[Lemon-commits] [lemon_svn] hegyi: r919 - hugo/trunk/src/work/peter
Lemon SVN
svn at lemon.cs.elte.hu
Mon Nov 6 20:42:13 CET 2006
Author: hegyi
Date: Wed Jun 9 00:38:12 2004
New Revision: 919
Added:
hugo/trunk/src/work/peter/
hugo/trunk/src/work/peter/Makefile
hugo/trunk/src/work/peter/edgepathgraph.h
hugo/trunk/src/work/peter/edgepathgraph_test.cc
hugo/trunk/src/work/peter/hierarchygraph.h
hugo/trunk/src/work/peter/hierarchygraph_test.cc
Log:
NetGraphs v0
Added: hugo/trunk/src/work/peter/Makefile
==============================================================================
--- (empty file)
+++ hugo/trunk/src/work/peter/Makefile Wed Jun 9 00:38:12 2004
@@ -0,0 +1,5 @@
+edge: edgepathgraph_test.cc edgepathgraph.h
+ g++ -I../.. -I../klao -I../../hugo edgepathgraph_test.cc -o test
+
+hier: hierarchygraph.h hierarchygraph_test.cc
+ g++ -I../.. -I../klao -I../../hugo hierarchygraph_test.cc -o test
Added: hugo/trunk/src/work/peter/edgepathgraph.h
==============================================================================
--- (empty file)
+++ hugo/trunk/src/work/peter/edgepathgraph.h Wed Jun 9 00:38:12 2004
@@ -0,0 +1,407 @@
+// -*- c++ -*-
+#ifndef HUGO_NET_GRAPH_H
+#define HUGO_NET_GRAPH_H
+
+///\file
+///\brief Declaration of EdgePathGraph.
+
+#include <hugo/invalid.h>
+#include <hugo/maps.h>
+
+/// The namespace of HugoLib
+namespace hugo {
+
+ // @defgroup empty_graph The EdgePathGraph class
+ // @{
+
+ /// A graph class in that a simple edge can represent a path.
+
+ /// This class provides all the common features of a graph structure
+ /// that represents a network. You can handle with it layers. This
+ /// means that an edge in one layer can be a complete path in a nother
+ /// layer.
+
+ template <typename P, class Gact, class Gsub>
+ class EdgePathGraph
+ {
+
+ public:
+
+ /// The actual layer
+ Gact actuallayer;
+
+
+ /// The layer on which the edges in this layer can represent paths.
+ Gsub * sublayer;
+
+
+ /// Map of nodes that represent the nodes of this layer in the sublayer
+ typename Gact::template NodeMap<typename Gsub::Node *> projection;
+
+
+ /// Map of routes that are represented by some edges in this layer
+ typename Gact::template EdgeMap<P *> edgepath;
+
+
+ /// Defalult constructor.
+ /// We don't need any extra lines, because the actuallayer
+ /// variable has run its constructor, when we have created this class
+ /// So only the two maps has to be initialised here.
+ EdgePathGraph() : projection(actuallayer), edgepath(actuallayer)
+ {
+ }
+
+
+ ///Copy consructor.
+ EdgePathGraph(const EdgePathGraph<P, Gact, Gsub> & EPG ) : actuallayer(EPG.actuallayer) , edgepath(actuallayer), projection(actuallayer)
+ {
+ }
+
+
+ /// Map adder
+
+ /// This function gets two edgemaps. One belongs to the actual layer and the
+ /// other belongs to the sublayer.
+ /// The function iterates through all of the edges in the edgemap belonging to the actual layer.
+ /// It gets the value that belongs to the actual edge, and adds it to the value of each edge in the
+ /// path represented by itself in the edgemap that belongs to the sublayer.
+
+ template <typename T1, typename T2> void addMap (typename Gact::EdgeMap<T1> & actmap, typename Gsub::EdgeMap<T2> & submap)
+ {
+ for(EdgeIt e(actuallayer);actuallayer.valid(e);actuallayer.next(e))
+ {
+ typedef typename P::EdgeIt PEdgeIt;
+ PEdgeIt f;
+
+ //dep//cout << "Edge " << id(tail(e)) << " - " << id(head(e)) << " in actual layer is";
+ T1 incr=actmap[e];
+ //cout << incr << endl;
+
+ if(edgepath[e])
+ {
+ //dep//cout << endl << "Path";
+ for(edgepath[e]->first(f); edgepath[e]->valid(f); edgepath[e]->next(f))
+ {
+ //dep//cout << " " << sublayer->id(sublayer->tail(f)) << "-" << sublayer->id(sublayer->head(f));
+ submap[f]+=incr;
+ }
+ //dep////cout << EPGr2.id(EPGr2.head(f)) << endl;
+ //dep//cout << endl;
+ }
+ else
+ {
+ //dep//cout << " itself." <<endl;
+ }
+ }
+
+ };
+
+
+ /// Describe
+ /// This function walks thorugh the edges of the actual layer
+ /// and displays the path represented by the actual edge.
