[Lemon-commits] [lemon_svn] jacint: r1453 - hugo/trunk/src/work/jacint

Lemon SVN svn at lemon.cs.elte.hu
Mon Nov 6 20:45:34 CET 2006


Author: jacint
Date: Fri Jan  7 09:39:53 2005
New Revision: 1453

Added:
   hugo/trunk/src/work/jacint/matching.h

Log:
undirgrafbug

Added: hugo/trunk/src/work/jacint/matching.h
==============================================================================
--- (empty file)
+++ hugo/trunk/src/work/jacint/matching.h	Fri Jan  7 09:39:53 2005
@@ -0,0 +1,608 @@
+// -*- C++ -*-
+#ifndef LEMON_MAX_MATCHING_H
+#define LEMON_MAX_MATCHING_H
+
+///\ingroup galgs
+///\file
+///\brief Maximum matching algorithm.
+
+#include <queue>
+
+
+#include <iostream>
+
+
+
+#include <invalid.h>
+#include <unionfind.h>
+#include <lemon/graph_utils.h>
+
+namespace lemon {
+
+  /// \addtogroup galgs
+  /// @{
+
+  ///Maximum matching algorithms class.
+
+  ///This class provides Edmonds' alternating forest matching
+  ///algorithm. The starting matching (if any) can be passed to the
+  ///algorithm using read-in functions \ref readNMapNode, \ref
+  ///readNMapEdge or \ref readEMapBool depending on the container. The
+  ///resulting maximum matching can be attained by write-out functions
+  ///\ref writeNMapNode, \ref writeNMapEdge or \ref writeEMapBool
+  ///depending on the preferred container. 
+  ///
+  ///The dual side of a mathcing is a map of the nodes to
+  ///MaxMatching::pos_enum, having values D, A and C showing the
+  ///Gallai-Edmonds decomposition of the graph. The nodes in D induce
+  ///a graph with factor-critical components, the nodes in A form the
+  ///barrier, and the nodes in C induce a graph having a perfect
+  ///matching. This decomposition can be attained by calling \ref
+  ///writePos after running the algorithm. Before subsequent runs,
+  ///the function \ref resetPos() must be called.
+  ///
+  ///\param Graph The undirected graph type the algorithm runs on.
+  ///
+  ///\author Jacint Szabo  
+  template <typename Graph>
+  class MaxMatching {
+    typedef typename Graph::Node Node;
+    typedef typename Graph::Edge Edge;
+    typedef typename Graph::UndirEdgeIt UndirEdgeIt;
+    typedef typename Graph::NodeIt NodeIt;
+    typedef typename Graph::IncEdgeIt IncEdgeIt;
+
+    typedef UnionFindEnum<Node, Graph::template NodeMap> UFE;
+
+  public:
+    
+    ///Indicates the Gallai-Edmonds decomposition of the graph.
+
+    ///Indicates the Gallai-Edmonds decomposition of the graph, which
+    ///shows an upper bound on the size of a maximum matching. The
+    ///nodes with pos_enum \c D induce a graph with factor-critical
+    ///components, the nodes in \c A form the canonical barrier, and the
+    ///nodes in \c C induce a graph having a perfect matching. 
+    enum pos_enum {
+      D=0,
+      A=1,
+      C=2
+    }; 
+
+  private:
+
+    static const int HEUR_density=2;
+    const Graph& g;
+    typename Graph::template NodeMap<Node> mate;
+    typename Graph::template NodeMap<pos_enum> position;
+     
+  public:
+    
+    MaxMatching(const Graph& _g) : g(_g), mate(_g,INVALID), position(_g,C) {}
+
+    ///Runs Edmonds' algorithm.
+
+    ///Runs Edmonds' algorithm for sparse graphs (countEdges <=
+    ///2*countNodes), and a heuristical Edmonds' algorithm with a
+    ///heuristic of postponing shrinks for dense graphs. \pre Before
+    ///the subsequent calls \ref resetPos must be called.
+    inline void run();
+
+    ///Runs Edmonds' algorithm.
+    
+    ///If heur=0 it runs Edmonds' algorithm. If heur=1 it runs
+    ///Edmonds' algorithm with a heuristic of postponing shrinks,
+    ///giving a faster algorithm for dense graphs.  \pre Before the
+    ///subsequent calls \ref resetPos must be called.
+    void runEdmonds( int heur );
+
+    ///Finds a greedy matching starting from the actual matching.
