[Lemon-commits] [lemon_svn] marci: r1162 - hugo/trunk/src/work/marci

Lemon SVN svn at lemon.cs.elte.hu
Mon Nov 6 20:43:36 CET 2006


Author: marci
Date: Thu Sep 16 12:59:52 2004
New Revision: 1162

Modified:
   hugo/trunk/src/work/marci/augmenting_flow.h

Log:
bug correction


Modified: hugo/trunk/src/work/marci/augmenting_flow.h
==============================================================================
--- hugo/trunk/src/work/marci/augmenting_flow.h	(original)
+++ hugo/trunk/src/work/marci/augmenting_flow.h	Thu Sep 16 12:59:52 2004
@@ -3,15 +3,14 @@
 #define HUGO_AUGMENTING_FLOW_H
 
 #include <vector>
-#include <queue>
-#include <stack>
+//#include <queue>
+//#include <stack>
 #include <iostream>
 
 #include <hugo/graph_wrapper.h>
 #include <bfs_dfs.h>
 #include <hugo/invalid.h>
 #include <hugo/maps.h>
-//#include <for_each_macros.h>
 
 /// \file
 /// \brief Maximum flow algorithms.
@@ -19,849 +18,68 @@
 
 namespace hugo {
 
+  /// \brief A map for filtering the edge-set to those edges 
+  /// which are tight w.r.t. some node_potential map and 
+  /// edge_distance map.
+  ///
+  /// A node-map node_potential is said to be a potential w.r.t. 
+  /// an edge-map edge_distance 
+  /// if and only if for each edge e, node_potential[g.head(e)] 
+  /// <= edge_distance[e]+node_potential[g.tail(e)] 
+  /// (or the reverse inequality holds for each edge).
+  /// An edge is said to be tight if this inequality holds with equality, 
+  /// and the map returns true exactly for those edges.
+  /// To avoid rounding errors, it is recommended to use this class with exact 
+  /// types, e.g. with int.
+  template<typename Graph, 
+	   typename NodePotentialMap, typename EdgeDistanceMap>
+  class TightEdgeFilterMap {
+  protected:
+    const Graph* g;
+    NodePotentialMap* node_potential;
+    EdgeDistanceMap* edge_distance;
+  public:
+    TightEdgeFilterMap(Graph& _g, NodePotentialMap& _node_potential, 
+		       EdgeDistanceMap& _edge_distance) : 
+      g(&_g), node_potential(&_node_potential), 
+      edge_distance(&_edge_distance) { }
+//     void set(const typename Graph::Node& n, int a) {
+//       pot->set(n, a);
+//     }
+//     int operator[](const typename Graph::Node& n) const { 
+//       return (*node_potential)[n]; 
+//     }
+    bool operator[](const typename Graph::Edge& e) const {
+      return ((*node_potential)[g->head(e)] == 
+	      (*edge_distance)[e]+(*node_potential)[g->tail(e)]);
+    }
+  };
+
   /// \addtogroup galgs
   /// @{                                                                                                                                        
-  ///Maximum flow algorithms class.
+  /// Class for augmenting path flow algorithms.
 