+ void describe ()
+ {
+ for(EdgeIt e(actuallayer);actuallayer.valid(e);actuallayer.next(e))
+ {
+ typedef typename P::EdgeIt PEdgeIt;
+ PEdgeIt f;
+
+ cout << "Edge " << id(tail(e)) << " - " << id(head(e)) << " in actual layer is";
+ if(edgepath[e])
+ {
+ cout << endl << "Path";
+ for(edgepath[e]->first(f); edgepath[e]->valid(f); edgepath[e]->next(f))
+ {
+ cout << " " << sublayer->id(sublayer->tail(f)) << "-" << sublayer->id(sublayer->head(f));
+ }
+ //cout << EPGr2.id(EPGr2.head(f)) << endl;
+ cout << endl;
+ }
+ else
+ {
+ cout << " itself." <<endl;
+ }
+ }
+
+ };
+
+
+
+
+ /// The base type of the node iterators.
+
+ /// This is the base type of each node iterators,
+ /// thus each kind of node iterator will convert to this.
+ /// The Node type of the EdgePathGraph is the Node type of the actual layer.
+ typedef typename Gact::Node Node;
+
+
+ /// This iterator goes through each node.
+
+ /// Its usage is quite simple, for example you can count the number
+ /// of nodes in graph \c G of type \c Graph like this:
+ /// \code
+ ///int count=0;
+ ///for(Graph::NodeIt n(G);G.valid(n);G.next(n)) count++;
+ /// \endcode
+ /// The NodeIt type of the EdgePathGraph is the NodeIt type of the actual layer.
+ typedef typename Gact::NodeIt NodeIt;
+
+
+ /// The base type of the edge iterators.
+ /// The Edge type of the EdgePathGraph is the Edge type of the actual layer.
+ typedef typename Gact::Edge Edge;
+
+
+ /// This iterator goes trough the outgoing edges of a node.
+
+ /// This iterator goes trough the \e outgoing edges of a certain node
+ /// of a graph.
+ /// Its usage is quite simple, for example you can count the number
+ /// of outgoing edges of a node \c n
+ /// in graph \c G of type \c Graph as follows.
+ /// \code
+ ///int count=0;
+ ///for(Graph::OutEdgeIt e(G,n);G.valid(e);G.next(e)) count++;
+ /// \endcode
+ /// The OutEdgeIt type of the EdgePathGraph is the OutEdgeIt type of the actual layer.
+ typedef typename Gact::OutEdgeIt OutEdgeIt;
+
+
+ /// This iterator goes trough the incoming edges of a node.
+
+ /// This iterator goes trough the \e incoming edges of a certain node
+ /// of a graph.
+ /// Its usage is quite simple, for example you can count the number
+ /// of outgoing edges of a node \c n
+ /// in graph \c G of type \c Graph as follows.
+ /// \code
+ ///int count=0;
+ ///for(Graph::InEdgeIt e(G,n);G.valid(e);G.next(e)) count++;
+ /// \endcode
+ /// The InEdgeIt type of the EdgePathGraph is the InEdgeIt type of the actual layer.
+ typedef typename Gact::InEdgeIt InEdgeIt;
+
+
+ /// This iterator goes through each edge.
+
+ /// This iterator goes through each edge of a graph.
+ /// Its usage is quite simple, for example you can count the number
+ /// of edges in a graph \c G of type \c Graph as follows:
+ /// \code
+ ///int count=0;
+ ///for(Graph::EdgeIt e(G);G.valid(e);G.next(e)) count++;
+ /// \endcode
+ /// The EdgeIt type of the EdgePathGraph is the EdgeIt type of the actual layer.
+ typedef typename Gact::EdgeIt EdgeIt;
+
+
+ /// First node of the graph.
+
+ /// \retval i the first node.
+ /// \return the first node.
+ typename Gact::NodeIt &first(typename Gact::NodeIt &i) const { return actuallayer.first(i);}
+
+
+ /// The first incoming edge.
+ typename Gact::InEdgeIt &first(typename Gact::InEdgeIt &i, typename Gact::Node) const { return actuallayer.first(i);}
+
+
+ /// The first outgoing edge.
+ typename Gact::OutEdgeIt &first(typename Gact::OutEdgeIt &i, typename Gact::Node) const { return actuallayer.first(i);}
+
+
+ // SymEdgeIt &first(SymEdgeIt &, Node) const { return i;}
+ /// The first edge of the Graph.
+ typename Gact::EdgeIt &first(typename Gact::EdgeIt &i) const { return actuallayer.first(i);}
+
+
+// Node getNext(Node) const {}
+// InEdgeIt getNext(InEdgeIt) const {}
+// OutEdgeIt getNext(OutEdgeIt) const {}
+// //SymEdgeIt getNext(SymEdgeIt) const {}
+// EdgeIt getNext(EdgeIt) const {}
+
+
+ /// Go to the next node.
