[Lemon-commits] [lemon_svn] marci: r1024 - in hugo/trunk/src/work: . marci

Lemon SVN svn at lemon.cs.elte.hu
Mon Nov 6 20:42:47 CET 2006


Author: marci
Date: Tue Aug 17 13:20:16 2004
New Revision: 1024

Added:
   hugo/trunk/src/work/marci/augmenting_flow.h
Modified:
   hugo/trunk/src/work/makefile
   hugo/trunk/src/work/marci/bfs_dfs_misc.h
   hugo/trunk/src/work/marci/bfsit_vs_byhand.cc
   hugo/trunk/src/work/marci/bipartite_graph_wrapper.h
   hugo/trunk/src/work/marci/bipartite_graph_wrapper_test.cc
   hugo/trunk/src/work/marci/bipartite_matching_try.cc
   hugo/trunk/src/work/marci/bipartite_matching_try_3.cc
   hugo/trunk/src/work/marci/lg_vs_sg_vs_sg.cc
   hugo/trunk/src/work/marci/macro_test.cc
   hugo/trunk/src/work/marci/makefile
   hugo/trunk/src/work/marci/max_bipartite_matching.h
   hugo/trunk/src/work/marci/max_flow_1.cc
   hugo/trunk/src/work/marci/max_flow_demo.cc
   hugo/trunk/src/work/marci/top_sort_test.cc

Log:
technical corrections



Modified: hugo/trunk/src/work/makefile
==============================================================================
--- hugo/trunk/src/work/makefile	(original)
+++ hugo/trunk/src/work/makefile	Tue Aug 17 13:20:16 2004
@@ -1,5 +1,5 @@
 INCLUDEDIRS ?= -I.. -I. -I./{marci,jacint,alpar,klao,akos}
-CXXFLAGS = -g -O3 -W -Wall $(INCLUDEDIRS) -ansi -pedantic
+CXXFLAGS = -g -O2 -W -Wall $(INCLUDEDIRS) -ansi -pedantic
 