-  ///This class provides various algorithms for finding a flow of
-  ///maximum value in a directed graph. The \e source node, the \e
-  ///target node, the \e capacity of the edges and the \e starting \e
-  ///flow value of the edges should be passed to the algorithm through the
-  ///constructor. It is possible to change these quantities using the
-  ///functions \ref resetSource, \ref resetTarget, \ref resetCap and
-  ///\ref resetFlow. Before any subsequent runs of any algorithm of
-  ///the class \ref resetFlow should be called. 
-
-  ///After running an algorithm of the class, the actual flow value 
-  ///can be obtained by calling \ref flowValue(). The minimum
-  ///value cut can be written into a \c node map of \c bools by
-  ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes
-  ///the inclusionwise minimum and maximum of the minimum value
-  ///cuts, resp.)                                                                                                                               
+  /// This class provides various algorithms for finding a flow of
+  /// maximum value in a directed graph. The \e source node, the \e
+  /// target node, the \e capacity of the edges and the \e starting \e
+  /// flow value of the edges should be passed to the algorithm through the
+  /// constructor. 
+//   /// It is possible to change these quantities using the
+//   /// functions \ref resetSource, \ref resetTarget, \ref resetCap and
+//   /// \ref resetFlow. Before any subsequent runs of any algorithm of
+//   /// the class \ref resetFlow should be called. 
+
+  /// After running an algorithm of the class, the actual flow value 
+  /// can be obtained by calling \ref flowValue(). The minimum
+  /// value cut can be written into a \c node map of \c bools by
+  /// calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes
+  /// the inclusionwise minimum and maximum of the minimum value
+  /// cuts, resp.)                                                                                                                               
   ///\param Graph The directed graph type the algorithm runs on.
   ///\param Num The number type of the capacities and the flow values.
   ///\param CapMap The capacity map type.
   ///\param FlowMap The flow map type.                                                                                                           
-  ///\author Marton Makai, Jacint Szabo 
-//   template <typename Graph, typename Num,
-// 	    typename CapMap=typename Graph::template EdgeMap<Num>,
-//             typename FlowMap=typename Graph::template EdgeMap<Num> >
-//   class MaxFlow {
-//   protected:
-//     typedef typename Graph::Node Node;
-//     typedef typename Graph::NodeIt NodeIt;
-//     typedef typename Graph::EdgeIt EdgeIt;
-//     typedef typename Graph::OutEdgeIt OutEdgeIt;
-//     typedef typename Graph::InEdgeIt InEdgeIt;
-
-//     typedef typename std::vector<std::stack<Node> > VecStack;
-//     typedef typename Graph::template NodeMap<Node> NNMap;
-//     typedef typename std::vector<Node> VecNode;
-
-//     const Graph* g;
-//     Node s;
-//     Node t;
-//     const CapMap* capacity;
-//     FlowMap* flow;
-//     int n;      //the number of nodes of G
-//     typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;   
-//     //typedef ExpResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
-//     typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
-//     typedef typename ResGW::Edge ResGWEdge;
-//     //typedef typename ResGW::template NodeMap<bool> ReachedMap;
-//     typedef typename Graph::template NodeMap<int> ReachedMap;
-
-
-//     //level works as a bool map in augmenting path algorithms and is
-//     //used by bfs for storing reached information.  In preflow, it
-//     //shows the levels of nodes.     
-//     ReachedMap level;
-
-//     //excess is needed only in preflow
-//     typename Graph::template NodeMap<Num> excess;
-
-//     //fixme    
-// //   protected:
-//     //     MaxFlow() { }
-//     //     void set(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
-//     // 	     FlowMap& _flow)
-//     //       {
-//     // 	g=&_G;
-//     // 	s=_s;
-//     // 	t=_t;
-//     // 	capacity=&_capacity;
-//     // 	flow=&_flow;
-//     // 	n=_G.nodeNum;
-//     // 	level.set (_G); //kellene vmi ilyesmi fv
-//     // 	excess(_G,0); //itt is
-//     //       }
-
-//     // constants used for heuristics
-//     static const int H0=20;
-//     static const int H1=1;
-
-//   public:
-
-//     ///Indicates the property of the starting flow.
-
-//     ///Indicates the property of the starting flow. The meanings are as follows:
-//     ///- \c ZERO_FLOW: constant zero flow
-//     ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
-//     ///the sum of the out-flows in every node except the \e source and
-//     ///the \e target.
-//     ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at 
-//     ///least the sum of the out-flows in every node except the \e source.
-//     ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be 
-//     ///set to the constant zero flow in the beginning of the algorithm in this case.
-//     enum FlowEnum{
-//       ZERO_FLOW,
-//       GEN_FLOW,
-//       PRE_FLOW,
-//       NO_FLOW
-//     };
-
-//     enum StatusEnum {
-//       AFTER_NOTHING,
-//       AFTER_AUGMENTING,
-//       AFTER_FAST_AUGMENTING, 
-//       AFTER_PRE_FLOW_PHASE_1,      
-//       AFTER_PRE_FLOW_PHASE_2
-//     };
-
-//     /// Don not needle this flag only if necessary.
-//     StatusEnum status;
-// //     int number_of_augmentations;
-
-
-// //     template<typename IntMap>
-// //     class TrickyReachedMap {
-// //     protected:
-// //       IntMap* map;
-// //       int* number_of_augmentations;
-// //     public:
-// //       TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) : 
-// // 	map(&_map), number_of_augmentations(&_number_of_augmentations) { }
-// //       void set(const Node& n, bool b) {
-// // 	if (b)
-// // 	  map->set(n, *number_of_augmentations);
-// // 	else 
-// // 	  map->set(n, *number_of_augmentations-1);
-// //       }
-// //       bool operator[](const Node& n) const { 
-// // 	return (*map)[n]==*number_of_augmentations; 
-// //       }
-// //     };
-    
-//     MaxFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
-// 	    FlowMap& _flow) :
-//       g(&_G), s(_s), t(_t), capacity(&_capacity),
-//       flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0), 
-//       status(AFTER_NOTHING) { }
-
-//     ///Runs a maximum flow algorithm.
-
-//     ///Runs a preflow algorithm, which is the fastest maximum flow
-//     ///algorithm up-to-date. The default for \c fe is ZERO_FLOW.
-//     ///\pre The starting flow must be