+ typename Gact::NodeIt &next(typename Gact::NodeIt &i) const { return actuallayer.next(i);}
+ /// Go to the next incoming edge.
+ typename Gact::InEdgeIt &next(typename Gact::InEdgeIt &i) const { return actuallayer.next(i);}
+ /// Go to the next outgoing edge.
+ typename Gact::OutEdgeIt &next(typename Gact::OutEdgeIt &i) const { return actuallayer.next(i);}
+ //SymEdgeIt &next(SymEdgeIt &) const {}
+ /// Go to the next edge.
+ typename Gact::EdgeIt &next(typename Gact::EdgeIt &i) const { return actuallayer.next(i);}
+
+ ///Gives back the head node of an edge.
+ typename Gact::Node head(typename Gact::Edge edge) const { return actuallayer.head(edge); }
+ ///Gives back the tail node of an edge.
+ typename Gact::Node tail(typename Gact::Edge edge) const { return actuallayer.tail(edge); }
+
+ // Node aNode(InEdgeIt) const {}
+ // Node aNode(OutEdgeIt) const {}
+ // Node aNode(SymEdgeIt) const {}
+
+ // Node bNode(InEdgeIt) const {}
+ // Node bNode(OutEdgeIt) const {}
+ // Node bNode(SymEdgeIt) const {}
+
+ /// Checks if a node iterator is valid
+
+ ///\todo Maybe, it would be better if iterator converted to
+ ///bool directly, as Jacint prefers.
+ bool valid(const typename Gact::Node& node) const { return actuallayer.valid(node);}
+ /// Checks if an edge iterator is valid
+
+ ///\todo Maybe, it would be better if iterator converted to
+ ///bool directly, as Jacint prefers.
+ bool valid(const typename Gact::Edge& edge) const { return actuallayer.valid(edge);}
+
+ ///Gives back the \e id of a node.
+
+ ///\warning Not all graph structures provide this feature.
+ ///
+ int id(const typename Gact::Node & node) const { return actuallayer.id(node);}
+ ///Gives back the \e id of an edge.
+
+ ///\warning Not all graph structures provide this feature.
+ ///
+ int id(const typename Gact::Edge & edge) const { return actuallayer.id(edge);}
+
+ //void setInvalid(Node &) const {};
+ //void setInvalid(Edge &) const {};
+
+ ///Add a new node to the graph.
+
+ /// \return the new node.
+ ///
+ typename Gact::Node addNode() { return actuallayer.addNode();}
+ ///Add a new edge to the graph.
+
+ ///Add a new edge to the graph with tail node \c tail
+ ///and head node \c head.
+ ///\return the new edge.
+ typename Gact::Edge addEdge(typename Gact::Node node1, typename Gact::Node node2) { return actuallayer.addEdge(node1, node2);}
+
+ /// Resets the graph.
+
+ /// This function deletes all edges and nodes of the graph.
+ /// It also frees the memory allocated to store them.
+ void clear() {actuallayer.clear();}
+
+ int nodeNum() const { return actuallayer.nodeNum();}
+ int edgeNum() const { return actuallayer.edgeNum();}
+
+ ///Read/write/reference map of the nodes to type \c T.
+
+ ///Read/write/reference map of the nodes to type \c T.
+ /// \sa MemoryMapSkeleton
+ /// \todo We may need copy constructor
+ /// \todo We may need conversion from other nodetype
+ /// \todo We may need operator=
+ /// \warning Making maps that can handle bool type (NodeMap<bool>)
+ /// needs extra attention!
+
+ template<class T> class NodeMap
+ {
+ public:
+ typedef T ValueType;
+ typedef Node KeyType;
+
+ NodeMap(const EdgePathGraph &) {}
+ NodeMap(const EdgePathGraph &, T) {}
+
+ template<typename TT> NodeMap(const NodeMap<TT> &) {}
+
+ /// Sets the value of a node.
+
+ /// Sets the value associated with node \c i to the value \c t.
+ ///
+ void set(Node, T) {}
+ // Gets the value of a node.
+ //T get(Node i) const {return *(T*)0;} //FIXME: Is it necessary?
+ T &operator[](Node) {return *(T*)0;}
+ const T &operator[](Node) const {return *(T*)0;}
+
+ /// Updates the map if the graph has been changed
+
+ /// \todo Do we need this?
+ ///
+ void update() {}
+ void update(T a) {} //FIXME: Is it necessary
+ };
+
+ ///Read/write/reference map of the edges to type \c T.
+
+ ///Read/write/reference map of the edges to type \c T.
+ ///It behaves exactly in the same way as \ref NodeMap.
+ /// \sa NodeMap
+ /// \sa MemoryMapSkeleton
+ /// \todo We may need copy constructor
+ /// \todo We may need conversion from other edgetype
+ /// \todo We may need operator=
+ template<class T> class EdgeMap
+ {
+ public:
+ typedef T ValueType;
+ typedef Edge KeyType;
+
+ EdgeMap(const EdgePathGraph &) {}
+ EdgeMap(const EdgePathGraph &, T ) {}
+
+ ///\todo It can copy between different types.