+    
+    ///Starting form the actual matching stored, it finds a maximal
+    ///greedy matching.
+    void greedyMatching();
+
+    ///Returns the size of the actual matching stored.
+
+    ///Returns the size of the actual matching stored. After \ref
+    ///run() it returns the size of a maximum matching in the graph.
+    int size () const;
+
+    ///Resets the map storing the Gallai-Edmonds decomposition.
+    
+    ///Resets the map storing the Gallai-Edmonds decomposition of the
+    ///graph, making it possible to run the algorithm. Must be called
+    ///before all runs of the Edmonds algorithm, except for the first
+    ///run.
+    void resetPos();
+
+    ///Resets the actual matching to the empty matching.
+
+    ///Resets the actual matching to the empty matching.  
+    ///
+    void resetMatching();
+
+    ///Reads a matching from a \c Node map of \c Nodes.
+
+    ///Reads a matching from a \c Node map of \c Nodes. This map must be \e
+    ///symmetric, i.e. if \c map[u]=v then \c map[v]=u must hold, and
+    ///\c uv will be an edge of the matching.
+    template<typename NMapN>
+    void readNMapNode(NMapN& map) {
+      for(NodeIt v(g); v!=INVALID; ++v) {
+	mate.set(v,map[v]);   
+      } 
+    } 
+    
+    ///Writes the stored matching to a \c Node map of \c Nodes.
+
+    ///Writes the stored matching to a \c Node map of \c Nodes. The
+    ///resulting map will be \e symmetric, i.e. if \c map[u]=v then \c
+    ///map[v]=u will hold, and now \c uv is an edge of the matching.
+    template<typename NMapN>
+    void writeNMapNode (NMapN& map) const {
+      for(NodeIt v(g); v!=INVALID; ++v) {
+	map.set(v,mate[v]);   
+      } 
+    } 
+
+    ///Reads a matching from a \c Node map of \c Edges.
+
+    ///Reads a matching from a \c Node map of incident \c Edges. This
+    ///map must have the property that if \c G.target(map[u])=v then \c
+    ///G.target(map[v])=u must hold, and now this edge is an edge of
+    ///the matching.
+    template<typename NMapE>
+    void readNMapEdge(NMapE& map) {
+     for(NodeIt v(g); v!=INVALID; ++v) {
+	Edge e=map[v];
+	if ( g.valid(e) )
+	  g.source(e) == v ? mate.set(v,g.target(e)) : mate.set(v,g.source(e)); 
+      } 
+    } 
+    
+    ///Writes the matching stored to a \c Node map of \c Edges.
+
+    ///Writes the stored matching to a \c Node map of incident \c
+    ///Edges. This map will have the property that if \c
+    ///g.target(map[u])=v then \c g.target(map[v])=u holds, and now this
+    ///edge is an edge of the matching.
+    template<typename NMapE>
+    void writeNMapEdge (NMapE& map)  const {
+      typename Graph::template NodeMap<bool> todo(g,true); 
+      for(NodeIt v(g); v!=INVALID; ++v) {
+	if ( todo[v] && mate[v]!=INVALID ) {
+	  Node u=mate[v];
+	  for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
+	    if ( g.target(e) == u ) {
+	      map.set(u,e);
+	      map.set(v,e);
+	      todo.set(u,false);
+	      todo.set(v,false);
+	      break;
+	    }
+	  }
+	}
+      } 
+    }
+
+
+    ///Reads a matching from an \c Edge map of \c bools.
+    
+    ///Reads a matching from an \c Edge map of \c bools. This map must
+    ///have the property that there are no two adjacent edges \c e, \c
+    ///f with \c map[e]=map[f]=true. The edges \c e with \c
+    ///map[e]=true form the matching.
+    template<typename EMapB>
+    void readEMapBool(EMapB& map) {
+      for(UndirEdgeIt e(g); e!=INVALID; ++e) {
+	if ( map[e] ) {
+	  Node u=g.source(e);	  
+	  Node v=g.target(e);
+	  mate.set(u,v);
+	  mate.set(v,u);
+	} 
+      } 
+    }
+    //iterable boolmap?
+
+
+    ///Writes the matching stored to an \c Edge map of \c bools.
+
+    ///Writes the matching stored to an \c Edge map of \c bools. This
+    ///map will have the property that there are no two adjacent edges
+    ///\c e, \c f with \c map[e]=map[f]=true. The edges \c e with \c
+    ///map[e]=true form the matching.