-//     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
-//     /// - an arbitary flow if \c fe is \c GEN_FLOW,
-//     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
-//     /// - any map if \c fe is NO_FLOW.
-//     void run(FlowEnum fe=ZERO_FLOW) {
-//       preflow(fe);
-//     }
-
-                                                                              
-//     ///Runs a preflow algorithm.  
-
-//     ///Runs a preflow algorithm. The preflow algorithms provide the
-//     ///fastest way to compute a maximum flow in a directed graph.
-//     ///\pre The starting flow must be
-//     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
-//     /// - an arbitary flow if \c fe is \c GEN_FLOW,
-//     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
-//     /// - any map if \c fe is NO_FLOW.
-//     void preflow(FlowEnum fe) {
-//       preflowPhase1(fe);
-//       preflowPhase2();
-//     }
-//     // Heuristics:
-//     //   2 phase
-//     //   gap
-//     //   list 'level_list' on the nodes on level i implemented by hand
-//     //   stack 'active' on the active nodes on level i                                                                                    
-//     //   runs heuristic 'highest label' for H1*n relabels
-//     //   runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
-//     //   Parameters H0 and H1 are initialized to 20 and 1.
-
-//     ///Runs the first phase of the preflow algorithm.
-
-//     ///The preflow algorithm consists of two phases, this method runs the
-//     ///first phase. After the first phase the maximum flow value and a
-//     ///minimum value cut can already be computed, though a maximum flow
-//     ///is net yet obtained. So after calling this method \ref flowValue
-//     ///and \ref actMinCut gives proper results.
-//     ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not
-//     ///give minimum value cuts unless calling \ref preflowPhase2.
-//     ///\pre The starting flow must be
-//     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
-//     /// - an arbitary flow if \c fe is \c GEN_FLOW,
-//     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
-//     /// - any map if \c fe is NO_FLOW.
-//     void preflowPhase1(FlowEnum fe);
-
-//     ///Runs the second phase of the preflow algorithm.
-
-//     ///The preflow algorithm consists of two phases, this method runs
-//     ///the second phase. After calling \ref preflowPhase1 and then
-//     ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut,
-//     ///\ref minMinCut and \ref maxMinCut give proper results.
-//     ///\pre \ref preflowPhase1 must be called before.
-//     void preflowPhase2();
-
-//     /// Returns the maximum value of a flow.
-
-//     /// Returns the maximum value of a flow, by counting the 
-//     /// over-flow of the target node \ref t.
-//     /// It can be called already after running \ref preflowPhase1.
-//     Num flowValue() const {
-//       Num a=0;
-//       FOR_EACH_INC_LOC(InEdgeIt, e, *g, t) a+=(*flow)[e];
-//       FOR_EACH_INC_LOC(OutEdgeIt, e, *g, t) a-=(*flow)[e];
-//       return a;
-//       //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan   
-//     }
-
-//     ///Returns a minimum value cut after calling \ref preflowPhase1.
-
-//     ///After the first phase of the preflow algorithm the maximum flow
-//     ///value and a minimum value cut can already be computed. This
-//     ///method can be called after running \ref preflowPhase1 for
-//     ///obtaining a minimum value cut.
-//     /// \warning Gives proper result only right after calling \ref
-//     /// preflowPhase1.
-//     /// \todo We have to make some status variable which shows the
-//     /// actual state
-//     /// of the class. This enables us to determine which methods are valid
-//     /// for MinCut computation
-//     template<typename _CutMap>
-//     void actMinCut(_CutMap& M) const {
-//       NodeIt v;
-//       switch (status) {
-//       case AFTER_PRE_FLOW_PHASE_1:
-// 	for(g->first(v); g->valid(v); g->next(v)) {
-// 	  if (level[v] < n) {
-// 	    M.set(v, false);
-// 	  } else {
-// 	    M.set(v, true);
-// 	  }
-// 	}
-// 	break;
-//       case AFTER_PRE_FLOW_PHASE_2:
-//       case AFTER_NOTHING:
-//       case AFTER_AUGMENTING:
-//       case AFTER_FAST_AUGMENTING:
-// 	minMinCut(M);
-// 	break;
-// //       case AFTER_AUGMENTING:
-// // 	for(g->first(v); g->valid(v); g->next(v)) {
-// // 	  if (level[v]) {
-// // 	    M.set(v, true);
-// // 	  } else {
-// // 	    M.set(v, false);
-// // 	  }
-// // 	}
-// // 	break;
-// //       case AFTER_FAST_AUGMENTING:
-// // 	for(g->first(v); g->valid(v); g->next(v)) {
-// // 	  if (level[v]==number_of_augmentations) {
-// // 	    M.set(v, true);
-// // 	  } else {
-// // 	    M.set(v, false);
-// // 	  }
-// // 	}
-// // 	break;
-//       }
-//     }
-
-//     ///Returns the inclusionwise minimum of the minimum value cuts.
-
-//     ///Sets \c M to the characteristic vector of the minimum value cut
-//     ///which is inclusionwise minimum. It is computed by processing
-//     ///a bfs from the source node \c s in the residual graph.
-//     ///\pre M should be a node map of bools initialized to false.
-//     ///\pre \c flow must be a maximum flow.
-//     template<typename _CutMap>
-//     void minMinCut(_CutMap& M) const {
-//       std::queue<Node> queue;
-
-//       M.set(s,true);
-//       queue.push(s);
-
-//       while (!queue.empty()) {
-//         Node w=queue.front();
-// 	queue.pop();
-
-// 	OutEdgeIt e;
-// 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
-// 	  Node v=g->head(e);
-// 	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
-// 	    queue.push(v);
-// 	    M.set(v, true);
-// 	  }
-// 	}
-
-// 	InEdgeIt f;
-// 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
-// 	  Node v=g->tail(f);
-// 	  if (!M[v] && (*flow)[f] > 0 ) {
-// 	    queue.push(v);
-// 	    M.set(v, true);
-// 	  }
-// 	}
-//       }
-//     }
-
-//     ///Returns the inclusionwise maximum of the minimum value cuts.
-
-//     ///Sets \c M to the characteristic vector of the minimum value cut
-//     ///which is inclusionwise maximum. It is computed by processing a
-//     ///backward bfs from the target node \c t in the residual graph.
-//     ///\pre M should be a node map of bools initialized to false.
-//     ///\pre \c flow must be a maximum flow. 
-//     template<typename _CutMap>
-//     void maxMinCut(_CutMap& M) const {
-
-//       NodeIt v;
-//       for(g->first(v) ; g->valid(v); g->next(v)) {
-// 	M.set(v, true);
-//       }
-
-//       std::queue<Node> queue;
-
-//       M.set(t,false);
-//       queue.push(t);
-
-//       while (!queue.empty()) {
-//         Node w=queue.front();
-// 	queue.pop();
-