+ ///
+ template<typename TT> EdgeMap(const EdgeMap<TT> &) {}
+
+ void set(Edge, T) {}
+ //T get(Edge) const {return *(T*)0;}
+ T &operator[](Edge) {return *(T*)0;}
+ const T &operator[](Edge) const {return *(T*)0;}
+
+ void update() {}
+ void update(T a) {} //FIXME: Is it necessary
+ };
+ };
+
+ /// An empty eraseable graph class.
+
+ /// This class provides all the common features of an \e eraseable graph
+ /// structure,
+ /// however completely without implementations and real data structures
+ /// behind the interface.
+ /// All graph algorithms should compile with this class, but it will not
+ /// run properly, of course.
+ ///
+ /// \todo This blabla could be replaced by a sepatate description about
+ /// Skeletons.
+ ///
+ /// It can be used for checking the interface compatibility,
+ /// or it can serve as a skeleton of a new graph structure.
+ ///
+ /// Also, you will find here the full documentation of a certain graph
+ /// feature, the documentation of a real graph imlementation
+ /// like @ref ListGraph or
+ /// @ref SmartGraph will just refer to this structure.
+ template <typename P, typename Gact, typename Gsub>
+ class EraseableEdgePathGraph : public EdgePathGraph<P, Gact, Gsub>
+ {
+ public:
+ /// Deletes a node.
+ void erase(typename Gact::Node n) {actuallayer.erase(n);}
+ /// Deletes an edge.
+ void erase(typename Gact::Edge e) {actuallayer.erase(e);}
+
+ /// Defalult constructor.
+ EraseableEdgePathGraph() {}
+ ///Copy consructor.
+ EraseableEdgePathGraph(const EdgePathGraph<P, Gact, Gsub> &EPG) {}
+ };
+
+
+ // @}
+
+} //namespace hugo
+
+
+#endif // HUGO_SKELETON_GRAPH_H
Added: hugo/trunk/src/work/peter/edgepathgraph_test.cc
==============================================================================
--- (empty file)
+++ hugo/trunk/src/work/peter/edgepathgraph_test.cc Wed Jun 9 00:38:12 2004
@@ -0,0 +1,206 @@
+#include <string>
+#include <iostream>
+#include <stdio.h>
+
+#include "edgepathgraph.h"
+#include <hugo/list_graph.h>
+#include <hugo/smart_graph.h>
+#include <path.h>
+
+using namespace hugo;
+using namespace std;
+
+bool passed = true;
+
+void check(bool rc) {
+ passed = passed && rc;
+ if(!rc) {
+ cout << "Test failed!" << endl;
+ }
+}
+
+int main()
+{
+ {
+ EdgePathGraph<DirPath<ListGraph>, SmartGraph, ListGraph> EPGr;
+ EPGr.addNode();
+ EPGr.addNode();
+ EPGr.addNode();
+ EPGr.addNode();
+ printf("%d node is in EPGr, after addition of 4 nodes.\n", EPGr.nodeNum());
+
+ EdgePathGraph<DirPath<ListGraph>, SmartGraph, ListGraph> EPGr2(EPGr);
+ printf("%d node is in EPGr2 created by copy constructor from EPGr.\n", EPGr2.nodeNum());
+
+ EPGr2.addNode();
+ EPGr2.addNode();
+ printf("%d node is in EPGr2 after addition of 2 more nodes.\n", EPGr2.nodeNum());
+
+ printf("%d nodes are in EPGr, before clear.\n", EPGr.nodeNum());
+ EPGr.clear();
+ printf("%d nodes are in EPGr, after clear.\n", EPGr.nodeNum());
+ printf("%d nodes are in EPGr2, after clear of EPGr.\n", EPGr2.nodeNum());
+ EPGr2.clear();
+ }
+ {
+ EdgePathGraph<DirPath<ListGraph>, SmartGraph, ListGraph> EPGr;
+ //EdgePathGraph<DirPath<ListGraph>, SmartGraph, EdgePathGraph<DirPath<SmartGraph>, ListGraph, SmartGraph> > EPGr;
+ EdgePathGraph<DirPath<SmartGraph>, ListGraph, SmartGraph> EPGr2;
+
+ typedef EdgePathGraph<DirPath<SmartGraph>, SmartGraph, ListGraph>::Node Node;
+ typedef EdgePathGraph<DirPath<SmartGraph>, SmartGraph, ListGraph>::Edge Edge;
+ typedef EdgePathGraph<DirPath<SmartGraph>, SmartGraph, ListGraph>::EdgeIt EdgeIt;
+
+ Node n0, n1, n2;
