[Lemon-commits] [lemon_svn] marci: r1578 - in hugo/trunk: doc src/lemon

Lemon SVN svn at lemon.cs.elte.hu
Mon Nov 6 20:46:20 CET 2006


Author: marci
Date: Wed Feb 23 23:00:05 2005
New Revision: 1578

Added:
   hugo/trunk/doc/gwrappers.dox
      - copied, changed from r1577, /hugo/trunk/src/lemon/graph_wrapper.h
Modified:
   hugo/trunk/doc/Doxyfile
   hugo/trunk/doc/groups.dox
   hugo/trunk/src/lemon/graph_wrapper.h
   hugo/trunk/src/lemon/maps.h
   hugo/trunk/src/lemon/max_matching.h

Log:
graphwrapper dox. everybody is asked to read doxygen.log


Modified: hugo/trunk/doc/Doxyfile
==============================================================================
--- hugo/trunk/doc/Doxyfile	(original)
+++ hugo/trunk/doc/Doxyfile	Wed Feb 23 23:00:05 2005
@@ -458,6 +458,7 @@
                          developers_interface.dox \
                          graph_io.dox \
                          dirs.dox \
+			 gwrappers.dox \
                          ../src/lemon \
                          ../src/lemon/concept \
                          ../src/test/test_tools.h

Modified: hugo/trunk/doc/groups.dox
==============================================================================
--- hugo/trunk/doc/groups.dox	(original)
+++ hugo/trunk/doc/groups.dox	Wed Feb 23 23:00:05 2005
@@ -9,20 +9,34 @@
 @ingroup datas
 \brief Graph structures implemented in LEMON.
 
-LEMON provides several data structures to meet the diverging requirements
-of the possible users.
-In order to save on running time or on memory usage, some structures may
-fail to provide
-some graph features like edge or node deletion.
-
-LEMON also offers special graphs that cannot be used alone but only
-in conjunction with other graph representation. The examples for this are
-\ref lemon::EdgeSet "EdgeSet", \ref lemon::NodeSet "NodeSet"
-and the large variety of \ref gwrappers "graph wrappers".
+The implementation of combinatorial algorithms heavily relies on 
+efficient graph implementations. LEMON offers data structures which are 
+planned to be easily used in an experimental phase of implementation studies, 
+and thereafter the program code can be made efficient by small modifications. 
+
+The most efficient implementation of diverse applications require the usage of different physical graph implementations. These differences appear in the size of 
+graph we require to handle, memory or time usage limitations or in 
+the set of operations through which the graph can be accessed. 
+LEMON provides several physical graph structures to meet the 
+diverging requirements of the possible users. 
+In order to save on running time or on memory usage, some structures may 
+fail to provide some graph features like edge or node deletion.
+
+Alteration of standard containers need a very limited number of 
+operations, these together satisfy the everyday requirements. 
+In the case of graph strutures, different operations are needed which do 
+not alter the physical graph, but gives an other view. If some nodes or 
+edges have to be hidden or the reverse oriented graph have to be used, then 
+this is the case. It also may happen that in a flow implemenation 
+the residual graph can be accessed by an other algorithm, or a node-set 
+is to be shrunk for an other algorithm. 
+LEMON also provides a variety of graphs for these requirements called 
+\ref gwrappers "graph wrappers". Wrappers cannot be used alone but only 
+in conjunction with other graph representation. 
 
 You are free to use the graph structure that fit your requirements
 the best, most graph algorithms and auxiliary data structures can be used
-with any graph structures.
+with any graph structures. 
 */
 
 /**
@@ -53,12 +67,6 @@
 */
 
 /**
- at defgroup gwrappers Wrapper Classes for Graphs
-\brief This group contains several wrapper classes for graphs
- at ingroup graphs
-*/
-
-/**
 @defgroup galgs Graph Algorithms
 \brief This group describes the several graph algorithms
 implemented in LEMON.

Copied: hugo/trunk/doc/gwrappers.dox (from r1577, /hugo/trunk/src/lemon/graph_wrapper.h)
==============================================================================
--- /hugo/trunk/src/lemon/graph_wrapper.h	(original)
+++ hugo/trunk/doc/gwrappers.dox	Wed Feb 23 23:00:05 2005
@@ -1,1223 +1,61 @@
-/* -*- C++ -*-
- * src/lemon/graph_wrapper.h - Part of LEMON, a generic C++ optimization library
- *
- * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
- * (Egervary Combinatorial Optimization Research Group, EGRES).
- *
- * Permission to use, modify and distribute this software is granted
- * provided that this copyright notice appears in all copies. For
- * precise terms see the accompanying LICENSE file.
- *
- * This software is provided "AS IS" with no warranty of any kind,
- * express or implied, and with no claim as to its suitability for any
- * purpose.
- *
- */
-
-#ifndef LEMON_GRAPH_WRAPPER_H
-#define LEMON_GRAPH_WRAPPER_H
-
-///\ingroup gwrappers
-///\file
-///\brief Several graph wrappers.
-///
-///This file contains several useful graph wrapper functions.
-///
-///\author Marton Makai
-
-#include <lemon/invalid.h>
-#include <lemon/maps.h>
-#include <lemon/iterable_graph_extender.h>
-#include <iostream>
-
-namespace lemon {
-
-  // Graph wrappers
-
-  /*! \addtogroup gwrappers
-    The main parts of LEMON are the different graph structures, 
-    generic graph algorithms, graph concepts which couple these, and 
-    graph wrappers. While the previous ones are more or less clear, the 
-    latter notion needs further explanation.
-    Graph wrappers are graph classes which serve for considering graph 
-    structures in different ways. A short example makes the notion much 
-    clearer. 
-    Suppose that we have an instance \c g of a directed graph
-    type say \c ListGraph and an algorithm 
-    \code template<typename Graph> int algorithm(const Graph&); \endcode 
-    is needed to run on the reversely oriented graph. 
-    It may be expensive (in time or in memory usage) to copy 
-    \c g with the reverse orientation. 
-    Thus, a wrapper class
-    \code template<typename Graph> class RevGraphWrapper; \endcode is used. 
-    The code looks as follows
-    \code
-    ListGraph g;
-    RevGraphWrapper<ListGraph> rgw(g);
-    int result=algorithm(rgw);
-    \endcode
-    After running the algorithm, the original graph \c g 
-    remains untouched. Thus the graph wrapper used above is to consider the 
-    original graph with reverse orientation. 