-// 	InEdgeIt e;
-// 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
-// 	  Node v=g->tail(e);
-// 	  if (M[v] && (*flow)[e] < (*capacity)[e] ) {
-// 	    queue.push(v);
-// 	    M.set(v, false);
-// 	  }
-// 	}
-
-// 	OutEdgeIt f;
-// 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
-// 	  Node v=g->head(f);
-// 	  if (M[v] && (*flow)[f] > 0 ) {
-// 	    queue.push(v);
-// 	    M.set(v, false);
-// 	  }
-// 	}
-//       }
-//     }
-
-//     ///Returns a minimum value cut.
-
-//     ///Sets \c M to the characteristic vector of a minimum value cut.
-//     ///\pre M should be a node map of bools initialized to false.
-//     ///\pre \c flow must be a maximum flow.    
-//     template<typename CutMap>
-//     void minCut(CutMap& M) const { minMinCut(M); }
-
-//     ///Resets the source node to \c _s.
-
-//     ///Resets the source node to \c _s.
-//     /// 
-//     void resetSource(Node _s) { s=_s; status=AFTER_NOTHING; }
-
-//     ///Resets the target node to \c _t.
-
-//     ///Resets the target node to \c _t.
-//     ///
-//     void resetTarget(Node _t) { t=_t; status=AFTER_NOTHING; }
-
-//     /// Resets the edge map of the capacities to _cap.
-
-//     /// Resets the edge map of the capacities to _cap.
-//     /// 
-//     void resetCap(const CapMap& _cap) { capacity=&_cap; status=AFTER_NOTHING; }
-
-//     /// Resets the edge map of the flows to _flow.
-
-//     /// Resets the edge map of the flows to _flow.
-//     /// 
-//     void resetFlow(FlowMap& _flow) { flow=&_flow; status=AFTER_NOTHING; }
-
-
-//   private:
-
-//     int push(Node w, VecStack& active) {
-
-//       int lev=level[w];
-//       Num exc=excess[w];
-//       int newlevel=n;       //bound on the next level of w
-
-//       OutEdgeIt e;
-//       for(g->first(e,w); g->valid(e); g->next(e)) {
-
-// 	if ( (*flow)[e] >= (*capacity)[e] ) continue;
-// 	Node v=g->head(e);
-
-// 	if( lev > level[v] ) { //Push is allowed now
-
-// 	  if ( excess[v]<=0 && v!=t && v!=s ) {
-// 	    int lev_v=level[v];
-// 	    active[lev_v].push(v);
-// 	  }
-
-// 	  Num cap=(*capacity)[e];
-// 	  Num flo=(*flow)[e];
-// 	  Num remcap=cap-flo;
-
-// 	  if ( remcap >= exc ) { //A nonsaturating push.
-
-// 	    flow->set(e, flo+exc);
-// 	    excess.set(v, excess[v]+exc);
-// 	    exc=0;
-// 	    break;
-
-// 	  } else { //A saturating push.
-// 	    flow->set(e, cap);
-// 	    excess.set(v, excess[v]+remcap);
-// 	    exc-=remcap;
-// 	  }
-// 	} else if ( newlevel > level[v] ) newlevel = level[v];
-//       } //for out edges wv
-
-//       if ( exc > 0 ) {
-// 	InEdgeIt e;
-// 	for(g->first(e,w); g->valid(e); g->next(e)) {
-
-// 	  if( (*flow)[e] <= 0 ) continue;
-// 	  Node v=g->tail(e);
-
-// 	  if( lev > level[v] ) { //Push is allowed now
-
-// 	    if ( excess[v]<=0 && v!=t && v!=s ) {
-// 	      int lev_v=level[v];
-// 	      active[lev_v].push(v);
-// 	    }
-
-// 	    Num flo=(*flow)[e];
-
-// 	    if ( flo >= exc ) { //A nonsaturating push.
-
-// 	      flow->set(e, flo-exc);
-// 	      excess.set(v, excess[v]+exc);
-// 	      exc=0;
-// 	      break;
-// 	    } else {  //A saturating push.
-
-// 	      excess.set(v, excess[v]+flo);
-// 	      exc-=flo;
-// 	      flow->set(e,0);
-// 	    }
-// 	  } else if ( newlevel > level[v] ) newlevel = level[v];
-// 	} //for in edges vw
-
-//       } // if w still has excess after the out edge for cycle
-
-//       excess.set(w, exc);
-
-//       return newlevel;
-//     }
-
-
-//     void preflowPreproc(FlowEnum fe, VecStack& active,
-// 			VecNode& level_list, NNMap& left, NNMap& right)
-//     {
-//       std::queue<Node> bfs_queue;
-
-//       switch (fe) {
-//       case NO_FLOW:   //flow is already set to const zero in this case
-//       case ZERO_FLOW:
-// 	{
-// 	  //Reverse_bfs from t, to find the starting level.
-// 	  level.set(t,0);
-// 	  bfs_queue.push(t);
-
-// 	  while (!bfs_queue.empty()) {
-
-// 	    Node v=bfs_queue.front();
-// 	    bfs_queue.pop();
-// 	    int l=level[v]+1;
-
-// 	    InEdgeIt e;
-// 	    for(g->first(e,v); g->valid(e); g->next(e)) {
-// 	      Node w=g->tail(e);
-// 	      if ( level[w] == n && w != s ) {
-// 		bfs_queue.push(w);
-// 		Node first=level_list[l];
-// 		if ( g->valid(first) ) left.set(first,w);
-// 		right.set(w,first);
-// 		level_list[l]=w;
-// 		level.set(w, l);
-// 	      }
-// 	    }
-// 	  }
-
-// 	  //the starting flow
-// 	  OutEdgeIt e;
-// 	  for(g->first(e,s); g->valid(e); g->next(e))
-// 	    {
-// 	      Num c=(*capacity)[e];
-// 	      if ( c <= 0 ) continue;
-// 	      Node w=g->head(e);
-// 	      if ( level[w] < n ) {
-// 		if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
-// 		flow->set(e, c);
-// 		excess.set(w, excess[w]+c);
-// 	      }
-// 	    }
-// 	  break;
-// 	}
-
-//       case GEN_FLOW:
-//       case PRE_FLOW:
-// 	{
-// 	  //Reverse_bfs from t in the residual graph,
-// 	  //to find the starting level.
-// 	  level.set(t,0);
-// 	  bfs_queue.push(t);
-
-// 	  while (!bfs_queue.empty()) {
-
-// 	    Node v=bfs_queue.front();
-// 	    bfs_queue.pop();
-// 	    int l=level[v]+1;
-
-// 	    InEdgeIt e;
-// 	    for(g->first(e,v); g->valid(e); g->next(e)) {
-// 	      if ( (*capacity)[e] <= (*flow)[e] ) continue;
-// 	      Node w=g->tail(e);
-// 	      if ( level[w] == n && w != s ) {
-// 		bfs_queue.push(w);
-// 		Node first=level_list[l];
-// 		if ( g->valid(first) ) left.set(first,w);
-// 		right.set(w,first);
-// 		level_list[l]=w;
-// 		level.set(w, l);
-// 	      }
-// 	    }
-
-// 	    OutEdgeIt f;
-// 	    for(g->first(f,v); g->valid(f); g->next(f)) {
-// 	      if ( 0 >= (*flow)[f] ) continue;
-// 	      Node w=g->head(f);
-// 	      if ( level[w] == n && w != s ) {
-// 		bfs_queue.push(w);
-// 		Node first=level_list[l];
-// 		if ( g->valid(first) ) left.set(first,w);
-// 		right.set(w,first);
-// 		level_list[l]=w;
-// 		level.set(w, l);
-// 	      }
-// 	    }
-// 	  }
-
-
-// 	  //the starting flow
-// 	  OutEdgeIt e;
-// 	  for(g->first(e,s); g->valid(e); g->next(e))
-// 	    {
-// 	      Num rem=(*capacity)[e]-(*flow)[e];
-// 	      if ( rem <= 0 ) continue;
-// 	      Node w=g->head(e);
-// 	      if ( level[w] < n ) {
-// 		if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
-// 		flow->set(e, (*capacity)[e]);
-// 		excess.set(w, excess[w]+rem);
-// 	      }
-// 	    }
-
-// 	  InEdgeIt f;
-// 	  for(g->first(f,s); g->valid(f); g->next(f))
-// 	    {
-// 	      if ( (*flow)[f] <= 0 ) continue;
-// 	      Node w=g->tail(f);
-// 	      if ( level[w] < n ) {
-// 		if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
-// 		excess.set(w, excess[w]+(*flow)[f]);
-// 		flow->set(f, 0);
-// 	      }
-// 	    }
-// 	  break;
-// 	} //case PRE_FLOW
-//       }
-//     } //preflowPreproc
-
-
-
-//     void relabel(Node w, int newlevel, VecStack& active,
