWrapper> {
+ protected:
+// GraphWrapper gw;
+
+ public:
+ //typedef GraphWrapper BaseGraph;
+
+ typedef typename GraphWrapperSkeleton1<GraphWrapper>::Node Node;
+ typedef typename GraphWrapperSkeleton1<GraphWrapper>::NodeIt NodeIt;
+
+ //private:
+ //FIXME ezeknek valojaban a GraphWrapper megfelelo dolgai kellene hogy
+ //legyenek, at kell irni
+ typedef typename /*GraphWrapperSkeleton<GraphWrapper>*/
+ GraphWrapper::Edge GraphEdge;
+ typedef typename /*GraphWrapperSkeleton<GraphWrapper>*/
+ GraphWrapper::OutEdgeIt GraphOutEdgeIt;
+ typedef typename /*GraphWrapperSkeleton<GraphWrapper>*/
+ GraphWrapper::InEdgeIt GraphInEdgeIt;
+ //public:
+
+ //UndirGraphWrapper() : graph(0) { }
+ UndirGraphWrapper(GraphWrapper& _gw) :
+ GraphWrapperSkeleton1<GraphWrapper>(_gw) { }
+
+ //UndirGraphWrapper(GraphWrapper _gw) : gw(_gw) { }
+
+ //void setGraph(Graph& _graph) { graph = &_graph; }
+ //Graph& getGraph() const { return (*graph); }
+
+ class Edge {
+ friend class UndirGraphWrapper<GraphWrapper>;
+ protected:
+ bool out_or_in; //true iff out
+ GraphOutEdgeIt out;
+ GraphInEdgeIt in;
+ public:
+ Edge() : out_or_in(), out(), in() { }
+ Edge(const Invalid& i) : out_or_in(false), out(), in(i) { }
+ operator GraphEdge() const {
+ if (out_or_in) return(out); else return(in);
+ }
+//FIXME
+//2 edges are equal if they "refer" to the same physical edge
+//is it good?
+ friend bool operator==(const Edge& u, const Edge& v) {
+ if (v.out_or_in)
+ if (u.out_or_in) return (u.out==v.out); else return (u.out==v.in);
+ //return (u.out_or_in && u.out==v.out);
+ else
+ if (u.out_or_in) return (u.out==v.in); else return (u.in==v.in);
+ //return (!u.out_or_in && u.in==v.in);
+ }
+ friend bool operator!=(const Edge& u, const Edge& v) {
+ if (v.out_or_in)
+ if (u.out_or_in) return (u.out!=v.out); else return (u.out!=v.in);
+ //return (!u.out_or_in || u.out!=v.out);
+ else
+ if (u.out_or_in) return (u.out!=v.in); else return (u.in!=v.in);
+ //return (u.out_or_in || u.in!=v.in);
+ }
+ };
+
+ class OutEdgeIt : public Edge {
+ friend class UndirGraphWrapper<GraphWrapper>;
+ public:
+ OutEdgeIt() : Edge() { }
+ OutEdgeIt(const Invalid& i) : Edge(i) { }
+ OutEdgeIt(const UndirGraphWrapper<GraphWrapper>& _G, const Node& n)
+ : Edge() {
+ out_or_in=true; _G.g->first(out, n);
+ if (!(_G.g->valid(out))) { out_or_in=false; _G.g->first(in, n); }
+ }
+ };
+
+ typedef OutEdgeIt InEdgeIt;
+
+ class EdgeIt : public Edge {
+ friend class UndirGraphWrapper<GraphWrapper>;
+ protected:
+ NodeIt v;
+ public:
+ EdgeIt() : Edge() { }
+ EdgeIt(const Invalid& i) : Edge(i) { }
+ EdgeIt(const UndirGraphWrapper<GraphWrapper>& _G)
+ : Edge() {
+ out_or_in=true;
+ //Node v;
+ _G.first(v);
+ if (_G.valid(v)) _G.g->first(out); else out=INVALID;
+ while (_G.valid(v) && !_G.g->valid(out)) {
+ _G.g->next(v);
+ if (_G.valid(v)) _G.g->first(out);
+ }
+ }
+ };
+
+ OutEdgeIt& first(OutEdgeIt& e, const Node& n) const {
+ e.out_or_in=true; g->first(e.out, n);
+ if (!(g->valid(e.out))) { e.out_or_in=false; g->first(e.in, n); }
+ return e;
+ }
+
+ EdgeIt& first(EdgeIt& e) const {
+ e.out_or_in=true;
+ //NodeIt v;
+ first(e.v);
+ if (valid(e.v)) g->first(e.out, e.v); else e.out=INVALID;
+ while (valid(e.v) && !g->valid(e.out)) {
+ g->next(e.v);
+ if (valid(e.v)) g->first(e.out, e.v);
+ }
+ return e;
+ }
+
+ template<typename I> I& first(I& i) const { g->first(i); return i; }
+ template<typename I, typename P> I& first(I& i, const P& p) const {
+ g->first(i, p); return i; }
+
+ OutEdgeIt& next(OutEdgeIt& e) const {
+ if (e.out_or_in) {
+ Node n=g->tail(e.out);
+ g->next(e.out);
+ if (!g->valid(e.out)) { e.out_or_in=false; g->first(e.in, n); }
+ } else {
+ g->next(e.in);
+ }
+ return e;
+ }
+
+ EdgeIt& next(EdgeIt& e) const {
+ //NodeIt v=tail(e);
+ g->next(e.out);
+ while (valid(e.v) && !g->valid(e.out)) {
+ next(e.v);
+ if (valid(e.v)) g->first(e.out, e.v);
+ }
+ return e;
+ }
+
+ template<typename I> I& next(I &i) const { return g->next(i); }
+// template<typename I> I getNext(const I& i) const { return gw.getNext(i); }
+
+ template< typename It > It first() const {
+ It e; first(e); return e; }
+
+ template< typename It > It first(const Node& v) const {
+ It e; first(e, v); return e; }
+
+// Node head(const Edge& e) const { return gw.head(e); }
+// Node tail(const Edge& e) const { return gw.tail(e); }
+
+// template<typename I> bool valid(const I& i) const
+// { return gw.valid(i); }
+
+// int nodeNum() const { return gw.nodeNum(); }
+// int edgeNum() const { return gw.edgeNum(); }
+
+// template<typename I> Node aNode(const I& e) const {
+// return graph->aNode(e); }
+// template<typename I> Node bNode(const I& e) const {
+// return graph->bNode(e); }
+
+ Node aNode(const OutEdgeIt& e) const {
+ if (e.out_or_in) return g->tail(e); else return g->head(e); }
+ Node bNode(const OutEdgeIt& e) const {
+ if (e.out_or_in) return g->head(e); else return g->tail(e); }
+
+// Node addNode() const { return gw.addNode(); }
+
+// FIXME: ez igy nem jo, mert nem
+// Edge addEdge(const Node& tail, const Node& head) const {
+// return graph->addEdge(tail, head); }
+
+// template<typename I> void erase(const I& i) const { gw.erase(i); }
+
+// void clear() const { gw.clear(); }
+
+// template<typename T> class NodeMap : public GraphWrapper::NodeMap<T> {
+// public:
+// NodeMap(const UndirGraphWrapper<GraphWrapper>& _G) :
+// GraphWrapper::NodeMap<T>(_G.gw) { }
+// NodeMap(const UndirGraphWrapper<GraphWrapper>& _G, T a) :
+// GraphWrapper::NodeMap<T>(_G.gw, a) { }
+// };
+
+// template<typename T> class EdgeMap :
+// public GraphWrapperSkeleton<GraphWrapper>::EdgeMap<T> {
+// public:
+// EdgeMap(const UndirGraphWrapper<GraphWrapper>& _G) :
+// GraphWrapperSkeleton<GraphWrapper>::EdgeMap<T>(_G.gw) { }
+// EdgeMap(const UndirGraphWrapper<GraphWrapper>& _G, T a) :
+// GraphWrapper::EdgeMap<T>(_G.gw, a) { }
+// };
+ };
+
+
+
+
+
+// template<typename Graph>
+// class SymGraphWrapper
+// {
+// Graph* graph;
+
+// public:
+// typedef Graph BaseGraph;
+
+// typedef typename Graph::Node Node;
+// typedef typename Graph::Edge Edge;
+
+// typedef typename Graph::NodeIt NodeIt;
+
+// //FIXME tag-ekkel megcsinalni, hogy abbol csinaljon
+// //iranyitatlant, ami van
+// //mert csak 1 dolgot lehet be typedef-elni
+// typedef typename Graph::OutEdgeIt SymEdgeIt;
+// //typedef typename Graph::InEdgeIt SymEdgeIt;
+// //typedef typename Graph::SymEdgeIt SymEdgeIt;
+// typedef typename Graph::EdgeIt EdgeIt;
+
+// int nodeNum() const { return graph->nodeNum(); }
+// int edgeNum() const { return graph->edgeNum(); }
+
+// template<typename I> I& first(I& i) const { return graph->first(i); }
+// template<typename I, typename P> I& first(I& i, const P& p) const {
+// return graph->first(i, p); }
+// //template<typename I> I next(const I i); { return graph->goNext(i); }
+// //template<typename I> I &goNext(I &i); { return graph->goNext(i); }
+
+// template< typename It > It first() const {
+// It e; first(e); return e; }
+
+// template< typename It > It first(Node v) const {
+// It e; first(e, v); return e; }
+
+// Node head(const Edge& e) const { return graph->head(e); }
+// Node tail(const Edge& e) const { return graph->tail(e); }
+
+// template<typename I> Node aNode(const I& e) const {
+// return graph->aNode(e); }
+// template<typename I> Node bNode(const I& e) const {
+// return graph->bNode(e); }
+
+// //template<typename I> bool valid(const I i);
+// //{ return graph->valid(i); }
+
+// //template<typename I> void setInvalid(const I &i);
+// //{ return graph->setInvalid(i); }
+
+// Node addNode() { return graph->addNode(); }
+// Edge addEdge(const Node& tail, const Node& head) {
+// return graph->addEdge(tail, head); }
+
+// template<typename I> void erase(const I& i) { graph->erase(i); }
+
+// void clear() { graph->clear(); }
+
+// template<typename T> class NodeMap : public Graph::NodeMap<T> { };
+// template<typename T> class EdgeMap : public Graph::EdgeMap<T> { };
+
+// void setGraph(Graph& _graph) { graph = &_graph; }
+// Graph& getGraph() { return (*graph); }
+
+// //SymGraphWrapper() : graph(0) { }
+// SymGraphWrapper(Graph& _graph) : graph(&_graph) { }
+// };
+
+
+ template<typename GraphWrapper, typename Number, typename FlowMap, typename CapacityMap>
+ class ResGraphWrapper : public GraphWrapperSkeleton1<GraphWrapper>{
+ public:
+ //typedef Graph BaseGraph;
+ //typedef TrivGraphWrapper<const Graph> GraphWrapper;
+ typedef typename GraphWrapperSkeleton1<GraphWrapper>::Node Node;
+ typedef typename GraphWrapperSkeleton1<GraphWrapper>::NodeIt NodeIt;
+ private:
+ typedef typename /*GraphWrapperSkeleton<GraphWrapper>*/
+ GraphWrapper::OutEdgeIt OldOutEdgeIt;
+ typedef typename /*GraphWrapperSkeleton<GraphWrapper>*/
+ GraphWrapper::InEdgeIt OldInEdgeIt;
+ protected:
+ //const Graph* graph;
+ //GraphWrapper gw;
+ FlowMap* flow;
+ const CapacityMap* capacity;
+ public:
+
+ ResGraphWrapper(GraphWrapper& _gw, FlowMap& _flow,
+ const CapacityMap& _capacity) :
+ GraphWrapperSkeleton1<GraphWrapper>(_gw),
+ flow(&_flow), capacity(&_capacity) { }
+
+ //void setGraph(const Graph& _graph) { graph = &_graph; }
+ //const Graph& getGraph() const { return (*graph); }
+
+ class Edge;
+ class OutEdgeIt;
+ friend class Edge;
+ friend class OutEdgeIt;
+
+ class Edge {
+ friend class ResGraphWrapper<GraphWrapper, Number, FlowMap, CapacityMap>;
+ protected:
+ bool out_or_in; //true, iff out
+ OldOutEdgeIt out;
+ OldInEdgeIt in;
+ public:
+ Edge() : out_or_in(true) { }
+ Edge(const Invalid& i) : out_or_in(false), out(), in(i) { }
+// bool valid() const {
+// return out_or_in && out.valid() || in.valid(); }
+ friend bool operator==(const Edge& u, const Edge& v) {
+ if (v.out_or_in)
+ return (u.out_or_in && u.out==v.out);
+ else
+ return (!u.out_or_in && u.in==v.in);
+ }