-    This techniques gives rise to an elegant code, and 
-    based on stable graph wrappers, complex algorithms can be 
-    implemented easily. 
-    In flow, circulation and bipartite matching problems, the residual 
-    graph is of particular importance. Combining a wrapper implementing 
-    this, shortest path algorithms and minimum mean cycle algorithms, 
-    a range of weighted and cardinality optimization algorithms can be 
-    obtained. For lack of space, for other examples, 
-    the interested user is referred to the detailed documentation of graph 
-    wrappers. 
-    The behavior of graph wrappers can be very different. Some of them keep 
-    capabilities of the original graph while in other cases this would be 
-    meaningless. This means that the concepts that they are a model of depend 
-    on the graph wrapper, and the wrapped graph(s). 
-    If an edge of \c rgw is deleted, this is carried out by 
-    deleting the corresponding edge of \c g. But for a residual 
-    graph, this operation has no sense. 
-    Let we stand one more example here to simplify your work. 
-    wrapper class
-    \code template<typename Graph> class RevGraphWrapper; \endcode 
-    has constructor 
-    <tt> RevGraphWrapper(Graph& _g)</tt>. 
-    This means that in a situation, 
-    when a <tt> const ListGraph& </tt> reference to a graph is given, 
-    then it have to be instantiated with <tt>Graph=const ListGraph</tt>.
-    \code
-    int algorithm1(const ListGraph& g) {
-    RevGraphWrapper<const ListGraph> rgw(g);
-    return algorithm2(rgw);
-    }
-    \endcode
-
-    \addtogroup gwrappers
-    @{
-
-    Base type for the Graph Wrappers
-
-    \warning Graph wrappers are in even more experimental state than the other
-    parts of the lib. Use them at you own risk.
-  
-    This is the base type for most of LEMON graph wrappers. 
-    This class implements a trivial graph wrapper i.e. it only wraps the 
-    functions and types of the graph. The purpose of this class is to 
-    make easier implementing graph wrappers. E.g. if a wrapper is 
-    considered which differs from the wrapped graph only in some of its 
-    functions or types, then it can be derived from GraphWrapper, and only the 
-    differences should be implemented.
-  
-    \author Marton Makai 
-  */
-  template<typename _Graph>
-  class GraphWrapperBase {
-  public:
-    typedef _Graph Graph;
-    /// \todo Is it needed?
-    typedef Graph BaseGraph;
-    typedef Graph ParentGraph;
-
-  protected:
-    Graph* graph;
-    GraphWrapperBase() : graph(0) { }
-    void setGraph(Graph& _graph) { graph=&_graph; }
-
-  public:
-    GraphWrapperBase(Graph& _graph) : graph(&_graph) { }
- 
-    typedef typename Graph::Node Node;
-    typedef typename Graph::Edge Edge;
+/**
+   @defgroup gwrappers Wrapper Classes for Graphs
+   \brief This group contains several wrapper classes for graphs
+   @ingroup graphs
    
-    void first(Node& i) const { graph->first(i); }
-    void first(Edge& i) const { graph->first(i); }
-    void firstIn(Edge& i, const Node& n) const { graph->firstIn(i, n); }
-    void firstOut(Edge& i, const Node& n ) const { graph->firstOut(i, n); }
-
-    void next(Node& i) const { graph->next(i); }
-    void next(Edge& i) const { graph->next(i); }
-    void nextIn(Edge& i) const { graph->nextIn(i); }
-    void nextOut(Edge& i) const { graph->nextOut(i); }
-
-    Node source(const Edge& e) const { return graph->source(e); }
-    Node target(const Edge& e) const { return graph->target(e); }
-
-    int nodeNum() const { return graph->nodeNum(); }
-    int edgeNum() const { return graph->edgeNum(); }
-  
-    Node addNode() const { return Node(graph->addNode()); }
-    Edge addEdge(const Node& source, const Node& target) const { 
-      return Edge(graph->addEdge(source, target)); }
-
-    void erase(const Node& i) const { graph->erase(i); }
-    void erase(const Edge& i) const { graph->erase(i); }
-  
-    void clear() const { graph->clear(); }
-    
-    bool forward(const Edge& e) const { return graph->forward(e); }
-    bool backward(const Edge& e) const { return graph->backward(e); }
-
-    int id(const Node& v) const { return graph->id(v); }
-    int id(const Edge& e) const { return graph->id(e); }
-    
-    Edge opposite(const Edge& e) const { return Edge(graph->opposite(e)); }
-
-    template <typename _Value>
-    class NodeMap : public _Graph::template NodeMap<_Value> {
-    public:
-      typedef typename _Graph::template NodeMap<_Value> Parent;
-      NodeMap(const GraphWrapperBase<_Graph>& gw) : Parent(*gw.graph) { }
-      NodeMap(const GraphWrapperBase<_Graph>& gw, const _Value& value)
-      : Parent(*gw.graph, value) { }
-    };
-
-    template <typename _Value>
-    class EdgeMap : public _Graph::template EdgeMap<_Value> {
-    public:
-      typedef typename _Graph::template EdgeMap<_Value> Parent;
-      EdgeMap(const GraphWrapperBase<_Graph>& gw) : Parent(*gw.graph) { }
-      EdgeMap(const GraphWrapperBase<_Graph>& gw, const _Value& value)
-      : Parent(*gw.graph, value) { }
-    };
-
-  };
-
-  template <typename _Graph>
-  class GraphWrapper :
-    public IterableGraphExtender<GraphWrapperBase<_Graph> > { 
-  public:
-    typedef _Graph Graph;
-    typedef IterableGraphExtender<GraphWrapperBase<_Graph> > Parent;
-  protected:
-    GraphWrapper() : Parent() { }
-
-  public:
-    GraphWrapper(Graph& _graph) { setGraph(_graph); }
-  };
-
-  template <typename _Graph>
-  class RevGraphWrapperBase : public GraphWrapperBase<_Graph> {
-  public:
-    typedef _Graph Graph;
-    typedef GraphWrapperBase<_Graph> Parent;
-  protected:
-    RevGraphWrapperBase() : Parent() { }
-  public:
-    typedef typename Parent::Node Node;
-    typedef typename Parent::Edge Edge;
-
-    using Parent::first;
-    void firstIn(Edge& i, const Node& n) const { Parent::firstOut(i, n); }
-    void firstOut(Edge& i, const Node& n ) const { Parent::firstIn(i, n); }
-
-    using Parent::next;
-    void nextIn(Edge& i) const { Parent::nextOut(i); }
-    void nextOut(Edge& i) const { Parent::nextIn(i); }
-
-    Node source(const Edge& e) const { return Parent::target(e); }
-    Node target(const Edge& e) const { return Parent::source(e); }
-  };
-    
-
-  /// A graph wrapper which reverses the orientation of the edges.
