[Lemon-commits] [lemon_svn] marci: r1024 - in hugo/trunk/src/work: . marci
Lemon SVN
svn at lemon.cs.elte.hu
Mon Nov 6 20:42:47 CET 2006
Author: marci
Date: Tue Aug 17 13:20:16 2004
New Revision: 1024
Added:
hugo/trunk/src/work/marci/augmenting_flow.h
Modified:
hugo/trunk/src/work/makefile
hugo/trunk/src/work/marci/bfs_dfs_misc.h
hugo/trunk/src/work/marci/bfsit_vs_byhand.cc
hugo/trunk/src/work/marci/bipartite_graph_wrapper.h
hugo/trunk/src/work/marci/bipartite_graph_wrapper_test.cc
hugo/trunk/src/work/marci/bipartite_matching_try.cc
hugo/trunk/src/work/marci/bipartite_matching_try_3.cc
hugo/trunk/src/work/marci/lg_vs_sg_vs_sg.cc
hugo/trunk/src/work/marci/macro_test.cc
hugo/trunk/src/work/marci/makefile
hugo/trunk/src/work/marci/max_bipartite_matching.h
hugo/trunk/src/work/marci/max_flow_1.cc
hugo/trunk/src/work/marci/max_flow_demo.cc
hugo/trunk/src/work/marci/top_sort_test.cc
Log:
technical corrections
Modified: hugo/trunk/src/work/makefile
==============================================================================
--- hugo/trunk/src/work/makefile (original)
+++ hugo/trunk/src/work/makefile Tue Aug 17 13:20:16 2004
@@ -1,5 +1,5 @@
INCLUDEDIRS ?= -I.. -I. -I./{marci,jacint,alpar,klao,akos}
-CXXFLAGS = -g -O3 -W -Wall $(INCLUDEDIRS) -ansi -pedantic
+CXXFLAGS = -g -O2 -W -Wall $(INCLUDEDIRS) -ansi -pedantic
BINARIES ?= bin_heap_demo
Added: hugo/trunk/src/work/marci/augmenting_flow.h
==============================================================================
--- (empty file)
+++ hugo/trunk/src/work/marci/augmenting_flow.h Tue Aug 17 13:20:16 2004
@@ -0,0 +1,1477 @@
+// -*- C++ -*-
+#ifndef HUGO_AUGMENTING_FLOW_H
+#define HUGO_AUGMENTING_FLOW_H
+
+#include <vector>
+#include <queue>
+#include <stack>
+#include <iostream>
+
+#include <hugo/graph_wrapper.h>
+#include <bfs_dfs.h>
+#include <hugo/invalid.h>
+#include <hugo/maps.h>
+#include <for_each_macros.h>
+
+/// \file
+/// \brief Maximum flow algorithms.
+/// \ingroup galgs
+
+namespace hugo {
+
+ /// \addtogroup galgs
+ /// @{
+ ///Maximum flow algorithms class.
+
+ ///This class provides various algorithms for finding a flow of
+ ///maximum value in a directed graph. The \e source node, the \e
+ ///target node, the \e capacity of the edges and the \e starting \e
+ ///flow value of the edges should be passed to the algorithm through the
+ ///constructor. It is possible to change these quantities using the
+ ///functions \ref resetSource, \ref resetTarget, \ref resetCap and
+ ///\ref resetFlow. Before any subsequent runs of any algorithm of
+ ///the class \ref resetFlow should be called.
+
+ ///After running an algorithm of the class, the actual flow value
+ ///can be obtained by calling \ref flowValue(). The minimum
+ ///value cut can be written into a \c node map of \c bools by
+ ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes
+ ///the inclusionwise minimum and maximum of the minimum value
+ ///cuts, resp.)
+ ///\param Graph The directed graph type the algorithm runs on.
+ ///\param Num The number type of the capacities and the flow values.
+ ///\param CapMap The capacity map type.
+ ///\param FlowMap The flow map type.
+ ///\author Marton Makai, Jacint Szabo
+// template <typename Graph, typename Num,
+// typename CapMap=typename Graph::template EdgeMap<Num>,
+// typename FlowMap=typename Graph::template EdgeMap<Num> >
+// class MaxFlow {
+// protected:
+// typedef typename Graph::Node Node;
+// typedef typename Graph::NodeIt NodeIt;
+// typedef typename Graph::EdgeIt EdgeIt;
+// typedef typename Graph::OutEdgeIt OutEdgeIt;
+// typedef typename Graph::InEdgeIt InEdgeIt;
+
+// typedef typename std::vector<std::stack<Node> > VecStack;
+// typedef typename Graph::template NodeMap<Node> NNMap;
+// typedef typename std::vector<Node> VecNode;
+
+// const Graph* g;
+// Node s;
+// Node t;
+// const CapMap* capacity;
+// FlowMap* flow;
+// int n; //the number of nodes of G
+// typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
+// //typedef ExpResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
+// typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
+// typedef typename ResGW::Edge ResGWEdge;
+// //typedef typename ResGW::template NodeMap<bool> ReachedMap;
+// typedef typename Graph::template NodeMap<int> ReachedMap;
+
+
+// //level works as a bool map in augmenting path algorithms and is
+// //used by bfs for storing reached information. In preflow, it
+// //shows the levels of nodes.
+// ReachedMap level;
+
+// //excess is needed only in preflow
+// typename Graph::template NodeMap<Num> excess;
+
+// //fixme
+// // protected:
+// // MaxFlow() { }
+// // void set(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
+// // FlowMap& _flow)
+// // {
+// // g=&_G;
+// // s=_s;
+// // t=_t;
+// // capacity=&_capacity;
+// // flow=&_flow;
+// // n=_G.nodeNum;
+// // level.set (_G); //kellene vmi ilyesmi fv
+// // excess(_G,0); //itt is
+// // }
+
+// // constants used for heuristics
+// static const int H0=20;
+// static const int H1=1;
+
+// public:
+
+// ///Indicates the property of the starting flow.
+
+// ///Indicates the property of the starting flow. The meanings are as follows:
+// ///- \c ZERO_FLOW: constant zero flow
+// ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
+// ///the sum of the out-flows in every node except the \e source and
+// ///the \e target.
+// ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at
+// ///least the sum of the out-flows in every node except the \e source.
+// ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be
+// ///set to the constant zero flow in the beginning of the algorithm in this case.
+// enum FlowEnum{
+// ZERO_FLOW,
+// GEN_FLOW,
+// PRE_FLOW,
+// NO_FLOW
+// };
+
+// enum StatusEnum {
+// AFTER_NOTHING,
+// AFTER_AUGMENTING,
+// AFTER_FAST_AUGMENTING,
+// AFTER_PRE_FLOW_PHASE_1,
+// AFTER_PRE_FLOW_PHASE_2
+// };
+
+// /// Don not needle this flag only if necessary.
+// StatusEnum status;
+// // int number_of_augmentations;
+
+
+// // template<typename IntMap>
+// // class TrickyReachedMap {
+// // protected:
+// // IntMap* map;
+// // int* number_of_augmentations;
+// // public:
+// // TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) :
+// // map(&_map), number_of_augmentations(&_number_of_augmentations) { }
+// // void set(const Node& n, bool b) {
+// // if (b)
+// // map->set(n, *number_of_augmentations);
+// // else
+// // map->set(n, *number_of_augmentations-1);
+// // }
+// // bool operator[](const Node& n) const {
+// // return (*map)[n]==*number_of_augmentations;
+// // }
+// // };
+
+// MaxFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
+// FlowMap& _flow) :
+// g(&_G), s(_s), t(_t), capacity(&_capacity),
+// flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0),
+// status(AFTER_NOTHING) { }
+
+// ///Runs a maximum flow algorithm.
+
+// ///Runs a preflow algorithm, which is the fastest maximum flow
+// ///algorithm up-to-date. The default for \c fe is ZERO_FLOW.
+// ///\pre The starting flow must be
+// /// - a constant zero flow if \c fe is \c ZERO_FLOW,
+// /// - an arbitary flow if \c fe is \c GEN_FLOW,
+// /// - an arbitary preflow if \c fe is \c PRE_FLOW,
+// /// - any map if \c fe is NO_FLOW.
+// void run(FlowEnum fe=ZERO_FLOW) {
+// preflow(fe);
+// }
+
+
+// ///Runs a preflow algorithm.
+
+// ///Runs a preflow algorithm. The preflow algorithms provide the
+// ///fastest way to compute a maximum flow in a directed graph.