+ friend bool operator!=(const Edge& u, const Edge& v) {
+ if (v.out_or_in)
+ return (!u.out_or_in || u.out!=v.out);
+ else
+ return (u.out_or_in || u.in!=v.in);
+ }
+ };
+
+
+ class OutEdgeIt : public Edge {
+ friend class ResGraphWrapper<GraphWrapper, Number, FlowMap, CapacityMap>;
+ public:
+ OutEdgeIt() { }
+ //FIXME
+ OutEdgeIt(const Edge& e) : Edge(e) { }
+ OutEdgeIt(const Invalid& i) : Edge(i) { }
+ protected:
+ OutEdgeIt(const ResGraphWrapper<GraphWrapper, Number, FlowMap, CapacityMap>& resG, Node v) : Edge() {
+ resG.g->first(out, v);
+ while( resG.g->valid(out) && !(resG.resCap(out)>0) ) { resG.g->next(out); }
+ if (!resG.g->valid(out)) {
+ out_or_in=0;
+ resG.g->first(in, v);
+ while( resG.g->valid(in) && !(resG.resCap(in)>0) ) { resG.g->next(in); }
+ }
+ }
+// public:
+// OutEdgeIt& operator++() {
+// if (out_or_in) {
+// Node v=/*resG->*/G->aNode(out);
+// ++out;
+// while( out.valid() && !(Edge::resCap()>0) ) { ++out; }
+// if (!out.valid()) {
+// out_or_in=0;
+// G->first(in, v);
+// while( in.valid() && !(Edge::resCap()>0) ) { ++in; }
+// }
+// } else {
+// ++in;
+// while( in.valid() && !(Edge::resCap()>0) ) { ++in; }
+// }
+// return *this;
+// }
+ };
+
+ //FIXME This is just for having InEdgeIt
+ typedef void InEdgeIt;
+
+ class EdgeIt : public Edge {
+ friend class ResGraphWrapper<GraphWrapper, Number, FlowMap, CapacityMap>;
+ NodeIt v;
+ public:
+ EdgeIt() { }
+ //EdgeIt(const EdgeIt& e) : Edge(e), v(e.v) { }
+ EdgeIt(const Invalid& i) : Edge(i) { }
+ EdgeIt(const ResGraphWrapper<GraphWrapper, Number, FlowMap, CapacityMap>& resG) : Edge() {
+ resG.g->first(v);
+ if (resG.g->valid(v)) resG.g->first(out, v); else out=INVALID;
+ while (resG.g->valid(out) && !(resG.resCap(out)>0) ) { resG.g->next(out); }
+ while (resG.g->valid(v) && !resG.g->valid(out)) {
+ resG.g->next(v);
+ if (resG.g->valid(v)) resG.g->first(out, v);
+ while (resG.g->valid(out) && !(resG.resCap(out)>0) ) { resG.g->next(out); }
+ }
+ if (!resG.g->valid(out)) {
+ out_or_in=0;
+ resG.g->first(v);
+ if (resG.g->valid(v)) resG.g->first(in, v); else in=INVALID;
+ while (resG.g->valid(in) && !(resG.resCap(in)>0) ) { resG.g->next(in); }
+ while (resG.g->valid(v) && !resG.g->valid(in)) {
+ resG.g->next(v);
+ if (resG.g->valid(v)) resG.g->first(in, v);
+ while (resG.g->valid(in) && !(resG.resCap(in)>0) ) { resG.g->next(in); }
+ }
+ }
+ }
+// EdgeIt& operator++() {
+// if (out_or_in) {
+// ++out;
+// while (out.valid() && !(Edge::resCap()>0) ) { ++out; }
+// while (v.valid() && !out.valid()) {
+// ++v;
+// if (v.valid()) G->first(out, v);
+// while (out.valid() && !(Edge::resCap()>0) ) { ++out; }
+// }
+// if (!out.valid()) {
+// out_or_in=0;
+// G->first(v);
+// if (v.valid()) G->first(in, v); else in=OldInEdgeIt();
+// while (in.valid() && !(Edge::resCap()>0) ) { ++in; }
+// while (v.valid() && !in.valid()) {
+// ++v;
+// if (v.valid()) G->first(in, v);
+// while (in.valid() && !(Edge::resCap()>0) ) { ++in; }
+// }
+// }
+// } else {
+// ++in;
+// while (in.valid() && !(Edge::resCap()>0) ) { ++in; }
+// while (v.valid() && !in.valid()) {
+// ++v;
+// if (v.valid()) G->first(in, v);
+// while (in.valid() && !(Edge::resCap()>0) ) { ++in; }
+// }
+// }
+// return *this;
+// }
+ };
+
+ NodeIt& first(NodeIt& v) const { g->first(v); return v; }
+ OutEdgeIt& first(OutEdgeIt& e, Node v) const {
+ e=OutEdgeIt(*this, v);
+ return e;
+ }
+ EdgeIt& first(EdgeIt& e) const {
+ e=EdgeIt(*this);
+ return e;
+ }
+
+ NodeIt& next(NodeIt& n) const { return g->next(n); }
+
+ OutEdgeIt& next(OutEdgeIt& e) const {
+ if (e.out_or_in) {
+ Node v=g->aNode(e.out);
+ g->next(e.out);
+ while( g->valid(e.out) && !(resCap(e.out)>0) ) { g->next(e.out); }
+ if (!g->valid(e.out)) {
+ e.out_or_in=0;
+ g->first(e.in, v);
+ while( g->valid(e.in) && !(resCap(e.in)>0) ) { g->next(e.in); }
+ }
+ } else {
+ g->next(e.in);
+ while( g->valid(e.in) && !(resCap(e.in)>0) ) { g->next(e.in); }
+ }
+ return e;
+ }
+
+ EdgeIt& next(EdgeIt& e) const {
+ if (e.out_or_in) {
+ g->next(e.out);
+ while (g->valid(e.out) && !(resCap(e.out)>0) ) { g->next(e.out); }
+ while (g->valid(e.v) && !g->valid(e.out)) {
+ g->next(e.v);
+ if (g->valid(e.v)) g->first(e.out, e.v);
+ while (g->valid(e.out) && !(resCap(e.out)>0) ) { g->next(e.out); }
+ }
+ if (!g->valid(e.out)) {
+ e.out_or_in=0;
+ g->first(e.v);
+ if (g->valid(e.v)) g->first(e.in, e.v); else e.in=INVALID;
+ while (g->valid(e.in) && !(resCap(e.in)>0) ) { g->next(e.in); }
+ while (g->valid(e.v) && !g->valid(e.in)) {
+ g->next(e.v);
+ if (g->valid(e.v)) g->first(e.in, e.v);
+ while (g->valid(e.in) && !(resCap(e.in)>0) ) { g->next(e.in); }
+ }
+ }
+ } else {
+ g->next(e.in);
+ while (g->valid(e.in) && !(resCap(e.in)>0) ) { g->next(e.in); }
+ while (g->valid(e.v) && !g->valid(e.in)) {
+ g->next(e.v);
+ if (g->valid(e.v)) g->first(e.in, e.v);
+ while (g->valid(e.in) && !(resCap(e.in)>0) ) { g->next(e.in); }
+ }
+ }
+ return e;
+ }
+
+
+ template< typename It >
+ It first() const {
+ It e;
+ first(e);
+ return e;
+ }
+
+ template< typename It >
+ It first(Node v) const {
+ It e;
+ first(e, v);
+ return e;
+ }
+
+ Node tail(Edge e) const {
+ return ((e.out_or_in) ? g->aNode(e.out) : g->aNode(e.in)); }
+ Node head(Edge e) const {
+ return ((e.out_or_in) ? g->bNode(e.out) : g->bNode(e.in)); }
+
+ Node aNode(OutEdgeIt e) const {
+ return ((e.out_or_in) ? g->aNode(e.out) : g->aNode(e.in)); }
+ Node bNode(OutEdgeIt e) const {
+ return ((e.out_or_in) ? g->bNode(e.out) : g->bNode(e.in)); }
+
+ int nodeNum() const { return g->nodeNum(); }
+ //FIXME
+ //int edgeNum() const { return g->edgeNum(); }
+
+
+ int id(Node v) const { return g->id(v); }
+
+ bool valid(Node n) const { return g->valid(n); }
+ bool valid(Edge e) const {
+ return e.out_or_in ? g->valid(e.out) : g->valid(e.in); }
+
+ void augment(const Edge& e, Number a) const {
+ if (e.out_or_in)
+ flow->set(e.out, flow->get(e.out)+a);
+ else
+ flow->set(e.in, flow->get(e.in)-a);
+ }
+
+ Number resCap(const Edge& e) const {
+ if (e.out_or_in)
+ return (capacity->get(e.out)-flow->get(e.out));
+ else
+ return (flow->get(e.in));
+ }
+
+ Number resCap(OldOutEdgeIt out) const {
+ return (capacity->get(out)-flow->get(out));
+ }
+
+ Number resCap(OldInEdgeIt in) const {
+ return (flow->get(in));
+ }
+
+// template<typename T> class NodeMap : public GraphWrapper::NodeMap<T> {
+// public:
+// NodeMap(const ResGraphWrapper<GraphWrapper, Number, FlowMap, CapacityMap>& _G)
+// : GraphWrapper::NodeMap<T>(_G.gw) { }
+// NodeMap(const ResGraphWrapper<GraphWrapper, Number, FlowMap, CapacityMap>& _G,
+// T a) : GraphWrapper::NodeMap<T>(_G.gw, a) { }
+// };
+
+// template <typename T>
+// class NodeMap {
+// typename Graph::NodeMap<T> node_map;
+// public:
+// NodeMap(const ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>& _G) : node_map(*(_G.graph)) { }
+// NodeMap(const ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>& _G, T a) : node_map(*(_G.graph), a) { }
+// void set(Node nit, T a) { node_map.set(nit, a); }
+// T get(Node nit) const { return node_map.get(nit); }
+// };
+
+ template <typename T>
+ class EdgeMap {
+ typename GraphWrapper::EdgeMap<T> forward_map, backward_map;
+ public:
+ EdgeMap(const ResGraphWrapper<GraphWrapper, Number, FlowMap, CapacityMap>& _G) : forward_map(_G.gw), backward_map(_G.gw) { }
+ EdgeMap(const ResGraphWrapper<GraphWrapper, Number, FlowMap, CapacityMap>& _G, T a) : forward_map(_G.gw, a), backward_map(_G.gw, a) { }
+ void set(Edge e, T a) {
+ if (e.out_or_in)
+ forward_map.set(e.out, a);
+ else
+ backward_map.set(e.in, a);
+ }
+ T get(Edge e) {
+ if (e.out_or_in)
+ return forward_map.get(e.out);
+ else
+ return backward_map.get(e.in);
+ }
+ };
+ };
+
+ //Subgraph on the same node-set and partial edge-set
+ template<typename GraphWrapper, typename FirstOutEdgesMap>
+ class ErasingFirstGraphWrapper : public GraphWrapperSkeleton1<GraphWrapper> {
+ protected:
+ FirstOutEdgesMap* first_out_edges;
+ public:
+ typedef typename GraphWrapperSkeleton1<GraphWrapper>::Node Node;
+ typedef typename GraphWrapperSkeleton1<GraphWrapper>::NodeIt NodeIt;
+ typedef typename GraphWrapperSkeleton1<GraphWrapper>::Edge Edge;
+ typedef typename GraphWrapperSkeleton1<GraphWrapper>::EdgeIt EdgeIt;
+ typedef typename GraphWrapperSkeleton1<GraphWrapper>::InEdgeIt InEdgeIt;
+ typedef typename GraphWrapperSkeleton1<GraphWrapper>::OutEdgeIt OutEdgeIt;
+
+ ErasingFirstGraphWrapper(GraphWrapper& _gw, FirstOutEdgesMap& _first_out_edges) :
+ GraphWrapperSkeleton1<GraphWrapper>(_gw), first_out_edges(&_first_out_edges) { }
+
+ template<typename I> I& first(I& i) const {
+ g->first(i);
+ //while (gw.valid(i) && !filter_map->get(i)) { gw.next(i); }
+ return i;
+ }
+ OutEdgeIt& first(OutEdgeIt& e, const Node& n) const {
+ e=first_out_edges->get(n);
+ return e;
+ }
+ template<typename I, typename P> I& first(I& i, const P& p) const {
+ g->first(i, p);
+ //while (gw.valid(i) && !filter_map->get(i)) { gw.next(i); }
+ return i;
+ }
+
+ //template<typename I> I getNext(const I& i) const {
+ // return gw.getNext(i);
+ //}
+ template<typename I> I& next(I &i) const {
+ g->next(i);
+ //while (gw.valid(i) && !filter_map->get(i)) { gw.next(i); }
+ return i;
+ }
+
+ template< typename It > It first() const {
+ It e; this->first(e); return e; }
+
+ template< typename It > It first(const Node& v) const {
+ It e; this->first(e, v); return e; }
+
+ void erase(const OutEdgeIt& e) const {
+ OutEdgeIt f=e;
+ this->next(f);
+ first_out_edges->set(this->tail(e), f);
+ }
+ };
+
+// template<typename Graph, typename Number, typename FlowMap, typename CapacityMap>
+// class ErasingResGraphWrapper : public ResGraphWrapper<Graph, Number, FlowMap, CapacityMap> {
+// protected:
+// ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::NodeMap<typename ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::OutEdgeIt> first_out_edges;