-// 		 VecNode& level_list, NNMap& left,
-// 		 NNMap& right, int& b, int& k, bool what_heur )
-//     {
-
-//       //FIXME jacint: ez mitol num
-// //      Num lev=level[w];
-//       int lev=level[w];
-
-//       Node right_n=right[w];
-//       Node left_n=left[w];
-
-//       //unlacing starts
-//       if ( g->valid(right_n) ) {
-// 	if ( g->valid(left_n) ) {
-// 	  right.set(left_n, right_n);
-// 	  left.set(right_n, left_n);
-// 	} else {
-// 	  level_list[lev]=right_n;
-// 	  left.set(right_n, INVALID);
-// 	}
-//       } else {
-// 	if ( g->valid(left_n) ) {
-// 	  right.set(left_n, INVALID);
-// 	} else {
-// 	  level_list[lev]=INVALID;
-// 	}
-//       }
-//       //unlacing ends
-
-//       if ( !g->valid(level_list[lev]) ) {
-
-// 	//gapping starts
-// 	for (int i=lev; i!=k ; ) {
-// 	  Node v=level_list[++i];
-// 	  while ( g->valid(v) ) {
-// 	    level.set(v,n);
-// 	    v=right[v];
-// 	  }
-// 	  level_list[i]=INVALID;
-// 	  if ( !what_heur ) {
-// 	    while ( !active[i].empty() ) {
-// 	      active[i].pop();    //FIXME: ezt szebben kene
-// 	    }
-// 	  }
-// 	}
-
-// 	level.set(w,n);
-// 	b=lev-1;
-// 	k=b;
-// 	//gapping ends
-
-//       } else {
-
-// 	if ( newlevel == n ) level.set(w,n);
-// 	else {
-// 	  level.set(w,++newlevel);
-// 	  active[newlevel].push(w);
-// 	  if ( what_heur ) b=newlevel;
-// 	  if ( k < newlevel ) ++k;      //now k=newlevel
-// 	  Node first=level_list[newlevel];
-// 	  if ( g->valid(first) ) left.set(first,w);
-// 	  right.set(w,first);
-// 	  left.set(w,INVALID);
-// 	  level_list[newlevel]=w;
-// 	}
-//       }
-
-//     } //relabel
-
-//   };
-
-
-
-//   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
-//   void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase1(FlowEnum fe)
-//   {
-
-//     int heur0=(int)(H0*n);  //time while running 'bound decrease'
-//     int heur1=(int)(H1*n);  //time while running 'highest label'
-//     int heur=heur1;         //starting time interval (#of relabels)
-//     int numrelabel=0;
-
-//     bool what_heur=1;
-//     //It is 0 in case 'bound decrease' and 1 in case 'highest label'
-
-//     bool end=false;
-//     //Needed for 'bound decrease', true means no active nodes are above bound
-//     //b.
-
-//     int k=n-2;  //bound on the highest level under n containing a node
-//     int b=k;    //bound on the highest level under n of an active node
-
-//     VecStack active(n);
-
-//     NNMap left(*g, INVALID);
-//     NNMap right(*g, INVALID);
-//     VecNode level_list(n,INVALID);
-//     //List of the nodes in level i<n, set to n.
-
-//     NodeIt v;
-//     for(g->first(v); g->valid(v); g->next(v)) level.set(v,n);
-//     //setting each node to level n
-
-//     if ( fe == NO_FLOW ) {
-//       EdgeIt e;
-//       for(g->first(e); g->valid(e); g->next(e)) flow->set(e,0);
-//     }
-
-//     switch (fe) { //computing the excess
-//     case PRE_FLOW:
-//       {
-// 	NodeIt v;
-// 	for(g->first(v); g->valid(v); g->next(v)) {
-// 	  Num exc=0;
-
-// 	  InEdgeIt e;
-// 	  for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e];
-// 	  OutEdgeIt f;
-// 	  for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f];
-
-// 	  excess.set(v,exc);
-
-// 	  //putting the active nodes into the stack
-// 	  int lev=level[v];
-// 	  if ( exc > 0 && lev < n && v != t ) active[lev].push(v);
-// 	}
-// 	break;
-//       }
-//     case GEN_FLOW:
-//       {
-// 	NodeIt v;
-// 	for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
-
-// 	Num exc=0;
-// 	InEdgeIt e;
-// 	for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e];
-// 	OutEdgeIt f;
-// 	for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f];
-// 	excess.set(t,exc);
-// 	break;
-//       }
-//     case ZERO_FLOW:
-//     case NO_FLOW:
-//       {
-// 	NodeIt v;
-//         for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
-// 	break;
-//       }
-//     }
-
-//     preflowPreproc(fe, active, level_list, left, right);
-//     //End of preprocessing
-
-
-//     //Push/relabel on the highest level active nodes.
-//     while ( true ) {
-//       if ( b == 0 ) {
-// 	if ( !what_heur && !end && k > 0 ) {
-// 	  b=k;
-// 	  end=true;
-// 	} else break;
-//       }
-
-//       if ( active[b].empty() ) --b;
-//       else {
-// 	end=false;
-// 	Node w=active[b].top();
-// 	active[b].pop();
-// 	int newlevel=push(w,active);
-// 	if ( excess[w] > 0 ) relabel(w, newlevel, active, level_list,
-// 				     left, right, b, k, what_heur);
-
-// 	++numrelabel;
-// 	if ( numrelabel >= heur ) {
-// 	  numrelabel=0;
-// 	  if ( what_heur ) {
-// 	    what_heur=0;
-// 	    heur=heur0;
-// 	    end=false;
-// 	  } else {
-// 	    what_heur=1;
-// 	    heur=heur1;
-// 	    b=k;
-// 	  }
-// 	}
-//       }
-//     }
-
-//     status=AFTER_PRE_FLOW_PHASE_1;
-//   }
-
-
-
-//   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
-//   void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase2()
-//   {
-
-//     int k=n-2;  //bound on the highest level under n containing a node
-//     int b=k;    //bound on the highest level under n of an active node
-
-//     VecStack active(n);
-//     level.set(s,0);
-//     std::queue<Node> bfs_queue;
-//     bfs_queue.push(s);
-
-//     while (!bfs_queue.empty()) {
-
-//       Node v=bfs_queue.front();
-//       bfs_queue.pop();
-//       int l=level[v]+1;
-
-//       InEdgeIt e;
-//       for(g->first(e,v); g->valid(e); g->next(e)) {
-// 	if ( (*capacity)[e] <= (*flow)[e] ) continue;
-// 	Node u=g->tail(e);
-// 	if ( level[u] >= n ) {
-// 	  bfs_queue.push(u);
-// 	  level.set(u, l);
-// 	  if ( excess[u] > 0 ) active[l].push(u);
-// 	}
-//       }
-
-//       OutEdgeIt f;
-//       for(g->first(f,v); g->valid(f); g->next(f)) {
-// 	if ( 0 >= (*flow)[f] ) continue;
-// 	Node u=g->head(f);
-// 	if ( level[u] >= n ) {
-// 	  bfs_queue.push(u);
-// 	  level.set(u, l);
-// 	  if ( excess[u] > 0 ) active[l].push(u);
-// 	}
-//       }
-//     }
-//     b=n-2;
-
-//     while ( true ) {
-
-//       if ( b == 0 ) break;
-
-//       if ( active[b].empty() ) --b;
-//       else {
-// 	Node w=active[b].top();
-// 	active[b].pop();
-// 	int newlevel=push(w,active);
-
-// 	//relabel
-// 	if ( excess[w] > 0 ) {
-// 	  level.set(w,++newlevel);
-// 	  active[newlevel].push(w);
-// 	  b=newlevel;
-// 	}
-//       }  // if stack[b] is nonempty
-//     } // while(true)
-
-//     status=AFTER_PRE_FLOW_PHASE_2;
-//   }
-
-
+  ///\author Marton Makai
   template <typename Graph, typename Num,
 	    typename CapMap=typename Graph::template EdgeMap<Num>,
             typename FlowMap=typename Graph::template EdgeMap<Num> >
@@ -873,10 +91,6 @@
     typedef typename Graph::OutEdgeIt OutEdgeIt;
     typedef typename Graph::InEdgeIt InEdgeIt;
 