-
-  ///\warning Graph wrappers are in even more experimental state than the other
-  ///parts of the lib. Use them at you own risk.
-  ///
-  /// Let \f$G=(V, A)\f$ be a directed graph and 
-  /// suppose that a graph instange \c g of type 
-  /// \c ListGraph implements \f$G\f$.
-  /// \code
-  /// ListGraph g;
-  /// \endcode
-  /// For each directed edge 
-  /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by 
-  /// reversing its orientation. 
-  /// Then RevGraphWrapper implements the graph structure with node-set 
-  /// \f$V\f$ and edge-set 
-  /// \f$\{\bar e : e\in A \}\f$, i.e. the graph obtained from \f$G\f$ be 
-  /// reversing the orientation of its edges. The following code shows how 
-  /// such an instance can be constructed.
-  /// \code
-  /// RevGraphWrapper<ListGraph> gw(g);
-  /// \endcode
-  ///\author Marton Makai
-  template<typename _Graph>
-  class RevGraphWrapper : 
-    public IterableGraphExtender<RevGraphWrapperBase<_Graph> > {
-  public:
-    typedef _Graph Graph;
-    typedef IterableGraphExtender<
-      RevGraphWrapperBase<_Graph> > Parent;
-  protected:
-    RevGraphWrapper() { }
-  public:
-    RevGraphWrapper(_Graph& _graph) { setGraph(_graph); }
-  };
-
-  
-  template <typename _Graph, typename NodeFilterMap, typename EdgeFilterMap>
-  class SubGraphWrapperBase : public GraphWrapperBase<_Graph> {
-  public:
-    typedef _Graph Graph;
-    typedef GraphWrapperBase<_Graph> Parent;
-  protected:
-    NodeFilterMap* node_filter_map;
-    EdgeFilterMap* edge_filter_map;
-    SubGraphWrapperBase() : Parent(), 
-			    node_filter_map(0), edge_filter_map(0) { }
-
-    void setNodeFilterMap(NodeFilterMap& _node_filter_map) {
-      node_filter_map=&_node_filter_map;
-    }
-    void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) {
-      edge_filter_map=&_edge_filter_map;
-    }
-
-  public:
-//     SubGraphWrapperBase(Graph& _graph, 
-// 			NodeFilterMap& _node_filter_map, 
-// 			EdgeFilterMap& _edge_filter_map) : 
-//       Parent(&_graph), 
-//       node_filter_map(&node_filter_map), 
-//       edge_filter_map(&edge_filter_map) { }
-
-    typedef typename Parent::Node Node;
-    typedef typename Parent::Edge Edge;
-
-    void first(Node& i) const { 
-      Parent::first(i); 
-      while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
-    }
-    void first(Edge& i) const { 
-      Parent::first(i); 
-      while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); 
-    }
-    void firstIn(Edge& i, const Node& n) const { 
-      Parent::firstIn(i, n); 
-      while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); 
-    }
-    void firstOut(Edge& i, const Node& n) const { 
-      Parent::firstOut(i, n); 
-      while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); 
-    }
-
-    void next(Node& i) const { 
-      Parent::next(i); 
-      while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
-    }
-    void next(Edge& i) const { 
-      Parent::next(i); 
-      while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); 
-    }
-    void nextIn(Edge& i) const { 
-      Parent::nextIn(i); 
-      while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); 
-    }
-    void nextOut(Edge& i) const { 
-      Parent::nextOut(i); 
-      while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); 
-    }
-
-    /// This function hides \c n in the graph, i.e. the iteration 
-    /// jumps over it. This is done by simply setting the value of \c n  
-    /// to be false in the corresponding node-map.
-    void hide(const Node& n) const { node_filter_map->set(n, false); }
-
-    /// This function hides \c e in the graph, i.e. the iteration 
-    /// jumps over it. This is done by simply setting the value of \c e  
-    /// to be false in the corresponding edge-map.
-    void hide(const Edge& e) const { edge_filter_map->set(e, false); }
-
-    /// The value of \c n is set to be true in the node-map which stores 
-    /// hide information. If \c n was hidden previuosly, then it is shown 
-    /// again
-     void unHide(const Node& n) const { node_filter_map->set(n, true); }
-
-    /// The value of \c e is set to be true in the edge-map which stores 
-    /// hide information. If \c e was hidden previuosly, then it is shown 
-    /// again
-    void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
-
-    /// Returns true if \c n is hidden.
-    bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
-
-    /// Returns true if \c n is hidden.
-    bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
-
-    /// \warning This is a linear time operation and works only if s
-    /// \c Graph::NodeIt is defined.
-    /// \todo assign tags.
-    int nodeNum() const { 
-      int i=0;
-      Node n;
-      for (first(n); n!=INVALID; next(n)) ++i;
-      return i; 
-    }
-
-    /// \warning This is a linear time operation and works only if 
-    /// \c Graph::EdgeIt is defined.
-    /// \todo assign tags.
-    int edgeNum() const { 
-      int i=0;
-      Edge e;
-      for (first(e); e!=INVALID; next(e)) ++i;
-      return i; 
-    }
-
-
-  };
-
-  /*! \brief A graph wrapper for hiding nodes and edges from a graph.
-  
-  \warning Graph wrappers are in even more experimental state than the other
-  parts of the lib. Use them at you own risk.
-  
-  This wrapper shows a graph with filtered node-set and 
-  edge-set. 
-  Given a bool-valued map on the node-set and one on 
-  the edge-set of the graph, the iterators show only the objects 
-  having true value. We have to note that this does not mean that an 
-  induced subgraph is obtained, the node-iterator cares only the filter 
-  on the node-set, and the edge-iterators care only the filter on the 
-  edge-set.