+    template<typename EMapB>
+    void writeEMapBool (EMapB& map) const {
+      for(UndirEdgeIt e(g); e!=INVALID; ++e) map.set(e,false);
+
+      typename Graph::template NodeMap<bool> todo(g,true); 
+      for(NodeIt v(g); v!=INVALID; ++v) {
+	if ( todo[v] && mate[v]!=INVALID ) {
+	  Node u=mate[v];
+	  for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
+	    if ( g.target(e) == u ) {
+	      map.set(e,true);
+	      todo.set(u,false);
+	      todo.set(v,false);
+	      break;
+	    }
+	  }
+	}
+      } 
+    }
+
+
+    ///Writes the canonical decomposition of the graph after running
+    ///the algorithm.
+
+    ///After calling any run methods of the class, and before calling
+    ///\ref resetPos(), it writes the Gallai-Edmonds canonical
+    ///decomposition of the graph. \c map must be a node map
+    ///of \ref pos_enum 's.
+    template<typename NMapEnum>
+    void writePos (NMapEnum& map) const {
+      for(NodeIt v(g); v!=INVALID; ++v)  map.set(v,position[v]);
+    }
+
+  private: 
+
+    void lateShrink(Node v, typename Graph::template NodeMap<Node>& ear,  
+		    UFE& blossom, UFE& tree);
+
+    void normShrink(Node v, typename Graph::NodeMap<Node>& ear,  
+		    UFE& blossom, UFE& tree);
+
+    bool noShrinkStep(Node x, typename Graph::NodeMap<Node>& ear,  
+		      UFE& blossom, UFE& tree, std::queue<Node>& Q);
+
+    void shrinkStep(Node& top, Node& middle, Node& bottom, typename Graph::NodeMap<Node>& ear,  
+		    UFE& blossom, UFE& tree, std::queue<Node>& Q);
+
+    void augment(Node x, typename Graph::NodeMap<Node>& ear,  
+		 UFE& blossom, UFE& tree);
+  };
+
+
+  // **********************************************************************
+  //  IMPLEMENTATIONS
+  // **********************************************************************
+
+
+  template <typename Graph>
+  void MaxMatching<Graph>::run() {
+    if ( countUndirEdges(g) < HEUR_density*countNodes(g) ) {
+      greedyMatching();
+      runEdmonds(1);
+    } else runEdmonds(0);
+  }
+
+
+  template <typename Graph>
+  void MaxMatching<Graph>::runEdmonds( int heur=1 ) {
+      
+    std::cout<<"Entering runEdmonds"<<std::endl;
+
+    typename Graph::template NodeMap<Node> ear(g,INVALID); 
+    //undefined for the base nodes of the blossoms (i.e. for the
+    //representative elements of UFE blossom) and for the nodes in C
+ 
+    typename UFE::MapType blossom_base(g);
+    UFE blossom(blossom_base);
+    typename UFE::MapType tree_base(g);
+    UFE tree(tree_base);
+
+    for(NodeIt v(g); v!=INVALID; ++v) {
+      if ( position[v]==C && mate[v]==INVALID ) {
+	blossom.insert(v);
+	tree.insert(v); 
+	position.set(v,D);
+	if ( heur == 1 ) lateShrink( v, ear, blossom, tree );
+	else normShrink( v, ear, blossom, tree );
+      }
+    }
+
+
+    std::cout<<" runEdmonds end"<<std::endl;
+
+
+  }
+    
+  template <typename Graph>
+  void MaxMatching<Graph>::lateShrink(Node v, typename Graph::template NodeMap<Node>& ear,  
+				      UFE& blossom, UFE& tree) {
+     
+
+    std::cout<<"Entering lateShrink"<<std::endl;
+
+
+    std::queue<Node> Q;   //queue of the totally unscanned nodes
+    Q.push(v);  
+    std::queue<Node> R;   
+    //queue of the nodes which must be scanned for a possible shrink
+      
+    while ( !Q.empty() ) {
+      Node x=Q.front();
+      Q.pop();
+      if ( noShrinkStep( x, ear, blossom, tree, Q ) ) return;
+      else R.push(x);
+    }
+      
+    while ( !R.empty() ) {
+      Node x=R.front();
+      R.pop();
+	
+      for( IncEdgeIt e(g,x); e!=INVALID ; ++e ) {
+	Node y=g.target(e);
+
+	if ( position[y] == D && blossom.find(x) != blossom.find(y) ) { 
+	  //x and y must be in the same tree//biztos? az oddbol d-belive lettek is?