+// //ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::NodeMap<int> dist;
+// public:
+// ErasingResGraphWrapper(const Graph& _G, FlowMap& _flow,
+// const CapacityMap& _capacity) :
+// ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>(_G, _flow, _capacity),
+// first_out_edges(*this) /*, dist(*this)*/ {
+// for(NodeIt n=this->template first<NodeIt>(); this->valid(n); this->next(n)) {
+// OutEdgeIt e;
+// ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::first(e, n);
+// first_out_edges.set(n, e);
+// }
+// }
+
+// //void setGraph(Graph& _graph) { graph = &_graph; }
+// //Graph& getGraph() const { return (*graph); }
+
+// //TrivGraphWrapper() : graph(0) { }
+// //ErasingResGraphWrapper(Graph& _graph) : graph(&_graph) { }
+
+// //typedef Graph BaseGraph;
+
+// //typedef typename Graph::Node Node;
+// //typedef typename Graph::NodeIt NodeIt;
+
+// //typedef typename Graph::Edge Edge;
+// //typedef typename Graph::OutEdgeIt OutEdgeIt;
+// //typedef typename Graph::InEdgeIt InEdgeIt;
+// //typedef typename Graph::SymEdgeIt SymEdgeIt;
+// //typedef typename Graph::EdgeIt EdgeIt;
+
+// typedef typename ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::Node Node;
+// typedef typename ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::NodeIt NodeIt;
+
+// typedef typename ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::Edge Edge;
+// typedef typename ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::OutEdgeIt OutEdgeIt;
+// //typedef typename ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::InEdgeIt InEdgeIt;
+// //typedef typename Graph::SymEdgeIt SymEdgeIt;
+// //typedef typename ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::EdgeIt EdgeIt;
+
+// NodeIt& first(NodeIt& n) const {
+// return ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::first(n);
+// }
+
+// OutEdgeIt& first(OutEdgeIt& e, const Node& n) const {
+// e=first_out_edges.get(n);
+// return e;
+// }
+
+// //ROSSZ template<typename I> I& first(I& i) const { return first(i); }
+// //ROSSZ template<typename I, typename P> I& first(I& i, const P& p) const {
+// // return first(i, p); }
+
+// //template<typename I> I getNext(const I& i) const {
+// // return gw.getNext(i); }
+// //template<typename I> I& next(I &i) const { return gw.next(i); }
+
+// template< typename It > It first() const {
+// It e; first(e); return e; }
+
+// template< typename It > It first(const Node& v) const {
+// It e; first(e, v); return e; }
+
+// //Node head(const Edge& e) const { return gw.head(e); }
+// //Node tail(const Edge& e) const { return gw.tail(e); }
+
+// //template<typename I> bool valid(const I& i) const
+// // { return gw.valid(i); }
+
+// //int nodeNum() const { return gw.nodeNum(); }
+// //int edgeNum() const { return gw.edgeNum(); }
+
+// //template<typename I> Node aNode(const I& e) const {
+// // return gw.aNode(e); }
+// //template<typename I> Node bNode(const I& e) const {
+// // return gw.bNode(e); }
+
+// //Node addNode() const { return gw.addNode(); }
+// //Edge addEdge(const Node& tail, const Node& head) const {
+// // return gw.addEdge(tail, head); }
+
+// //void erase(const OutEdgeIt& e) {
+// // first_out_edge(this->tail(e))=e;
+// //}
+// void erase(const Edge& e) {
+// OutEdgeIt f(e);
+// next(f);
+// first_out_edges.set(this->tail(e), f);
+// }
+// //template<typename I> void erase(const I& i) const { gw.erase(i); }
+
+// //void clear() const { gw.clear(); }
+
+// template<typename T> class NodeMap : public ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::NodeMap<T> {
+// public:
+// NodeMap(const ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>& _G) :
+// ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::NodeMap<T>(_G /*_G.getGraph()*/) { }
+// NodeMap(const ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>& _G, T a) :
+// ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::NodeMap<T>(_G /*_G.getGraph()*/, a) { }
+// };
+
+// template<typename T> class EdgeMap : public ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::EdgeMap<T> {
+// public:
+// EdgeMap(const ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>& _G) :
+// ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::EdgeMap<T>(_G /*_G.getGraph()*/) { }
+// EdgeMap(const ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>& _G, T a) :
+// ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::EdgeMap<T>(_G /*_G.getGraph()*/, a) { }
+// };
+// };
+
+// template<typename GraphWrapper>
+// class FilterGraphWrapper {
+// };
+
+// template<typename Graph, typename Number, typename FlowMap, typename CapacityMap>
+// class FilterGraphWrapper<ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap> > : public ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap> {
+
+// //Graph* graph;
+
+// public:
+// //typedef Graph BaseGraph;
+
+// typedef typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::Node Node;
+// typedef typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::NodeIt NodeIt;
+
+// typedef typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::Edge Edge;
+// typedef typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::OutEdgeIt OutEdgeIt;
+// //typedef typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::InEdgeIt InEdgeIt;
+// //typedef typename Graph::SymEdgeIt SymEdgeIt;
+// typedef typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::EdgeIt EdgeIt;
+
+// //FilterGraphWrapper<Graph, Number, FlowMap, CapacityMap>::NodeMap<typename ResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::OutEdgeIt> first_out_edges;
+
+// public:
+// FilterGraphWrapper(const Graph& _G, FlowMap& _flow,
+// const CapacityMap& _capacity) :
+// ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>(_G, _flow, _capacity), dist(*this, gw.nodeNum()) {
+// }
+
+// OutEdgeIt& first(OutEdgeIt& e, const Node& n) const {
+// ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::first(e, n);
+// while (valid(e) && (dist.get(tail(e))/*+1!=*/>=dist.get(head(e))))
+// ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::next(e);
+// return e;
+// }
+
+// NodeIt& next(NodeIt& e) const {
+// return ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::next(e);
+// }
+
+// OutEdgeIt& next(OutEdgeIt& e) const {
+// ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::next(e);
+// while (valid(e) && (dist.get(tail(e))/*+1!*/>=dist.get(head(e))))
+// ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::next(e);
+// return e;
+// }
+
+// NodeIt& first(NodeIt& n) const {
+// return ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::first(n);
+// }
+
+// void erase(const Edge& e) {
+// OutEdgeIt f(e);
+// ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::next(f);
+// while (valid(f) && (dist.get(tail(f))/*+1!=*/>=dist.get(head(f))))
+// ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::next(f);
+// first_out_edges.set(this->tail(e), f);
+// }
+
+// //TrivGraphWrapper() : graph(0) { }
+// //TrivGraphWrapper(Graph& _graph) : graph(&_graph) { }
+
+// //void setGraph(Graph& _graph) { graph = &_graph; }
+// //Graph& getGraph() const { return (*graph); }
+
+// //template<typename I> I& first(I& i) const { return gw.first(i); }
+// //template<typename I, typename P> I& first(I& i, const P& p) const {
+// // return gw.first(i, p); }
+
+// //template<typename I> I getNext(const I& i) const {
+// // return gw.getNext(i); }
+// //template<typename I> I& next(I &i) const { return gw.next(i); }
+
+// template< typename It > It first() const {
+// It e; first(e); return e; }
+
+// template< typename It > It first(const Node& v) const {
+// It e; first(e, v); return e; }
+
+// //Node head(const Edge& e) const { return gw.head(e); }
+// //Node tail(const Edge& e) const { return gw.tail(e); }
+
+// //template<typename I> bool valid(const I& i) const
+// // { return gw.valid(i); }
+
+// //template<typename I> void setInvalid(const I &i);
+// //{ return gw.setInvalid(i); }
+
+// //int nodeNum() const { return gw.nodeNum(); }
+// //int edgeNum() const { return gw.edgeNum(); }
+
+// //template<typename I> Node aNode(const I& e) const {
+// // return gw.aNode(e); }
+// //template<typename I> Node bNode(const I& e) const {
+// // return gw.bNode(e); }
+
+// //Node addNode() const { return gw.addNode(); }
+// //Edge addEdge(const Node& tail, const Node& head) const {
+// // return gw.addEdge(tail, head); }
+
+// //template<typename I> void erase(const I& i) const { gw.erase(i); }
+
+// //void clear() const { gw.clear(); }
+
+// template<typename T> class NodeMap : public ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::NodeMap<T> {
+// public:
+// NodeMap(const FilterGraphWrapper<ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap> >& _G) :
+// ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::NodeMap<T>(_G /*_G.getGraph()*/) { }
+// NodeMap(const FilterGraphWrapper<ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap> >& _G, T a) :
+// ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::NodeMap<T>(_G /*_G.getGraph()*/, a) { }
+// };
+
+// template<typename T> class EdgeMap : public ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::EdgeMap<T> {
+// public:
+// EdgeMap(const FilterGraphWrapper<ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap> >& _G) :
+// ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::EdgeMap<T>(_G /*_G.getGraph()*/) { }
+// EdgeMap(const FilterGraphWrapper<ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap> >& _G, T a) :
+// ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::EdgeMap<T>(_G /*_G.getGraph()*/, a) { }
+// };
+
+// public:
+// ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::NodeMap<int> dist;
+
+// };
+
+
+
+// // FIXME: comparison should be made better!!!