 BINARIES ?= bin_heap_demo
 

Added: hugo/trunk/src/work/marci/augmenting_flow.h
==============================================================================
--- (empty file)
+++ hugo/trunk/src/work/marci/augmenting_flow.h	Tue Aug 17 13:20:16 2004
@@ -0,0 +1,1477 @@
+// -*- C++ -*-
+#ifndef HUGO_AUGMENTING_FLOW_H
+#define HUGO_AUGMENTING_FLOW_H
+
+#include <vector>
+#include <queue>
+#include <stack>
+#include <iostream>
+
+#include <hugo/graph_wrapper.h>
+#include <bfs_dfs.h>
+#include <hugo/invalid.h>
+#include <hugo/maps.h>
+#include <for_each_macros.h>
+
+/// \file
+/// \brief Maximum flow algorithms.
+/// \ingroup galgs
+
+namespace hugo {
+
+  /// \addtogroup galgs
+  /// @{                                                                                                                                        
+  ///Maximum flow algorithms class.
+
+  ///This class provides various algorithms for finding a flow of
+  ///maximum value in a directed graph. The \e source node, the \e
+  ///target node, the \e capacity of the edges and the \e starting \e
+  ///flow value of the edges should be passed to the algorithm through the
+  ///constructor. It is possible to change these quantities using the
+  ///functions \ref resetSource, \ref resetTarget, \ref resetCap and
+  ///\ref resetFlow. Before any subsequent runs of any algorithm of
+  ///the class \ref resetFlow should be called. 
+
+  ///After running an algorithm of the class, the actual flow value 
+  ///can be obtained by calling \ref flowValue(). The minimum
+  ///value cut can be written into a \c node map of \c bools by
+  ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes
+  ///the inclusionwise minimum and maximum of the minimum value
+  ///cuts, resp.)                                                                                                                               
+  ///\param Graph The directed graph type the algorithm runs on.
+  ///\param Num The number type of the capacities and the flow values.
+  ///\param CapMap The capacity map type.
+  ///\param FlowMap The flow map type.                                                                                                           
+  ///\author Marton Makai, Jacint Szabo 
+//   template <typename Graph, typename Num,
+// 	    typename CapMap=typename Graph::template EdgeMap<Num>,
+//             typename FlowMap=typename Graph::template EdgeMap<Num> >
+//   class MaxFlow {
+//   protected:
+//     typedef typename Graph::Node Node;
+//     typedef typename Graph::NodeIt NodeIt;
+//     typedef typename Graph::EdgeIt EdgeIt;
+//     typedef typename Graph::OutEdgeIt OutEdgeIt;
+//     typedef typename Graph::InEdgeIt InEdgeIt;
+
+//     typedef typename std::vector<std::stack<Node> > VecStack;
+//     typedef typename Graph::template NodeMap<Node> NNMap;
+//     typedef typename std::vector<Node> VecNode;
+
+//     const Graph* g;
+//     Node s;
+//     Node t;
+//     const CapMap* capacity;
+//     FlowMap* flow;
+//     int n;      //the number of nodes of G
+//     typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;   
+//     //typedef ExpResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
+//     typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
+//     typedef typename ResGW::Edge ResGWEdge;
+//     //typedef typename ResGW::template NodeMap<bool> ReachedMap;
+//     typedef typename Graph::template NodeMap<int> ReachedMap;
+
+
+//     //level works as a bool map in augmenting path algorithms and is
+//     //used by bfs for storing reached information.  In preflow, it
+//     //shows the levels of nodes.     
+//     ReachedMap level;
+
+//     //excess is needed only in preflow
+//     typename Graph::template NodeMap<Num> excess;
+
+//     //fixme    
+// //   protected:
+//     //     MaxFlow() { }
+//     //     void set(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
+//     // 	     FlowMap& _flow)
+//     //       {
+//     // 	g=&_G;
+//     // 	s=_s;
+//     // 	t=_t;
+//     // 	capacity=&_capacity;
+//     // 	flow=&_flow;
+//     // 	n=_G.nodeNum;
+//     // 	level.set (_G); //kellene vmi ilyesmi fv
+//     // 	excess(_G,0); //itt is
+//     //       }
+
+//     // constants used for heuristics
+//     static const int H0=20;
+//     static const int H1=1;
+
+//   public:
+
+//     ///Indicates the property of the starting flow.
+
+//     ///Indicates the property of the starting flow. The meanings are as follows:
+//     ///- \c ZERO_FLOW: constant zero flow
+//     ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
+//     ///the sum of the out-flows in every node except the \e source and
+//     ///the \e target.
+//     ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at 
+//     ///least the sum of the out-flows in every node except the \e source.
+//     ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be 
+//     ///set to the constant zero flow in the beginning of the algorithm in this case.
+//     enum FlowEnum{
+//       ZERO_FLOW,
+//       GEN_FLOW,
+//       PRE_FLOW,
+//       NO_FLOW
+//     };
+
+//     enum StatusEnum {
+//       AFTER_NOTHING,
+//       AFTER_AUGMENTING,
+//       AFTER_FAST_AUGMENTING, 
+//       AFTER_PRE_FLOW_PHASE_1,      
+//       AFTER_PRE_FLOW_PHASE_2
+//     };
+
+//     /// Don not needle this flag only if necessary.
+//     StatusEnum status;
+// //     int number_of_augmentations;
+
+
+// //     template<typename IntMap>
+// //     class TrickyReachedMap {
+// //     protected:
+// //       IntMap* map;
+// //       int* number_of_augmentations;
+// //     public:
+// //       TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) : 
+// // 	map(&_map), number_of_augmentations(&_number_of_augmentations) { }
+// //       void set(const Node& n, bool b) {
+// // 	if (b)
+// // 	  map->set(n, *number_of_augmentations);
+// // 	else 
+// // 	  map->set(n, *number_of_augmentations-1);
+// //       }
+// //       bool operator[](const Node& n) const { 
+// // 	return (*map)[n]==*number_of_augmentations; 
+// //       }
+// //     };
+    
+//     MaxFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
+// 	    FlowMap& _flow) :
+//       g(&_G), s(_s), t(_t), capacity(&_capacity),
+//       flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0), 
+//       status(AFTER_NOTHING) { }
+
+//     ///Runs a maximum flow algorithm.
+
+//     ///Runs a preflow algorithm, which is the fastest maximum flow
+//     ///algorithm up-to-date. The default for \c fe is ZERO_FLOW.
+//     ///\pre The starting flow must be
+//     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
+//     /// - an arbitary flow if \c fe is \c GEN_FLOW,
+//     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
+//     /// - any map if \c fe is NO_FLOW.
+//     void run(FlowEnum fe=ZERO_FLOW) {
+//       preflow(fe);
+//     }
+
+                                                                              
+//     ///Runs a preflow algorithm.  
+
+//     ///Runs a preflow algorithm. The preflow algorithms provide the
+//     ///fastest way to compute a maximum flow in a directed graph.
+//     ///\pre The starting flow must be
+//     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
+//     /// - an arbitary flow if \c fe is \c GEN_FLOW,
+//     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
+//     /// - any map if \c fe is NO_FLOW.
+//     void preflow(FlowEnum fe) {
+//       preflowPhase1(fe);
+//       preflowPhase2();
+//     }
+//     // Heuristics:
+//     //   2 phase
+//     //   gap
+//     //   list 'level_list' on the nodes on level i implemented by hand
+//     //   stack 'active' on the active nodes on level i                                                                                    
+//     //   runs heuristic 'highest label' for H1*n relabels
+//     //   runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
+//     //   Parameters H0 and H1 are initialized to 20 and 1.
+
+//     ///Runs the first phase of the preflow algorithm.
+
+//     ///The preflow algorithm consists of two phases, this method runs the
+//     ///first phase. After the first phase the maximum flow value and a
+//     ///minimum value cut can already be computed, though a maximum flow
+//     ///is net yet obtained. So after calling this method \ref flowValue
+//     ///and \ref actMinCut gives proper results.
+//     ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not
+//     ///give minimum value cuts unless calling \ref preflowPhase2.
+//     ///\pre The starting flow must be
+//     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
+//     /// - an arbitary flow if \c fe is \c GEN_FLOW,
+//     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
+//     /// - any map if \c fe is NO_FLOW.
+//     void preflowPhase1(FlowEnum fe);
+
+//     ///Runs the second phase of the preflow algorithm.
+
+//     ///The preflow algorithm consists of two phases, this method runs
+//     ///the second phase. After calling \ref preflowPhase1 and then
+//     ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut,
+//     ///\ref minMinCut and \ref maxMinCut give proper results.
+//     ///\pre \ref preflowPhase1 must be called before.
+//     void preflowPhase2();
+
+//     /// Returns the maximum value of a flow.
+
+//     /// Returns the maximum value of a flow, by counting the 
+//     /// over-flow of the target node \ref t.
+//     /// It can be called already after running \ref preflowPhase1.
+//     Num flowValue() const {
+//       Num a=0;
+//       FOR_EACH_INC_LOC(InEdgeIt, e, *g, t) a+=(*flow)[e];
+//       FOR_EACH_INC_LOC(OutEdgeIt, e, *g, t) a-=(*flow)[e];
+//       return a;
+//       //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan   
+//     }
+
+//     ///Returns a minimum value cut after calling \ref preflowPhase1.
+
+//     ///After the first phase of the preflow algorithm the maximum flow
+//     ///value and a minimum value cut can already be computed. This
+//     ///method can be called after running \ref preflowPhase1 for
+//     ///obtaining a minimum value cut.
+//     /// \warning Gives proper result only right after calling \ref
+//     /// preflowPhase1.
+//     /// \todo We have to make some status variable which shows the
+//     /// actual state
+//     /// of the class. This enables us to determine which methods are valid
+//     /// for MinCut computation
+//     template<typename _CutMap>
+//     void actMinCut(_CutMap& M) const {
+//       NodeIt v;
+//       switch (status) {
+//       case AFTER_PRE_FLOW_PHASE_1:
+// 	for(g->first(v); g->valid(v); g->next(v)) {
+// 	  if (level[v] < n) {
+// 	    M.set(v, false);
+// 	  } else {
+// 	    M.set(v, true);
+// 	  }
+// 	}
+// 	break;
+//       case AFTER_PRE_FLOW_PHASE_2:
+//       case AFTER_NOTHING:
+//       case AFTER_AUGMENTING:
+//       case AFTER_FAST_AUGMENTING:
+// 	minMinCut(M);
+// 	break;
+// //       case AFTER_AUGMENTING:
+// // 	for(g->first(v); g->valid(v); g->next(v)) {
+// // 	  if (level[v]) {
+// // 	    M.set(v, true);
+// // 	  } else {
+// // 	    M.set(v, false);
+// // 	  }
+// // 	}
+// // 	break;
+// //       case AFTER_FAST_AUGMENTING:
+// // 	for(g->first(v); g->valid(v); g->next(v)) {