-//    typedef typename std::vector<std::stack<Node> > VecStack;
-//    typedef typename Graph::template NodeMap<Node> NNMap;
-//    typedef typename std::vector<Node> VecNode;
-
     const Graph* g;
     Node s;
     Node t;
@@ -890,37 +104,12 @@
     //typedef typename ResGW::template NodeMap<bool> ReachedMap;
     typedef typename Graph::template NodeMap<int> ReachedMap;
 
-
     //level works as a bool map in augmenting path algorithms and is
     //used by bfs for storing reached information.  In preflow, it
     //shows the levels of nodes.     
     ReachedMap level;
 
-    //excess is needed only in preflow
-//    typename Graph::template NodeMap<Num> excess;
-
-    //fixme    
-//   protected:
-    //     MaxFlow() { }
-    //     void set(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
-    // 	     FlowMap& _flow)
-    //       {
-    // 	g=&_G;
-    // 	s=_s;
-    // 	t=_t;
-    // 	capacity=&_capacity;
-    // 	flow=&_flow;
-    // 	n=_G.nodeNum;
-    // 	level.set (_G); //kellene vmi ilyesmi fv
-    // 	excess(_G,0); //itt is
-    //       }
-
-    // constants used for heuristics
-//    static const int H0=20;
-//    static const int H1=1;
-
   public:
-
     ///Indicates the property of the starting flow.
 