+// template<typename Graph, typename T, typename LowerMap, typename FlowMap, typename UpperMap>
+// class ResGraphWrapper
+// {
+// Graph* graph;
+
+// public:
+// typedef Graph BaseGraph;
+
+// typedef typename Graph::Node Node;
+// typedef typename Graph::Edge Edge;
+
+// typedef typename Graph::NodeIt NodeIt;
+
+// class OutEdgeIt {
+// public:
+// //Graph::Node n;
+// bool out_or_in;
+// typename Graph::OutEdgeIt o;
+// typename Graph::InEdgeIt i;
+// };
+// class InEdgeIt {
+// public:
+// //Graph::Node n;
+// bool out_or_in;
+// typename Graph::OutEdgeIt o;
+// typename Graph::InEdgeIt i;
+// };
+// typedef typename Graph::SymEdgeIt SymEdgeIt;
+// typedef typename Graph::EdgeIt EdgeIt;
+
+// int nodeNum() const { return gw.nodeNum(); }
+// int edgeNum() const { return gw.edgeNum(); }
+
+// Node& first(Node& n) const { return gw.first(n); }
+
+// // Edge and SymEdge is missing!!!!
+// // Edge <-> In/OutEdgeIt conversion is missing!!!!
+
+// //FIXME
+// OutEdgeIt& first(OutEdgeIt& e, const Node& n) const
+// {
+// e.n=n;
+// gw.first(e.o,n);
+// while(gw.valid(e.o) && fmap.get(e.o)>=himap.get(e.o))
+// gw.goNext(e.o);
+// if(!gw.valid(e.o)) {
+// gw.first(e.i,n);
+// while(gw.valid(e.i) && fmap.get(e.i)<=lomap.get(e.i))
+// gw.goNext(e.i);
+// }
+// return e;
+// }
+// /*
+// OutEdgeIt &goNext(OutEdgeIt &e)
+// {
+// if(gw.valid(e.o)) {
+// while(gw.valid(e.o) && fmap.get(e.o)>=himap.get(e.o))
+// gw.goNext(e.o);
+// if(gw.valid(e.o)) return e;
+// else gw.first(e.i,e.n);
+// }
+// else {
+// while(gw.valid(e.i) && fmap.get(e.i)<=lomap.get(e.i))
+// gw.goNext(e.i);
+// return e;
+// }
+// }
+// OutEdgeIt Next(const OutEdgeIt &e) {OutEdgeIt t(e); return goNext(t);}
+// */
+// //bool valid(const OutEdgeIt e) { return gw.valid(e.o)||gw.valid(e.i);}
+
+// //FIXME
+// InEdgeIt& first(InEdgeIt& e, const Node& n) const
+// {
+// e.n=n;
+// gw.first(e.i,n);
+// while(gw.valid(e.i) && fmap.get(e.i)>=himap.get(e.i))
+// gw.goNext(e.i);
+// if(!gw.valid(e.i)) {
+// gw.first(e.o,n);
+// while(gw.valid(e.o) && fmap.get(e.o)<=lomap.get(e.o))
+// gw.goNext(e.o);
+// }
+// return e;
+// }
+// /*
+// InEdgeIt &goNext(InEdgeIt &e)
+// {
+// if(gw.valid(e.i)) {
+// while(gw.valid(e.i) && fmap.get(e.i)>=himap.get(e.i))
+// gw.goNext(e.i);
+// if(gw.valid(e.i)) return e;
+// else gw.first(e.o,e.n);
+// }
+// else {
+// while(gw.valid(e.o) && fmap.get(e.o)<=lomap.get(e.o))
+// gw.goNext(e.o);
+// return e;
+// }
+// }
+// InEdgeIt Next(const InEdgeIt &e) {InEdgeIt t(e); return goNext(t);}
+// */
+// //bool valid(const InEdgeIt e) { return gw.valid(e.i)||gw.valid(e.o);}
+
+// //template<typename I> I &goNext(I &i); { return gw.goNext(i); }
+// //template<typename I> I next(const I i); { return gw.goNext(i); }
+
+// template< typename It > It first() const {
+// It e; first(e); return e; }
+
+// template< typename It > It first(Node v) const {
+// It e; first(e, v); return e; }
+
+// Node head(const Edge& e) const { return gw.head(e); }
+// Node tail(const Edge& e) const { return gw.tail(e); }
+
+// template<typename I> Node aNode(const I& e) const {
+// return gw.aNode(e); }
+// template<typename I> Node bNode(const I& e) const {
+// return gw.bNode(e); }
+
+// //template<typename I> bool valid(const I i);
+// //{ return gw.valid(i); }
+
+// //template<typename I> void setInvalid(const I &i);
+// //{ return gw.setInvalid(i); }
+
+// Node addNode() { return gw.addNode(); }
+// Edge addEdge(const Node& tail, const Node& head) {
+// return gw.addEdge(tail, head); }
+
+// template<typename I> void erase(const I& i) { gw.erase(i); }
+
+// void clear() { gw.clear(); }
+
+// template<typename S> class NodeMap : public Graph::NodeMap<S> { };
+// template<typename S> class EdgeMap : public Graph::EdgeMap<S> { };
+
+// void setGraph(Graph& _graph) { graph = &_graph; }
+// Graph& getGraph() { return (*graph); }
+
+// //ResGraphWrapper() : graph(0) { }
+// ResGraphWrapper(Graph& _graph) : graph(&_graph) { }
+// };
+
+} //namespace hugo
+
+#endif //HUGO_GRAPH_WRAPPER_H
+
Added: hugo/trunk/src/work/marci/experiment/iterator_bfs_demo.cc
==============================================================================
--- (empty file)
+++ hugo/trunk/src/work/marci/experiment/iterator_bfs_demo.cc Sat Apr 3 19:26:46 2004
@@ -0,0 +1,322 @@
+// -*- c++ -*-
+#include <iostream>
+#include <vector>
+#include <string>
+
+#include <list_graph.h>
+//#include <smart_graph.h>
+#include <bfs_iterator_1.h>
+#include <graph_wrapper_1.h>
+
+using namespace hugo;
+using std::cout;
+using std::endl;
+using std::string;
+
+template <typename Graph, typename NodeNameMap>
+class EdgeNameMap {
+ Graph& graph;
+ NodeNameMap& node_name_map;
+public:
+ EdgeNameMap(Graph& _graph, NodeNameMap& _node_name_map) :
+ graph(_graph), node_name_map(_node_name_map) { }
+ string get(typename Graph::Edge e) const {
+ return
+ (node_name_map.get(graph.tail(e))+"->"+node_name_map.get(graph.head(e)));
+ }
+};
+
+int main (int, char*[])
+{
+ //typedef SmartGraph Graph;
+ typedef ListGraph Graph;
+
+ typedef Graph::Node Node;
+ typedef Graph::Edge Edge;
+
+ Graph G;
+
+ Node s=G.addNode();
+ Node v1=G.addNode();
+ Node v2=G.addNode();
+ Node v3=G.addNode();
+ Node v4=G.addNode();
+ Node t=G.addNode();
+
+ Graph::NodeMap<string> node_name(G);
+ node_name.set(s, "s");
+ node_name.set(v1, "v1");
+ node_name.set(v2, "v2");
+ node_name.set(v3, "v3");
+ node_name.set(v4, "v4");
+ node_name.set(t, "t");
+
+ G.addEdge(s, v1);
+ G.addEdge(s, v2);
+ G.addEdge(v1, v2);
+ G.addEdge(v2, v1);
+ G.addEdge(v1, v3);
+ G.addEdge(v3, v2);
+ G.addEdge(v2, v4);
+ G.addEdge(v4, v3);
+ G.addEdge(v3, t);
+ G.addEdge(v4, t);
+
+ cout << " /--> -------------> "<< endl;
+ cout << " / /-- v1 <-\\ /---- v3-\\ "<< endl;
+ cout << " / | | / /-> \\ "<< endl;
+ cout << " / | | / | ^ \\ "<< endl;
+ cout << "s | | / | | \\-> t "<< endl;
+ cout << " \\ | | / | | /-> "<< endl;
+ cout << " \\ | --/ / | | / "<< endl;
+ cout << " \\ \\-> v2 <--/ \\-- v4 -/ "<< endl;
+ cout << " \\--> -------------> "<< endl;
+
+// typedef TrivGraphWrapper<const Graph> CGW;
+// CGW gw(G);
+
+// cout << "bfs and dfs demo on the directed graph" << endl;
+// for(CGW::NodeIt n=gw.first<CGW::NodeIt>(); n.valid(); ++n) {
+// cout << n << ": ";
+// cout << "out edges: ";
+// for(CGW::OutEdgeIt e=gw.first<CGW::OutEdgeIt>(n); e.valid(); ++e)
+// cout << e << " ";
+// cout << "in edges: ";
+// for(CGW::InEdgeIt e=gw.first<CGW::InEdgeIt>(n); e.valid(); ++e)
+// cout << e << " ";
+// cout << endl;
+// }
+
+ {
+ typedef TrivGraphWrapper<const Graph> GW;
+ GW gw(G);
+
+ EdgeNameMap< GW, Graph::NodeMap<string> > edge_name(gw, node_name);
+
+ cout << "bfs and dfs iterator demo on the directed graph" << endl;
+ for(GW::NodeIt n(gw); gw.valid(n); gw.next(n)) {
+ cout << node_name.get(n) << ": ";
+ cout << "out edges: ";
+ for(GW::OutEdgeIt e(gw, n); gw.valid(e); gw.next(e))
+ cout << edge_name.get(e) << " ";
+ cout << "in edges: ";
+ for(GW::InEdgeIt e(gw, n); gw.valid(e); gw.next(e))
+ cout << edge_name.get(e) << " ";
+ cout << endl;
+ }
+
+ cout << "bfs from s ..." << endl;
+ BfsIterator5< GW, GW::NodeMap<bool> > bfs(gw);
+ bfs.pushAndSetReached(s);
+ while (!bfs.finished()) {
+ //cout << "edge: ";
+ if (gw.valid(bfs)) {
+ cout << edge_name.get(bfs) << /*endl*/", " <<
+ node_name.get(gw.aNode(bfs)) <<
+ (bfs.isANodeExamined() ? ": is examined, " : ": is not examined, ") <<
+ node_name.get(gw.bNode(bfs)) <<
+ (bfs.isBNodeNewlyReached() ? ": is newly reached." :
+ ": is not newly reached.");
+ } else {
+ cout << "invalid" << /*endl*/", " <<
+ node_name.get(bfs.aNode()) <<
+ (bfs.isANodeExamined() ? ": is examined, " : ": is not examined, ") <<
+
+ "invalid.";
+ }
+ cout << endl;
+ ++bfs;
+ }
+
+ cout << " /--> -------------> "<< endl;
+ cout << " / /-- v1 <-\\ /---- v3-\\ "<< endl;
+ cout << " / | | / /-> \\ "<< endl;
+ cout << " / | | / | ^ \\ "<< endl;
+ cout << "s | | / | | \\-> t "<< endl;
+ cout << " \\ | | / | | /-> "<< endl;
+ cout << " \\ | --/ / | | / "<< endl;
+ cout << " \\ \\-> v2 <--/ \\-- v4 -/ "<< endl;
+ cout << " \\--> -------------> "<< endl;
+
+ cout << "dfs from s ..." << endl;
+ DfsIterator5< GW, GW::NodeMap<bool> > dfs(gw);
+ dfs.pushAndSetReached(s);
+ while (!dfs.finished()) {
+ ++dfs;
+ //cout << "edge: ";