+ Edge e0, e1, e2, e3, e4, e5;
+
+ ListGraph::Node m0, m1, m2, m3;
+ ListGraph::Edge f0, f1, f2, f3, f4, f5;
+
+
+ n0=EPGr.addNode();
+ n1=EPGr.addNode();
+ n2=EPGr.addNode();
+
+ e0=EPGr.addEdge(n0,n1);
+ e1=EPGr.addEdge(n1,n0);
+ e2=EPGr.addEdge(n0,n2);
+ e3=EPGr.addEdge(n2,n0);
+ e4=EPGr.addEdge(n1,n2);
+ e5=EPGr.addEdge(n2,n1);
+
+
+ m0=EPGr2.addNode();
+ m1=EPGr2.addNode();
+ m2=EPGr2.addNode();
+ m3=EPGr2.addNode();
+
+ f0=EPGr2.addEdge(m0,m3);
+ f1=EPGr2.addEdge(m3,m0);
+ f2=EPGr2.addEdge(m2,m3);
+ f3=EPGr2.addEdge(m3,m2);
+ f4=EPGr2.addEdge(m1,m2);
+ f5=EPGr2.addEdge(m2,m1);
+
+ EPGr.sublayer=&(EPGr2.actuallayer);
+ //EPGr.sublayer=&(EPGr2);
+
+ EPGr.projection[n0]=&m0;
+ EPGr.projection[n1]=&m1;
+ EPGr.projection[n2]=&m2;
+
+
+ typedef DirPath<ListGraph> DPath;
+
+ //DPath P(EPGr2);
+
+ DPath P1(EPGr2.actuallayer);//0-2
+ DPath::Builder B1(P1);
+ B1.pushBack(f0);
+ B1.pushBack(f3);
+ B1.commit();
+ cout << P1.length() << " hosszu utvonal letrehozva" << endl;
+
+ DPath P2(EPGr2.actuallayer);//2-0
+ DPath::Builder B2(P2);
+ B2.pushBack(f2);
+ B2.pushBack(f1);
+ B2.commit();
+ cout << P2.length() << " hosszu utvonal letrehozva" << endl;
+
+ DPath P3(EPGr2.actuallayer);//0-1
+ DPath::Builder B3(P3);
+ B3.pushBack(f0);
+ B3.pushBack(f3);
+ B3.pushBack(f5);
+ B3.commit();
+ cout << P3.length() << " hosszu utvonal letrehozva" << endl;
+
+ DPath P4(EPGr2.actuallayer);//1-0
+ DPath::Builder B4(P4);
+ B4.pushBack(f4);
+ B4.pushBack(f2);
+ B4.pushBack(f1);
+ B4.commit();
+ cout << P4.length() << " hosszu utvonal letrehozva" << endl;
+
+
+ EPGr.edgepath[e0]=&P3;
+ EPGr.edgepath[e1]=&P4;
+ EPGr.edgepath[e2]=&P1;
+ EPGr.edgepath[e3]=&P2;
+
+ for(EdgeIt e(EPGr.actuallayer);EPGr.actuallayer.valid(e);EPGr.actuallayer.next(e))
+ {
+ typedef DPath::EdgeIt PEdgeIt;
+ PEdgeIt f;
+
+ cout << "Edge " << EPGr.id(EPGr.tail(e)) << " - " << EPGr.id(EPGr.head(e)) << " in actual layer is";
+ if(EPGr.edgepath[e])
+ {
+ cout << endl << "Path";
+ for(EPGr.edgepath[e]->first(f); EPGr.edgepath[e]->valid(f); EPGr.edgepath[e]->next(f))
+ {
+ cout << " " << EPGr2.id(EPGr2.tail(f)) << "-" << EPGr2.id(EPGr2.head(f));
+ }
+ //cout << EPGr2.id(EPGr2.head(f)) << endl;
+ cout << endl;
+ }
+ else
+ {
+ cout << " itself." <<endl;
+ }
+ }
+
+
+ cout << "================================" << endl;
+
+ SmartGraph::EdgeMap<int> actlaymap(EPGr.actuallayer);
+ //EdgePathGraph<DirPath<ListGraph>, SmartGraph, EdgePathGraph<DirPath<SmartGraph>, ListGraph, SmartGraph> > EPGr;
+ ListGraph::EdgeMap<double> sublaymap(EPGr2.actuallayer);
+
+
+ actlaymap[e1]=5;
+
+ //EdgeMap-ok kiirasa
+
+ cout << "EdgeMaps before addMap:" << endl;
+
+ cout << "actlaymap: ";
+ for(EdgeIt e(EPGr.actuallayer);EPGr.actuallayer.valid(e);EPGr.actuallayer.next(e))
+ {
+ cout << EPGr.id(EPGr.tail(e)) << "-" << EPGr.id(EPGr.head(e)) << ":" << actlaymap[e] << " ";
+ }
+ cout << endl;
+ cout << "sublaymap: ";
+ for(ListGraph::EdgeIt e(EPGr2.actuallayer);EPGr2.actuallayer.valid(e);EPGr2.actuallayer.next(e))
+ {
+ cout << EPGr2.id(EPGr2.tail(e)) << "-" << EPGr2.id(EPGr2.head(e)) << ":" << sublaymap[e] << " ";
+ }
+ cout << endl;
+ //EdgeMap-ok kiirasa#vege
+
+
+ EPGr.addMap<int, double>(actlaymap, sublaymap);
+
+ //EdgeMap-ok kiirasa
+
+ cout << "EdgeMaps after addMap:" << endl;
+
+ cout << "actlaymap: ";
+ for(EdgeIt e(EPGr.actuallayer);EPGr.actuallayer.valid(e);EPGr.actuallayer.next(e))
+ {
+ cout << EPGr.id(EPGr.tail(e)) << "-" << EPGr.id(EPGr.head(e)) << ":" << actlaymap[e] << " ";
+ }
+ cout << endl;