-  \code
-  typedef SmartGraph Graph;
-  Graph g;
-  typedef Graph::Node Node;
-  typedef Graph::Edge Edge;
-  Node u=g.addNode(); //node of id 0
-  Node v=g.addNode(); //node of id 1
-  Node e=g.addEdge(u, v); //edge of id 0
-  Node f=g.addEdge(v, u); //edge of id 1
-  Graph::NodeMap<bool> nm(g, true);
-  nm.set(u, false);
-  Graph::EdgeMap<bool> em(g, true);
-  em.set(e, false);
-  typedef SubGraphWrapper<Graph, Graph::NodeMap<bool>, Graph::EdgeMap<bool> > SubGW;
-  SubGW gw(g, nm, em);
-  for (SubGW::NodeIt n(gw); n!=INVALID; ++n) std::cout << g.id(n) << std::endl;
-  std::cout << ":-)" << std::endl;
-  for (SubGW::EdgeIt e(gw); e!=INVALID; ++e) std::cout << g.id(e) << std::endl;
-  \endcode
-  The output of the above code is the following.
-  \code
-  1
-  :-)
-  1
-  \endcode
-  Note that \c n is of type \c SubGW::NodeIt, but it can be converted to
-  \c Graph::Node that is why \c g.id(n) can be applied.
-
-  For other examples see also the documentation of NodeSubGraphWrapper and 
-  EdgeSubGraphWrapper.
-
-  \author Marton Makai
-  */
-  template<typename _Graph, typename NodeFilterMap, 
-	   typename EdgeFilterMap>
-  class SubGraphWrapper : 
-    public IterableGraphExtender<
-    SubGraphWrapperBase<_Graph, NodeFilterMap, EdgeFilterMap> > {
-  public:
-    typedef _Graph Graph;
-    typedef IterableGraphExtender<
-      SubGraphWrapperBase<_Graph, NodeFilterMap, EdgeFilterMap> > Parent;
-  protected:
-    SubGraphWrapper() { }
-  public:
-    SubGraphWrapper(_Graph& _graph, NodeFilterMap& _node_filter_map, 
-		    EdgeFilterMap& _edge_filter_map) { 
-      setGraph(_graph);
-      setNodeFilterMap(_node_filter_map);
-      setEdgeFilterMap(_edge_filter_map);
-    }
-  };
-
-
-
-  /*! \brief A wrapper for hiding nodes from a graph.
-
-  \warning Graph wrappers are in even more experimental state than the other
-  parts of the lib. Use them at you own risk.
-  
-  A wrapper for hiding nodes from a graph.
-  This wrapper specializes SubGraphWrapper in the way that only the node-set 
-  can be filtered. Note that this does not mean of considering induced 
-  subgraph, the edge-iterators consider the original edge-set.
-  \author Marton Makai
-  */
-  template<typename Graph, typename NodeFilterMap>
-  class NodeSubGraphWrapper : 
-    public SubGraphWrapper<Graph, NodeFilterMap, 
-			   ConstMap<typename Graph::Edge,bool> > {
-  public:
-    typedef SubGraphWrapper<Graph, NodeFilterMap, 
-			    ConstMap<typename Graph::Edge,bool> > Parent;
-  protected:
-    ConstMap<typename Graph::Edge, bool> const_true_map;
-  public:
-    NodeSubGraphWrapper(Graph& _graph, NodeFilterMap& _node_filter_map) : 
-      Parent(), const_true_map(true) { 
-      Parent::setGraph(_graph);
-      Parent::setNodeFilterMap(_node_filter_map);
-      Parent::setEdgeFilterMap(const_true_map);
-    }
-  };
-
-
-  /*! \brief A wrapper for hiding edges from a graph.
-
-  \warning Graph wrappers are in even more experimental state than the other
-  parts of the lib. Use them at you own risk.
-  
-  A wrapper for hiding edges from a graph.
-  This wrapper specializes SubGraphWrapper in the way that only the edge-set 
-  can be filtered. The usefulness of this wrapper is demonstrated in the 
-  problem of searching a maximum number of edge-disjoint shortest paths 
-  between 
-  two nodes \c s and \c t. Shortest here means being shortest w.r.t. 
-  non-negative edge-lengths. Note that 
-  the comprehension of the presented solution 
-  need's some knowledge from elementary combinatorial optimization. 
-
-  If a single shortest path is to be 
-  searched between two nodes \c s and \c t, then this can be done easily by 
-  applying the Dijkstra algorithm class. What happens, if a maximum number of 
-  edge-disjoint shortest paths is to be computed. It can be proved that an 
-  edge can be in a shortest path if and only if it is tight with respect to 
-  the potential function computed by Dijkstra. Moreover, any path containing 
-  only such edges is a shortest one. Thus we have to compute a maximum number 
-  of edge-disjoint paths between \c s and \c t in the graph which has edge-set 
-  all the tight edges. The computation will be demonstrated on the following 
-  graph, which is read from a dimacs file.
-  
-  \dot
-  digraph lemon_dot_example {
-  node [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
-  n0 [ label="0 (s)" ];
-  n1 [ label="1" ];
-  n2 [ label="2" ];
-  n3 [ label="3" ];
-  n4 [ label="4" ];
-  n5 [ label="5" ];
-  n6 [ label="6 (t)" ];
-  edge [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
-  n5 ->  n6 [ label="9, length:4" ];
-  n4 ->  n6 [ label="8, length:2" ];
-  n3 ->  n5 [ label="7, length:1" ];
-  n2 ->  n5 [ label="6, length:3" ];
-  n2 ->  n6 [ label="5, length:5" ];
-  n2 ->  n4 [ label="4, length:2" ];
-  n1 ->  n4 [ label="3, length:3" ];
-  n0 ->  n3 [ label="2, length:1" ];
-  n0 ->  n2 [ label="1, length:2" ];
-  n0 ->  n1 [ label="0, length:3" ];
-  }
-  \enddot
-
-  \code
-  Graph g;
-  Node s, t;
-  LengthMap length(g);
-
-  readDimacs(std::cin, g, length, s, t);
-
-  cout << "edges with lengths (of form id, source--length->target): " << endl;
-  for(EdgeIt e(g); e!=INVALID; ++e) 
-    cout << g.id(e) << ", " << g.id(g.source(e)) << "--" 
-         << length[e] << "->" << g.id(g.target(e)) << endl;
-
-  cout << "s: " << g.id(s) << " t: " << g.id(t) << endl;
-  \endcode
-  Next, the potential function is computed with Dijkstra.
-  \code
-  typedef Dijkstra<Graph, LengthMap> Dijkstra;
-  Dijkstra dijkstra(g, length);
-  dijkstra.run(s);
-  \endcode
-  Next, we consrtruct a map which filters the edge-set to the tight edges.