+// ///\pre The starting flow must be
+// /// - a constant zero flow if \c fe is \c ZERO_FLOW,
+// /// - an arbitary flow if \c fe is \c GEN_FLOW,
+// /// - an arbitary preflow if \c fe is \c PRE_FLOW,
+// /// - any map if \c fe is NO_FLOW.
+// void preflow(FlowEnum fe) {
+// preflowPhase1(fe);
+// preflowPhase2();
+// }
+// // Heuristics:
+// // 2 phase
+// // gap
+// // list 'level_list' on the nodes on level i implemented by hand
+// // stack 'active' on the active nodes on level i
+// // runs heuristic 'highest label' for H1*n relabels
+// // runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
+// // Parameters H0 and H1 are initialized to 20 and 1.
+
+// ///Runs the first phase of the preflow algorithm.
+
+// ///The preflow algorithm consists of two phases, this method runs the
+// ///first phase. After the first phase the maximum flow value and a
+// ///minimum value cut can already be computed, though a maximum flow
+// ///is net yet obtained. So after calling this method \ref flowValue
+// ///and \ref actMinCut gives proper results.
+// ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not
+// ///give minimum value cuts unless calling \ref preflowPhase2.
+// ///\pre The starting flow must be
+// /// - a constant zero flow if \c fe is \c ZERO_FLOW,
+// /// - an arbitary flow if \c fe is \c GEN_FLOW,
+// /// - an arbitary preflow if \c fe is \c PRE_FLOW,
+// /// - any map if \c fe is NO_FLOW.
+// void preflowPhase1(FlowEnum fe);
+
+// ///Runs the second phase of the preflow algorithm.
+
+// ///The preflow algorithm consists of two phases, this method runs
+// ///the second phase. After calling \ref preflowPhase1 and then
+// ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut,
+// ///\ref minMinCut and \ref maxMinCut give proper results.
+// ///\pre \ref preflowPhase1 must be called before.
+// void preflowPhase2();
+
+// /// Returns the maximum value of a flow.
+
+// /// Returns the maximum value of a flow, by counting the
+// /// over-flow of the target node \ref t.
+// /// It can be called already after running \ref preflowPhase1.
+// Num flowValue() const {
+// Num a=0;
+// FOR_EACH_INC_LOC(InEdgeIt, e, *g, t) a+=(*flow)[e];
+// FOR_EACH_INC_LOC(OutEdgeIt, e, *g, t) a-=(*flow)[e];
+// return a;
+// //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan
+// }
+
+// ///Returns a minimum value cut after calling \ref preflowPhase1.
+
+// ///After the first phase of the preflow algorithm the maximum flow
+// ///value and a minimum value cut can already be computed. This
+// ///method can be called after running \ref preflowPhase1 for
+// ///obtaining a minimum value cut.
+// /// \warning Gives proper result only right after calling \ref
+// /// preflowPhase1.
+// /// \todo We have to make some status variable which shows the
+// /// actual state
+// /// of the class. This enables us to determine which methods are valid
+// /// for MinCut computation
+// template<typename _CutMap>
+// void actMinCut(_CutMap& M) const {
+// NodeIt v;
+// switch (status) {
+// case AFTER_PRE_FLOW_PHASE_1:
+// for(g->first(v); g->valid(v); g->next(v)) {
+// if (level[v] < n) {
+// M.set(v, false);
+// } else {
+// M.set(v, true);
+// }
+// }
+// break;
+// case AFTER_PRE_FLOW_PHASE_2:
+// case AFTER_NOTHING:
+// case AFTER_AUGMENTING:
+// case AFTER_FAST_AUGMENTING:
+// minMinCut(M);
+// break;
+// // case AFTER_AUGMENTING:
+// // for(g->first(v); g->valid(v); g->next(v)) {
+// // if (level[v]) {
+// // M.set(v, true);
+// // } else {
+// // M.set(v, false);
+// // }
+// // }
+// // break;
+// // case AFTER_FAST_AUGMENTING:
+// // for(g->first(v); g->valid(v); g->next(v)) {
+// // if (level[v]==number_of_augmentations) {
+// // M.set(v, true);
+// // } else {
+// // M.set(v, false);
+// // }
+// // }
+// // break;
+// }
+// }
+
+// ///Returns the inclusionwise minimum of the minimum value cuts.
+
+// ///Sets \c M to the characteristic vector of the minimum value cut
+// ///which is inclusionwise minimum. It is computed by processing
+// ///a bfs from the source node \c s in the residual graph.
+// ///\pre M should be a node map of bools initialized to false.
+// ///\pre \c flow must be a maximum flow.
+// template<typename _CutMap>
+// void minMinCut(_CutMap& M) const {
+// std::queue<Node> queue;
+
+// M.set(s,true);
+// queue.push(s);
+
+// while (!queue.empty()) {
+// Node w=queue.front();
+// queue.pop();
+
+// OutEdgeIt e;
+// for(g->first(e,w) ; g->valid(e); g->next(e)) {
+// Node v=g->head(e);
+// if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
+// queue.push(v);
+// M.set(v, true);
+// }
+// }
+
+// InEdgeIt f;
+// for(g->first(f,w) ; g->valid(f); g->next(f)) {
+// Node v=g->tail(f);
+// if (!M[v] && (*flow)[f] > 0 ) {
+// queue.push(v);
+// M.set(v, true);
+// }
+// }
+// }
+// }
+
+// ///Returns the inclusionwise maximum of the minimum value cuts.
+
+// ///Sets \c M to the characteristic vector of the minimum value cut
+// ///which is inclusionwise maximum. It is computed by processing a
+// ///backward bfs from the target node \c t in the residual graph.
+// ///\pre M should be a node map of bools initialized to false.
+// ///\pre \c flow must be a maximum flow.
+// template<typename _CutMap>
+// void maxMinCut(_CutMap& M) const {
+
+// NodeIt v;
+// for(g->first(v) ; g->valid(v); g->next(v)) {
+// M.set(v, true);
+// }
+
+// std::queue<Node> queue;
+
+// M.set(t,false);
+// queue.push(t);
+
+// while (!queue.empty()) {
+// Node w=queue.front();
+// queue.pop();
+
+// InEdgeIt e;
+// for(g->first(e,w) ; g->valid(e); g->next(e)) {
+// Node v=g->tail(e);
+// if (M[v] && (*flow)[e] < (*capacity)[e] ) {
+// queue.push(v);
+// M.set(v, false);
+// }
+// }
+
+// OutEdgeIt f;
+// for(g->first(f,w) ; g->valid(f); g->next(f)) {
+// Node v=g->head(f);
+// if (M[v] && (*flow)[f] > 0 ) {
+// queue.push(v);
+// M.set(v, false);
+// }
+// }
+// }
+// }
+
+// ///Returns a minimum value cut.
+
+// ///Sets \c M to the characteristic vector of a minimum value cut.
+// ///\pre M should be a node map of bools initialized to false.
+// ///\pre \c flow must be a maximum flow.
+// template<typename CutMap>
+// void minCut(CutMap& M) const { minMinCut(M); }
+
+// ///Resets the source node to \c _s.
+
+// ///Resets the source node to \c _s.
+// ///
+// void resetSource(Node _s) { s=_s; status=AFTER_NOTHING; }
+
+// ///Resets the target node to \c _t.
+
+// ///Resets the target node to \c _t.
+// ///
+// void resetTarget(Node _t) { t=_t; status=AFTER_NOTHING; }
+
+// /// Resets the edge map of the capacities to _cap.
+
+// /// Resets the edge map of the capacities to _cap.
+// ///
+// void resetCap(const CapMap& _cap) { capacity=&_cap; status=AFTER_NOTHING; }
+
+// /// Resets the edge map of the flows to _flow.
+
+// /// Resets the edge map of the flows to _flow.
+// ///
+// void resetFlow(FlowMap& _flow) { flow=&_flow; status=AFTER_NOTHING; }
+
+
+// private:
+
+// int push(Node w, VecStack& active) {
+
+// int lev=level[w];
+// Num exc=excess[w];
+// int newlevel=n; //bound on the next level of w
+
+// OutEdgeIt e;
+// for(g->first(e,w); g->valid(e); g->next(e)) {
+
+// if ( (*flow)[e] >= (*capacity)[e] ) continue;
+// Node v=g->head(e);
+
+// if( lev > level[v] ) { //Push is allowed now
+
+// if ( excess[v]<=0 && v!=t && v!=s ) {
+// int lev_v=level[v];
+// active[lev_v].push(v);
+// }
+
+// Num cap=(*capacity)[e];
+// Num flo=(*flow)[e];
+// Num remcap=cap-flo;
+
+// if ( remcap >= exc ) { //A nonsaturating push.