+ cout << "sublaymap: ";
+ for(ListGraph::EdgeIt e(EPGr2.actuallayer);EPGr2.actuallayer.valid(e);EPGr2.actuallayer.next(e))
+ {
+ cout << EPGr2.id(EPGr2.tail(e)) << "-" << EPGr2.id(EPGr2.head(e)) << ":" << sublaymap[e] << " ";
+ }
+ cout << endl;
+ //EdgeMap-ok kiirasa#vege
+
+
+ }
+}
Added: hugo/trunk/src/work/peter/hierarchygraph.h
==============================================================================
--- (empty file)
+++ hugo/trunk/src/work/peter/hierarchygraph.h Wed Jun 9 00:38:12 2004
@@ -0,0 +1,329 @@
+// -*- c++ -*-
+#ifndef HUGO_NET_GRAPH_H
+#define HUGO_NET_GRAPH_H
+
+///\file
+///\brief Declaration of HierarchyGraph.
+
+#include <hugo/invalid.h>
+#include <hugo/maps.h>
+
+/// The namespace of HugoLib
+namespace hugo {
+
+ // @defgroup empty_graph The HierarchyGraph class
+ // @{
+
+ /// A graph class in that a simple edge can represent a path.
+
+ /// This class provides common features of a graph structure
+ /// that represents a network. You can handle with it layers. This
+ /// means that a node in one layer can be a complete network in a nother
+ /// layer.
+
+ template <class Gact, class Gsub>
+ class HierarchyGraph
+ {
+
+ public:
+
+ /// The actual layer
+ Gact actuallayer;
+
+
+ /// Map of subnetworks that are represented by the nodes of this layer
+ typename Gact::template NodeMap<Gsub> subnetwork;
+
+
+
+ /// Defalult constructor.
+ /// We don't need any extra lines, because the actuallayer
+ /// variable has run its constructor, when we have created this class
+ /// So only the two maps has to be initialised here.
+ HierarchyGraph() : subnetwork(actuallayer)
+ {
+ }
+
+
+ ///Copy consructor.
+ HierarchyGraph(const HierarchyGraph<Gact, Gsub> & HG ) : actuallayer(HG.actuallayer), subnetwork(actuallayer)
+ {
+ }
+
+
+ /// The base type of the node iterators.
+
+ /// This is the base type of each node iterators,
+ /// thus each kind of node iterator will convert to this.
+ /// The Node type of the HierarchyGraph is the Node type of the actual layer.
+ typedef typename Gact::Node Node;
+
+
+ /// This iterator goes through each node.
+
+ /// Its usage is quite simple, for example you can count the number
+ /// of nodes in graph \c G of type \c Graph like this:
+ /// \code
+ ///int count=0;
+ ///for(Graph::NodeIt n(G);G.valid(n);G.next(n)) count++;
+ /// \endcode
+ /// The NodeIt type of the HierarchyGraph is the NodeIt type of the actual layer.
+ typedef typename Gact::NodeIt NodeIt;
+
+
+ /// The base type of the edge iterators.
+ /// The Edge type of the HierarchyGraph is the Edge type of the actual layer.
+ typedef typename Gact::Edge Edge;
+
+
+ /// This iterator goes trough the outgoing edges of a node.
+
+ /// This iterator goes trough the \e outgoing edges of a certain node
+ /// of a graph.
+ /// Its usage is quite simple, for example you can count the number
+ /// of outgoing edges of a node \c n
+ /// in graph \c G of type \c Graph as follows.
+ /// \code
+ ///int count=0;
+ ///for(Graph::OutEdgeIt e(G,n);G.valid(e);G.next(e)) count++;
+ /// \endcode
+ /// The OutEdgeIt type of the HierarchyGraph is the OutEdgeIt type of the actual layer.
+ typedef typename Gact::OutEdgeIt OutEdgeIt;
+
+
+ /// This iterator goes trough the incoming edges of a node.
+
+ /// This iterator goes trough the \e incoming edges of a certain node
+ /// of a graph.
+ /// Its usage is quite simple, for example you can count the number
+ /// of outgoing edges of a node \c n
+ /// in graph \c G of type \c Graph as follows.