-  \code
-  typedef TightEdgeFilterMap<Graph, const Dijkstra::DistMap, LengthMap> 
-    TightEdgeFilter;
-  TightEdgeFilter tight_edge_filter(g, dijkstra.distMap(), length);
-  
-  typedef EdgeSubGraphWrapper<Graph, TightEdgeFilter> SubGW;
-  SubGW gw(g, tight_edge_filter);
-  \endcode
-  Then, the maximum nimber of edge-disjoint \c s-\c t paths are computed 
-  with a max flow algorithm Preflow.
-  \code
-  ConstMap<Edge, int> const_1_map(1);
-  Graph::EdgeMap<int> flow(g, 0);
-
-  Preflow<SubGW, int, ConstMap<Edge, int>, Graph::EdgeMap<int> > 
-    preflow(gw, s, t, const_1_map, flow);
-  preflow.run();
-  \endcode
-  Last, the output is:
-  \code  
-  cout << "maximum number of edge-disjoint shortest path: " 
-       << preflow.flowValue() << endl;
-  cout << "edges of the maximum number of edge-disjoint shortest s-t paths: " 
-       << endl;
-  for(EdgeIt e(g); e!=INVALID; ++e) 
-    if (flow[e])
-      cout << " " << g.id(g.source(e)) << "--" 
-	   << length[e] << "->" << g.id(g.target(e)) << endl;
-  \endcode
-  The program has the following (expected :-)) output:
-  \code
-  edges with lengths (of form id, source--length->target):
-   9, 5--4->6
-   8, 4--2->6
-   7, 3--1->5
-   6, 2--3->5
-   5, 2--5->6
-   4, 2--2->4
-   3, 1--3->4
-   2, 0--1->3
-   1, 0--2->2
-   0, 0--3->1
-  s: 0 t: 6
-  maximum number of edge-disjoint shortest path: 2
-  edges of the maximum number of edge-disjoint shortest s-t paths:
-   9, 5--4->6
-   8, 4--2->6
-   7, 3--1->5
-   4, 2--2->4
-   2, 0--1->3
-   1, 0--2->2
-  \endcode
-
-  \author Marton Makai
-  */
-  template<typename Graph, typename EdgeFilterMap>
-  class EdgeSubGraphWrapper : 
-    public SubGraphWrapper<Graph, ConstMap<typename Graph::Node,bool>, 
-			   EdgeFilterMap> {
-  public:
-    typedef SubGraphWrapper<Graph, ConstMap<typename Graph::Node,bool>, 
-			    EdgeFilterMap> Parent;
-  protected:
-    ConstMap<typename Graph::Node, bool> const_true_map;
-  public:
-    EdgeSubGraphWrapper(Graph& _graph, EdgeFilterMap& _edge_filter_map) : 
-      Parent(), const_true_map(true) { 
-      Parent::setGraph(_graph);
-      Parent::setNodeFilterMap(const_true_map);
-      Parent::setEdgeFilterMap(_edge_filter_map);
-    }
-  };
-
-
-  template<typename Graph>
-  class UndirGraphWrapper : public GraphWrapper<Graph> {
-  public:
-    typedef GraphWrapper<Graph> Parent; 
-  protected:
-    UndirGraphWrapper() : GraphWrapper<Graph>() { }
-    
-  public:
-    typedef typename GraphWrapper<Graph>::Node Node;
-    typedef typename GraphWrapper<Graph>::NodeIt NodeIt;
-    typedef typename GraphWrapper<Graph>::Edge Edge;
-    typedef typename GraphWrapper<Graph>::EdgeIt EdgeIt;
-
-    UndirGraphWrapper(Graph& _graph) : GraphWrapper<Graph>(_graph) { }  
-
-    class OutEdgeIt {
-      friend class UndirGraphWrapper<Graph>;
-      bool out_or_in; //true iff out
-      typename Graph::OutEdgeIt out;
-      typename Graph::InEdgeIt in;
-    public:
-      OutEdgeIt() { }
-      OutEdgeIt(const Invalid& i) : Edge(i) { }
-      OutEdgeIt(const UndirGraphWrapper<Graph>& _G, const Node& _n) {
-	out_or_in=true; _G.graph->first(out, _n);
-	if (!(_G.graph->valid(out))) { out_or_in=false; _G.graph->first(in, _n);	}
-      } 
-      operator Edge() const { 
-	if (out_or_in) return Edge(out); else return Edge(in); 
-      }
-    };
-
-    typedef OutEdgeIt InEdgeIt; 
-
-    using GraphWrapper<Graph>::first;
-    OutEdgeIt& first(OutEdgeIt& i, const Node& p) const { 
-      i=OutEdgeIt(*this, p); return i;
-    }
-
-    using GraphWrapper<Graph>::next;
-
-    OutEdgeIt& next(OutEdgeIt& e) const {
-      if (e.out_or_in) {
-	typename Graph::Node n=this->graph->source(e.out);
-	this->graph->next(e.out);
-	if (!this->graph->valid(e.out)) { 
-	  e.out_or_in=false; this->graph->first(e.in, n); }
-      } else {
-	this->graph->next(e.in);
-      }
-      return e;
-    }
-
-    Node aNode(const OutEdgeIt& e) const { 
-      if (e.out_or_in) return this->graph->source(e); else 
-	return this->graph->target(e); }
-    Node bNode(const OutEdgeIt& e) const { 
-      if (e.out_or_in) return this->graph->target(e); else 
-	return this->graph->source(e); }
-
-    //    KEEP_MAPS(Parent, UndirGraphWrapper);
-
-  };
-  
-//   /// \brief An undirected graph template.
-//   ///
-//   ///\warning Graph wrappers are in even more experimental state than the other
-//   ///parts of the lib. Use them at your own risk.
-//   ///
-//   /// An undirected graph template.
-//   /// This class works as an undirected graph and a directed graph of 
-//   /// class \c Graph is used for the physical storage.