+// // 	  if (level[v]==number_of_augmentations) {
+// // 	    M.set(v, true);
+// // 	  } else {
+// // 	    M.set(v, false);
+// // 	  }
+// // 	}
+// // 	break;
+//       }
+//     }
+
+//     ///Returns the inclusionwise minimum of the minimum value cuts.
+
+//     ///Sets \c M to the characteristic vector of the minimum value cut
+//     ///which is inclusionwise minimum. It is computed by processing
+//     ///a bfs from the source node \c s in the residual graph.
+//     ///\pre M should be a node map of bools initialized to false.
+//     ///\pre \c flow must be a maximum flow.
+//     template<typename _CutMap>
+//     void minMinCut(_CutMap& M) const {
+//       std::queue<Node> queue;
+
+//       M.set(s,true);
+//       queue.push(s);
+
+//       while (!queue.empty()) {
+//         Node w=queue.front();
+// 	queue.pop();
+
+// 	OutEdgeIt e;
+// 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
+// 	  Node v=g->head(e);
+// 	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
+// 	    queue.push(v);
+// 	    M.set(v, true);
+// 	  }
+// 	}
+
+// 	InEdgeIt f;
+// 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
+// 	  Node v=g->tail(f);
+// 	  if (!M[v] && (*flow)[f] > 0 ) {
+// 	    queue.push(v);
+// 	    M.set(v, true);
+// 	  }
+// 	}
+//       }
+//     }
+
+//     ///Returns the inclusionwise maximum of the minimum value cuts.
+
+//     ///Sets \c M to the characteristic vector of the minimum value cut
+//     ///which is inclusionwise maximum. It is computed by processing a
+//     ///backward bfs from the target node \c t in the residual graph.
+//     ///\pre M should be a node map of bools initialized to false.
+//     ///\pre \c flow must be a maximum flow. 
+//     template<typename _CutMap>
+//     void maxMinCut(_CutMap& M) const {
+
+//       NodeIt v;
+//       for(g->first(v) ; g->valid(v); g->next(v)) {
+// 	M.set(v, true);
+//       }
+
+//       std::queue<Node> queue;
+
+//       M.set(t,false);
+//       queue.push(t);
+
+//       while (!queue.empty()) {
+//         Node w=queue.front();
+// 	queue.pop();
+
+// 	InEdgeIt e;
+// 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
+// 	  Node v=g->tail(e);
+// 	  if (M[v] && (*flow)[e] < (*capacity)[e] ) {
+// 	    queue.push(v);
+// 	    M.set(v, false);
+// 	  }
+// 	}
+
+// 	OutEdgeIt f;
+// 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
+// 	  Node v=g->head(f);
+// 	  if (M[v] && (*flow)[f] > 0 ) {
+// 	    queue.push(v);
+// 	    M.set(v, false);
+// 	  }
+// 	}
+//       }
+//     }
+
+//     ///Returns a minimum value cut.
+
+//     ///Sets \c M to the characteristic vector of a minimum value cut.
+//     ///\pre M should be a node map of bools initialized to false.
+//     ///\pre \c flow must be a maximum flow.    
+//     template<typename CutMap>
+//     void minCut(CutMap& M) const { minMinCut(M); }
+
+//     ///Resets the source node to \c _s.
+
+//     ///Resets the source node to \c _s.
+//     /// 
+//     void resetSource(Node _s) { s=_s; status=AFTER_NOTHING; }
+
+//     ///Resets the target node to \c _t.
+
+//     ///Resets the target node to \c _t.
+//     ///
+//     void resetTarget(Node _t) { t=_t; status=AFTER_NOTHING; }
+
+//     /// Resets the edge map of the capacities to _cap.
+
+//     /// Resets the edge map of the capacities to _cap.
+//     /// 
+//     void resetCap(const CapMap& _cap) { capacity=&_cap; status=AFTER_NOTHING; }
+
+//     /// Resets the edge map of the flows to _flow.
+
+//     /// Resets the edge map of the flows to _flow.
+//     /// 
+//     void resetFlow(FlowMap& _flow) { flow=&_flow; status=AFTER_NOTHING; }
+
+
+//   private:
+
+//     int push(Node w, VecStack& active) {
+
+//       int lev=level[w];
+//       Num exc=excess[w];
+//       int newlevel=n;       //bound on the next level of w
+
+//       OutEdgeIt e;
+//       for(g->first(e,w); g->valid(e); g->next(e)) {
+
+// 	if ( (*flow)[e] >= (*capacity)[e] ) continue;
+// 	Node v=g->head(e);
+
+// 	if( lev > level[v] ) { //Push is allowed now
+
+// 	  if ( excess[v]<=0 && v!=t && v!=s ) {
+// 	    int lev_v=level[v];
+// 	    active[lev_v].push(v);
+// 	  }
+
+// 	  Num cap=(*capacity)[e];
+// 	  Num flo=(*flow)[e];
+// 	  Num remcap=cap-flo;
+
+// 	  if ( remcap >= exc ) { //A nonsaturating push.
+
+// 	    flow->set(e, flo+exc);
+// 	    excess.set(v, excess[v]+exc);
+// 	    exc=0;
+// 	    break;
+
+// 	  } else { //A saturating push.
+// 	    flow->set(e, cap);
+// 	    excess.set(v, excess[v]+remcap);
+// 	    exc-=remcap;
+// 	  }
+// 	} else if ( newlevel > level[v] ) newlevel = level[v];
+//       } //for out edges wv
+
+//       if ( exc > 0 ) {
+// 	InEdgeIt e;
+// 	for(g->first(e,w); g->valid(e); g->next(e)) {
+
+// 	  if( (*flow)[e] <= 0 ) continue;
+// 	  Node v=g->tail(e);
+
+// 	  if( lev > level[v] ) { //Push is allowed now
+
+// 	    if ( excess[v]<=0 && v!=t && v!=s ) {
+// 	      int lev_v=level[v];
+// 	      active[lev_v].push(v);
+// 	    }
+
+// 	    Num flo=(*flow)[e];
+
+// 	    if ( flo >= exc ) { //A nonsaturating push.
+
+// 	      flow->set(e, flo-exc);
+// 	      excess.set(v, excess[v]+exc);
+// 	      exc=0;
+// 	      break;
+// 	    } else {  //A saturating push.
+
+// 	      excess.set(v, excess[v]+flo);
+// 	      exc-=flo;
+// 	      flow->set(e,0);
+// 	    }
+// 	  } else if ( newlevel > level[v] ) newlevel = level[v];
+// 	} //for in edges vw
+
+//       } // if w still has excess after the out edge for cycle
+
+//       excess.set(w, exc);
+
+//       return newlevel;
+//     }
+
+
+//     void preflowPreproc(FlowEnum fe, VecStack& active,
+// 			VecNode& level_list, NNMap& left, NNMap& right)
+//     {
+//       std::queue<Node> bfs_queue;
+
+//       switch (fe) {
+//       case NO_FLOW:   //flow is already set to const zero in this case
+//       case ZERO_FLOW:
+// 	{
+// 	  //Reverse_bfs from t, to find the starting level.
+// 	  level.set(t,0);
+// 	  bfs_queue.push(t);
+
+// 	  while (!bfs_queue.empty()) {
+
+// 	    Node v=bfs_queue.front();
+// 	    bfs_queue.pop();
+// 	    int l=level[v]+1;
+
+// 	    InEdgeIt e;
+// 	    for(g->first(e,v); g->valid(e); g->next(e)) {
+// 	      Node w=g->tail(e);
+// 	      if ( level[w] == n && w != s ) {
+// 		bfs_queue.push(w);
+// 		Node first=level_list[l];
+// 		if ( g->valid(first) ) left.set(first,w);
+// 		right.set(w,first);
+// 		level_list[l]=w;
+// 		level.set(w, l);
+// 	      }
+// 	    }
+// 	  }
+
+// 	  //the starting flow
+// 	  OutEdgeIt e;
+// 	  for(g->first(e,s); g->valid(e); g->next(e))
+// 	    {
+// 	      Num c=(*capacity)[e];
+// 	      if ( c <= 0 ) continue;
+// 	      Node w=g->head(e);
+// 	      if ( level[w] < n ) {
+// 		if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
+// 		flow->set(e, c);
+// 		excess.set(w, excess[w]+c);
+// 	      }
+// 	    }
+// 	  break;
+// 	}
+
+//       case GEN_FLOW:
+//       case PRE_FLOW:
+// 	{
+// 	  //Reverse_bfs from t in the residual graph,
+// 	  //to find the starting level.
+// 	  level.set(t,0);
+// 	  bfs_queue.push(t);
+
+// 	  while (!bfs_queue.empty()) {
+
+// 	    Node v=bfs_queue.front();
+// 	    bfs_queue.pop();
+// 	    int l=level[v]+1;
+
+// 	    InEdgeIt e;
+// 	    for(g->first(e,v); g->valid(e); g->next(e)) {
+// 	      if ( (*capacity)[e] <= (*flow)[e] ) continue;
+// 	      Node w=g->tail(e);
+// 	      if ( level[w] == n && w != s ) {
+// 		bfs_queue.push(w);
+// 		Node first=level_list[l];
+// 		if ( g->valid(first) ) left.set(first,w);
+// 		right.set(w,first);
+// 		level_list[l]=w;
+// 		level.set(w, l);
+// 	      }
+// 	    }
+
+// 	    OutEdgeIt f;
+// 	    for(g->first(f,v); g->valid(f); g->next(f)) {
+// 	      if ( 0 >= (*flow)[f] ) continue;
+// 	      Node w=g->head(f);
+// 	      if ( level[w] == n && w != s ) {
+// 		bfs_queue.push(w);
+// 		Node first=level_list[l];
+// 		if ( g->valid(first) ) left.set(first,w);
+// 		right.set(w,first);
+// 		level_list[l]=w;
+// 		level.set(w, l);
+// 	      }
+// 	    }
+// 	  }
+
+
+// 	  //the starting flow
+// 	  OutEdgeIt e;
+// 	  for(g->first(e,s); g->valid(e); g->next(e))
+// 	    {
+// 	      Num rem=(*capacity)[e]-(*flow)[e];
+// 	      if ( rem <= 0 ) continue;
+// 	      Node w=g->head(e);
+// 	      if ( level[w] < n ) {
+// 		if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
+// 		flow->set(e, (*capacity)[e]);
+// 		excess.set(w, excess[w]+rem);
+// 	      }
+// 	    }
+
+// 	  InEdgeIt f;
+// 	  for(g->first(f,s); g->valid(f); g->next(f))
+// 	    {
+// 	      if ( (*flow)[f] <= 0 ) continue;
+// 	      Node w=g->tail(f);
+// 	      if ( level[w] < n ) {
+// 		if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
+// 		excess.set(w, excess[w]+(*flow)[f]);
+// 		flow->set(f, 0);
+// 	      }
+// 	    }
+// 	  break;
+// 	} //case PRE_FLOW
+//       }
+//     } //preflowPreproc
+
+
+
+//     void relabel(Node w, int newlevel, VecStack& active,
+// 		 VecNode& level_list, NNMap& left,
+// 		 NNMap& right, int& b, int& k, bool what_heur )
+//     {
+
+//       //FIXME jacint: ez mitol num
+// //      Num lev=level[w];
+//       int lev=level[w];
+
+//       Node right_n=right[w];
+//       Node left_n=left[w];
+
+//       //unlacing starts
+//       if ( g->valid(right_n) ) {
+// 	if ( g->valid(left_n) ) {
+// 	  right.set(left_n, right_n);
+// 	  left.set(right_n, left_n);
+// 	} else {
+// 	  level_list[lev]=right_n;
+// 	  left.set(right_n, INVALID);
+// 	}
+//       } else {
+// 	if ( g->valid(left_n) ) {
+// 	  right.set(left_n, INVALID);
+// 	} else {
+// 	  level_list[lev]=INVALID;
+// 	}
+//       }
+//       //unlacing ends
+
+//       if ( !g->valid(level_list[lev]) ) {
+
+// 	//gapping starts
+// 	for (int i=lev; i!=k ; ) {
+// 	  Node v=level_list[++i];
+// 	  while ( g->valid(v) ) {
+// 	    level.set(v,n);
+// 	    v=right[v];
+// 	  }
+// 	  level_list[i]=INVALID;
+// 	  if ( !what_heur ) {
+// 	    while ( !active[i].empty() ) {
+// 	      active[i].pop();    //FIXME: ezt szebben kene
+// 	    }
+// 	  }
+// 	}
+
+// 	level.set(w,n);
+// 	b=lev-1;
+// 	k=b;
+// 	//gapping ends
+
+//       } else {
+
+// 	if ( newlevel == n ) level.set(w,n);
+// 	else {
+// 	  level.set(w,++newlevel);
+// 	  active[newlevel].push(w);
+// 	  if ( what_heur ) b=newlevel;
+// 	  if ( k < newlevel ) ++k;      //now k=newlevel
+// 	  Node first=level_list[newlevel];
+// 	  if ( g->valid(first) ) left.set(first,w);
+// 	  right.set(w,first);
+// 	  left.set(w,INVALID);
+// 	  level_list[newlevel]=w;
+// 	}
+//       }
+
+//     } //relabel
+
+//   };
+
+
+
+//   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
+//   void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase1(FlowEnum fe)
+//   {
+
+//     int heur0=(int)(H0*n);  //time while running 'bound decrease'
+//     int heur1=(int)(H1*n);  //time while running 'highest label'
+//     int heur=heur1;         //starting time interval (#of relabels)
+//     int numrelabel=0;
+
+//     bool what_heur=1;
+//     //It is 0 in case 'bound decrease' and 1 in case 'highest label'
+
+//     bool end=false;
+//     //Needed for 'bound decrease', true means no active nodes are above bound
+//     //b.
+
+//     int k=n-2;  //bound on the highest level under n containing a node
+//     int b=k;    //bound on the highest level under n of an active node