+
+// flow->set(e, flo+exc);
+// excess.set(v, excess[v]+exc);
+// exc=0;
+// break;
+
+// } else { //A saturating push.
+// flow->set(e, cap);
+// excess.set(v, excess[v]+remcap);
+// exc-=remcap;
+// }
+// } else if ( newlevel > level[v] ) newlevel = level[v];
+// } //for out edges wv
+
+// if ( exc > 0 ) {
+// InEdgeIt e;
+// for(g->first(e,w); g->valid(e); g->next(e)) {
+
+// if( (*flow)[e] <= 0 ) continue;
+// Node v=g->tail(e);
+
+// if( lev > level[v] ) { //Push is allowed now
+
+// if ( excess[v]<=0 && v!=t && v!=s ) {
+// int lev_v=level[v];
+// active[lev_v].push(v);
+// }
+
+// Num flo=(*flow)[e];
+
+// if ( flo >= exc ) { //A nonsaturating push.
+
+// flow->set(e, flo-exc);
+// excess.set(v, excess[v]+exc);
+// exc=0;
+// break;
+// } else { //A saturating push.
+
+// excess.set(v, excess[v]+flo);
+// exc-=flo;
+// flow->set(e,0);
+// }
+// } else if ( newlevel > level[v] ) newlevel = level[v];
+// } //for in edges vw
+
+// } // if w still has excess after the out edge for cycle
+
+// excess.set(w, exc);
+
+// return newlevel;
+// }
+
+
+// void preflowPreproc(FlowEnum fe, VecStack& active,
+// VecNode& level_list, NNMap& left, NNMap& right)
+// {
+// std::queue<Node> bfs_queue;
+
+// switch (fe) {
+// case NO_FLOW: //flow is already set to const zero in this case
+// case ZERO_FLOW:
+// {
+// //Reverse_bfs from t, to find the starting level.
+// level.set(t,0);
+// bfs_queue.push(t);
+
+// while (!bfs_queue.empty()) {
+
+// Node v=bfs_queue.front();
+// bfs_queue.pop();
+// int l=level[v]+1;
+
+// InEdgeIt e;
+// for(g->first(e,v); g->valid(e); g->next(e)) {
+// Node w=g->tail(e);
+// if ( level[w] == n && w != s ) {
+// bfs_queue.push(w);
+// Node first=level_list[l];
+// if ( g->valid(first) ) left.set(first,w);
+// right.set(w,first);
+// level_list[l]=w;
+// level.set(w, l);
+// }
+// }
+// }
+
+// //the starting flow
+// OutEdgeIt e;
+// for(g->first(e,s); g->valid(e); g->next(e))
+// {
+// Num c=(*capacity)[e];
+// if ( c <= 0 ) continue;
+// Node w=g->head(e);
+// if ( level[w] < n ) {
+// if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
+// flow->set(e, c);
+// excess.set(w, excess[w]+c);
+// }
+// }
+// break;
+// }
+
+// case GEN_FLOW:
+// case PRE_FLOW:
+// {
+// //Reverse_bfs from t in the residual graph,
+// //to find the starting level.
+// level.set(t,0);
+// bfs_queue.push(t);
+
+// while (!bfs_queue.empty()) {
+
+// Node v=bfs_queue.front();
+// bfs_queue.pop();
+// int l=level[v]+1;
+
+// InEdgeIt e;
+// for(g->first(e,v); g->valid(e); g->next(e)) {
+// if ( (*capacity)[e] <= (*flow)[e] ) continue;
+// Node w=g->tail(e);
+// if ( level[w] == n && w != s ) {
+// bfs_queue.push(w);
+// Node first=level_list[l];
+// if ( g->valid(first) ) left.set(first,w);
+// right.set(w,first);
+// level_list[l]=w;
+// level.set(w, l);
+// }
+// }
+
+// OutEdgeIt f;
+// for(g->first(f,v); g->valid(f); g->next(f)) {
+// if ( 0 >= (*flow)[f] ) continue;
+// Node w=g->head(f);
+// if ( level[w] == n && w != s ) {
+// bfs_queue.push(w);
+// Node first=level_list[l];
+// if ( g->valid(first) ) left.set(first,w);
+// right.set(w,first);
+// level_list[l]=w;
+// level.set(w, l);
+// }
+// }
+// }
+
+
+// //the starting flow
+// OutEdgeIt e;
+// for(g->first(e,s); g->valid(e); g->next(e))
+// {
+// Num rem=(*capacity)[e]-(*flow)[e];
+// if ( rem <= 0 ) continue;
+// Node w=g->head(e);
+// if ( level[w] < n ) {
+// if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
+// flow->set(e, (*capacity)[e]);
+// excess.set(w, excess[w]+rem);
+// }
+// }
+
+// InEdgeIt f;
+// for(g->first(f,s); g->valid(f); g->next(f))
+// {
+// if ( (*flow)[f] <= 0 ) continue;
+// Node w=g->tail(f);
+// if ( level[w] < n ) {
+// if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
+// excess.set(w, excess[w]+(*flow)[f]);
+// flow->set(f, 0);
+// }
+// }
+// break;
+// } //case PRE_FLOW
+// }
+// } //preflowPreproc
+
+
+
+// void relabel(Node w, int newlevel, VecStack& active,
+// VecNode& level_list, NNMap& left,
+// NNMap& right, int& b, int& k, bool what_heur )
+// {
+
+// //FIXME jacint: ez mitol num
+// // Num lev=level[w];
+// int lev=level[w];
+
+// Node right_n=right[w];
+// Node left_n=left[w];
+
+// //unlacing starts
+// if ( g->valid(right_n) ) {
+// if ( g->valid(left_n) ) {
+// right.set(left_n, right_n);
+// left.set(right_n, left_n);
+// } else {
+// level_list[lev]=right_n;
+// left.set(right_n, INVALID);
+// }
+// } else {
+// if ( g->valid(left_n) ) {
+// right.set(left_n, INVALID);
+// } else {
+// level_list[lev]=INVALID;
+// }
+// }
+// //unlacing ends
+
+// if ( !g->valid(level_list[lev]) ) {
+
+// //gapping starts
+// for (int i=lev; i!=k ; ) {
+// Node v=level_list[++i];
+// while ( g->valid(v) ) {
+// level.set(v,n);
+// v=right[v];
+// }
+// level_list[i]=INVALID;
+// if ( !what_heur ) {
+// while ( !active[i].empty() ) {
+// active[i].pop(); //FIXME: ezt szebben kene
+// }
+// }
+// }
+
+// level.set(w,n);
+// b=lev-1;
+// k=b;
+// //gapping ends
+
+// } else {
+
+// if ( newlevel == n ) level.set(w,n);
+// else {
+// level.set(w,++newlevel);
+// active[newlevel].push(w);
+// if ( what_heur ) b=newlevel;
+// if ( k < newlevel ) ++k; //now k=newlevel
+// Node first=level_list[newlevel];
+// if ( g->valid(first) ) left.set(first,w);
+// right.set(w,first);
+// left.set(w,INVALID);
+// level_list[newlevel]=w;
+// }
+// }
+
+// } //relabel
+
+// };
+
+
+
+// template <typename Graph, typename Num, typename CapMap, typename FlowMap>
+// void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase1(FlowEnum fe)
+// {
+
+// int heur0=(int)(H0*n); //time while running 'bound decrease'
+// int heur1=(int)(H1*n); //time while running 'highest label'
+// int heur=heur1; //starting time interval (#of relabels)
+// int numrelabel=0;
+
+// bool what_heur=1;
+// //It is 0 in case 'bound decrease' and 1 in case 'highest label'
+
+// bool end=false;
+// //Needed for 'bound decrease', true means no active nodes are above bound
+// //b.
+
+// int k=n-2; //bound on the highest level under n containing a node
+// int b=k; //bound on the highest level under n of an active node
+
+// VecStack active(n);
+
+// NNMap left(*g, INVALID);
+// NNMap right(*g, INVALID);
+// VecNode level_list(n,INVALID);
+// //List of the nodes in level i<n, set to n.