-//   /// \ingroup graphs
-  template<typename Graph>
-  class UndirGraph : public UndirGraphWrapper<Graph> {
-    typedef UndirGraphWrapper<Graph> Parent;
-  protected:
-    Graph gr;
-  public:
-    UndirGraph() : UndirGraphWrapper<Graph>() { 
-      Parent::setGraph(gr); 
-    }
-
-    //    KEEP_MAPS(Parent, UndirGraph);
-  };
-
-  
-  template <typename _Graph, 
-	    typename ForwardFilterMap, typename BackwardFilterMap>
-  class SubBidirGraphWrapperBase : public GraphWrapperBase<_Graph> {
-  public:
-    typedef _Graph Graph;
-    typedef GraphWrapperBase<_Graph> Parent;
-  protected:
-    ForwardFilterMap* forward_filter;
-    BackwardFilterMap* backward_filter;
-    SubBidirGraphWrapperBase() : Parent(), 
-				 forward_filter(0), backward_filter(0) { }
-
-    void setForwardFilterMap(ForwardFilterMap& _forward_filter) {
-      forward_filter=&_forward_filter;
-    }
-    void setBackwardFilterMap(BackwardFilterMap& _backward_filter) {
-      backward_filter=&_backward_filter;
-    }
-
-  public:
-//     SubGraphWrapperBase(Graph& _graph, 
-// 			NodeFilterMap& _node_filter_map, 
-// 			EdgeFilterMap& _edge_filter_map) : 
-//       Parent(&_graph), 
-//       node_filter_map(&node_filter_map), 
-//       edge_filter_map(&edge_filter_map) { }
-
-    typedef typename Parent::Node Node;
-    typedef typename _Graph::Edge GraphEdge;
-    template <typename T> class EdgeMap;
-    /// SubBidirGraphWrapperBase<..., ..., ...>::Edge is inherited from 
-    /// _Graph::Edge. It contains an extra bool flag which is true 
-    /// if and only if the 
-    /// edge is the backward version of the original edge.
-    class Edge : public _Graph::Edge {
-      friend class SubBidirGraphWrapperBase<
-	Graph, ForwardFilterMap, BackwardFilterMap>;
-      template<typename T> friend class EdgeMap;
-    protected:
-      bool backward; //true, iff backward
-    public:
-      Edge() { }
-      /// \todo =false is needed, or causes problems?
-      /// If \c _backward is false, then we get an edge corresponding to the 
-      /// original one, otherwise its oppositely directed pair is obtained.
-      Edge(const typename _Graph::Edge& e, bool _backward/*=false*/) : 
-	_Graph::Edge(e), backward(_backward) { }
-      Edge(Invalid i) : _Graph::Edge(i), backward(true) { }
-      bool operator==(const Edge& v) const { 
-	return (this->backward==v.backward && 
-		static_cast<typename _Graph::Edge>(*this)==
-		static_cast<typename _Graph::Edge>(v));
-      } 
-      bool operator!=(const Edge& v) const { 
-	return (this->backward!=v.backward || 
-		static_cast<typename _Graph::Edge>(*this)!=
-		static_cast<typename _Graph::Edge>(v));
-      }
-    };
-
-    void first(Node& i) const { 
-      Parent::first(i); 
-    }
-
-    void first(Edge& i) const { 
-      Parent::first(i); 
-      i.backward=false;
-      while (*static_cast<GraphEdge*>(&i)!=INVALID && 
-	     !(*forward_filter)[i]) Parent::next(i);
-      if (*static_cast<GraphEdge*>(&i)==INVALID) {
-	Parent::first(i); 
-	i.backward=true;
-	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
-	       !(*backward_filter)[i]) Parent::next(i);
-      }
-    }
-
-    void firstIn(Edge& i, const Node& n) const { 
-      Parent::firstIn(i, n); 
-      i.backward=false;
-      while (*static_cast<GraphEdge*>(&i)!=INVALID && 
-	     !(*forward_filter)[i]) Parent::nextOut(i);
-      if (*static_cast<GraphEdge*>(&i)==INVALID) {
-	Parent::firstOut(i, n); 
-	i.backward=true;
-	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
-	       !(*backward_filter)[i]) Parent::nextOut(i);
-      }
-    }
-
-    void firstOut(Edge& i, const Node& n) const { 
-      Parent::firstOut(i, n); 
-      i.backward=false;
-      while (*static_cast<GraphEdge*>(&i)!=INVALID && 
-	     !(*forward_filter)[i]) Parent::nextOut(i);
-      if (*static_cast<GraphEdge*>(&i)==INVALID) {
-	Parent::firstIn(i, n); 
-	i.backward=true;
-	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
-	       !(*backward_filter)[i]) Parent::nextIn(i);
-      }
-    }
-
-    void next(Node& i) const { 
-      Parent::next(i); 
-    }
-
-    void next(Edge& i) const { 
-      if (!(i.backward)) {
-	Parent::next(i);
-	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
-	       !(*forward_filter)[i]) Parent::next(i);
-	if (*static_cast<GraphEdge*>(&i)==INVALID) {
-	  Parent::first(i); 
-	  i.backward=true;
-	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
-		 !(*backward_filter)[i]) Parent::next(i);
-	}
-      } else {
-	Parent::next(i);
-	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
-	       !(*backward_filter)[i]) Parent::next(i);
-      }
-    }
-
-    void nextIn(Edge& i) const { 
-      if (!(i.backward)) {
-	Node n=Parent::target(i);
-	Parent::nextIn(i);
-	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
-	       !(*forward_filter)[i]) Parent::nextIn(i);
-	if (*static_cast<GraphEdge*>(&i)==INVALID) {
-	  Parent::firstOut(i, n); 
-	  i.backward=true;
-	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
-		 !(*backward_filter)[i]) Parent::nextOut(i);
-	}
-      } else {
-	Parent::nextOut(i);
-	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
-	       !(*backward_filter)[i]) Parent::nextOut(i);
-      }
-    }
-
-    void nextOut(Edge& i) const { 
-      if (!(i.backward)) {
-	Node n=Parent::source(i);
-	Parent::nextOut(i);
-	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
-	       !(*forward_filter)[i]) Parent::nextOut(i);
-	if (*static_cast<GraphEdge*>(&i)==INVALID) {
-	  Parent::firstIn(i, n); 
-	  i.backward=true;
-	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
-		 !(*backward_filter)[i]) Parent::nextIn(i);
-	}
-      } else {
-	Parent::nextIn(i);
-	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
-	       !(*backward_filter)[i]) Parent::nextIn(i);
-      }
-    }
-
-    Node source(Edge e) const { 
-      return ((!e.backward) ? this->graph->source(e) : this->graph->target(e)); }
-    Node target(Edge e) const { 
-      return ((!e.backward) ? this->graph->target(e) : this->graph->source(e)); }
-
-    /// Gives back the opposite edge.
-    Edge opposite(const Edge& e) const { 
-      Edge f=e;
-      f.backward=!f.backward;
-      return f;
-    }
-
-    /// \warning This is a linear time operation and works only if 
-    /// \c Graph::EdgeIt is defined.