+ /// \code
+ ///int count=0;
+ ///for(Graph::InEdgeIt e(G,n);G.valid(e);G.next(e)) count++;
+ /// \endcode
+ /// The InEdgeIt type of the HierarchyGraph is the InEdgeIt type of the actual layer.
+ typedef typename Gact::InEdgeIt InEdgeIt;
+
+
+ /// This iterator goes through each edge.
+
+ /// This iterator goes through each edge of a graph.
+ /// Its usage is quite simple, for example you can count the number
+ /// of edges in a graph \c G of type \c Graph as follows:
+ /// \code
+ ///int count=0;
+ ///for(Graph::EdgeIt e(G);G.valid(e);G.next(e)) count++;
+ /// \endcode
+ /// The EdgeIt type of the HierarchyGraph is the EdgeIt type of the actual layer.
+ typedef typename Gact::EdgeIt EdgeIt;
+
+
+ /// First node of the graph.
+
+ /// \retval i the first node.
+ /// \return the first node.
+ typename Gact::NodeIt &first(typename Gact::NodeIt &i) const { return actuallayer.first(i);}
+
+
+ /// The first incoming edge.
+ typename Gact::InEdgeIt &first(typename Gact::InEdgeIt &i, typename Gact::Node) const { return actuallayer.first(i);}
+
+
+ /// The first outgoing edge.
+ typename Gact::OutEdgeIt &first(typename Gact::OutEdgeIt &i, typename Gact::Node) const { return actuallayer.first(i);}
+
+
+ // SymEdgeIt &first(SymEdgeIt &, Node) const { return i;}
+ /// The first edge of the Graph.
+ typename Gact::EdgeIt &first(typename Gact::EdgeIt &i) const { return actuallayer.first(i);}
+
+
+// Node getNext(Node) const {}
+// InEdgeIt getNext(InEdgeIt) const {}
+// OutEdgeIt getNext(OutEdgeIt) const {}
+// //SymEdgeIt getNext(SymEdgeIt) const {}
+// EdgeIt getNext(EdgeIt) const {}
+
+
+ /// Go to the next node.
+ typename Gact::NodeIt &next(typename Gact::NodeIt &i) const { return actuallayer.next(i);}
+ /// Go to the next incoming edge.
+ typename Gact::InEdgeIt &next(typename Gact::InEdgeIt &i) const { return actuallayer.next(i);}
+ /// Go to the next outgoing edge.
+ typename Gact::OutEdgeIt &next(typename Gact::OutEdgeIt &i) const { return actuallayer.next(i);}
+ //SymEdgeIt &next(SymEdgeIt &) const {}
+ /// Go to the next edge.
+ typename Gact::EdgeIt &next(typename Gact::EdgeIt &i) const { return actuallayer.next(i);}
+
+ ///Gives back the head node of an edge.
+ typename Gact::Node head(typename Gact::Edge edge) const { return actuallayer.head(edge); }
+ ///Gives back the tail node of an edge.
+ typename Gact::Node tail(typename Gact::Edge edge) const { return actuallayer.tail(edge); }
+
+ // Node aNode(InEdgeIt) const {}
+ // Node aNode(OutEdgeIt) const {}
+ // Node aNode(SymEdgeIt) const {}
+
+ // Node bNode(InEdgeIt) const {}
+ // Node bNode(OutEdgeIt) const {}
+ // Node bNode(SymEdgeIt) const {}
+
+ /// Checks if a node iterator is valid
+
+ ///\todo Maybe, it would be better if iterator converted to
+ ///bool directly, as Jacint prefers.
+ bool valid(const typename Gact::Node& node) const { return actuallayer.valid(node);}
+ /// Checks if an edge iterator is valid
+
+ ///\todo Maybe, it would be better if iterator converted to
+ ///bool directly, as Jacint prefers.
+ bool valid(const typename Gact::Edge& edge) const { return actuallayer.valid(edge);}
+
+ ///Gives back the \e id of a node.
+
+ ///\warning Not all graph structures provide this feature.
+ ///
+ int id(const typename Gact::Node & node) const { return actuallayer.id(node);}
+ ///Gives back the \e id of an edge.
+
+ ///\warning Not all graph structures provide this feature.
+ ///
+ int id(const typename Gact::Edge & edge) const { return actuallayer.id(edge);}
+
+ //void setInvalid(Node &) const {};
+ //void setInvalid(Edge &) const {};
+
+ ///Add a new node to the graph.
+
+ /// \return the new node.
+ ///
+ typename Gact::Node addNode() { return actuallayer.addNode();}
+ ///Add a new edge to the graph.
+
+ ///Add a new edge to the graph with tail node \c tail
+ ///and head node \c head.
+ ///\return the new edge.
+ typename Gact::Edge addEdge(typename Gact::Node node1, typename Gact::Node node2) { return actuallayer.addEdge(node1, node2);}
+
+ /// Resets the graph.
+
+ /// This function deletes all edges and nodes of the graph.
+ /// It also frees the memory allocated to store them.