+
+// NodeIt v;
+// for(g->first(v); g->valid(v); g->next(v)) level.set(v,n);
+// //setting each node to level n
+
+// if ( fe == NO_FLOW ) {
+// EdgeIt e;
+// for(g->first(e); g->valid(e); g->next(e)) flow->set(e,0);
+// }
+
+// switch (fe) { //computing the excess
+// case PRE_FLOW:
+// {
+// NodeIt v;
+// for(g->first(v); g->valid(v); g->next(v)) {
+// Num exc=0;
+
+// InEdgeIt e;
+// for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e];
+// OutEdgeIt f;
+// for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f];
+
+// excess.set(v,exc);
+
+// //putting the active nodes into the stack
+// int lev=level[v];
+// if ( exc > 0 && lev < n && v != t ) active[lev].push(v);
+// }
+// break;
+// }
+// case GEN_FLOW:
+// {
+// NodeIt v;
+// for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
+
+// Num exc=0;
+// InEdgeIt e;
+// for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e];
+// OutEdgeIt f;
+// for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f];
+// excess.set(t,exc);
+// break;
+// }
+// case ZERO_FLOW:
+// case NO_FLOW:
+// {
+// NodeIt v;
+// for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
+// break;
+// }
+// }
+
+// preflowPreproc(fe, active, level_list, left, right);
+// //End of preprocessing
+
+
+// //Push/relabel on the highest level active nodes.
+// while ( true ) {
+// if ( b == 0 ) {
+// if ( !what_heur && !end && k > 0 ) {
+// b=k;
+// end=true;
+// } else break;
+// }
+
+// if ( active[b].empty() ) --b;
+// else {
+// end=false;
+// Node w=active[b].top();
+// active[b].pop();
+// int newlevel=push(w,active);
+// if ( excess[w] > 0 ) relabel(w, newlevel, active, level_list,
+// left, right, b, k, what_heur);
+
+// ++numrelabel;
+// if ( numrelabel >= heur ) {
+// numrelabel=0;
+// if ( what_heur ) {
+// what_heur=0;
+// heur=heur0;
+// end=false;
+// } else {
+// what_heur=1;
+// heur=heur1;
+// b=k;
+// }
+// }
+// }
+// }
+
+// status=AFTER_PRE_FLOW_PHASE_1;
+// }
+
+
+
+// template <typename Graph, typename Num, typename CapMap, typename FlowMap>
+// void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase2()
+// {
+
+// int k=n-2; //bound on the highest level under n containing a node
+// int b=k; //bound on the highest level under n of an active node
+
+// VecStack active(n);
+// level.set(s,0);
+// std::queue<Node> bfs_queue;
+// bfs_queue.push(s);
+
+// while (!bfs_queue.empty()) {
+
+// Node v=bfs_queue.front();
+// bfs_queue.pop();
+// int l=level[v]+1;
+
+// InEdgeIt e;
+// for(g->first(e,v); g->valid(e); g->next(e)) {
+// if ( (*capacity)[e] <= (*flow)[e] ) continue;
+// Node u=g->tail(e);
+// if ( level[u] >= n ) {
+// bfs_queue.push(u);
+// level.set(u, l);
+// if ( excess[u] > 0 ) active[l].push(u);
+// }
+// }
+
+// OutEdgeIt f;
+// for(g->first(f,v); g->valid(f); g->next(f)) {
+// if ( 0 >= (*flow)[f] ) continue;
+// Node u=g->head(f);
+// if ( level[u] >= n ) {
+// bfs_queue.push(u);
+// level.set(u, l);
+// if ( excess[u] > 0 ) active[l].push(u);
+// }
+// }
+// }
+// b=n-2;
+
+// while ( true ) {
+
+// if ( b == 0 ) break;
+
+// if ( active[b].empty() ) --b;
+// else {
+// Node w=active[b].top();
+// active[b].pop();
+// int newlevel=push(w,active);
+
+// //relabel
+// if ( excess[w] > 0 ) {
+// level.set(w,++newlevel);
+// active[newlevel].push(w);
+// b=newlevel;
+// }
+// } // if stack[b] is nonempty
+// } // while(true)
+
+// status=AFTER_PRE_FLOW_PHASE_2;
+// }
+
+
+ template <typename Graph, typename Num,
+ typename CapMap=typename Graph::template EdgeMap<Num>,
+ typename FlowMap=typename Graph::template EdgeMap<Num> >
+ class AugmentingFlow {
+ protected:
+ typedef typename Graph::Node Node;
+ typedef typename Graph::NodeIt NodeIt;
+ typedef typename Graph::EdgeIt EdgeIt;
+ typedef typename Graph::OutEdgeIt OutEdgeIt;
+ typedef typename Graph::InEdgeIt InEdgeIt;
+
+// typedef typename std::vector<std::stack<Node> > VecStack;
+// typedef typename Graph::template NodeMap<Node> NNMap;
+// typedef typename std::vector<Node> VecNode;
+
+ const Graph* g;
+ Node s;
+ Node t;
+ const CapMap* capacity;
+ FlowMap* flow;
+// int n; //the number of nodes of G
+ typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
+ //typedef ExpResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
+ typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
+ typedef typename ResGW::Edge ResGWEdge;
+ //typedef typename ResGW::template NodeMap<bool> ReachedMap;
+ typedef typename Graph::template NodeMap<int> ReachedMap;
+
+
+ //level works as a bool map in augmenting path algorithms and is
+ //used by bfs for storing reached information. In preflow, it
+ //shows the levels of nodes.
+ ReachedMap level;
+
+ //excess is needed only in preflow
+// typename Graph::template NodeMap<Num> excess;
+
+ //fixme
+// protected:
+ // MaxFlow() { }
+ // void set(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
+ // FlowMap& _flow)
+ // {
+ // g=&_G;
+ // s=_s;
+ // t=_t;
+ // capacity=&_capacity;
+ // flow=&_flow;
+ // n=_G.nodeNum;
+ // level.set (_G); //kellene vmi ilyesmi fv
+ // excess(_G,0); //itt is
+ // }
+
+ // constants used for heuristics
+// static const int H0=20;
+// static const int H1=1;
+
+ public:
+
+ ///Indicates the property of the starting flow.
+
+ ///Indicates the property of the starting flow. The meanings are as follows:
+ ///- \c ZERO_FLOW: constant zero flow
+ ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
+ ///the sum of the out-flows in every node except the \e source and
+ ///the \e target.
+ ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at
+ ///least the sum of the out-flows in every node except the \e source.
+ ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be
+ ///set to the constant zero flow in the beginning of the algorithm in this case.
+ enum FlowEnum{
+ ZERO_FLOW,
+ GEN_FLOW,
+ PRE_FLOW,
+ NO_FLOW
+ };
+
+ enum StatusEnum {
+ AFTER_NOTHING,
+ AFTER_AUGMENTING,
+ AFTER_FAST_AUGMENTING,
+ AFTER_PRE_FLOW_PHASE_1,
+ AFTER_PRE_FLOW_PHASE_2
+ };
+
+ /// Don not needle this flag only if necessary.
+ StatusEnum status;
+ int number_of_augmentations;
+
+
+ template<typename IntMap>
+ class TrickyReachedMap {
+ protected:
+ IntMap* map;
+ int* number_of_augmentations;
+ public:
+ TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) :
+ map(&_map), number_of_augmentations(&_number_of_augmentations) { }
+ void set(const Node& n, bool b) {
+ if (b)
+ map->set(n, *number_of_augmentations);
+ else
+ map->set(n, *number_of_augmentations-1);
+ }
+ bool operator[](const Node& n) const {
+ return (*map)[n]==*number_of_augmentations;
+ }
+ };
+
+ AugmentingFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
+ FlowMap& _flow) :
+ g(&_G), s(_s), t(_t), capacity(&_capacity),
+ flow(&_flow), //n(_G.nodeNum()),
+ level(_G), //excess(_G,0),
+ status(AFTER_NOTHING), number_of_augmentations(0) { }
+
+ /// Starting from a flow, this method searches for an augmenting path
+ /// according to the Edmonds-Karp algorithm
+ /// and augments the flow on if any.
+ /// The return value shows if the augmentation was succesful.
+ bool augmentOnShortestPath();
+ bool augmentOnShortestPath2();
+
+ /// Starting from a flow, this method searches for an augmenting blocking
+ /// flow according to Dinits' algorithm and augments the flow on if any.
+ /// The blocking flow is computed in a physically constructed
+ /// residual graph of type \c Mutablegraph.
+ /// The return value show sif the augmentation was succesful.
+ template<typename MutableGraph> bool augmentOnBlockingFlow();
+
+ /// The same as \c augmentOnBlockingFlow<MutableGraph> but the
+ /// residual graph is not constructed physically.