-    /// \todo hmm
-    int edgeNum() const { 
-      int i=0;
-      Edge e;
-      for (first(e); e!=INVALID; next(e)) ++i;
-      return i; 
-    }
-
-    bool forward(const Edge& e) const { return !e.backward; }
-    bool backward(const Edge& e) const { return e.backward; }
-
-    template <typename T>
-    /// \c SubBidirGraphWrapperBase<..., ..., ...>::EdgeMap contains two 
-    /// _Graph::EdgeMap one for the forward edges and 
-    /// one for the backward edges.
-    class EdgeMap {
-      template <typename TT> friend class EdgeMap;
-      typename _Graph::template EdgeMap<T> forward_map, backward_map; 
-    public:
-      typedef T Value;
-      typedef Edge Key;
-
-      EdgeMap(const SubBidirGraphWrapperBase<_Graph, 
-	      ForwardFilterMap, BackwardFilterMap>& g) : 
-	forward_map(*(g.graph)), backward_map(*(g.graph)) { }
-
-      EdgeMap(const SubBidirGraphWrapperBase<_Graph, 
-	      ForwardFilterMap, BackwardFilterMap>& g, T a) : 
-	forward_map(*(g.graph), a), backward_map(*(g.graph), a) { }
-      
-      void set(Edge e, T a) { 
-	if (!e.backward) 
-	  forward_map.set(e, a); 
-	else 
-	  backward_map.set(e, a); 
-      }
-
-//       typename _Graph::template EdgeMap<T>::ConstReference 
-//       operator[](Edge e) const { 
-// 	if (!e.backward) 
-// 	  return forward_map[e]; 
-// 	else 
-// 	  return backward_map[e]; 
-//       }
-
-//      typename _Graph::template EdgeMap<T>::Reference 
-      T operator[](Edge e) const { 
-	if (!e.backward) 
-	  return forward_map[e]; 
-	else 
-	  return backward_map[e]; 
-      }
-
-      void update() { 
-	forward_map.update(); 
-	backward_map.update();
-      }
-    };
-
-  };
-
-
-  ///\brief A wrapper for composing a subgraph of a 
-  /// bidirected graph made from a directed one. 
-  ///
-  /// A wrapper for composing a subgraph of a 
-  /// bidirected graph made from a directed one. 
-  ///
-  ///\warning Graph wrappers are in even more experimental state than the other
-  ///parts of the lib. Use them at you own risk.
-  ///
-  /// Let \f$G=(V, A)\f$ be a directed graph and for each directed edge 
-  /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by
-  /// reversing its orientation. We are given moreover two bool valued 
-  /// maps on the edge-set, 
-  /// \f$forward\_filter\f$, and \f$backward\_filter\f$. 
-  /// SubBidirGraphWrapper implements the graph structure with node-set 
-  /// \f$V\f$ and edge-set 
-  /// \f$\{e : e\in A \mbox{ and } forward\_filter(e) \mbox{ is true}\}+\{\bar e : e\in A \mbox{ and } backward\_filter(e) \mbox{ is true}\}\f$. 
-  /// The purpose of writing + instead of union is because parallel 
-  /// edges can arise. (Similarly, antiparallel edges also can arise).
-  /// In other words, a subgraph of the bidirected graph obtained, which 
-  /// is given by orienting the edges of the original graph in both directions.
-  /// As the oppositely directed edges are logically different, 
-  /// the maps are able to attach different values for them. 
-  ///
-  /// An example for such a construction is \c RevGraphWrapper where the 
-  /// forward_filter is everywhere false and the backward_filter is 
-  /// everywhere true. We note that for sake of efficiency, 
-  /// \c RevGraphWrapper is implemented in a different way. 
-  /// But BidirGraphWrapper is obtained from 
-  /// SubBidirGraphWrapper by considering everywhere true 
-  /// valued maps both for forward_filter and backward_filter. 
-  /// Finally, one of the most important applications of SubBidirGraphWrapper 
-  /// is ResGraphWrapper, which stands for the residual graph in directed 
-  /// flow and circulation problems. 
-  /// As wrappers usually, the SubBidirGraphWrapper implements the 
-  /// above mentioned graph structure without its physical storage, 
-  /// that is the whole stuff is stored in constant memory. 
-  template<typename _Graph, 
-	   typename ForwardFilterMap, typename BackwardFilterMap>
-  class SubBidirGraphWrapper : 
-    public IterableGraphExtender<
-    SubBidirGraphWrapperBase<_Graph, ForwardFilterMap, BackwardFilterMap> > {
-  public:
-    typedef _Graph Graph;
-    typedef IterableGraphExtender<
-      SubBidirGraphWrapperBase<
-      _Graph, ForwardFilterMap, BackwardFilterMap> > Parent;
-  protected:
-    SubBidirGraphWrapper() { }
-  public:
-    SubBidirGraphWrapper(_Graph& _graph, ForwardFilterMap& _forward_filter, 
-			 BackwardFilterMap& _backward_filter) { 
-      setGraph(_graph);
-      setForwardFilterMap(_forward_filter);
-      setBackwardFilterMap(_backward_filter);
-    }
-  };
-
-
-
-  ///\brief A wrapper for composing bidirected graph from a directed one. 
-  ///
-  ///\warning Graph wrappers are in even more experimental state than the other
-  ///parts of the lib. Use them at you own risk.
-  ///
-  /// A wrapper for composing bidirected graph from a directed one. 
-  /// A bidirected graph is composed over the directed one without physical 
-  /// storage. As the oppositely directed edges are logically different ones 
-  /// the maps are able to attach different values for them.