     ///Indicates the property of the starting flow. The meanings are as follows:
@@ -1088,28 +277,6 @@
       //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan   
     }
 
-    template<typename MapGraphWrapper>
-    class DistanceMap {
-    protected:
-      const MapGraphWrapper* g;
-      typename MapGraphWrapper::template NodeMap<int> dist;
-    public:
-      DistanceMap(MapGraphWrapper& _g) : g(&_g), dist(*g, g->nodeNum()) { }
-      void set(const typename MapGraphWrapper::Node& n, int a) {
-	dist.set(n, a);
-      }
-      int operator[](const typename MapGraphWrapper::Node& n) const { 
-	return dist[n]; 
-      }
-      //       int get(const typename MapGraphWrapper::Node& n) const {
-      // 	return dist[n]; }
-      //       bool get(const typename MapGraphWrapper::Edge& e) const {
-      // 	return (dist.get(g->tail(e))<dist.get(g->head(e))); }
-      bool operator[](const typename MapGraphWrapper::Edge& e) const {
-	return (dist[g->tail(e)]<dist[g->head(e)]);
-      }
-    };
-
   };
 
 
@@ -1244,9 +411,8 @@
       res_graph_to_F(res_graph);
     {
       typename ResGW::NodeIt n;
-      for(res_graph.first(n); n!=INVALID; ++n) {
+      for(res_graph.first(n); n!=INVALID; ++n) 
 	res_graph_to_F.set(n, F.addNode());
-      }
     }
 
     typename MG::Node sF=res_graph_to_F[s];
@@ -1336,7 +502,8 @@
     return _augment;
   }
 
-
+  /// Blocking flow augmentation without constructing the layered 
+  /// graph physically in which the blocking flow is computed.
   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   bool AugmentingFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow2()
   {
@@ -1344,37 +511,41 @@
 
     ResGW res_graph(*g, *capacity, *flow);
 