+
+//     VecStack active(n);
+
+//     NNMap left(*g, INVALID);
+//     NNMap right(*g, INVALID);
+//     VecNode level_list(n,INVALID);
+//     //List of the nodes in level i<n, set to n.
+
+//     NodeIt v;
+//     for(g->first(v); g->valid(v); g->next(v)) level.set(v,n);
+//     //setting each node to level n
+
+//     if ( fe == NO_FLOW ) {
+//       EdgeIt e;
+//       for(g->first(e); g->valid(e); g->next(e)) flow->set(e,0);
+//     }
+
+//     switch (fe) { //computing the excess
+//     case PRE_FLOW:
+//       {
+// 	NodeIt v;
+// 	for(g->first(v); g->valid(v); g->next(v)) {
+// 	  Num exc=0;
+
+// 	  InEdgeIt e;
+// 	  for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e];
+// 	  OutEdgeIt f;
+// 	  for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f];
+
+// 	  excess.set(v,exc);
+
+// 	  //putting the active nodes into the stack
+// 	  int lev=level[v];
+// 	  if ( exc > 0 && lev < n && v != t ) active[lev].push(v);
+// 	}
+// 	break;
+//       }
+//     case GEN_FLOW:
+//       {
+// 	NodeIt v;
+// 	for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
+
+// 	Num exc=0;
+// 	InEdgeIt e;
+// 	for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e];
+// 	OutEdgeIt f;
+// 	for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f];
+// 	excess.set(t,exc);
+// 	break;
+//       }
+//     case ZERO_FLOW:
+//     case NO_FLOW:
+//       {
+// 	NodeIt v;
+//         for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
+// 	break;
+//       }
+//     }
+
+//     preflowPreproc(fe, active, level_list, left, right);
+//     //End of preprocessing
+
+
+//     //Push/relabel on the highest level active nodes.
+//     while ( true ) {
+//       if ( b == 0 ) {
+// 	if ( !what_heur && !end && k > 0 ) {
+// 	  b=k;
+// 	  end=true;
+// 	} else break;
+//       }
+
+//       if ( active[b].empty() ) --b;
+//       else {
+// 	end=false;
+// 	Node w=active[b].top();
+// 	active[b].pop();
+// 	int newlevel=push(w,active);
+// 	if ( excess[w] > 0 ) relabel(w, newlevel, active, level_list,
+// 				     left, right, b, k, what_heur);
+
+// 	++numrelabel;
+// 	if ( numrelabel >= heur ) {
+// 	  numrelabel=0;
+// 	  if ( what_heur ) {
+// 	    what_heur=0;
+// 	    heur=heur0;
+// 	    end=false;
+// 	  } else {
+// 	    what_heur=1;
+// 	    heur=heur1;
+// 	    b=k;
+// 	  }
+// 	}
+//       }
+//     }
+
+//     status=AFTER_PRE_FLOW_PHASE_1;
+//   }
+
+
+
+//   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
+//   void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase2()
+//   {
+
+//     int k=n-2;  //bound on the highest level under n containing a node
+//     int b=k;    //bound on the highest level under n of an active node
+
+//     VecStack active(n);
+//     level.set(s,0);
+//     std::queue<Node> bfs_queue;
+//     bfs_queue.push(s);
+
+//     while (!bfs_queue.empty()) {
+
+//       Node v=bfs_queue.front();
+//       bfs_queue.pop();
+//       int l=level[v]+1;
+
+//       InEdgeIt e;
+//       for(g->first(e,v); g->valid(e); g->next(e)) {
+// 	if ( (*capacity)[e] <= (*flow)[e] ) continue;
+// 	Node u=g->tail(e);
+// 	if ( level[u] >= n ) {
+// 	  bfs_queue.push(u);
+// 	  level.set(u, l);
+// 	  if ( excess[u] > 0 ) active[l].push(u);
+// 	}
+//       }
+
+//       OutEdgeIt f;
+//       for(g->first(f,v); g->valid(f); g->next(f)) {
+// 	if ( 0 >= (*flow)[f] ) continue;
+// 	Node u=g->head(f);
+// 	if ( level[u] >= n ) {
+// 	  bfs_queue.push(u);
+// 	  level.set(u, l);
+// 	  if ( excess[u] > 0 ) active[l].push(u);
+// 	}
+//       }
+//     }
+//     b=n-2;
+
+//     while ( true ) {
+
+//       if ( b == 0 ) break;
+
+//       if ( active[b].empty() ) --b;
+//       else {
+// 	Node w=active[b].top();
+// 	active[b].pop();
+// 	int newlevel=push(w,active);
+
+// 	//relabel
+// 	if ( excess[w] > 0 ) {
+// 	  level.set(w,++newlevel);
+// 	  active[newlevel].push(w);
+// 	  b=newlevel;
+// 	}
+//       }  // if stack[b] is nonempty
+//     } // while(true)
+
+//     status=AFTER_PRE_FLOW_PHASE_2;
+//   }
+
+
+  template <typename Graph, typename Num,
+	    typename CapMap=typename Graph::template EdgeMap<Num>,
+            typename FlowMap=typename Graph::template EdgeMap<Num> >
+  class AugmentingFlow {
+  protected:
+    typedef typename Graph::Node Node;
+    typedef typename Graph::NodeIt NodeIt;
+    typedef typename Graph::EdgeIt EdgeIt;
+    typedef typename Graph::OutEdgeIt OutEdgeIt;
+    typedef typename Graph::InEdgeIt InEdgeIt;
+
+//    typedef typename std::vector<std::stack<Node> > VecStack;
+//    typedef typename Graph::template NodeMap<Node> NNMap;
+//    typedef typename std::vector<Node> VecNode;
+
+    const Graph* g;
+    Node s;
+    Node t;
+    const CapMap* capacity;
+    FlowMap* flow;
+//    int n;      //the number of nodes of G
+    typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;   
+    //typedef ExpResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
+    typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
+    typedef typename ResGW::Edge ResGWEdge;
+    //typedef typename ResGW::template NodeMap<bool> ReachedMap;
+    typedef typename Graph::template NodeMap<int> ReachedMap;
+
+
+    //level works as a bool map in augmenting path algorithms and is
+    //used by bfs for storing reached information.  In preflow, it
+    //shows the levels of nodes.     
+    ReachedMap level;
+
+    //excess is needed only in preflow
+//    typename Graph::template NodeMap<Num> excess;
+
+    //fixme    
+//   protected:
+    //     MaxFlow() { }
+    //     void set(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
+    // 	     FlowMap& _flow)
+    //       {
+    // 	g=&_G;
+    // 	s=_s;
+    // 	t=_t;
+    // 	capacity=&_capacity;
+    // 	flow=&_flow;
+    // 	n=_G.nodeNum;
+    // 	level.set (_G); //kellene vmi ilyesmi fv
+    // 	excess(_G,0); //itt is
+    //       }
+
+    // constants used for heuristics
+//    static const int H0=20;
+//    static const int H1=1;
+
+  public:
+
+    ///Indicates the property of the starting flow.
+
+    ///Indicates the property of the starting flow. The meanings are as follows:
+    ///- \c ZERO_FLOW: constant zero flow
+    ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
+    ///the sum of the out-flows in every node except the \e source and
+    ///the \e target.
+    ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at 
+    ///least the sum of the out-flows in every node except the \e source.
+    ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be 
+    ///set to the constant zero flow in the beginning of the algorithm in this case.
+    enum FlowEnum{
+      ZERO_FLOW,
+      GEN_FLOW,
+      PRE_FLOW,
+      NO_FLOW
+    };
+
+    enum StatusEnum {
+      AFTER_NOTHING,
+      AFTER_AUGMENTING,
+      AFTER_FAST_AUGMENTING, 
+      AFTER_PRE_FLOW_PHASE_1,      
+      AFTER_PRE_FLOW_PHASE_2
+    };
+
+    /// Don not needle this flag only if necessary.
+    StatusEnum status;
+    int number_of_augmentations;
+
+
+    template<typename IntMap>
+    class TrickyReachedMap {
+    protected:
+      IntMap* map;
+      int* number_of_augmentations;
+    public:
+      TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) : 
+	map(&_map), number_of_augmentations(&_number_of_augmentations) { }
+      void set(const Node& n, bool b) {
+	if (b)
+	  map->set(n, *number_of_augmentations);
+	else 
+	  map->set(n, *number_of_augmentations-1);
+      }
+      bool operator[](const Node& n) const { 
+	return (*map)[n]==*number_of_augmentations; 
+      }
+    };
+    
+    AugmentingFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
+		   FlowMap& _flow) :
+      g(&_G), s(_s), t(_t), capacity(&_capacity),
+      flow(&_flow), //n(_G.nodeNum()), 
+      level(_G), //excess(_G,0), 
+      status(AFTER_NOTHING), number_of_augmentations(0) { }
+
+    /// Starting from a flow, this method searches for an augmenting path
+    /// according to the Edmonds-Karp algorithm
+    /// and augments the flow on if any.
+    /// The return value shows if the augmentation was succesful.
+    bool augmentOnShortestPath();
+    bool augmentOnShortestPath2();
+
+    /// Starting from a flow, this method searches for an augmenting blocking
+    /// flow according to Dinits' algorithm and augments the flow on if any.
+    /// The blocking flow is computed in a physically constructed
+    /// residual graph of type \c Mutablegraph.
+    /// The return value show sif the augmentation was succesful.
+    template<typename MutableGraph> bool augmentOnBlockingFlow();
+
+    /// The same as \c augmentOnBlockingFlow<MutableGraph> but the
+    /// residual graph is not constructed physically.
+    /// The return value shows if the augmentation was succesful.
+    bool augmentOnBlockingFlow2();
+
+    template<typename _CutMap>
+    void actMinCut(_CutMap& M) const {
+      NodeIt v;
+      switch (status) {
+	case AFTER_PRE_FLOW_PHASE_1:
+//	std::cout << "AFTER_PRE_FLOW_PHASE_1" << std::endl;
+// 	for(g->first(v); g->valid(v); g->next(v)) {
+// 	  if (level[v] < n) {
+// 	    M.set(v, false);
+// 	  } else {
+// 	    M.set(v, true);
+// 	  }
+// 	}
+	break;
+      case AFTER_PRE_FLOW_PHASE_2:
+//	std::cout << "AFTER_PRE_FLOW_PHASE_2" << std::endl;
+	break;
+      case AFTER_NOTHING:
+//	std::cout << "AFTER_NOTHING" << std::endl;
+	minMinCut(M);
+	break;
+      case AFTER_AUGMENTING:
+//	std::cout << "AFTER_AUGMENTING" << std::endl;
+	for(g->first(v); g->valid(v); g->next(v)) {
+	  if (level[v]) {
+	    M.set(v, true);
+	  } else {
+	    M.set(v, false);
+	  }
+	}
+	break;
+      case AFTER_FAST_AUGMENTING:
+//	std::cout << "AFTER_FAST_AUGMENTING" << std::endl;
+	for(g->first(v); g->valid(v); g->next(v)) {
+	  if (level[v]==number_of_augmentations) {
+	    M.set(v, true);
+	  } else {
+	    M.set(v, false);
+	  }
+	}
+	break;
+      }
+    }
+
+    template<typename _CutMap>
+    void minMinCut(_CutMap& M) const {
+      std::queue<Node> queue;
+
+      M.set(s,true);
+      queue.push(s);
+
+      while (!queue.empty()) {
+        Node w=queue.front();
+	queue.pop();
+
+	OutEdgeIt e;
+	for(g->first(e,w) ; g->valid(e); g->next(e)) {
+	  Node v=g->head(e);
+	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
+	    queue.push(v);
+	    M.set(v, true);
+	  }
+	}
+
+	InEdgeIt f;
+	for(g->first(f,w) ; g->valid(f); g->next(f)) {
+	  Node v=g->tail(f);
+	  if (!M[v] && (*flow)[f] > 0 ) {
+	    queue.push(v);
+	    M.set(v, true);
+	  }
+	}
+      }
+    }
+
+    template<typename _CutMap>
+    void minMinCut2(_CutMap& M) const {
+      ResGW res_graph(*g, *capacity, *flow);
+      BfsIterator<ResGW, _CutMap> bfs(res_graph, M);
+      bfs.pushAndSetReached(s);
+      while (!bfs.finished()) ++bfs;
+    }
+
+    Num flowValue() const {
+      Num a=0;
+      FOR_EACH_INC_LOC(InEdgeIt, e, *g, t) a+=(*flow)[e];
+      FOR_EACH_INC_LOC(OutEdgeIt, e, *g, t) a-=(*flow)[e];
+      return a;
+      //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan   
+    }
+
+    template<typename MapGraphWrapper>
+    class DistanceMap {
+    protected:
+      const MapGraphWrapper* g;
+      typename MapGraphWrapper::template NodeMap<int> dist;
+    public:
+      DistanceMap(MapGraphWrapper& _g) : g(&_g), dist(*g, g->nodeNum()) { }