+ /// The return value shows if the augmentation was succesful.
+ bool augmentOnBlockingFlow2();
+
+ template<typename _CutMap>
+ void actMinCut(_CutMap& M) const {
+ NodeIt v;
+ switch (status) {
+ case AFTER_PRE_FLOW_PHASE_1:
+// std::cout << "AFTER_PRE_FLOW_PHASE_1" << std::endl;
+// for(g->first(v); g->valid(v); g->next(v)) {
+// if (level[v] < n) {
+// M.set(v, false);
+// } else {
+// M.set(v, true);
+// }
+// }
+ break;
+ case AFTER_PRE_FLOW_PHASE_2:
+// std::cout << "AFTER_PRE_FLOW_PHASE_2" << std::endl;
+ break;
+ case AFTER_NOTHING:
+// std::cout << "AFTER_NOTHING" << std::endl;
+ minMinCut(M);
+ break;
+ case AFTER_AUGMENTING:
+// std::cout << "AFTER_AUGMENTING" << std::endl;
+ for(g->first(v); g->valid(v); g->next(v)) {
+ if (level[v]) {
+ M.set(v, true);
+ } else {
+ M.set(v, false);
+ }
+ }
+ break;
+ case AFTER_FAST_AUGMENTING:
+// std::cout << "AFTER_FAST_AUGMENTING" << std::endl;
+ for(g->first(v); g->valid(v); g->next(v)) {
+ if (level[v]==number_of_augmentations) {
+ M.set(v, true);
+ } else {
+ M.set(v, false);
+ }
+ }
+ break;
+ }
+ }
+
+ template<typename _CutMap>
+ void minMinCut(_CutMap& M) const {
+ std::queue<Node> queue;
+
+ M.set(s,true);
+ queue.push(s);
+
+ while (!queue.empty()) {
+ Node w=queue.front();
+ queue.pop();
+
+ OutEdgeIt e;
+ for(g->first(e,w) ; g->valid(e); g->next(e)) {
+ Node v=g->head(e);
+ if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
+ queue.push(v);
+ M.set(v, true);
+ }
+ }
+
+ InEdgeIt f;
+ for(g->first(f,w) ; g->valid(f); g->next(f)) {
+ Node v=g->tail(f);
+ if (!M[v] && (*flow)[f] > 0 ) {
+ queue.push(v);
+ M.set(v, true);
+ }
+ }
+ }
+ }
+
+ template<typename _CutMap>
+ void minMinCut2(_CutMap& M) const {
+ ResGW res_graph(*g, *capacity, *flow);
+ BfsIterator<ResGW, _CutMap> bfs(res_graph, M);
+ bfs.pushAndSetReached(s);
+ while (!bfs.finished()) ++bfs;
+ }
+
+ Num flowValue() const {
+ Num a=0;
+ FOR_EACH_INC_LOC(InEdgeIt, e, *g, t) a+=(*flow)[e];
+ FOR_EACH_INC_LOC(OutEdgeIt, e, *g, t) a-=(*flow)[e];
+ return a;
+ //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan
+ }
+
+ template<typename MapGraphWrapper>
+ class DistanceMap {
+ protected:
+ const MapGraphWrapper* g;
+ typename MapGraphWrapper::template NodeMap<int> dist;
+ public:
+ DistanceMap(MapGraphWrapper& _g) : g(&_g), dist(*g, g->nodeNum()) { }
+ void set(const typename MapGraphWrapper::Node& n, int a) {
+ dist.set(n, a);
+ }
+ int operator[](const typename MapGraphWrapper::Node& n) const {
+ return dist[n];
+ }
+ // int get(const typename MapGraphWrapper::Node& n) const {
+ // return dist[n]; }
+ // bool get(const typename MapGraphWrapper::Edge& e) const {
+ // return (dist.get(g->tail(e))<dist.get(g->head(e))); }
+ bool operator[](const typename MapGraphWrapper::Edge& e) const {
+ return (dist[g->tail(e)]<dist[g->head(e)]);
+ }
+ };
+
+ };
+
+
+
+ template <typename Graph, typename Num, typename CapMap, typename FlowMap>
+ bool AugmentingFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath()
+ {
+ ResGW res_graph(*g, *capacity, *flow);
+ bool _augment=false;
+
+ //ReachedMap level(res_graph);
+ FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
+ BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
+ bfs.pushAndSetReached(s);
+
+ typename ResGW::template NodeMap<ResGWEdge> pred(res_graph);
+ pred.set(s, INVALID);
+
+ typename ResGW::template NodeMap<Num> free(res_graph);
+
+ //searching for augmenting path
+ while ( !bfs.finished() ) {
+ ResGWOutEdgeIt e=bfs;
+ if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
+ Node v=res_graph.tail(e);
+ Node w=res_graph.head(e);
+ pred.set(w, e);
+ if (res_graph.valid(pred[v])) {
+ free.set(w, std::min(free[v], res_graph.resCap(e)));
+ } else {
+ free.set(w, res_graph.resCap(e));
+ }
+ if (res_graph.head(e)==t) { _augment=true; break; }
+ }
+
+ ++bfs;
+ } //end of searching augmenting path
+
+ if (_augment) {
+ Node n=t;
+ Num augment_value=free[t];
+ while (res_graph.valid(pred[n])) {
+ ResGWEdge e=pred[n];
+ res_graph.augment(e, augment_value);
+ n=res_graph.tail(e);
+ }
+ }
+
+ status=AFTER_AUGMENTING;
+ return _augment;
+ }
+
+ template <typename Graph, typename Num, typename CapMap, typename FlowMap>
+ bool AugmentingFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath2()
+ {
+ ResGW res_graph(*g, *capacity, *flow);
+ bool _augment=false;
+
+ if (status!=AFTER_FAST_AUGMENTING) {
+ FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
+ number_of_augmentations=1;
+ } else {
+ ++number_of_augmentations;
+ }
+ TrickyReachedMap<ReachedMap>
+ tricky_reached_map(level, number_of_augmentations);
+ //ReachedMap level(res_graph);
+// FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
+ BfsIterator<ResGW, TrickyReachedMap<ReachedMap> >
+ bfs(res_graph, tricky_reached_map);
+ bfs.pushAndSetReached(s);
+
+ typename ResGW::template NodeMap<ResGWEdge> pred(res_graph);
+ pred.set(s, INVALID);
+
+ typename ResGW::template NodeMap<Num> free(res_graph);
+
+ //searching for augmenting path
+ while ( !bfs.finished() ) {
+ ResGWOutEdgeIt e=bfs;
+ if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
+ Node v=res_graph.tail(e);
+ Node w=res_graph.head(e);
+ pred.set(w, e);
+ if (res_graph.valid(pred[v])) {
+ free.set(w, std::min(free[v], res_graph.resCap(e)));
+ } else {
+ free.set(w, res_graph.resCap(e));
+ }
+ if (res_graph.head(e)==t) { _augment=true; break; }
+ }
+
+ ++bfs;
+ } //end of searching augmenting path
+
+ if (_augment) {
+ Node n=t;
+ Num augment_value=free[t];
+ while (res_graph.valid(pred[n])) {
+ ResGWEdge e=pred[n];
+ res_graph.augment(e, augment_value);
+ n=res_graph.tail(e);
+ }
+ }
+
+ status=AFTER_FAST_AUGMENTING;
+ return _augment;
+ }
+
+
+ template <typename Graph, typename Num, typename CapMap, typename FlowMap>
+ template<typename MutableGraph>
+ bool AugmentingFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow()
+ {
+ typedef MutableGraph MG;
+ bool _augment=false;
+
+ ResGW res_graph(*g, *capacity, *flow);
+
+ //bfs for distances on the residual graph
+ //ReachedMap level(res_graph);
+ FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
+ BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
+ bfs.pushAndSetReached(s);
+ typename ResGW::template NodeMap<int>
+ dist(res_graph); //filled up with 0's
+
+ //F will contain the physical copy of the residual graph
+ //with the set of edges which are on shortest paths
+ MG F;
+ typename ResGW::template NodeMap<typename MG::Node>
+ res_graph_to_F(res_graph);
+ {
+ typename ResGW::NodeIt n;
+ for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) {
+ res_graph_to_F.set(n, F.addNode());
+ }
+ }
+
+ typename MG::Node sF=res_graph_to_F[s];
+ typename MG::Node tF=res_graph_to_F[t];
+ typename MG::template EdgeMap<ResGWEdge> original_edge(F);
+ typename MG::template EdgeMap<Num> residual_capacity(F);
+
+ while ( !bfs.finished() ) {
+ ResGWOutEdgeIt e=bfs;
+ if (res_graph.valid(e)) {
+ if (bfs.isBNodeNewlyReached()) {
+ dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
+ typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)],
+ res_graph_to_F[res_graph.head(e)]);
+ original_edge.update();
+ original_edge.set(f, e);
+ residual_capacity.update();
+ residual_capacity.set(f, res_graph.resCap(e));
+ } else {