+ void clear() {actuallayer.clear();}
+
+ int nodeNum() const { return actuallayer.nodeNum();}
+ int edgeNum() const { return actuallayer.edgeNum();}
+
+ ///Read/write/reference map of the nodes to type \c T.
+
+ ///Read/write/reference map of the nodes to type \c T.
+ /// \sa MemoryMapSkeleton
+ /// \todo We may need copy constructor
+ /// \todo We may need conversion from other nodetype
+ /// \todo We may need operator=
+ /// \warning Making maps that can handle bool type (NodeMap<bool>)
+ /// needs extra attention!
+
+ template<class T> class NodeMap
+ {
+ public:
+ typedef T ValueType;
+ typedef Node KeyType;
+
+ NodeMap(const HierarchyGraph &) {}
+ NodeMap(const HierarchyGraph &, T) {}
+
+ template<typename TT> NodeMap(const NodeMap<TT> &) {}
+
+ /// Sets the value of a node.
+
+ /// Sets the value associated with node \c i to the value \c t.
+ ///
+ void set(Node, T) {}
+ // Gets the value of a node.
+ //T get(Node i) const {return *(T*)0;} //FIXME: Is it necessary?
+ T &operator[](Node) {return *(T*)0;}
+ const T &operator[](Node) const {return *(T*)0;}
+
+ /// Updates the map if the graph has been changed
+
+ /// \todo Do we need this?
+ ///
+ void update() {}
+ void update(T a) {} //FIXME: Is it necessary
+ };
+
+ ///Read/write/reference map of the edges to type \c T.
+
+ ///Read/write/reference map of the edges to type \c T.
+ ///It behaves exactly in the same way as \ref NodeMap.
+ /// \sa NodeMap
+ /// \sa MemoryMapSkeleton
+ /// \todo We may need copy constructor
+ /// \todo We may need conversion from other edgetype
+ /// \todo We may need operator=
+ template<class T> class EdgeMap
+ {
+ public:
+ typedef T ValueType;
+ typedef Edge KeyType;
+
+ EdgeMap(const HierarchyGraph &) {}
+ EdgeMap(const HierarchyGraph &, T ) {}
+
+ ///\todo It can copy between different types.
+ ///
+ template<typename TT> EdgeMap(const EdgeMap<TT> &) {}
+
+ void set(Edge, T) {}
+ //T get(Edge) const {return *(T*)0;}
+ T &operator[](Edge) {return *(T*)0;}
+ const T &operator[](Edge) const {return *(T*)0;}
+
+ void update() {}
+ void update(T a) {} //FIXME: Is it necessary
+ };
+ };
+
+ /// An empty eraseable graph class.
+
+ /// This class provides all the common features of an \e eraseable graph
+ /// structure,
+ /// however completely without implementations and real data structures
+ /// behind the interface.
+ /// All graph algorithms should compile with this class, but it will not
+ /// run properly, of course.
+ ///
+ /// \todo This blabla could be replaced by a sepatate description about
+ /// Skeletons.
+ ///
+ /// It can be used for checking the interface compatibility,
+ /// or it can serve as a skeleton of a new graph structure.
+ ///
+ /// Also, you will find here the full documentation of a certain graph
+ /// feature, the documentation of a real graph imlementation
+ /// like @ref ListGraph or
+ /// @ref SmartGraph will just refer to this structure.
+ template <typename Gact, typename Gsub>
+ class EraseableHierarchyGraph : public HierarchyGraph<Gact, Gsub>
+ {
+ public:
+ /// Deletes a node.
+ void erase(typename Gact::Node n) {actuallayer.erase(n);}
+ /// Deletes an edge.
+ void erase(typename Gact::Edge e) {actuallayer.erase(e);}
+
+ /// Defalult constructor.
+ EraseableHierarchyGraph() {}
+ ///Copy consructor.
+ EraseableHierarchyGraph(const HierarchyGraph<Gact, Gsub> &EPG) {}
+ };
+
+
+ // @}
+
+} //namespace hugo
+
+
+#endif // HUGO_SKELETON_GRAPH_H
Added: hugo/trunk/src/work/peter/hierarchygraph_test.cc
==============================================================================
--- (empty file)
+++ hugo/trunk/src/work/peter/hierarchygraph_test.cc Wed Jun 9 00:38:12 2004
@@ -0,0 +1,25 @@
+#include <string>
+#include <iostream>
+#include <stdio.h>
+
+#include "hierarchygraph.h"
+#include <hugo/list_graph.h>
+#include <hugo/smart_graph.h>
+#include <path.h>
+
+using namespace hugo;
+using namespace std;
+
+bool passed = true;
+
+void check(bool rc) {
+ passed = passed && rc;
+ if(!rc) {
+ cout << "Test failed!" << endl;
+ }
+}
+
+int main()
+{
+ HierarchyGraph<SmartGraph, ListGraph> HGr;
+}
More information about the Lemon-commits
mailing list