+      void set(const typename MapGraphWrapper::Node& n, int a) {
+	dist.set(n, a);
+      }
+      int operator[](const typename MapGraphWrapper::Node& n) const { 
+	return dist[n]; 
+      }
+      //       int get(const typename MapGraphWrapper::Node& n) const {
+      // 	return dist[n]; }
+      //       bool get(const typename MapGraphWrapper::Edge& e) const {
+      // 	return (dist.get(g->tail(e))<dist.get(g->head(e))); }
+      bool operator[](const typename MapGraphWrapper::Edge& e) const {
+	return (dist[g->tail(e)]<dist[g->head(e)]);
+      }
+    };
+
+  };
+
+
+
+  template <typename Graph, typename Num, typename CapMap, typename FlowMap>
+  bool AugmentingFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath()
+  {
+    ResGW res_graph(*g, *capacity, *flow);
+    bool _augment=false;
+
+    //ReachedMap level(res_graph);
+    FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
+    BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
+    bfs.pushAndSetReached(s);
+
+    typename ResGW::template NodeMap<ResGWEdge> pred(res_graph);
+    pred.set(s, INVALID);
+
+    typename ResGW::template NodeMap<Num> free(res_graph);
+
+    //searching for augmenting path
+    while ( !bfs.finished() ) {
+      ResGWOutEdgeIt e=bfs;
+      if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
+	Node v=res_graph.tail(e);
+	Node w=res_graph.head(e);
+	pred.set(w, e);
+	if (res_graph.valid(pred[v])) {
+	  free.set(w, std::min(free[v], res_graph.resCap(e)));
+	} else {
+	  free.set(w, res_graph.resCap(e));
+	}
+	if (res_graph.head(e)==t) { _augment=true; break; }
+      }
+
+      ++bfs;
+    } //end of searching augmenting path
+
+    if (_augment) {
+      Node n=t;
+      Num augment_value=free[t];
+      while (res_graph.valid(pred[n])) {
+	ResGWEdge e=pred[n];
+	res_graph.augment(e, augment_value);
+	n=res_graph.tail(e);
+      }
+    }
+
+    status=AFTER_AUGMENTING;
+    return _augment;
+  }
+
+  template <typename Graph, typename Num, typename CapMap, typename FlowMap>
+  bool AugmentingFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath2()
+  {
+    ResGW res_graph(*g, *capacity, *flow);
+    bool _augment=false;
+
+    if (status!=AFTER_FAST_AUGMENTING) {
+      FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); 
+      number_of_augmentations=1;
+    } else {
+      ++number_of_augmentations;
+    }
+    TrickyReachedMap<ReachedMap> 
+      tricky_reached_map(level, number_of_augmentations);
+    //ReachedMap level(res_graph);
+//    FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
+    BfsIterator<ResGW, TrickyReachedMap<ReachedMap> > 
+      bfs(res_graph, tricky_reached_map);
+    bfs.pushAndSetReached(s);
+
+    typename ResGW::template NodeMap<ResGWEdge> pred(res_graph);
+    pred.set(s, INVALID);
+
+    typename ResGW::template NodeMap<Num> free(res_graph);
+
+    //searching for augmenting path
+    while ( !bfs.finished() ) {
+      ResGWOutEdgeIt e=bfs;
+      if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
+	Node v=res_graph.tail(e);
+	Node w=res_graph.head(e);
+	pred.set(w, e);
+	if (res_graph.valid(pred[v])) {
+	  free.set(w, std::min(free[v], res_graph.resCap(e)));
+	} else {
+	  free.set(w, res_graph.resCap(e));
+	}
+	if (res_graph.head(e)==t) { _augment=true; break; }
+      }
+
+      ++bfs;
+    } //end of searching augmenting path
+
+    if (_augment) {
+      Node n=t;
+      Num augment_value=free[t];
+      while (res_graph.valid(pred[n])) {
+	ResGWEdge e=pred[n];
+	res_graph.augment(e, augment_value);
+	n=res_graph.tail(e);
+      }
+    }
+
+    status=AFTER_FAST_AUGMENTING;
+    return _augment;
+  }
+
+
+  template <typename Graph, typename Num, typename CapMap, typename FlowMap>
+  template<typename MutableGraph>
+  bool AugmentingFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow()
+  {
+    typedef MutableGraph MG;
+    bool _augment=false;
+
+    ResGW res_graph(*g, *capacity, *flow);
+
+    //bfs for distances on the residual graph
+    //ReachedMap level(res_graph);
+    FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
+    BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
+    bfs.pushAndSetReached(s);
+    typename ResGW::template NodeMap<int>
+      dist(res_graph); //filled up with 0's
+
+    //F will contain the physical copy of the residual graph
+    //with the set of edges which are on shortest paths
+    MG F;
+    typename ResGW::template NodeMap<typename MG::Node>
+      res_graph_to_F(res_graph);
+    {
+      typename ResGW::NodeIt n;
+      for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) {
+	res_graph_to_F.set(n, F.addNode());
+      }
+    }
+
+    typename MG::Node sF=res_graph_to_F[s];
+    typename MG::Node tF=res_graph_to_F[t];
+    typename MG::template EdgeMap<ResGWEdge> original_edge(F);
+    typename MG::template EdgeMap<Num> residual_capacity(F);
+
+    while ( !bfs.finished() ) {
+      ResGWOutEdgeIt e=bfs;
+      if (res_graph.valid(e)) {
+	if (bfs.isBNodeNewlyReached()) {
+	  dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
+	  typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)],
+					res_graph_to_F[res_graph.head(e)]);
+	  original_edge.update();
+	  original_edge.set(f, e);
+	  residual_capacity.update();
+	  residual_capacity.set(f, res_graph.resCap(e));
+	} else {
+	  if (dist[res_graph.head(e)]==(dist[res_graph.tail(e)]+1)) {
+	    typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)],
+					  res_graph_to_F[res_graph.head(e)]);
+	    original_edge.update();
+	    original_edge.set(f, e);
+	    residual_capacity.update();
+	    residual_capacity.set(f, res_graph.resCap(e));
+	  }
+	}
+      }
+      ++bfs;
+    } //computing distances from s in the residual graph
+
+    bool __augment=true;
+
+    while (__augment) {
+      __augment=false;
+      //computing blocking flow with dfs
+      DfsIterator< MG, typename MG::template NodeMap<bool> > dfs(F);
+      typename MG::template NodeMap<typename MG::Edge> pred(F);
+      pred.set(sF, INVALID);
+      //invalid iterators for sources
+
+      typename MG::template NodeMap<Num> free(F);
+
+      dfs.pushAndSetReached(sF);
+      while (!dfs.finished()) {
+	++dfs;
+	if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) {
+	  if (dfs.isBNodeNewlyReached()) {
+	    typename MG::Node v=F.aNode(dfs);
+	    typename MG::Node w=F.bNode(dfs);
+	    pred.set(w, dfs);
+	    if (F.valid(pred[v])) {
+	      free.set(w, std::min(free[v], residual_capacity[dfs]));
+	    } else {
+	      free.set(w, residual_capacity[dfs]);
+	    }
+	    if (w==tF) {
+	      __augment=true;
+	      _augment=true;
+	      break;
+	    }
+
+	  } else {
+	    F.erase(/*typename MG::OutEdgeIt*/(dfs));
+	  }
+	}
+      }
+
+      if (__augment) {
+	typename MG::Node n=tF;
+	Num augment_value=free[tF];
+	while (F.valid(pred[n])) {
+	  typename MG::Edge e=pred[n];
+	  res_graph.augment(original_edge[e], augment_value);
+	  n=F.tail(e);
+	  if (residual_capacity[e]==augment_value)
+	    F.erase(e);
+	  else
+	    residual_capacity.set(e, residual_capacity[e]-augment_value);
+	}
+      }
+
+    }
+
+    status=AFTER_AUGMENTING;
+    return _augment;
+  }
+
+
+
+
+  template <typename Graph, typename Num, typename CapMap, typename FlowMap>
+  bool AugmentingFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow2()
+  {
+    bool _augment=false;
+
+    ResGW res_graph(*g, *capacity, *flow);
+
+    //ReachedMap level(res_graph);
+    FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
+    BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
+
+    bfs.pushAndSetReached(s);
+    DistanceMap<ResGW> dist(res_graph);
+    while ( !bfs.finished() ) {
+      ResGWOutEdgeIt e=bfs;
+      if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
+	dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
+      }
+      ++bfs;
+    } //computing distances from s in the residual graph
+
+      //Subgraph containing the edges on some shortest paths
+    ConstMap<typename ResGW::Node, bool> true_map(true);
+    typedef SubGraphWrapper<ResGW, ConstMap<typename ResGW::Node, bool>,
+      DistanceMap<ResGW> > FilterResGW;
+    FilterResGW filter_res_graph(res_graph, true_map, dist);
+
+    //Subgraph, which is able to delete edges which are already
+    //met by the dfs
+    typename FilterResGW::template NodeMap<typename FilterResGW::OutEdgeIt>
+      first_out_edges(filter_res_graph);
+    typename FilterResGW::NodeIt v;
+    for(filter_res_graph.first(v); filter_res_graph.valid(v);
+	filter_res_graph.next(v))
+      {
+ 	typename FilterResGW::OutEdgeIt e;
+ 	filter_res_graph.first(e, v);
+ 	first_out_edges.set(v, e);
+      }
+    typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW::
+      template NodeMap<typename FilterResGW::OutEdgeIt> > ErasingResGW;
+    ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges);
+
+    bool __augment=true;
+
+    while (__augment) {
+
+      __augment=false;
+      //computing blocking flow with dfs
+      DfsIterator< ErasingResGW,
+	typename ErasingResGW::template NodeMap<bool> >
+	dfs(erasing_res_graph);
+      typename ErasingResGW::
+	template NodeMap<typename ErasingResGW::OutEdgeIt>
+	pred(erasing_res_graph);
+      pred.set(s, INVALID);
+      //invalid iterators for sources
+
+      typename ErasingResGW::template NodeMap<Num>
+	free1(erasing_res_graph);
+
+      dfs.pushAndSetReached
+	///\bug hugo 0.2
+	(typename ErasingResGW::Node
+	 (typename FilterResGW::Node
+	  (typename ResGW::Node(s)
+	   )
+	  )
+	 );
+      while (!dfs.finished()) {
+	++dfs;
+	if (erasing_res_graph.valid(typename ErasingResGW::OutEdgeIt(dfs)))
+ 	  {
+  	    if (dfs.isBNodeNewlyReached()) {
+
+ 	      typename ErasingResGW::Node v=erasing_res_graph.aNode(dfs);
+ 	      typename ErasingResGW::Node w=erasing_res_graph.bNode(dfs);
+
+ 	      pred.set(w, /*typename ErasingResGW::OutEdgeIt*/(dfs));
+ 	      if (erasing_res_graph.valid(pred[v])) {
+ 		free1.set
+		  (w, std::min(free1[v], res_graph.resCap
+			       (typename ErasingResGW::OutEdgeIt(dfs))));
+ 	      } else {
+ 		free1.set
+		  (w, res_graph.resCap
+		   (typename ErasingResGW::OutEdgeIt(dfs)));
+ 	      }
+
+ 	      if (w==t) {
+ 		__augment=true;
+ 		_augment=true;
+ 		break;
+ 	      }
+ 	    } else {
+ 	      erasing_res_graph.erase(dfs);
+	    }
+	  }
+      }
+
+      if (__augment) {
+	typename ErasingResGW::Node
+	  n=typename FilterResGW::Node(typename ResGW::Node(t));
+	// 	  typename ResGW::NodeMap<Num> a(res_graph);
+	// 	  typename ResGW::Node b;
+	// 	  Num j=a[b];
+	// 	  typename FilterResGW::NodeMap<Num> a1(filter_res_graph);
+	// 	  typename FilterResGW::Node b1;
+	// 	  Num j1=a1[b1];
+	// 	  typename ErasingResGW::NodeMap<Num> a2(erasing_res_graph);
+	// 	  typename ErasingResGW::Node b2;
+	// 	  Num j2=a2[b2];
+	Num augment_value=free1[n];
+	while (erasing_res_graph.valid(pred[n])) {
+	  typename ErasingResGW::OutEdgeIt e=pred[n];
+	  res_graph.augment(e, augment_value);
+	  n=erasing_res_graph.tail(e);
+	  if (res_graph.resCap(e)==0)
+	    erasing_res_graph.erase(e);
+	}
+      }
+
+    } //while (__augment)
+
+    status=AFTER_AUGMENTING;
+    return _augment;
+  }
+
+
+} //namespace hugo
+
+#endif //HUGO_AUGMENTING_FLOW_H
+
+
+
+