+ if (gw.valid(dfs)) {
+ cout << edge_name.get(dfs) << /*endl*/", " <<
+ node_name.get(gw.aNode(dfs)) <<
+ (dfs.isANodeExamined() ? ": is examined, " : ": is not examined, ") <<
+ node_name.get(gw.bNode(dfs)) <<
+ (dfs.isBNodeNewlyReached() ? ": is newly reached." :
+ ": is not newly reached.");
+ } else {
+ cout << "invalid" << /*endl*/", " <<
+ node_name.get(dfs.aNode()) <<
+ (dfs.isANodeExamined() ? ": is examined, " : ": is not examined, ") <<
+
+ "invalid.";
+ }
+ cout << endl;
+ }
+ }
+
+
+ {
+ typedef RevGraphWrapper<const TrivGraphWrapper<const Graph> > GW;
+ GW gw(G);
+
+ EdgeNameMap< GW, Graph::NodeMap<string> > edge_name(gw, node_name);
+
+ cout << "bfs and dfs iterator demo on the reversed directed graph" << endl;
+ for(GW::NodeIt n(gw); gw.valid(n); gw.next(n)) {
+ cout << node_name.get(n) << ": ";
+ cout << "out edges: ";
+ for(GW::OutEdgeIt e(gw, n); gw.valid(e); gw.next(e))
+ cout << edge_name.get(e) << " ";
+ cout << "in edges: ";
+ for(GW::InEdgeIt e(gw, n); gw.valid(e); gw.next(e))
+ cout << edge_name.get(e) << " ";
+ cout << endl;
+ }
+
+ cout << "bfs from t ..." << endl;
+ BfsIterator5< GW, GW::NodeMap<bool> > bfs(gw);
+ bfs.pushAndSetReached(t);
+ while (!bfs.finished()) {
+ //cout << "edge: ";
+ if (gw.valid(bfs)) {
+ cout << edge_name.get(bfs) << /*endl*/", " <<
+ node_name.get(gw.aNode(bfs)) <<
+ (bfs.isANodeExamined() ? ": is examined, " : ": is not examined, ") <<
+ node_name.get(gw.bNode(bfs)) <<
+ (bfs.isBNodeNewlyReached() ? ": is newly reached." :
+ ": is not newly reached.");
+ } else {
+ cout << "invalid" << /*endl*/", " <<
+ node_name.get(bfs.aNode()) <<
+ (bfs.isANodeExamined() ? ": is examined, " : ": is not examined, ") <<
+
+ "invalid.";
+ }
+ cout << endl;
+ ++bfs;
+ }
+
+ cout << " /--> -------------> "<< endl;
+ cout << " / /-- v1 <-\\ /---- v3-\\ "<< endl;
+ cout << " / | | / /-> \\ "<< endl;
+ cout << " / | | / | ^ \\ "<< endl;
+ cout << "s | | / | | \\-> t "<< endl;
+ cout << " \\ | | / | | /-> "<< endl;
+ cout << " \\ | --/ / | | / "<< endl;
+ cout << " \\ \\-> v2 <--/ \\-- v4 -/ "<< endl;
+ cout << " \\--> -------------> "<< endl;
+
+ cout << "dfs from t ..." << endl;
+ DfsIterator5< GW, GW::NodeMap<bool> > dfs(gw);
+ dfs.pushAndSetReached(t);
+ while (!dfs.finished()) {
+ ++dfs;
+ //cout << "edge: ";
+ if (gw.valid(dfs)) {
+ cout << edge_name.get(dfs) << /*endl*/", " <<
+ node_name.get(gw.aNode(dfs)) <<
+ (dfs.isANodeExamined() ? ": is examined, " : ": is not examined, ") <<
+ node_name.get(gw.bNode(dfs)) <<
+ (dfs.isBNodeNewlyReached() ? ": is newly reached." :
+ ": is not newly reached.");
+ } else {
+ cout << "invalid" << /*endl*/", " <<
+ node_name.get(dfs.aNode()) <<
+ (dfs.isANodeExamined() ? ": is examined, " : ": is not examined, ") <<
+
+ "invalid.";
+ }
+ cout << endl;
+ }
+ }
+
+ {
+ //typedef UndirGraphWrapper<const Graph> GW;
+ typedef UndirGraphWrapper<const TrivGraphWrapper<const Graph> > GW;
+ GW gw(G);
+
+ EdgeNameMap< GW, Graph::NodeMap<string> > edge_name(gw, node_name);
+
+ cout << "bfs and dfs iterator demo on the undirected graph" << endl;
+ for(GW::NodeIt n(gw); gw.valid(n); gw.next(n)) {
+ cout << node_name.get(n) << ": ";
+ cout << "out edges: ";
+ for(GW::OutEdgeIt e(gw, n); gw.valid(e); gw.next(e))
+ cout << edge_name.get(e) << " ";
+ cout << "in edges: ";
+ for(GW::InEdgeIt e(gw, n); gw.valid(e); gw.next(e))
+ cout << edge_name.get(e) << " ";
+ cout << endl;
+ }
+// for(GW::EdgeIt e=gw.first<GW::EdgeIt>(); gw.valid(e); gw.next(e)) {
+// cout << edge_name.get(e) << " ";
+// }
+// cout << endl;
+
+ cout << "bfs from t ..." << endl;
+ BfsIterator5< GW, GW::NodeMap<bool> > bfs(gw);
+ bfs.pushAndSetReached(t);
+ while (!bfs.finished()) {
+ //cout << "edge: ";
+ if (gw.valid(GW::OutEdgeIt(bfs))) {
+ cout << edge_name.get(GW::OutEdgeIt(bfs)) << /*endl*/", " <<
+ node_name.get(gw.aNode(bfs)) <<
+ (bfs.isANodeExamined() ? ": is examined, " : ": is not examined, ") <<
+ node_name.get(gw.bNode(bfs)) <<
+ (bfs.isBNodeNewlyReached() ? ": is newly reached." :
+ ": is not newly reached.");
+ } else {
+ cout << "invalid" << /*endl*/", " <<
+ node_name.get(bfs.aNode()) <<
+ (bfs.isANodeExamined() ? ": is examined, " : ": is not examined, ") <<
+
+ "invalid.";
+ }
+ cout << endl;
+ ++bfs;
+ }
+
+ cout << " /--> -------------> "<< endl;
+ cout << " / /-- v1 <-\\ /---- v3-\\ "<< endl;
+ cout << " / | | / /-> \\ "<< endl;
+ cout << " / | | / | ^ \\ "<< endl;
+ cout << "s | | / | | \\-> t "<< endl;
+ cout << " \\ | | / | | /-> "<< endl;
+ cout << " \\ | --/ / | | / "<< endl;
+ cout << " \\ \\-> v2 <--/ \\-- v4 -/ "<< endl;
+ cout << " \\--> -------------> "<< endl;
+
+ cout << "dfs from t ..." << endl;
+ DfsIterator5< GW, GW::NodeMap<bool> > dfs(gw);
+ dfs.pushAndSetReached(t);
+ while (!dfs.finished()) {
+ ++dfs;
+ //cout << "edge: ";
+ if (gw.valid(GW::OutEdgeIt(dfs))) {
+ cout << edge_name.get(GW::OutEdgeIt(dfs)) << /*endl*/", " <<
+ node_name.get(gw.aNode(dfs)) <<
+ (dfs.isANodeExamined() ? ": is examined, " : ": is not examined, ") <<
+ node_name.get(gw.bNode(dfs)) <<
+ (dfs.isBNodeNewlyReached() ? ": is newly reached." :
+ ": is not newly reached.");
+ } else {
+ cout << "invalid" << /*endl*/", " <<
+ node_name.get(dfs.aNode()) <<
+ (dfs.isANodeExamined() ? ": is examined, " : ": is not examined, ") <<
+
+ "invalid.";
+ }
+ cout << endl;
+ }
+ }
+
+ return 0;
+}
Added: hugo/trunk/src/work/marci/experiment/iterator_bfs_demo_1.cc
==============================================================================
--- (empty file)
+++ hugo/trunk/src/work/marci/experiment/iterator_bfs_demo_1.cc Sat Apr 3 19:26:46 2004
@@ -0,0 +1,322 @@
+// -*- c++ -*-
+#include <iostream>
+#include <vector>
+#include <string>
+
+#include <list_graph.h>
+#include <smart_graph.h>
+#include <bfs_iterator.h>
+#include <graph_wrapper.h>
+
+using namespace hugo;
+using std::cout;
+using std::endl;
+using std::string;
+
+template <typename Graph, typename NodeNameMap>
+class EdgeNameMap {
+ Graph& graph;
+ NodeNameMap& node_name_map;
+public:
+ EdgeNameMap(Graph& _graph, NodeNameMap& _node_name_map) :
+ graph(_graph), node_name_map(_node_name_map) { }
+ string get(typename Graph::Edge e) const {
+ return
+ (node_name_map.get(graph.tail(e))+"->"+node_name_map.get(graph.head(e)));
+ }
+};
+
+int main (int, char*[])
+{
+ //typedef SmartGraph Graph;
+ typedef ListGraph Graph;
+
+ typedef Graph::Node Node;
+ typedef Graph::Edge Edge;
+
+ Graph G;
+
+ Node s=G.addNode();
+ Node v1=G.addNode();
+ Node v2=G.addNode();
+ Node v3=G.addNode();
+ Node v4=G.addNode();
+ Node t=G.addNode();
+
+ Graph::NodeMap<string> node_name(G);
+ node_name.set(s, "s");
+ node_name.set(v1, "v1");
+ node_name.set(v2, "v2");
+ node_name.set(v3, "v3");
+ node_name.set(v4, "v4");
+ node_name.set(t, "t");
+
+ G.addEdge(s, v1);
+ G.addEdge(s, v2);
+ G.addEdge(v1, v2);
+ G.addEdge(v2, v1);
+ G.addEdge(v1, v3);
+ G.addEdge(v3, v2);
+ G.addEdge(v2, v4);
+ G.addEdge(v4, v3);
+ G.addEdge(v3, t);
+ G.addEdge(v4, t);
+
+ cout << " /--> -------------> "<< endl;
+ cout << " / /-- v1 <-\\ /---- v3-\\ "<< endl;
+ cout << " / | | / /-> \\ "<< endl;
+ cout << " / | | / | ^ \\ "<< endl;
+ cout << "s | | / | | \\-> t "<< endl;
+ cout << " \\ | | / | | /-> "<< endl;
+ cout << " \\ | --/ / | | / "<< endl;
+ cout << " \\ \\-> v2 <--/ \\-- v4 -/ "<< endl;
+ cout << " \\--> -------------> "<< endl;
+
+// typedef TrivGraphWrapper<const Graph> CGW;
+// CGW gw(G);
+
+// cout << "bfs and dfs demo on the directed graph" << endl;
+// for(CGW::NodeIt n=gw.first<CGW::NodeIt>(); n.valid(); ++n) {
+// cout << n << ": ";
+// cout << "out edges: ";
+// for(CGW::OutEdgeIt e=gw.first<CGW::OutEdgeIt>(n); e.valid(); ++e)
+// cout << e << " ";
+// cout << "in edges: ";
+// for(CGW::InEdgeIt e=gw.first<CGW::InEdgeIt>(n); e.valid(); ++e)
+// cout << e << " ";
+// cout << endl;
+// }
+
+ {
+ typedef TrivGraphWrapper<const Graph> GW;
+ GW gw(G);
+
+ EdgeNameMap< GW, Graph::NodeMap<string> > edge_name(gw, node_name);
+
+ cout << "bfs and dfs iterator demo on the directed graph" << endl;
+ for(GW::NodeIt n(gw); gw.valid(n); gw.next(n)) {
+ cout << node_name.get(n) << ": ";
+ cout << "out edges: ";
+ for(GW::OutEdgeIt e(gw, n); gw.valid(e); gw.next(e))
+ cout << edge_name.get(e) << " ";
+ cout << "in edges: ";
+ for(GW::InEdgeIt e(gw, n); gw.valid(e); gw.next(e))