-    //ReachedMap level(res_graph);
+    //Potential map, for distances from s
+    typename ResGW::template NodeMap<int> potential(res_graph, 0);
+    typedef ConstMap<typename ResGW::Edge, int> Const1Map; 
+    Const1Map const_1_map(1);
+    TightEdgeFilterMap<ResGW, typename ResGW::template NodeMap<int>,
+      Const1Map> tight_edge_filter(res_graph, potential, const_1_map);
+
     for (typename Graph::NodeIt n(*g); n!=INVALID; ++n) level.set(n, 0);
     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
-
     bfs.pushAndSetReached(s);
-    DistanceMap<ResGW> dist(res_graph);
+
+    //computing distances from s in the residual graph
     while ( !bfs.finished() ) {
       ResGWEdge e=bfs;
-      if (e!=INVALID && bfs.isBNodeNewlyReached()) {
-	dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
-      }
+      if (e!=INVALID && bfs.isBNodeNewlyReached())
+	potential.set(res_graph.head(e), potential[res_graph.tail(e)]+1);
       ++bfs;
-    } //computing distances from s in the residual graph
+    } 
 
-    //Subgraph containing the edges on some shortest paths
+    //Subgraph containing the edges on some shortest paths 
+    //(i.e. tight edges)
     ConstMap<typename ResGW::Node, bool> true_map(true);
     typedef SubGraphWrapper<ResGW, ConstMap<typename ResGW::Node, bool>,
-      DistanceMap<ResGW> > FilterResGW;
-    FilterResGW filter_res_graph(res_graph, true_map, dist);
+      TightEdgeFilterMap<ResGW, typename ResGW::template NodeMap<int>, 
+      Const1Map> > FilterResGW;
+    FilterResGW filter_res_graph(res_graph, true_map, tight_edge_filter);
 
     //Subgraph, which is able to delete edges which are already
     //met by the dfs
     typename FilterResGW::template NodeMap<typename FilterResGW::Edge>
       first_out_edges(filter_res_graph);
-    typename FilterResGW::NodeIt v;
-    for(filter_res_graph.first(v); v!=INVALID; ++v)
-      {
-  	typename FilterResGW::OutEdgeIt e;
-  	filter_res_graph.first(e, v);
-  	first_out_edges.set(v, e);
-      }
+    for (typename FilterResGW::NodeIt v(filter_res_graph); v!=INVALID; ++v)
+      first_out_edges.set
+	(v, typename FilterResGW::OutEdgeIt(filter_res_graph, v));
+
     typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW::
       template NodeMap<typename FilterResGW::Edge> > ErasingResGW;
     ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges);
@@ -1407,47 +578,37 @@
 	
       while (!dfs.finished()) {
 	++dfs;
-	if (typename ErasingResGW::Edge(dfs)!=INVALID)
- 	  {
-  	    if (dfs.isBNodeNewlyReached()) {
-
- 	      typename ErasingResGW::Node v=erasing_res_graph.tail(dfs);
- 	      typename ErasingResGW::Node w=erasing_res_graph.head(dfs);
-
- 	      pred.set(w, typename ErasingResGW::Edge(dfs));
- 	      if (pred[v]!=INVALID) {
- 		free1.set
-		  (w, std::min(free1[v], res_graph.resCap
-			       (typename ErasingResGW::Edge(dfs))));
- 	      } else {
- 		free1.set
-		  (w, res_graph.resCap
-		   (typename ErasingResGW::Edge(dfs)));
- 	      }
-
- 	      if (w==t) {
- 		__augment=true;
- 		_augment=true;
- 		break;
- 	      }
- 	    } else {
- 	      erasing_res_graph.erase(dfs);
+	if (typename ErasingResGW::Edge(dfs)!=INVALID) {
+	  if (dfs.isBNodeNewlyReached()) {
+	    
+	    typename ErasingResGW::Node v=erasing_res_graph.tail(dfs);
+	    typename ErasingResGW::Node w=erasing_res_graph.head(dfs);
+
+	    pred.set(w, typename ErasingResGW::Edge(dfs));
+	    if (pred[v]!=INVALID) {
+	      free1.set
+		(w, std::min(free1[v], res_graph.resCap
+			     (typename ErasingResGW::Edge(dfs))));
+	    } else {
+	      free1.set
+		(w, res_graph.resCap
+		 (typename ErasingResGW::Edge(dfs)));
 	    }
+
+	    if (w==t) {
+	      __augment=true;
+	      _augment=true;
+	      break;
+	    }
+	  } else {
+	    erasing_res_graph.erase(dfs);
 	  }
+	}
       }
 
       if (__augment) {
 	typename ErasingResGW::Node
 	  n=typename FilterResGW::Node(typename ResGW::Node(t));
-	// 	  typename ResGW::NodeMap<Num> a(res_graph);
-	// 	  typename ResGW::Node b;
-	// 	  Num j=a[b];
-	// 	  typename FilterResGW::NodeMap<Num> a1(filter_res_graph);
-	// 	  typename FilterResGW::Node b1;
-	// 	  Num j1=a1[b1];
-	// 	  typename ErasingResGW::NodeMap<Num> a2(erasing_res_graph);
-	// 	  typename ErasingResGW::Node b2;
-	// 	  Num j2=a2[b2];
 	Num augment_value=free1[n];
 	while (pred[n]!=INVALID) {
 	  typename ErasingResGW::Edge e=pred[n];
@@ -1470,5 +631,3 @@
 #endif //HUGO_AUGMENTING_FLOW_H
 
 
-
-



More information about the Lemon-commits mailing list