Modified: hugo/trunk/src/work/marci/bfs_dfs_misc.h
==============================================================================
--- hugo/trunk/src/work/marci/bfs_dfs_misc.h	(original)
+++ hugo/trunk/src/work/marci/bfs_dfs_misc.h	Tue Aug 17 13:20:16 2004
@@ -11,7 +11,7 @@
 // ///\author Marton Makai
 
 #include <bfs_dfs.h>
-#include <hugo/for_each_macros.h>
+#include <for_each_macros.h>
 
 namespace hugo {
 

Modified: hugo/trunk/src/work/marci/bfsit_vs_byhand.cc
==============================================================================
--- hugo/trunk/src/work/marci/bfsit_vs_byhand.cc	(original)
+++ hugo/trunk/src/work/marci/bfsit_vs_byhand.cc	Tue Aug 17 13:20:16 2004
@@ -6,7 +6,7 @@
 //#include <smart_graph.h>
 #include <hugo/dimacs.h>
 #include <hugo/time_measure.h>
-#include <hugo/for_each_macros.h>
+//#include <hugo/for_each_macros.h>
 #include <bfs_dfs.h>
 
 using namespace hugo;
@@ -21,7 +21,7 @@
 
   Graph g;
   Node s, t;
-  Graph::EdgeMap<int> cap(g);
+  //Graph::EdgeMap<int> cap(g);
   //readDimacsMaxFlow(std::cin, g, s, t, cap);
   readDimacs(std::cin, g);
 