+	
+	  typename Graph::template NodeMap<bool> path(g,false);
+
+	  Node b=blossom.find(x);
+	  path.set(b,true);
+	  b=mate[b];
+	  while ( b!=INVALID ) { 
+	    b=blossom.find(ear[b]);
+	    path.set(b,true);
+	    b=mate[b];
+	  } //going till the root
+	
+	  Node top=y;
+	  Node middle=blossom.find(top);
+	  Node bottom=x;
+	  while ( !path[middle] )
+	    shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
+		  
+	  Node base=middle;
+	  top=x;
+	  middle=blossom.find(top);
+	  bottom=y;
+	  Node blossom_base=blossom.find(base);
+	  while ( middle!=blossom_base )
+	    shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
+		  
+	  blossom.makeRep(base);
+	} // if shrink is needed
+
+	//most nehany odd node is d-beli lett, es rajuk az is megnezendo hogy mely d-beliekkel szonszedosak mas faban
+
+	while ( !Q.empty() ) {
+	  Node x=Q.front();
+	  Q.pop();
+	  if ( noShrinkStep(x, ear, blossom, tree, Q) ) return;
+	  else R.push(x);
+	}
+      } //for e
+    } // while ( !R.empty() )
+  }
+
+
+  template <typename Graph>
+  void MaxMatching<Graph>::normShrink(Node v, typename Graph::NodeMap<Node>& ear,  
+				      UFE& blossom, UFE& tree) {
+
+
+    std::cout<<"Entering normShrink with node "<<g.id(v)<<std::endl;
+
+
+    std::queue<Node> Q;   //queue of the unscanned nodes
+    Q.push(v);  
+    while ( !Q.empty() ) {
+
+      std::cout<<"beginning of norm while"<<std::endl;
+
+      Node x=Q.front();
+      Q.pop();
+	
+      for( IncEdgeIt e(g,x); e!=INVALID; ++e ) {
+
+
+	for( IncEdgeIt f(g,x); f!=INVALID; ++f ) {
+	  std::cout<<"Starting for." <<std::endl;
+	  std::cout<<"edges " << g.id(f)<< " : " << g.id(g.target(f))<<std::endl;
+	  std::cout<<"Ending for." <<std::endl;
+	}
+
+	std::cout<<"Ending the whole for." <<std::endl;
+	std::cout<<"for (In normShrink) with edge " << g.id(e)<< " : " << g.id(x);
+
+	Node y=g.target(e);
+	
+	std::cout<<" "<<g.id(y)<<std::endl;
+	      
+	switch ( position[y] ) {
+	case D:          //x and y must be in the same tree //asszem nem!!!
+
+	  std::cout<<" pos[y] " << position[y]<<std::endl;
+	  std::cout<<" blossom.find(x) ="<< g.id(blossom.find(x))<<std::endl;
+	  std::cout<<" blossom.find(y) ="<< g.id(blossom.find(y))<<std::endl;
+
+
+	  if ( blossom.find(x) != blossom.find(y) ) { //shrink
+	    typename Graph::template NodeMap<bool> path(g,false);
+	      
+	    Node b=blossom.find(x);
+	    path.set(b,true);
+	    b=mate[b];
+	    while ( b!=INVALID ) { 
+	      b=blossom.find(ear[b]);
+	      path.set(b,true);
+	      b=mate[b];
+	    } //going till the root
+	
+	    Node top=y;
+	    Node middle=blossom.find(top);
+	    Node bottom=x;
+	    while ( !path[middle] )
+	      shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
+		
+	    Node base=middle;
+	    top=x;
+	    middle=blossom.find(top);
+	    bottom=y;
+	    Node blossom_base=blossom.find(base);
+	    while ( middle!=blossom_base )
+	      shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
+		
+	    blossom.makeRep(base);
+	  }
+	  break;
+	case C:
+	  if ( mate[y]!=INVALID ) {   //grow
+	    
+	    std::cout<<"grow"<<std::endl;
+
+	    ear.set(y,x);
+	    Node w=mate[y];
+	    blossom.insert(w);
+	    position.set(y,A); 
+	    position.set(w,D); 
+	    tree.insert(y);
+	    tree.insert(w);
+	    tree.join(y,blossom.find(x));  
+	    tree.join(w,y);  
+	    Q.push(w);
+