+ if (dist[res_graph.head(e)]==(dist[res_graph.tail(e)]+1)) {
+ typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)],
+ res_graph_to_F[res_graph.head(e)]);
+ original_edge.update();
+ original_edge.set(f, e);
+ residual_capacity.update();
+ residual_capacity.set(f, res_graph.resCap(e));
+ }
+ }
+ }
+ ++bfs;
+ } //computing distances from s in the residual graph
+
+ bool __augment=true;
+
+ while (__augment) {
+ __augment=false;
+ //computing blocking flow with dfs
+ DfsIterator< MG, typename MG::template NodeMap<bool> > dfs(F);
+ typename MG::template NodeMap<typename MG::Edge> pred(F);
+ pred.set(sF, INVALID);
+ //invalid iterators for sources
+
+ typename MG::template NodeMap<Num> free(F);
+
+ dfs.pushAndSetReached(sF);
+ while (!dfs.finished()) {
+ ++dfs;
+ if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) {
+ if (dfs.isBNodeNewlyReached()) {
+ typename MG::Node v=F.aNode(dfs);
+ typename MG::Node w=F.bNode(dfs);
+ pred.set(w, dfs);
+ if (F.valid(pred[v])) {
+ free.set(w, std::min(free[v], residual_capacity[dfs]));
+ } else {
+ free.set(w, residual_capacity[dfs]);
+ }
+ if (w==tF) {
+ __augment=true;
+ _augment=true;
+ break;
+ }
+
+ } else {
+ F.erase(/*typename MG::OutEdgeIt*/(dfs));
+ }
+ }
+ }
+
+ if (__augment) {
+ typename MG::Node n=tF;
+ Num augment_value=free[tF];
+ while (F.valid(pred[n])) {
+ typename MG::Edge e=pred[n];
+ res_graph.augment(original_edge[e], augment_value);
+ n=F.tail(e);
+ if (residual_capacity[e]==augment_value)
+ F.erase(e);
+ else
+ residual_capacity.set(e, residual_capacity[e]-augment_value);
+ }
+ }
+
+ }
+
+ status=AFTER_AUGMENTING;
+ return _augment;
+ }
+
+
+
+
+ template <typename Graph, typename Num, typename CapMap, typename FlowMap>
+ bool AugmentingFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow2()
+ {
+ bool _augment=false;
+
+ ResGW res_graph(*g, *capacity, *flow);
+
+ //ReachedMap level(res_graph);
+ FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
+ BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
+
+ bfs.pushAndSetReached(s);
+ DistanceMap<ResGW> dist(res_graph);
+ while ( !bfs.finished() ) {
+ ResGWOutEdgeIt e=bfs;
+ if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
+ dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
+ }
+ ++bfs;
+ } //computing distances from s in the residual graph
+
+ //Subgraph containing the edges on some shortest paths
+ ConstMap<typename ResGW::Node, bool> true_map(true);
+ typedef SubGraphWrapper<ResGW, ConstMap<typename ResGW::Node, bool>,
+ DistanceMap<ResGW> > FilterResGW;
+ FilterResGW filter_res_graph(res_graph, true_map, dist);
+
+ //Subgraph, which is able to delete edges which are already
+ //met by the dfs
+ typename FilterResGW::template NodeMap<typename FilterResGW::OutEdgeIt>
+ first_out_edges(filter_res_graph);
+ typename FilterResGW::NodeIt v;
+ for(filter_res_graph.first(v); filter_res_graph.valid(v);
+ filter_res_graph.next(v))
+ {
+ typename FilterResGW::OutEdgeIt e;
+ filter_res_graph.first(e, v);
+ first_out_edges.set(v, e);
+ }
+ typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW::
+ template NodeMap<typename FilterResGW::OutEdgeIt> > ErasingResGW;
+ ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges);
+
+ bool __augment=true;
+
+ while (__augment) {
+
+ __augment=false;
+ //computing blocking flow with dfs
+ DfsIterator< ErasingResGW,
+ typename ErasingResGW::template NodeMap<bool> >
+ dfs(erasing_res_graph);
+ typename ErasingResGW::
+ template NodeMap<typename ErasingResGW::OutEdgeIt>
+ pred(erasing_res_graph);
+ pred.set(s, INVALID);
+ //invalid iterators for sources
+
+ typename ErasingResGW::template NodeMap<Num>
+ free1(erasing_res_graph);
+
+ dfs.pushAndSetReached
+ ///\bug hugo 0.2
+ (typename ErasingResGW::Node
+ (typename FilterResGW::Node
+ (typename ResGW::Node(s)
+ )
+ )
+ );
+ while (!dfs.finished()) {
+ ++dfs;
+ if (erasing_res_graph.valid(typename ErasingResGW::OutEdgeIt(dfs)))
+ {
+ if (dfs.isBNodeNewlyReached()) {
+
+ typename ErasingResGW::Node v=erasing_res_graph.aNode(dfs);
+ typename ErasingResGW::Node w=erasing_res_graph.bNode(dfs);
+
+ pred.set(w, /*typename ErasingResGW::OutEdgeIt*/(dfs));
+ if (erasing_res_graph.valid(pred[v])) {
+ free1.set
+ (w, std::min(free1[v], res_graph.resCap
+ (typename ErasingResGW::OutEdgeIt(dfs))));
+ } else {
+ free1.set
+ (w, res_graph.resCap
+ (typename ErasingResGW::OutEdgeIt(dfs)));
+ }
+
+ if (w==t) {
+ __augment=true;
+ _augment=true;
+ break;
+ }
+ } else {
+ erasing_res_graph.erase(dfs);
+ }
+ }
+ }
+
+ if (__augment) {
+ typename ErasingResGW::Node
+ n=typename FilterResGW::Node(typename ResGW::Node(t));
+ // typename ResGW::NodeMap<Num> a(res_graph);
+ // typename ResGW::Node b;
+ // Num j=a[b];
+ // typename FilterResGW::NodeMap<Num> a1(filter_res_graph);
+ // typename FilterResGW::Node b1;
+ // Num j1=a1[b1];
+ // typename ErasingResGW::NodeMap<Num> a2(erasing_res_graph);
+ // typename ErasingResGW::Node b2;
+ // Num j2=a2[b2];
+ Num augment_value=free1[n];
+ while (erasing_res_graph.valid(pred[n])) {
+ typename ErasingResGW::OutEdgeIt e=pred[n];
+ res_graph.augment(e, augment_value);
+ n=erasing_res_graph.tail(e);
+ if (res_graph.resCap(e)==0)
+ erasing_res_graph.erase(e);
+ }
+ }
+
+ } //while (__augment)
+
+ status=AFTER_AUGMENTING;
+ return _augment;
+ }
+
+
+} //namespace hugo
+
+#endif //HUGO_AUGMENTING_FLOW_H
+
+
+
+
Modified: hugo/trunk/src/work/marci/bfs_dfs_misc.h
==============================================================================
--- hugo/trunk/src/work/marci/bfs_dfs_misc.h (original)
+++ hugo/trunk/src/work/marci/bfs_dfs_misc.h Tue Aug 17 13:20:16 2004
@@ -11,7 +11,7 @@
// ///\author Marton Makai
#include <bfs_dfs.h>
-#include <hugo/for_each_macros.h>
+#include <for_each_macros.h>
namespace hugo {
Modified: hugo/trunk/src/work/marci/bfsit_vs_byhand.cc
==============================================================================
--- hugo/trunk/src/work/marci/bfsit_vs_byhand.cc (original)
+++ hugo/trunk/src/work/marci/bfsit_vs_byhand.cc Tue Aug 17 13:20:16 2004
@@ -6,7 +6,7 @@
//#include <smart_graph.h>
#include <hugo/dimacs.h>
#include <hugo/time_measure.h>
-#include <hugo/for_each_macros.h>
+//#include <hugo/for_each_macros.h>
#include <bfs_dfs.h>
using namespace hugo;
@@ -21,7 +21,7 @@
Graph g;
Node s, t;
- Graph::EdgeMap<int> cap(g);
+ //Graph::EdgeMap<int> cap(g);
//readDimacsMaxFlow(std::cin, g, s, t, cap);
readDimacs(std::cin, g);
Modified: hugo/trunk/src/work/marci/bipartite_graph_wrapper.h
==============================================================================
--- hugo/trunk/src/work/marci/bipartite_graph_wrapper.h (original)
+++ hugo/trunk/src/work/marci/bipartite_graph_wrapper.h Tue Aug 17 13:20:16 2004
@@ -13,6 +13,7 @@
#include <hugo/invalid.h>
#include <iter_map.h>
#include <hugo/graph_wrapper.h>
+#include <for_each_macros.h>
namespace hugo {
Modified: hugo/trunk/src/work/marci/bipartite_graph_wrapper_test.cc
==============================================================================
--- hugo/trunk/src/work/marci/bipartite_graph_wrapper_test.cc (original)
+++ hugo/trunk/src/work/marci/bipartite_graph_wrapper_test.cc Tue Aug 17 13:20:16 2004
@@ -7,12 +7,13 @@
//#include <smart_graph.h>
//#include <dimacs.h>