Modified: hugo/trunk/src/work/marci/bipartite_graph_wrapper.h
==============================================================================
--- hugo/trunk/src/work/marci/bipartite_graph_wrapper.h	(original)
+++ hugo/trunk/src/work/marci/bipartite_graph_wrapper.h	Tue Aug 17 13:20:16 2004
@@ -13,6 +13,7 @@
 #include <hugo/invalid.h>
 #include <iter_map.h>
 #include <hugo/graph_wrapper.h>
+#include <for_each_macros.h>
 
 namespace hugo {
 

Modified: hugo/trunk/src/work/marci/bipartite_graph_wrapper_test.cc
==============================================================================
--- hugo/trunk/src/work/marci/bipartite_graph_wrapper_test.cc	(original)
+++ hugo/trunk/src/work/marci/bipartite_graph_wrapper_test.cc	Tue Aug 17 13:20:16 2004
@@ -7,12 +7,13 @@
 //#include <smart_graph.h>
 //#include <dimacs.h>
 #include <hugo/time_measure.h>
-#include <hugo/for_each_macros.h>
+#include <for_each_macros.h>
 #include <bfs_dfs.h>
 #include <hugo/graph_wrapper.h>
 #include <bipartite_graph_wrapper.h>
 #include <hugo/maps.h>
-#include <max_flow.h>
+#include <hugo/max_flow.h>
+#include <augmenting_flow.h>
 
 using namespace hugo;
 
@@ -133,7 +134,7 @@
     ++bfs_stgw; 
   }
   
-  MaxFlow<stGW, int, ConstMap<stGW::Edge, int>, stGW::EdgeMap<int> > 
+  AugmentingFlow<stGW, int, ConstMap<stGW::Edge, int>, stGW::EdgeMap<int> > 
     max_flow_test(stgw, stgw.S_NODE, stgw.T_NODE, const1map, flow);
   while (max_flow_test.augmentOnShortestPath()) { }
 

Modified: hugo/trunk/src/work/marci/bipartite_matching_try.cc
==============================================================================
--- hugo/trunk/src/work/marci/bipartite_matching_try.cc	(original)
+++ hugo/trunk/src/work/marci/bipartite_matching_try.cc	Tue Aug 17 13:20:16 2004
@@ -8,12 +8,13 @@
 //#include <smart_graph.h>
 //#include <dimacs.h>
 #include <hugo/time_measure.h>
-#include <hugo/for_each_macros.h>
+#include <for_each_macros.h>
 #include <bfs_dfs.h>
 #include <hugo/graph_wrapper.h>
 #include <bipartite_graph_wrapper.h>
 #include <hugo/maps.h>
-#include <max_flow.h>
+#include <hugo/max_flow.h>
+#include <augmenting_flow.h>
 
 /**
  * Inicializalja a veletlenszamgeneratort.
@@ -163,7 +164,7 @@
   Timer ts;
   ts.reset();
   stGW::EdgeMap<int> max_flow(stgw);
-  MaxFlow<stGW, int, ConstMap<stGW::Edge, int>, stGW::EdgeMap<int> > 
+  AugmentingFlow<stGW, int, ConstMap<stGW::Edge, int>, stGW::EdgeMap<int> > 
     max_flow_test(stgw, stgw.S_NODE, stgw.T_NODE, const1map, max_flow);
 //  while (max_flow_test.augmentOnShortestPath()) { }
   typedef SageGraph MutableGraph;

Modified: hugo/trunk/src/work/marci/bipartite_matching_try_3.cc
==============================================================================
--- hugo/trunk/src/work/marci/bipartite_matching_try_3.cc	(original)
+++ hugo/trunk/src/work/marci/bipartite_matching_try_3.cc	Tue Aug 17 13:20:16 2004
@@ -7,11 +7,11 @@
 //#include <smart_graph.h>
 //#include <dimacs.h>
 #include <hugo/time_measure.h>
-#include <hugo/for_each_macros.h>
+#include <for_each_macros.h>
 #include <bfs_dfs.h>
 #include <bipartite_graph_wrapper.h>
 #include <hugo/maps.h>
-#include <max_flow.h>
+#include <hugo/max_flow.h>
 #include <graph_gen.h>
 #include <max_bipartite_matching.h>
 

Modified: hugo/trunk/src/work/marci/lg_vs_sg_vs_sg.cc
==============================================================================
--- hugo/trunk/src/work/marci/lg_vs_sg_vs_sg.cc	(original)
+++ hugo/trunk/src/work/marci/lg_vs_sg_vs_sg.cc	Tue Aug 17 13:20:16 2004
@@ -7,9 +7,10 @@
 #include <hugo/list_graph.h>
 #include <hugo/smart_graph.h>
 #include <hugo/dimacs.h>
-#include <max_flow.h>
+#include <hugo/max_flow.h>
+#include <augmenting_flow.h>
 #include <hugo/time_measure.h>
-#include <hugo/for_each_macros.h>
+#include <for_each_macros.h>
 
 using namespace hugo;
 
@@ -37,6 +38,8 @@
     Graph::EdgeMap<int> flow(g); //0 flow
     MaxFlow<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > 
       max_flow_test(g, s, t, cap, flow/*, true*/);
+    AugmentingFlow<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > 
+      augmenting_flow_test(g, s, t, cap, flow/*, true*/);
 
     std::cout << "SageGraph ..." << std::endl;
 
@@ -53,10 +56,10 @@
       FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
       ts.reset();
       int i=0;
-      while (max_flow_test.augmentOnBlockingFlow<MutableGraph>()) { ++i; }
+      while (augmenting_flow_test.augmentOnBlockingFlow<MutableGraph>()) { ++i; }
       std::cout << "elapsed time: " << ts << std::endl;
       std::cout << "number of augmentation phases: " << i << std::endl; 
-      std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
+      std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
     }
 
 //     {
@@ -75,10 +78,10 @@
       FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
       ts.reset();
       int i=0;
-      while (max_flow_test.augmentOnBlockingFlow2()) { ++i; }
+      while (augmenting_flow_test.augmentOnBlockingFlow2()) { ++i; }
       std::cout << "elapsed time: " << ts << std::endl;
       std::cout << "number of augmentation phases: " << i << std::endl; 
-      std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
+      std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
     }
 
     {
@@ -86,10 +89,10 @@
       FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
       ts.reset();
       int i=0;
-      while (max_flow_test.augmentOnShortestPath()) { ++i; }
+      while (augmenting_flow_test.augmentOnShortestPath()) { ++i; }
       std::cout << "elapsed time: " << ts << std::endl;
       std::cout << "number of augmentation phases: " << i << std::endl; 
-      std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
+      std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
     }
   }
 
@@ -109,6 +112,8 @@
     Graph::EdgeMap<int> flow(g); //0 flow
     MaxFlow<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > 
       max_flow_test(g, s, t, cap, flow/*, true*/);
+    AugmentingFlow<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > 
+      augmenting_flow_test(g, s, t, cap, flow/*, true*/);
     //    MaxFlow<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > 
     //  max_flow_test(g, s, t, cap, flow);
 
@@ -128,10 +133,10 @@
       FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
       ts.reset();
       int i=0;
-      while (max_flow_test.augmentOnBlockingFlow<MutableGraph>()) { ++i; }
+      while (augmenting_flow_test.augmentOnBlockingFlow<MutableGraph>()) { ++i; }
       std::cout << "elapsed time: " << ts << std::endl;
       std::cout << "number of augmentation phases: " << i << std::endl; 
-      std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
+      std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
     }
 
 //     {
@@ -150,10 +155,10 @@
       FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
       ts.reset();
       int i=0;
-      while (max_flow_test.augmentOnBlockingFlow2()) { ++i; }
+      while (augmenting_flow_test.augmentOnBlockingFlow2()) { ++i; }
       std::cout << "elapsed time: " << ts << std::endl;
       std::cout << "number of augmentation phases: " << i << std::endl; 
-      std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
+      std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
     }
 
     {
@@ -161,10 +166,10 @@
       FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
       ts.reset();
       int i=0;
-      while (max_flow_test.augmentOnShortestPath()) { ++i; }
+      while (augmenting_flow_test.augmentOnShortestPath()) { ++i; }
       std::cout << "elapsed time: " << ts << std::endl;
       std::cout << "number of augmentation phases: " << i << std::endl; 
-      std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
+      std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
     }
   }
 
@@ -184,6 +189,8 @@
     Graph::EdgeMap<int> flow(g); //0 flow
     MaxFlow<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > 
       max_flow_test(g, s, t, cap, flow/*, true*/);
+    AugmentingFlow<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > 
+      augmenting_flow_test(g, s, t, cap, flow/*, true*/);
     //    MaxFlow<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > 
     //  max_flow_test(g, s, t, cap, flow);
 