+	  } else {                 //augment  
+
+	    std::cout<<"augment"<<std::endl;
+
+	    augment(x, ear, blossom, tree);
+	    mate.set(x,y);
+	    mate.set(y,x);
+	    return;
+	  } //if 
+
+	  std::cout<<"end c eset"<<std::endl;
+	  break;
+	default: break;
+	}
+	std::cout<<"end switch"<<std::endl;
+      }
+    }
+  }
+
+  template <typename Graph>
+  void MaxMatching<Graph>::greedyMatching() {
+    for(NodeIt v(g); v!=INVALID; ++v)
+      if ( mate[v]==INVALID ) {
+	for( IncEdgeIt e(g,v); e!=INVALID ; ++e ) {
+	  Node y=g.target(e);
+	  if ( mate[y]==INVALID && y!=v ) {
+	    mate.set(v,y);
+	    mate.set(y,v);
+	    break;
+	  }
+	}
+      } 
+  }
+   
+  template <typename Graph>
+  int MaxMatching<Graph>::size() const {
+    int s=0;
+    for(NodeIt v(g); v!=INVALID; ++v) {
+      if ( mate[v]!=INVALID ) {
+	++s;
+      }
+    }
+    return (int)s/2;
+  }
+
+  template <typename Graph>
+  void MaxMatching<Graph>::resetPos() {
+    for(NodeIt v(g); v!=INVALID; ++v)
+      position.set(v,C);      
+  }
+
+  template <typename Graph>
+  void MaxMatching<Graph>::resetMatching() {
+    for(NodeIt v(g); v!=INVALID; ++v)
+      mate.set(v,INVALID);      
+  }
+
+  template <typename Graph>
+  bool MaxMatching<Graph>::noShrinkStep(Node x, typename Graph::NodeMap<Node>& ear,  
+					UFE& blossom, UFE& tree, std::queue<Node>& Q) {
+    for( IncEdgeIt e(g,x); e!= INVALID; ++e ) {
+      Node y=g.target(e);
+	
+      if ( position[y]==C ) {
+	if ( mate[y]!=INVALID ) {       //grow
+	  ear.set(y,x);
+	  Node w=mate[y];
+	  blossom.insert(w);
+	  position.set(y,A);
+	  position.set(w,D);
+	  tree.insert(y);
+	  tree.insert(w);
+	  tree.join(y,blossom.find(x));  
+	  tree.join(w,y);  
+	  Q.push(w);
+	} else {                      //augment 
+	  augment(x, ear, blossom, tree);
+	  mate.set(x,y);
+	  mate.set(y,x);
+	  return true;
+	}
+      }
+    }
+    return false;
+  }
+
+  template <typename Graph>
+  void MaxMatching<Graph>::shrinkStep(Node& top, Node& middle, Node& bottom, typename Graph::NodeMap<Node>& ear,  
+				      UFE& blossom, UFE& tree, std::queue<Node>& Q) {
+    ear.set(top,bottom);
+    Node t=top;
+    while ( t!=middle ) {
+      Node u=mate[t];
+      t=ear[u];
+      ear.set(t,u);
+    } 
+    bottom=mate[middle];
+    position.set(bottom,D);
+    Q.push(bottom);
+    top=ear[bottom];		
+    Node oldmiddle=middle;
+    middle=blossom.find(top);
+    tree.erase(bottom);
+    tree.erase(oldmiddle);
+    blossom.insert(bottom);
+    blossom.join(bottom, oldmiddle);
+    blossom.join(top, oldmiddle);
+  }
+
+  template <typename Graph>
+  void MaxMatching<Graph>::augment(Node x, typename Graph::NodeMap<Node>& ear,  
+				   UFE& blossom, UFE& tree) { 
+    Node v=mate[x];
+    while ( v!=INVALID ) {
+	
+      Node u=ear[v];
+      mate.set(v,u);
+      Node tmp=v;
+      v=mate[u];
+      mate.set(u,tmp);
+    }
+    typename UFE::ItemIt it;
+    for (tree.first(it,blossom.find(x)); tree.valid(it); tree.next(it)) {   
+      if ( position[it] == D ) {
+	typename UFE::ItemIt b_it;
+	for (blossom.first(b_it,it); blossom.valid(b_it); blossom.next(b_it)) {  
+	  position.set( b_it ,C);
+	}
+	blossom.eraseClass(it);
+      } else position.set( it ,C);
+    }
+    tree.eraseClass(x);
+
+  }
+
+  /// @}
+  
+} //END OF NAMESPACE LEMON
+
+#endif //EDMONDS_H



More information about the Lemon-commits mailing list