#include <hugo/time_measure.h>
-#include <hugo/for_each_macros.h>
+#include <for_each_macros.h>
#include <bfs_dfs.h>
#include <hugo/graph_wrapper.h>
#include <bipartite_graph_wrapper.h>
#include <hugo/maps.h>
-#include <max_flow.h>
+#include <hugo/max_flow.h>
+#include <augmenting_flow.h>
using namespace hugo;
@@ -133,7 +134,7 @@
++bfs_stgw;
}
- MaxFlow<stGW, int, ConstMap<stGW::Edge, int>, stGW::EdgeMap<int> >
+ AugmentingFlow<stGW, int, ConstMap<stGW::Edge, int>, stGW::EdgeMap<int> >
max_flow_test(stgw, stgw.S_NODE, stgw.T_NODE, const1map, flow);
while (max_flow_test.augmentOnShortestPath()) { }
Modified: hugo/trunk/src/work/marci/bipartite_matching_try.cc
==============================================================================
--- hugo/trunk/src/work/marci/bipartite_matching_try.cc (original)
+++ hugo/trunk/src/work/marci/bipartite_matching_try.cc Tue Aug 17 13:20:16 2004
@@ -8,12 +8,13 @@
//#include <smart_graph.h>
//#include <dimacs.h>
#include <hugo/time_measure.h>
-#include <hugo/for_each_macros.h>
+#include <for_each_macros.h>
#include <bfs_dfs.h>
#include <hugo/graph_wrapper.h>
#include <bipartite_graph_wrapper.h>
#include <hugo/maps.h>
-#include <max_flow.h>
+#include <hugo/max_flow.h>
+#include <augmenting_flow.h>
/**
* Inicializalja a veletlenszamgeneratort.
@@ -163,7 +164,7 @@
Timer ts;
ts.reset();
stGW::EdgeMap<int> max_flow(stgw);
- MaxFlow<stGW, int, ConstMap<stGW::Edge, int>, stGW::EdgeMap<int> >
+ AugmentingFlow<stGW, int, ConstMap<stGW::Edge, int>, stGW::EdgeMap<int> >
max_flow_test(stgw, stgw.S_NODE, stgw.T_NODE, const1map, max_flow);
// while (max_flow_test.augmentOnShortestPath()) { }
typedef SageGraph MutableGraph;
Modified: hugo/trunk/src/work/marci/bipartite_matching_try_3.cc
==============================================================================
--- hugo/trunk/src/work/marci/bipartite_matching_try_3.cc (original)
+++ hugo/trunk/src/work/marci/bipartite_matching_try_3.cc Tue Aug 17 13:20:16 2004
@@ -7,11 +7,11 @@
//#include <smart_graph.h>
//#include <dimacs.h>
#include <hugo/time_measure.h>
-#include <hugo/for_each_macros.h>
+#include <for_each_macros.h>
#include <bfs_dfs.h>
#include <bipartite_graph_wrapper.h>
#include <hugo/maps.h>
-#include <max_flow.h>
+#include <hugo/max_flow.h>
#include <graph_gen.h>
#include <max_bipartite_matching.h>
Modified: hugo/trunk/src/work/marci/lg_vs_sg_vs_sg.cc
==============================================================================
--- hugo/trunk/src/work/marci/lg_vs_sg_vs_sg.cc (original)
+++ hugo/trunk/src/work/marci/lg_vs_sg_vs_sg.cc Tue Aug 17 13:20:16 2004
@@ -7,9 +7,10 @@
#include <hugo/list_graph.h>
#include <hugo/smart_graph.h>
#include <hugo/dimacs.h>
-#include <max_flow.h>
+#include <hugo/max_flow.h>
+#include <augmenting_flow.h>
#include <hugo/time_measure.h>
-#include <hugo/for_each_macros.h>
+#include <for_each_macros.h>
using namespace hugo;
@@ -37,6 +38,8 @@
Graph::EdgeMap<int> flow(g); //0 flow
MaxFlow<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> >
max_flow_test(g, s, t, cap, flow/*, true*/);
+ AugmentingFlow<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> >
+ augmenting_flow_test(g, s, t, cap, flow/*, true*/);
std::cout << "SageGraph ..." << std::endl;
@@ -53,10 +56,10 @@
FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
ts.reset();
int i=0;
- while (max_flow_test.augmentOnBlockingFlow<MutableGraph>()) { ++i; }
+ while (augmenting_flow_test.augmentOnBlockingFlow<MutableGraph>()) { ++i; }
std::cout << "elapsed time: " << ts << std::endl;
std::cout << "number of augmentation phases: " << i << std::endl;
- std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
+ std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
}
// {
@@ -75,10 +78,10 @@
FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
ts.reset();
int i=0;
- while (max_flow_test.augmentOnBlockingFlow2()) { ++i; }
+ while (augmenting_flow_test.augmentOnBlockingFlow2()) { ++i; }
std::cout << "elapsed time: " << ts << std::endl;
std::cout << "number of augmentation phases: " << i << std::endl;
- std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
+ std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
}
{
@@ -86,10 +89,10 @@
FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
ts.reset();
int i=0;
- while (max_flow_test.augmentOnShortestPath()) { ++i; }
+ while (augmenting_flow_test.augmentOnShortestPath()) { ++i; }
std::cout << "elapsed time: " << ts << std::endl;
std::cout << "number of augmentation phases: " << i << std::endl;
- std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
+ std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
}
}
@@ -109,6 +112,8 @@
Graph::EdgeMap<int> flow(g); //0 flow
MaxFlow<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> >
max_flow_test(g, s, t, cap, flow/*, true*/);
+ AugmentingFlow<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> >
+ augmenting_flow_test(g, s, t, cap, flow/*, true*/);
// MaxFlow<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> >
// max_flow_test(g, s, t, cap, flow);
@@ -128,10 +133,10 @@
FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
ts.reset();
int i=0;
- while (max_flow_test.augmentOnBlockingFlow<MutableGraph>()) { ++i; }
+ while (augmenting_flow_test.augmentOnBlockingFlow<MutableGraph>()) { ++i; }
std::cout << "elapsed time: " << ts << std::endl;
std::cout << "number of augmentation phases: " << i << std::endl;
- std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
+ std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
}
// {
@@ -150,10 +155,10 @@
FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
ts.reset();
int i=0;
- while (max_flow_test.augmentOnBlockingFlow2()) { ++i; }
+ while (augmenting_flow_test.augmentOnBlockingFlow2()) { ++i; }
std::cout << "elapsed time: " << ts << std::endl;
std::cout << "number of augmentation phases: " << i << std::endl;
- std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
+ std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
}
{
@@ -161,10 +166,10 @@
FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
ts.reset();
int i=0;
- while (max_flow_test.augmentOnShortestPath()) { ++i; }
+ while (augmenting_flow_test.augmentOnShortestPath()) { ++i; }
std::cout << "elapsed time: " << ts << std::endl;
std::cout << "number of augmentation phases: " << i << std::endl;
- std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
+ std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
}
}
@@ -184,6 +189,8 @@
Graph::EdgeMap<int> flow(g); //0 flow
MaxFlow<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> >
max_flow_test(g, s, t, cap, flow/*, true*/);
+ AugmentingFlow<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> >
+ augmenting_flow_test(g, s, t, cap, flow/*, true*/);
// MaxFlow<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> >
// max_flow_test(g, s, t, cap, flow);
@@ -203,10 +210,10 @@
FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
ts.reset();
int i=0;
- while (max_flow_test.augmentOnBlockingFlow<MutableGraph>()) { ++i; }
+ while (augmenting_flow_test.augmentOnBlockingFlow<MutableGraph>()) { ++i; }
std::cout << "elapsed time: " << ts << std::endl;
std::cout << "number of augmentation phases: " << i << std::endl;
- std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