+ cout << edge_name.get(e) << " ";
+ cout << endl;
+ }
+
+ cout << "bfs from s ..." << endl;
+ BfsIterator5< GW, GW::NodeMap<bool> > bfs(gw);
+ bfs.pushAndSetReached(s);
+ while (!bfs.finished()) {
+ //cout << "edge: ";
+ if (gw.valid(bfs)) {
+ cout << edge_name.get(bfs) << /*endl*/", " <<
+ node_name.get(gw.aNode(bfs)) <<
+ (bfs.isANodeExamined() ? ": is examined, " : ": is not examined, ") <<
+ node_name.get(gw.bNode(bfs)) <<
+ (bfs.isBNodeNewlyReached() ? ": is newly reached." :
+ ": is not newly reached.");
+ } else {
+ cout << "invalid" << /*endl*/", " <<
+ node_name.get(bfs.aNode()) <<
+ (bfs.isANodeExamined() ? ": is examined, " : ": is not examined, ") <<
+
+ "invalid.";
+ }
+ cout << endl;
+ ++bfs;
+ }
+
+ cout << " /--> -------------> "<< endl;
+ cout << " / /-- v1 <-\\ /---- v3-\\ "<< endl;
+ cout << " / | | / /-> \\ "<< endl;
+ cout << " / | | / | ^ \\ "<< endl;
+ cout << "s | | / | | \\-> t "<< endl;
+ cout << " \\ | | / | | /-> "<< endl;
+ cout << " \\ | --/ / | | / "<< endl;
+ cout << " \\ \\-> v2 <--/ \\-- v4 -/ "<< endl;
+ cout << " \\--> -------------> "<< endl;
+
+ cout << "dfs from s ..." << endl;
+ DfsIterator5< GW, GW::NodeMap<bool> > dfs(gw);
+ dfs.pushAndSetReached(s);
+ while (!dfs.finished()) {
+ ++dfs;
+ //cout << "edge: ";
+ if (gw.valid(dfs)) {
+ cout << edge_name.get(dfs) << /*endl*/", " <<
+ node_name.get(gw.aNode(dfs)) <<
+ (dfs.isANodeExamined() ? ": is examined, " : ": is not examined, ") <<
+ node_name.get(gw.bNode(dfs)) <<
+ (dfs.isBNodeNewlyReached() ? ": is newly reached." :
+ ": is not newly reached.");
+ } else {
+ cout << "invalid" << /*endl*/", " <<
+ node_name.get(dfs.aNode()) <<
+ (dfs.isANodeExamined() ? ": is examined, " : ": is not examined, ") <<
+
+ "invalid.";
+ }
+ cout << endl;
+ }
+ }
+
+
+ {
+ typedef RevGraphWrapper<const TrivGraphWrapper<const Graph> > GW;
+ GW gw(G);
+
+ EdgeNameMap< GW, Graph::NodeMap<string> > edge_name(gw, node_name);
+
+ cout << "bfs and dfs iterator demo on the reversed directed graph" << endl;
+ for(GW::NodeIt n(gw); gw.valid(n); gw.next(n)) {
+ cout << node_name.get(n) << ": ";
+ cout << "out edges: ";
+ for(GW::OutEdgeIt e(gw, n); gw.valid(e); gw.next(e))
+ cout << edge_name.get(e) << " ";
+ cout << "in edges: ";
+ for(GW::InEdgeIt e(gw, n); gw.valid(e); gw.next(e))
+ cout << edge_name.get(e) << " ";
+ cout << endl;
+ }
+
+ cout << "bfs from t ..." << endl;
+ BfsIterator5< GW, GW::NodeMap<bool> > bfs(gw);
+ bfs.pushAndSetReached(t);
+ while (!bfs.finished()) {
+ //cout << "edge: ";
+ if (gw.valid(bfs)) {
+ cout << edge_name.get(bfs) << /*endl*/", " <<
+ node_name.get(gw.aNode(bfs)) <<
+ (bfs.isANodeExamined() ? ": is examined, " : ": is not examined, ") <<
+ node_name.get(gw.bNode(bfs)) <<
+ (bfs.isBNodeNewlyReached() ? ": is newly reached." :
+ ": is not newly reached.");
+ } else {
+ cout << "invalid" << /*endl*/", " <<
+ node_name.get(bfs.aNode()) <<
+ (bfs.isANodeExamined() ? ": is examined, " : ": is not examined, ") <<
+
+ "invalid.";
+ }
+ cout << endl;
+ ++bfs;
+ }
+
+ cout << " /--> -------------> "<< endl;
+ cout << " / /-- v1 <-\\ /---- v3-\\ "<< endl;
+ cout << " / | | / /-> \\ "<< endl;
+ cout << " / | | / | ^ \\ "<< endl;
+ cout << "s | | / | | \\-> t "<< endl;
+ cout << " \\ | | / | | /-> "<< endl;
+ cout << " \\ | --/ / | | / "<< endl;
+ cout << " \\ \\-> v2 <--/ \\-- v4 -/ "<< endl;
+ cout << " \\--> -------------> "<< endl;
+
+ cout << "dfs from t ..." << endl;
+ DfsIterator5< GW, GW::NodeMap<bool> > dfs(gw);
+ dfs.pushAndSetReached(t);
+ while (!dfs.finished()) {
+ ++dfs;
+ //cout << "edge: ";
+ if (gw.valid(dfs)) {
+ cout << edge_name.get(dfs) << /*endl*/", " <<
+ node_name.get(gw.aNode(dfs)) <<
+ (dfs.isANodeExamined() ? ": is examined, " : ": is not examined, ") <<
+ node_name.get(gw.bNode(dfs)) <<
+ (dfs.isBNodeNewlyReached() ? ": is newly reached." :
+ ": is not newly reached.");
+ } else {
+ cout << "invalid" << /*endl*/", " <<
+ node_name.get(dfs.aNode()) <<
+ (dfs.isANodeExamined() ? ": is examined, " : ": is not examined, ") <<
+
+ "invalid.";
+ }
+ cout << endl;
+ }
+ }
+
+ {
+ //typedef UndirGraphWrapper<const Graph> GW;
+ typedef UndirGraphWrapper<const TrivGraphWrapper<const Graph> > GW;
+ GW gw(G);
+
+ EdgeNameMap< GW, Graph::NodeMap<string> > edge_name(gw, node_name);
+
+ cout << "bfs and dfs iterator demo on the undirected graph" << endl;
+ for(GW::NodeIt n(gw); gw.valid(n); gw.next(n)) {
+ cout << node_name.get(n) << ": ";
+ cout << "out edges: ";
+ for(GW::OutEdgeIt e(gw, n); gw.valid(e); gw.next(e))
+ cout << edge_name.get(e) << " ";
+ cout << "in edges: ";
+ for(GW::InEdgeIt e(gw, n); gw.valid(e); gw.next(e))
+ cout << edge_name.get(e) << " ";
+ cout << endl;
+ }
+// for(GW::EdgeIt e=gw.first<GW::EdgeIt>(); gw.valid(e); gw.next(e)) {
+// cout << edge_name.get(e) << " ";
+// }
+// cout << endl;
+
+ cout << "bfs from t ..." << endl;
+ BfsIterator5< GW, GW::NodeMap<bool> > bfs(gw);
+ bfs.pushAndSetReached(t);
+ while (!bfs.finished()) {
+ //cout << "edge: ";
+ if (gw.valid(GW::OutEdgeIt(bfs))) {
+ cout << edge_name.get(GW::OutEdgeIt(bfs)) << /*endl*/", " <<
+ node_name.get(gw.aNode(bfs)) <<
+ (bfs.isANodeExamined() ? ": is examined, " : ": is not examined, ") <<
+ node_name.get(gw.bNode(bfs)) <<
+ (bfs.isBNodeNewlyReached() ? ": is newly reached." :
+ ": is not newly reached.");
+ } else {
+ cout << "invalid" << /*endl*/", " <<
+ node_name.get(bfs.aNode()) <<
+ (bfs.isANodeExamined() ? ": is examined, " : ": is not examined, ") <<
+
+ "invalid.";
+ }
+ cout << endl;
+ ++bfs;
+ }
+
+ cout << " /--> -------------> "<< endl;
+ cout << " / /-- v1 <-\\ /---- v3-\\ "<< endl;
+ cout << " / | | / /-> \\ "<< endl;
+ cout << " / | | / | ^ \\ "<< endl;
+ cout << "s | | / | | \\-> t "<< endl;
+ cout << " \\ | | / | | /-> "<< endl;
+ cout << " \\ | --/ / | | / "<< endl;
+ cout << " \\ \\-> v2 <--/ \\-- v4 -/ "<< endl;
+ cout << " \\--> -------------> "<< endl;
+
+ cout << "dfs from t ..." << endl;
+ DfsIterator5< GW, GW::NodeMap<bool> > dfs(gw);
+ dfs.pushAndSetReached(t);
+ while (!dfs.finished()) {
+ ++dfs;
+ //cout << "edge: ";
+ if (gw.valid(GW::OutEdgeIt(dfs))) {
+ cout << edge_name.get(GW::OutEdgeIt(dfs)) << /*endl*/", " <<
+ node_name.get(gw.aNode(dfs)) <<
+ (dfs.isANodeExamined() ? ": is examined, " : ": is not examined, ") <<
+ node_name.get(gw.bNode(dfs)) <<
+ (dfs.isBNodeNewlyReached() ? ": is newly reached." :
+ ": is not newly reached.");
+ } else {
+ cout << "invalid" << /*endl*/", " <<
+ node_name.get(dfs.aNode()) <<
+ (dfs.isANodeExamined() ? ": is examined, " : ": is not examined, ") <<
+
+ "invalid.";
+ }
+ cout << endl;
+ }
+ }
+
+ return 0;
+}
Added: hugo/trunk/src/work/marci/experiment/list_graph.h
==============================================================================
--- (empty file)
+++ hugo/trunk/src/work/marci/experiment/list_graph.h Sat Apr 3 19:26:46 2004
@@ -0,0 +1,570 @@
+// -*- c++ -*-
+#ifndef HUGO_LIST_GRAPH_H
+#define HUGO_LIST_GRAPH_H
+
+#include <iostream>
+#include <vector>
+
+#include <invalid.h>
+
+namespace hugo {
+
+ template <typename It>
+ int count(It it) {
+ int i=0;
+ for( ; it.valid(); ++it) { ++i; }
+ return i;
+ }
+
+ class ListGraph {
+ class node_item;
+ class edge_item;
+ public:
+ class Node;
+ class NodeIt;
+ class Edge;
+ class EdgeIt;
+ class OutEdgeIt;
+ class InEdgeIt;
+ class SymEdgeIt;
+ template <typename T> class NodeMap;
+ template <typename T> class EdgeMap;
+ private:
+ template <typename T> friend class NodeMap;
+ template <typename T> friend class EdgeMap;
+
+ template <typename T>
+ class NodeMap {
+ const ListGraph& G;
+ std::vector<T> container;
+ public:
+ typedef T ValueType;
+ typedef Node KeyType;
+ NodeMap(const ListGraph& _G) : G(_G), container(G.node_id) { }
+ NodeMap(const ListGraph& _G, T a) :
+ G(_G), container(G.node_id, a) { }
+ void set(Node n, T a) { container[/*G.id(n)*/n.node->id]=a; }
+ T get(Node n) const { return container[/*G.id(n)*/n.node->id]; }
+ typename std::vector<T>::reference operator[](Node n) {
+ return container[/*G.id(n)*/n.node->id]; }
+ typename std::vector<T>::const_reference operator[](Node n) const {
+ return container[/*G.id(n)*/n.node->id];
+ }
+ void update() { container.resize(G.node_id); }
+ void update(T a) { container.resize(G.node_id, a); }
+ };
+