@@ -203,10 +210,10 @@
       FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
       ts.reset();
       int i=0;
-      while (max_flow_test.augmentOnBlockingFlow<MutableGraph>()) { ++i; }
+      while (augmenting_flow_test.augmentOnBlockingFlow<MutableGraph>()) { ++i; }
       std::cout << "elapsed time: " << ts << std::endl;
       std::cout << "number of augmentation phases: " << i << std::endl; 
-      std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
+      std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
     }
 
 //     {
@@ -225,10 +232,10 @@
       FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
       ts.reset();
       int i=0;
-      while (max_flow_test.augmentOnBlockingFlow2()) { ++i; }
+      while (augmenting_flow_test.augmentOnBlockingFlow2()) { ++i; }
       std::cout << "elapsed time: " << ts << std::endl;
       std::cout << "number of augmentation phases: " << i << std::endl; 
-      std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
+      std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
     }
 
     {
@@ -236,15 +243,12 @@
       FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
       ts.reset();
       int i=0;
-      while (max_flow_test.augmentOnShortestPath()) { ++i; }
+      while (augmenting_flow_test.augmentOnShortestPath()) { ++i; }
       std::cout << "elapsed time: " << ts << std::endl;
       std::cout << "number of augmentation phases: " << i << std::endl; 
-      std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
+      std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
     }
   }
 
-
-
-
   return 0;
 }

Modified: hugo/trunk/src/work/marci/macro_test.cc
==============================================================================
--- hugo/trunk/src/work/marci/macro_test.cc	(original)
+++ hugo/trunk/src/work/marci/macro_test.cc	Tue Aug 17 13:20:16 2004
@@ -3,7 +3,7 @@
 #include <fstream>
 
 #include <sage_graph.h>
-#include <hugo/for_each_macros.h>
+#include <for_each_macros.h>
 
 using namespace hugo;
 

Modified: hugo/trunk/src/work/marci/makefile
==============================================================================
--- hugo/trunk/src/work/marci/makefile	(original)
+++ hugo/trunk/src/work/marci/makefile	Tue Aug 17 13:20:16 2004
@@ -1,10 +1,11 @@
 CXX2 = g++-2.95
 CXX3=$(CXX)
 BOOSTROOT ?= /home/marci/boost
-INCLUDEDIRS ?= -I../.. -I.. -I../{marci,jacint,alpar,klao,akos,athos} -I$(BOOSTROOT)
+INCLUDEDIRS ?= -I../{jacint,marci,alpar,klao,akos,athos} -I../.. -I.. -I$(BOOSTROOT)
 
 LEDABINARIES = leda_graph_demo leda_bfs_dfs max_bipartite_matching_demo
 BINARIES = max_flow_demo iterator_bfs_demo macro_test lg_vs_sg_vs_sg bfsit_vs_byhand bipartite_graph_wrapper_test bipartite_matching_try bipartite_matching_try_3 top_sort_test max_flow_1
+#BINARIES = preflow_bug
 #gw_vs_not preflow_demo_boost edmonds_karp_demo_boost preflow_demo_jacint preflow_demo_athos edmonds_karp_demo_alpar preflow_demo_leda
 
 include ../makefile

Modified: hugo/trunk/src/work/marci/max_bipartite_matching.h
==============================================================================
--- hugo/trunk/src/work/marci/max_bipartite_matching.h	(original)
+++ hugo/trunk/src/work/marci/max_bipartite_matching.h	Tue Aug 17 13:20:16 2004
@@ -15,7 +15,7 @@
 //#include <for_each_macros.h>
 #include <bipartite_graph_wrapper.h>
 //#include <hugo/maps.h>
-#include <max_flow.h>
+#include <hugo/max_flow.h>
 
 namespace hugo {
 

Modified: hugo/trunk/src/work/marci/max_flow_1.cc
==============================================================================
--- hugo/trunk/src/work/marci/max_flow_1.cc	(original)
+++ hugo/trunk/src/work/marci/max_flow_1.cc	Tue Aug 17 13:20:16 2004
@@ -7,9 +7,9 @@
 #include <hugo/dimacs.h>
 #include <hugo/time_measure.h>
 //#include <graph_wrapper.h>
-#include <max_flow.h>
+#include <hugo/max_flow.h>
 //#include <preflow_res.h>
-#include <hugo/for_each_macros.h>
+#include <for_each_macros.h>
 
 using namespace hugo;
 

Modified: hugo/trunk/src/work/marci/max_flow_demo.cc
==============================================================================
--- hugo/trunk/src/work/marci/max_flow_demo.cc	(original)
+++ hugo/trunk/src/work/marci/max_flow_demo.cc	Tue Aug 17 13:20:16 2004
@@ -7,9 +7,10 @@
 #include <hugo/dimacs.h>
 #include <hugo/time_measure.h>
 //#include <graph_wrapper.h>
-#include <max_flow.h>
+#include <hugo/max_flow.h>
+#include <augmenting_flow.h>
 //#include <preflow_res.h>
-#include <hugo/for_each_macros.h>
+#include <for_each_macros.h>
 #include <graph_concept.h>
 
 using namespace hugo;
@@ -38,8 +39,8 @@
   typedef SageGraph MutableGraph;
 
   //typedef FullFeatureGraphConcept Graph;
-  typedef SmartGraph Graph;
-  //  typedef SageGraph Graph;
+  //typedef SmartGraph Graph;
+  typedef SageGraph Graph;
   typedef Graph::Node Node;
   typedef Graph::EdgeIt EdgeIt;
 
@@ -75,6 +76,9 @@
   Graph::EdgeMap<int> flow(g); //0 flow
   MaxFlow<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > 
     max_flow_test(g, s, t, cap, flow);
+  AugmentingFlow<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > 
+    augmenting_flow_test(g, s, t, cap, flow);
+  
   Graph::NodeMap<bool> cut(g);
 
   {
@@ -123,10 +127,10 @@
     FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
     ts.reset();
     int i=0;
-    while (max_flow_test.augmentOnBlockingFlow<MutableGraph>()) { ++i; }
+    while (augmenting_flow_test.augmentOnBlockingFlow<MutableGraph>()) { ++i; }
     std::cout << "elapsed time: " << ts << std::endl;
     std::cout << "number of augmentation phases: " << i << std::endl; 
-    std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
+    std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
 
     FOR_EACH_LOC(Graph::EdgeIt, e, g) {
       if (cut[g.tail(e)] && !cut[g.head(e)] && !flow[e]==cap[e]) 
@@ -152,10 +156,10 @@
     FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
     ts.reset();
     int i=0;
-    while (max_flow_test.augmentOnBlockingFlow2()) { ++i; }
+    while (augmenting_flow_test.augmentOnBlockingFlow2()) { ++i; }
     std::cout << "elapsed time: " << ts << std::endl;
     std::cout << "number of augmentation phases: " << i << std::endl; 
-    std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
+    std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
 
     FOR_EACH_LOC(Graph::EdgeIt, e, g) {
       if (cut[g.tail(e)] && !cut[g.head(e)] && !flow[e]==cap[e]) 
@@ -170,10 +174,10 @@
     FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
     ts.reset();
     int i=0;
-    while (max_flow_test.augmentOnShortestPath()) { ++i; }
+    while (augmenting_flow_test.augmentOnShortestPath()) { ++i; }
     std::cout << "elapsed time: " << ts << std::endl;
     std::cout << "number of augmentation phases: " << i << std::endl; 
-    std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
+    std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
 
     FOR_EACH_LOC(Graph::EdgeIt, e, g) {
       if (cut[g.tail(e)] && !cut[g.head(e)] && !flow[e]==cap[e]) 
@@ -188,10 +192,10 @@
     FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
     ts.reset();
     int i=0;
-    while (max_flow_test.augmentOnShortestPath2()) { ++i; }
+    while (augmenting_flow_test.augmentOnShortestPath2()) { ++i; }
     std::cout << "elapsed time: " << ts << std::endl;
     std::cout << "number of augmentation phases: " << i << std::endl; 
-    std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
+    std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
 
     FOR_EACH_LOC(Graph::EdgeIt, e, g) {
       if (cut[g.tail(e)] && !cut[g.head(e)] && !flow[e]==cap[e]) 

Modified: hugo/trunk/src/work/marci/top_sort_test.cc
==============================================================================
--- hugo/trunk/src/work/marci/top_sort_test.cc	(original)
+++ hugo/trunk/src/work/marci/top_sort_test.cc	Tue Aug 17 13:20:16 2004
@@ -8,7 +8,7 @@
 #include <sage_graph.h>
 #include <hugo/graph_wrapper.h>
 #include <hugo/maps.h>
-#include <hugo/for_each_macros.h>
+#include <for_each_macros.h>
 
 using namespace hugo;
 



More information about the Lemon-commits mailing list