+ std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
}
// {
@@ -225,10 +232,10 @@
FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
ts.reset();
int i=0;
- while (max_flow_test.augmentOnBlockingFlow2()) { ++i; }
+ while (augmenting_flow_test.augmentOnBlockingFlow2()) { ++i; }
std::cout << "elapsed time: " << ts << std::endl;
std::cout << "number of augmentation phases: " << i << std::endl;
- std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
+ std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
}
{
@@ -236,15 +243,12 @@
FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
ts.reset();
int i=0;
- while (max_flow_test.augmentOnShortestPath()) { ++i; }
+ while (augmenting_flow_test.augmentOnShortestPath()) { ++i; }
std::cout << "elapsed time: " << ts << std::endl;
std::cout << "number of augmentation phases: " << i << std::endl;
- std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
+ std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
}
}
-
-
-
return 0;
}
Modified: hugo/trunk/src/work/marci/macro_test.cc
==============================================================================
--- hugo/trunk/src/work/marci/macro_test.cc (original)
+++ hugo/trunk/src/work/marci/macro_test.cc Tue Aug 17 13:20:16 2004
@@ -3,7 +3,7 @@
#include <fstream>
#include <sage_graph.h>
-#include <hugo/for_each_macros.h>
+#include <for_each_macros.h>
using namespace hugo;
Modified: hugo/trunk/src/work/marci/makefile
==============================================================================
--- hugo/trunk/src/work/marci/makefile (original)
+++ hugo/trunk/src/work/marci/makefile Tue Aug 17 13:20:16 2004
@@ -1,10 +1,11 @@
CXX2 = g++-2.95
CXX3=$(CXX)
BOOSTROOT ?= /home/marci/boost
-INCLUDEDIRS ?= -I../.. -I.. -I../{marci,jacint,alpar,klao,akos,athos} -I$(BOOSTROOT)
+INCLUDEDIRS ?= -I../{jacint,marci,alpar,klao,akos,athos} -I../.. -I.. -I$(BOOSTROOT)
LEDABINARIES = leda_graph_demo leda_bfs_dfs max_bipartite_matching_demo
BINARIES = max_flow_demo iterator_bfs_demo macro_test lg_vs_sg_vs_sg bfsit_vs_byhand bipartite_graph_wrapper_test bipartite_matching_try bipartite_matching_try_3 top_sort_test max_flow_1
+#BINARIES = preflow_bug
#gw_vs_not preflow_demo_boost edmonds_karp_demo_boost preflow_demo_jacint preflow_demo_athos edmonds_karp_demo_alpar preflow_demo_leda
include ../makefile
Modified: hugo/trunk/src/work/marci/max_bipartite_matching.h
==============================================================================
--- hugo/trunk/src/work/marci/max_bipartite_matching.h (original)
+++ hugo/trunk/src/work/marci/max_bipartite_matching.h Tue Aug 17 13:20:16 2004
@@ -15,7 +15,7 @@
//#include <for_each_macros.h>
#include <bipartite_graph_wrapper.h>
//#include <hugo/maps.h>
-#include <max_flow.h>
+#include <hugo/max_flow.h>
namespace hugo {
Modified: hugo/trunk/src/work/marci/max_flow_1.cc
==============================================================================
--- hugo/trunk/src/work/marci/max_flow_1.cc (original)
+++ hugo/trunk/src/work/marci/max_flow_1.cc Tue Aug 17 13:20:16 2004
@@ -7,9 +7,9 @@
#include <hugo/dimacs.h>
#include <hugo/time_measure.h>
//#include <graph_wrapper.h>
-#include <max_flow.h>
+#include <hugo/max_flow.h>
//#include <preflow_res.h>
-#include <hugo/for_each_macros.h>
+#include <for_each_macros.h>
using namespace hugo;
Modified: hugo/trunk/src/work/marci/max_flow_demo.cc
==============================================================================
--- hugo/trunk/src/work/marci/max_flow_demo.cc (original)
+++ hugo/trunk/src/work/marci/max_flow_demo.cc Tue Aug 17 13:20:16 2004
@@ -7,9 +7,10 @@
#include <hugo/dimacs.h>
#include <hugo/time_measure.h>
//#include <graph_wrapper.h>
-#include <max_flow.h>
+#include <hugo/max_flow.h>
+#include <augmenting_flow.h>
//#include <preflow_res.h>
-#include <hugo/for_each_macros.h>
+#include <for_each_macros.h>
#include <graph_concept.h>
using namespace hugo;
@@ -38,8 +39,8 @@
typedef SageGraph MutableGraph;
//typedef FullFeatureGraphConcept Graph;
- typedef SmartGraph Graph;
- // typedef SageGraph Graph;
+ //typedef SmartGraph Graph;
+ typedef SageGraph Graph;
typedef Graph::Node Node;
typedef Graph::EdgeIt EdgeIt;
@@ -75,6 +76,9 @@
Graph::EdgeMap<int> flow(g); //0 flow
MaxFlow<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> >
max_flow_test(g, s, t, cap, flow);
+ AugmentingFlow<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> >
+ augmenting_flow_test(g, s, t, cap, flow);
+
Graph::NodeMap<bool> cut(g);
{
@@ -123,10 +127,10 @@
FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
ts.reset();
int i=0;
- while (max_flow_test.augmentOnBlockingFlow<MutableGraph>()) { ++i; }
+ while (augmenting_flow_test.augmentOnBlockingFlow<MutableGraph>()) { ++i; }
std::cout << "elapsed time: " << ts << std::endl;
std::cout << "number of augmentation phases: " << i << std::endl;
- std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
+ std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
FOR_EACH_LOC(Graph::EdgeIt, e, g) {
if (cut[g.tail(e)] && !cut[g.head(e)] && !flow[e]==cap[e])
@@ -152,10 +156,10 @@
FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
ts.reset();
int i=0;
- while (max_flow_test.augmentOnBlockingFlow2()) { ++i; }
+ while (augmenting_flow_test.augmentOnBlockingFlow2()) { ++i; }
std::cout << "elapsed time: " << ts << std::endl;
std::cout << "number of augmentation phases: " << i << std::endl;
- std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
+ std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
FOR_EACH_LOC(Graph::EdgeIt, e, g) {
if (cut[g.tail(e)] && !cut[g.head(e)] && !flow[e]==cap[e])
@@ -170,10 +174,10 @@
FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
ts.reset();
int i=0;
- while (max_flow_test.augmentOnShortestPath()) { ++i; }
+ while (augmenting_flow_test.augmentOnShortestPath()) { ++i; }
std::cout << "elapsed time: " << ts << std::endl;
std::cout << "number of augmentation phases: " << i << std::endl;
- std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
+ std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
FOR_EACH_LOC(Graph::EdgeIt, e, g) {
if (cut[g.tail(e)] && !cut[g.head(e)] && !flow[e]==cap[e])
@@ -188,10 +192,10 @@
FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
ts.reset();
int i=0;
- while (max_flow_test.augmentOnShortestPath2()) { ++i; }
+ while (augmenting_flow_test.augmentOnShortestPath2()) { ++i; }
std::cout << "elapsed time: " << ts << std::endl;
std::cout << "number of augmentation phases: " << i << std::endl;
- std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
+ std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
FOR_EACH_LOC(Graph::EdgeIt, e, g) {
if (cut[g.tail(e)] && !cut[g.head(e)] && !flow[e]==cap[e])
Modified: hugo/trunk/src/work/marci/top_sort_test.cc
==============================================================================
--- hugo/trunk/src/work/marci/top_sort_test.cc (original)
+++ hugo/trunk/src/work/marci/top_sort_test.cc Tue Aug 17 13:20:16 2004
@@ -8,7 +8,7 @@
#include <sage_graph.h>
#include <hugo/graph_wrapper.h>
#include <hugo/maps.h>
-#include <hugo/for_each_macros.h>
+#include <for_each_macros.h>
using namespace hugo;
More information about the Lemon-commits
mailing list