+ template <typename T>
+ class EdgeMap {
+ const ListGraph& G;
+ std::vector<T> container;
+ public:
+ typedef T ValueType;
+ typedef Edge KeyType;
+ EdgeMap(const ListGraph& _G) : G(_G), container(G.edge_id) { }
+ EdgeMap(const ListGraph& _G, T a) :
+ G(_G), container(G.edge_id, a) { }
+ void set(Edge e, T a) { container[/*G.id(e)*/e.edge->id]=a; }
+ T get(Edge e) const { return container[/*G.id(e)*/e.edge->id]; }
+ typename std::vector<T>::reference operator[](Edge e) {
+ return container[/*G.id(e)*/e.edge->id]; }
+ typename std::vector<T>::const_reference operator[](Edge e) const {
+ return container[/*G.id(e)*/e.edge->id];
+ }
+ void update() { container.resize(G.edge_id); }
+ void update(T a) { container.resize(G.edge_id, a); }
+ };
+
+ int node_id;
+ int edge_id;
+ int _node_num;
+ int _edge_num;
+
+ node_item* _first_node;
+ node_item* _last_node;
+
+ class node_item {
+ friend class ListGraph;
+ template <typename T> friend class NodeMap;
+
+ friend class Node;
+ friend class NodeIt;
+ friend class Edge;
+ friend class EdgeIt;
+ friend class OutEdgeIt;
+ friend class InEdgeIt;
+ friend class SymEdgeIt;
+ friend std::ostream& operator<<(std::ostream& os, const Node& i);
+ friend std::ostream& operator<<(std::ostream& os, const Edge& i);
+ //ListGraph* G;
+ int id;
+ edge_item* _first_out_edge;
+ edge_item* _last_out_edge;
+ edge_item* _first_in_edge;
+ edge_item* _last_in_edge;
+ node_item* _next_node;
+ node_item* _prev_node;
+ public:
+ node_item() { }
+ };
+
+ class edge_item {
+ friend class ListGraph;
+ template <typename T> friend class EdgeMap;
+
+ friend class Node;
+ friend class NodeIt;
+ friend class Edge;
+ friend class EdgeIt;
+ friend class OutEdgeIt;
+ friend class InEdgeIt;
+ friend class SymEdgeIt;
+ friend std::ostream& operator<<(std::ostream& os, const Edge& i);
+ //ListGraph* G;
+ int id;
+ node_item* _tail;
+ node_item* _head;
+ edge_item* _next_out;
+ edge_item* _prev_out;
+ edge_item* _next_in;
+ edge_item* _prev_in;
+ public:
+ edge_item() { }
+ };
+
+ node_item* _add_node() {
+ node_item* p=new node_item;
+ p->id=node_id++;
+ p->_first_out_edge=0;
+ p->_last_out_edge=0;
+ p->_first_in_edge=0;
+ p->_last_in_edge=0;
+ p->_prev_node=_last_node;
+ p->_next_node=0;
+ if (_last_node) _last_node->_next_node=p;
+ _last_node=p;
+ if (!_first_node) _first_node=p;
+
+ ++_node_num;
+ return p;
+ }
+
+ edge_item* _add_edge(node_item* _tail, node_item* _head) {
+ edge_item* e=new edge_item;
+ e->id=edge_id++;
+ e->_tail=_tail;
+ e->_head=_head;
+
+ e->_prev_out=_tail->_last_out_edge;
+ if (_tail->_last_out_edge) (_tail->_last_out_edge)->_next_out=e;
+ _tail->_last_out_edge=e;
+ if (!_tail->_first_out_edge) _tail->_first_out_edge=e;
+ e->_next_out=0;
+
+ e->_prev_in=_head->_last_in_edge;
+ if (_head->_last_in_edge) (_head->_last_in_edge)->_next_in=e;
+ _head->_last_in_edge=e;
+ if (!_head->_first_in_edge) { _head->_first_in_edge=e; }
+ e->_next_in=0;
+
+ ++_edge_num;
+ return e;
+ }
+
+ //deletes a node which has no out edge and no in edge
+ void _delete_node(node_item* v) {
+ if (v->_next_node) (v->_next_node)->_prev_node=v->_prev_node; else
+ _last_node=v->_prev_node;
+ if (v->_prev_node) (v->_prev_node)->_next_node=v->_next_node; else
+ _first_node=v->_next_node;
+
+ delete v;
+ --_node_num;
+ }
+
+ void _delete_edge(edge_item* e) {
+ if (e->_next_out) (e->_next_out)->_prev_out=e->_prev_out; else
+ (e->_tail)->_last_out_edge=e->_prev_out;
+ if (e->_prev_out) (e->_prev_out)->_next_out=e->_next_out; else
+ (e->_tail)->_first_out_edge=e->_next_out;
+ if (e->_next_in) (e->_next_in)->_prev_in=e->_prev_in; else
+ (e->_head)->_last_in_edge=e->_prev_in;
+ if (e->_prev_in) (e->_prev_in)->_next_in=e->_next_in; else
+ (e->_head)->_first_in_edge=e->_next_in;
+
+ delete e;
+ --_edge_num;
+ }
+
+ void _set_tail(edge_item* e, node_item* _tail) {
+ if (e->_next_out) (e->_next_out)->_prev_out=e->_prev_out; else
+ (e->_tail)->_last_out_edge=e->_prev_out;
+ if (e->_prev_out) (e->_prev_out)->_next_out=e->_next_out; else
+ (e->_tail)->_first_out_edge=e->_next_out;
+
+ e->_tail=_tail;
+
+ e->_prev_out=_tail->_last_out_edge;
+ if (_tail->_last_out_edge) (_tail->_last_out_edge)->_next_out=e;
+ _tail->_last_out_edge=e;
+ if (!_tail->_first_out_edge) _tail->_first_out_edge=e;
+ e->_next_out=0;
+ }
+
+ void _set_head(edge_item* e, node_item* _head) {
+ if (e->_next_in) (e->_next_in)->_prev_in=e->_prev_in; else
+ (e->_head)->_last_in_edge=e->_prev_in;
+ if (e->_prev_in) (e->_prev_in)->_next_in=e->_next_in; else
+ (e->_head)->_first_in_edge=e->_next_in;
+
+ e->_head=_head;
+
+ e->_prev_in=_head->_last_in_edge;
+ if (_head->_last_in_edge) (_head->_last_in_edge)->_next_in=e;
+ _head->_last_in_edge=e;
+ if (!_head->_first_in_edge) { _head->_first_in_edge=e; }
+ e->_next_in=0;
+ }
+
+ public:
+
+ /* default constructor */
+
+ ListGraph() : node_id(0), edge_id(0), _node_num(0), _edge_num(0), _first_node(0), _last_node(0) { }
+
+ ~ListGraph() {
+ while (first<NodeIt>().valid()) erase(first<NodeIt>());
+ }
+
+ int nodeNum() const { return _node_num; }
+ int edgeNum() const { return _edge_num; }
+
+ /* functions to construct iterators from the graph, or from each other */
+
+ //NodeIt firstNode() const { return NodeIt(*this); }
+ //EdgeIt firstEdge() const { return EdgeIt(*this); }
+
+ //OutEdgeIt firstOutEdge(const Node v) const { return OutEdgeIt(v); }
+ //InEdgeIt firstInEdge(const Node v) const { return InEdgeIt(v); }
+ //SymEdgeIt firstSymEdge(const Node v) const { return SymEdgeIt(v); }
+ Node tail(Edge e) const { return e.tailNode(); }
+ Node head(Edge e) const { return e.headNode(); }
+
+ Node aNode(const OutEdgeIt& e) const { return e.aNode(); }
+ Node aNode(const InEdgeIt& e) const { return e.aNode(); }
+ Node aNode(const SymEdgeIt& e) const { return e.aNode(); }
+
+ Node bNode(const OutEdgeIt& e) const { return e.bNode(); }
+ Node bNode(const InEdgeIt& e) const { return e.bNode(); }
+ Node bNode(const SymEdgeIt& e) const { return e.bNode(); }
+
+ //Node invalid_node() { return Node(); }
+ //Edge invalid_edge() { return Edge(); }
+ //OutEdgeIt invalid_out_edge() { return OutEdgeIt(); }
+ //InEdgeIt invalid_in_edge() { return InEdgeIt(); }
+ //SymEdgeIt invalid_sym_edge() { return SymEdgeIt(); }
+
+ /* same methods in other style */
+ /* for experimental purpose */
+
+ NodeIt& /*getF*/first(NodeIt& v) const {
+ v=NodeIt(*this); return v; }
+ EdgeIt& /*getF*/first(EdgeIt& e) const {
+ e=EdgeIt(*this); return e; }
+ OutEdgeIt& /*getF*/first(OutEdgeIt& e, Node v) const {
+ e=OutEdgeIt(*this, v); return e; }
+ InEdgeIt& /*getF*/first(InEdgeIt& e, Node v) const {
+ e=InEdgeIt(*this, v); return e; }
+ SymEdgeIt& /*getF*/first(SymEdgeIt& e, Node v) const {
+ e=SymEdgeIt(*this, v); return e; }
+ //void getTail(Node& n, const Edge& e) const { n=tail(e); }
+ //void getHead(Node& n, const Edge& e) const { n=head(e); }
+
+ //void getANode(Node& n, const OutEdgeIt& e) const { n=e.aNode(); }
+ //void getANode(Node& n, const InEdgeIt& e) const { n=e.aNode(); }
+ //void getANode(Node& n, const SymEdgeIt& e) const { n=e.aNode(); }
+ //void getBNode(Node& n, const OutEdgeIt& e) const { n=e.bNode(); }
+ //void getBNode(Node& n, const InEdgeIt& e) const { n=e.bNode(); }
+ //void getBNode(Node& n, const SymEdgeIt& e) const { n=e.bNode(); }
+ //void get_invalid(Node& n) { n=Node(); }
+ //void get_invalid(Edge& e) { e=Edge(); }
+ //void get_invalid(OutEdgeIt& e) { e=OutEdgeIt(); }
+ //void get_invalid(InEdgeIt& e) { e=InEdgeIt(); }
+ //void get_invalid(SymEdgeIt& e) { e=SymEdgeIt(); }
+
+ template< typename It >
+ It first() const {
+ It e;
+ /*getF*/first(e);
+ return e;
+ }
+
+ template< typename It >
+ It first(Node v) const {
+ It e;
+ /*getF*/first(e, v);
+ return e;
+ }
+
+ bool valid(Node n) const { return n.valid(); }
+ bool valid(Edge e) const { return e.valid(); }
+
+// template <typename It> It getNext(It it) const {
+// It tmp(it); next(tmp); return tmp; }
+// NodeIt& next(NodeIt& it) const { return ++it; }
+// EdgeIt& next(EdgeIt& it) const { return ++it; }
+// OutEdgeIt& next(OutEdgeIt& it) const { return ++it; }
+// InEdgeIt& next(InEdgeIt& it) const { return ++it; }
+// SymEdgeIt& next(SymEdgeIt& it) const { return ++it; }
+// template <typename It> It& next(It& it) const { return ++it; }
+ template <typename It> It& next(It& it) const { ++it; return it; }
+
+
+ /* for getting id's of graph objects */
+ /* these are important for the implementation of property vectors */
+
+ int id(Node v) const { return v.node->id; }
+ int id(Edge e) const { return e.edge->id; }
+
+ /* adding nodes and edges */
+
+ Node addNode() { return Node(_add_node()); }
+ Edge addEdge(Node u, Node v) {
+ return Edge(_add_edge(u.node, v.node));
+ }
+
+ void erase(Node i) {
+ while (first<OutEdgeIt>(i).valid()) erase(first<OutEdgeIt>(i));
+ while (first<InEdgeIt>(i).valid()) erase(first<InEdgeIt>(i));
+ _delete_node(i.node);
+ }
+
+ void erase(Edge e) { _delete_edge(e.edge); }
+
+ void clear() {
+ while (first<NodeIt>().valid()) erase(first<NodeIt>());
+ }
+
+ void setTail(Edge e, Node tail) {
+ _set_tail(e.edge, tail.node);
+ }
+
+ void setHead(Edge e, Node head) {
+ _set_head(e.edge, head.node);
+ }
+
+ /* stream operations, for testing purpose */
+
+ friend std::ostream& operator<<(std::ostream& os, const Node& i) {
+ os << i.node->id; return os;
+ }
+ friend std::ostream& operator<<(std::ostream& os, const Edge& i) {
+ os << "(" << i.edge->_tail->id << "--" << i.edge->id << "->" << i.edge->_head->id << ")";
+ return os;
+ }
+
+ class Node {
+ friend class ListGraph;
+ template <typename T> friend class NodeMap;
+
+ friend class Edge;
+ friend class OutEdgeIt;
+ friend class InEdgeIt;
+ friend class SymEdgeIt;
+ //public: //FIXME: It is required by op= of NodeIt
+ protected:
+ node_item* node;
+ protected:
+ friend int ListGraph::id(Node v) const;
+ public:
+ Node() /*: node(0)*/ { }
+ Node(const Invalid&) : node(0) { }
+ protected:
+ Node(node_item* _node) : node(_node) { }
+ bool valid() const { return (node); }
+ public:
+ //void makeInvalid() { node=0; }
+ friend bool operator==(Node u, Node v) { return v.node==u.node; }
+ friend bool operator!=(Node u, Node v) { return v.node!=u.node; }
+ friend std::ostream& operator<<(std::ostream& os, const Node& i);
+ };
+
+ class NodeIt : public Node {
+ friend class ListGraph;
+ //protected:
+ public: //for everybody but marci
+ NodeIt(const ListGraph& G) : Node(G._first_node) { }
+ public:
+ NodeIt() : Node() { }
+ NodeIt(const Invalid& i) : Node(i) { }
+ protected:
+ NodeIt(node_item* v) : Node(v) { }
+ NodeIt& operator++() { node=node->_next_node; return *this; }
+ //FIXME::
+ // NodeIt& operator=(const Node& e)
+ // { node=e.node; return *this; }
+ };
+
+ class Edge {
+ friend class ListGraph;
+ template <typename T> friend class EdgeMap;
+
+ friend class Node;
+ friend class NodeIt;
+ protected:
+ edge_item* edge;
+ friend int ListGraph::id(Edge e) const;
+ public:
+ Edge() /*: edge(0)*/ { }
+ Edge(const Invalid&) : edge(0) { }
+ //Edge() { }
+ protected:
+ Edge(edge_item* _edge) : edge(_edge) { }
+ bool valid() const { return (edge); }
+ public:
+ //void makeInvalid() { edge=0; }
+ friend bool operator==(Edge u, Edge v) { return v.edge==u.edge; }
+ friend bool operator!=(Edge u, Edge v) { return v.edge!=u.edge; }
+ protected:
+ Node tailNode() const { return Node(edge->_tail); }
+ Node headNode() const { return Node(edge->_head); }
+ public:
+ friend std::ostream& operator<<(std::ostream& os, const Edge& i);
+ };
+
+ class EdgeIt : public Edge {
+ friend class ListGraph;
+ //protected:
+ public: //for alpar
+ EdgeIt(const ListGraph& G) {
+ node_item* v=G._first_node;
+ if (v) edge=v->_first_out_edge; else edge=0;
+ while (v && !edge) { v=v->_next_node; if (v) edge=v->_first_out_edge; }
+ }
+ public:
+ EdgeIt() : Edge() { }
+ EdgeIt(const Invalid& i) : Edge(i) { }
+ protected:
+ EdgeIt(edge_item* _e) : Edge(_e) { }
+ EdgeIt& operator++() {
+ node_item* v=edge->_tail;
+ edge=edge->_next_out;
+ while (v && !edge) { v=v->_next_node; if (v) edge=v->_first_out_edge; }
+ return *this;
+ }
+ };
+
+ class OutEdgeIt : public Edge {
+ friend class ListGraph;
+ //node_item* v;
+ //protected:
+ protected: //for alpar
+ OutEdgeIt(const Node& _v) /*: v(_v.node)*/ { edge=_v.node->_first_out_edge; }
+ public:
+ OutEdgeIt() : Edge()/*, v(0)*/ { }
+ OutEdgeIt(const Invalid& i) : Edge(i) { }
+ OutEdgeIt(const ListGraph&, Node _v) /*: v(_v.node)*/ { edge=_v.node->_first_out_edge; }
+ protected:
+ OutEdgeIt& operator++() { edge=edge->_next_out; return *this; }
+ protected:
+ Node aNode() const { return Node(edge->_tail); }
+ Node bNode() const { return Node(edge->_head); }
+ };
+
+ class InEdgeIt : public Edge {
+ friend class ListGraph;
+ //node_item* v;
+ //protected:
+ protected: //for alpar
+ InEdgeIt(const Node& _v) /*: v(_v.node)*/ { edge=_v.node->_first_in_edge; }
+ public:
+ InEdgeIt() : Edge()/*, v(0)*/ { }
+ InEdgeIt(const Invalid& i) : Edge(i) { }
+ InEdgeIt(const ListGraph&, Node _v) /*: v(_v.node)*/ { edge=_v.node->_first_in_edge; }
+ protected:
+ InEdgeIt& operator++() { edge=edge->_next_in; return *this; }
+ protected:
+ Node aNode() const { return Node(edge->_head); }
+ Node bNode() const { return Node(edge->_tail); }
+ };
+
+ class SymEdgeIt : public Edge {
+ friend class ListGraph;
+ bool out_or_in; //1 iff out, 0 iff in
+ //node_item* v;
+ //protected:
+ public: //for alpar
+ SymEdgeIt(const Node& _v) /*: v(_v.node)*/ {
+ out_or_in=1;
+ edge=_v.node->_first_out_edge;
+ if (!edge) { edge=_v.node->_first_in_edge; out_or_in=0; }
+ }
+ public:
+ SymEdgeIt() : Edge() /*, v(0)*/ { }
+ SymEdgeIt(const Invalid& i) : Edge(i) { }
+ SymEdgeIt(const ListGraph&, Node _v) /*: v(_v.node)*/ {
+ out_or_in=1;
+ edge=_v.node->_first_out_edge;
+ if (!edge) { edge=_v.node->_first_in_edge; out_or_in=0; }
+ }
+ protected:
+ SymEdgeIt& operator++() {
+ if (out_or_in) {
+ node_item* v=edge->_tail;
+ edge=edge->_next_out;
+ if (!edge) { out_or_in=0; edge=v->_first_in_edge; }
+ } else {
+ edge=edge->_next_in;
+ }
+ return *this;
+ }
+ protected:
+ Node aNode() const {
+ return (out_or_in) ? Node(edge->_tail) : Node(edge->_head); }
+ Node bNode() const {
+ return (out_or_in) ? Node(edge->_head) : Node(edge->_tail); }
+ };
+
+ };
+
+// template< typename T >
+// T ListGraph::first() const {
+// std::cerr << "Invalid use of template<typemane T> T ListGraph::first<T>();" << std::endl;
+// return T();
+// }
+
+// template<>
+// ListGraph::NodeIt ListGraph::first<ListGraph::NodeIt>() const {
+// return firstNode();
+// }
+
+// template<>
+// ListGraph::EdgeIt ListGraph::first<ListGraph::EdgeIt>() const {
+// return firstEdge();
+// }
+
+// template< typename T >
+// T ListGraph::first(ListGraph::Node v) const {
+// std::cerr << "Invalid use of template<typemane T> T ListGraph::first<T>(ListGRaph::Node);" << std::endl;
+// return T();
+// }
+
+// template<>
+// ListGraph::OutEdgeIt ListGraph::first<ListGraph::OutEdgeIt>(const ListGraph::Node v) const {
+// return firstOutEdge(v);
+// }
+
+// template<>
+// ListGraph::InEdgeIt ListGraph::first<ListGraph::InEdgeIt>(const ListGraph::Node v) const {
+// return firstInEdge(v);
+// }
+
+// template<>
+// ListGraph::SymEdgeIt ListGraph::first<ListGraph::SymEdgeIt>(const ListGraph::Node v) const {
+// return firstSymEdge(v);
+// }
+
+
+} //namespace hugo
+
+#endif //HUGO_LIST_GRAPH_H
Added: hugo/trunk/src/work/marci/experiment/makefile
==============================================================================
--- (empty file)
+++ hugo/trunk/src/work/marci/experiment/makefile Sat Apr 3 19:26:46 2004
@@ -0,0 +1,35 @@
+INCLUDEDIRS ?= -I. -I../../../include -I..
+CXXFLAGS = -g -O3 -W -Wall $(INCLUDEDIRS) -ansi -pedantic
+
+BINARIES ?= iterator_bfs_demo iterator_bfs_demo_1 edmonds_karp_demo edmonds_karp_demo_1
+
+# Hat, ez elismerem, hogy nagyon ronda, de mukodik minden altalam
+# ismert rendszeren :-) (Misi)
+CXX := $(shell type -p g++-3.3 || type -p g++-3.2 || type -p g++-3.0 || type -p g++-3 || echo g++)
+CC := $(CXX)
+
+
+all: $(BINARIES)
+
+################
+# Minden binarishoz egy sor, felsorolva, hogy mely object file-okbol
+# all elo.
+# Kiveve ha siman file.cc -> file esetrol van szo, amikor is nem kell
+# irni semmit.
+
+#proba: proba.o seged.o
+
+################
+
+
+.depend dep depend:
+ -$(CXX) $(INCLUDEDIRS) -M $(BINARIES:=.cc) > .depend #2>/dev/null
+# -$(CXX) $(CXXFLAGS) -M *.cc > .depend
+
+makefile: .depend
+sinclude .depend
+
+clean:
+ $(RM) *.o $(BINARIES) .depend
+
+.PHONY: all clean dep depend
More information about the Lemon-commits
mailing list