-  template<typename Graph>
-  class BidirGraphWrapper : 
-    public SubBidirGraphWrapper<
-    Graph, 
-    ConstMap<typename Graph::Edge, bool>, 
-    ConstMap<typename Graph::Edge, bool> > {
-  public:
-    typedef  SubBidirGraphWrapper<
-      Graph, 
-      ConstMap<typename Graph::Edge, bool>, 
-      ConstMap<typename Graph::Edge, bool> > Parent; 
-  protected:
-    ConstMap<typename Graph::Edge, bool> cm;
-
-    BidirGraphWrapper() : Parent(), cm(true) { 
-      Parent::setForwardFilterMap(cm);
-      Parent::setBackwardFilterMap(cm);
-    }
-  public:
-    BidirGraphWrapper(Graph& _graph) : Parent() { 
-      Parent::setGraph(_graph);
-      Parent::setForwardFilterMap(cm);
-      Parent::setBackwardFilterMap(cm);
-    }
-
-    int edgeNum() const { 
-      return 2*this->graph->edgeNum();
-    }
-    //    KEEP_MAPS(Parent, BidirGraphWrapper);
-  };
-
-
-  template<typename Graph, typename Number,
-	   typename CapacityMap, typename FlowMap>
-  class ResForwardFilter {
-    //    const Graph* graph;
-    const CapacityMap* capacity;
-    const FlowMap* flow;
-  public:
-    ResForwardFilter(/*const Graph& _graph, */
-		     const CapacityMap& _capacity, const FlowMap& _flow) :
-      /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { }
-    ResForwardFilter() : /*graph(0),*/ capacity(0), flow(0) { }
-    void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; }
-    void setFlow(const FlowMap& _flow) { flow=&_flow; }
-    bool operator[](const typename Graph::Edge& e) const {
-      return (Number((*flow)[e]) < Number((*capacity)[e]));
-    }
-  };
-
-  template<typename Graph, typename Number,
-	   typename CapacityMap, typename FlowMap>
-  class ResBackwardFilter {
-    const CapacityMap* capacity;
-    const FlowMap* flow;
-  public:
-    ResBackwardFilter(/*const Graph& _graph,*/ 
-		      const CapacityMap& _capacity, const FlowMap& _flow) :
-      /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { }
-    ResBackwardFilter() : /*graph(0),*/ capacity(0), flow(0) { }
-    void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; }
-    void setFlow(const FlowMap& _flow) { flow=&_flow; }
-    bool operator[](const typename Graph::Edge& e) const {
-      return (Number(0) < Number((*flow)[e]));
-    }
-  };
-
-  
-  /// A wrapper for composing the residual graph for directed flow and circulation problems.
-
-  ///\warning Graph wrappers are in even more experimental state than the other
-  ///parts of the lib. Use them at you own risk.
-  ///
-  /// A wrapper for composing the residual graph for directed flow and circulation problems.
-  template<typename Graph, typename Number, 
-	   typename CapacityMap, typename FlowMap>
-  class ResGraphWrapper : 
-    public SubBidirGraphWrapper< 
-    Graph, 
-    ResForwardFilter<Graph, Number, CapacityMap, FlowMap>,  
-    ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > {
-  public:
-    typedef SubBidirGraphWrapper< 
-      Graph, 
-      ResForwardFilter<Graph, Number, CapacityMap, FlowMap>,  
-      ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > Parent;
-  protected:
-    const CapacityMap* capacity;
-    FlowMap* flow;
-    ResForwardFilter<Graph, Number, CapacityMap, FlowMap> forward_filter;
-    ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> backward_filter;
-    ResGraphWrapper() : Parent(), 
- 			capacity(0), flow(0) { }
-    void setCapacityMap(const CapacityMap& _capacity) {
-      capacity=&_capacity;
-      forward_filter.setCapacity(_capacity);
-      backward_filter.setCapacity(_capacity);
-    }
-    void setFlowMap(FlowMap& _flow) {
-      flow=&_flow;
-      forward_filter.setFlow(_flow);
-      backward_filter.setFlow(_flow);
-    }
-  public:
-    ResGraphWrapper(Graph& _graph, const CapacityMap& _capacity, 
-		       FlowMap& _flow) : 
-      Parent(), capacity(&_capacity), flow(&_flow), 
-      forward_filter(/*_graph,*/ _capacity, _flow), 
-      backward_filter(/*_graph,*/ _capacity, _flow) {
-      Parent::setGraph(_graph);
-      Parent::setForwardFilterMap(forward_filter);
-      Parent::setBackwardFilterMap(backward_filter);
-    }
-
-    typedef typename Parent::Edge Edge;
-
-    void augment(const Edge& e, Number a) const {
-      if (Parent::forward(e))  
-	flow->set(e, (*flow)[e]+a);
-      else  
-	flow->set(e, (*flow)[e]-a);
-    }
-
-    /// \brief Residual capacity map.
-    ///
-    /// In generic residual graphs the residual capacity can be obtained 
-    /// as a map. 
-    class ResCap {
-    protected:
-      const ResGraphWrapper<Graph, Number, CapacityMap, FlowMap>* res_graph;
-    public:
-      typedef Number Value;
-      typedef Edge Key;
-      ResCap(const ResGraphWrapper<Graph, Number, CapacityMap, FlowMap>& 
-	     _res_graph) : res_graph(&_res_graph) { }
-      Number operator[](const Edge& e) const { 
-	if (res_graph->forward(e)) 
-	  return (*(res_graph->capacity))[e]-(*(res_graph->flow))[e]; 
-	else 
-	  return (*(res_graph->flow))[e]; 
-      }
-    };
-
-    //    KEEP_MAPS(Parent, ResGraphWrapper);
-  };
-
-
-
-  template <typename _Graph, typename FirstOutEdgesMap>
-  class ErasingFirstGraphWrapperBase : public GraphWrapperBase<_Graph> {
-  public:
-    typedef _Graph Graph;
-    typedef GraphWrapperBase<_Graph> Parent;
-  protected:
-    FirstOutEdgesMap* first_out_edges;
-    ErasingFirstGraphWrapperBase() : Parent(), 
-				     first_out_edges(0) { }
-
-    void setFirstOutEdgesMap(FirstOutEdgesMap& _first_out_edges) {
-      first_out_edges=&_first_out_edges;
-    }
-
-  public:
-
-    typedef typename Parent::Node Node;
-    typedef typename Parent::Edge Edge;
-
-    void firstOut(Edge& i, const Node& n) const { 
-      i=(*first_out_edges)[n];
-    }
-
-    void erase(const Edge& e) const {
-      Node n=source(e);
-      Edge f=e;
-      Parent::nextOut(f);
-      first_out_edges->set(n, f);
-    }    
-  };
-
-
-  /// For blocking flows.
-
-  ///\warning Graph wrappers are in even more experimental state than the other
-  ///parts of the lib. Use them at you own risk.
-  ///
-  /// This graph wrapper is used for on-the-fly 
-  /// Dinits blocking flow computations.
-  /// For each node, an out-edge is stored which is used when the 
-  /// \code 
-  /// OutEdgeIt& first(OutEdgeIt&, const Node&)
-  /// \endcode
-  /// is called. 
-  ///
-  /// \author Marton Makai
-  template <typename _Graph, typename FirstOutEdgesMap>
-  class ErasingFirstGraphWrapper : 
-    public IterableGraphExtender<
-    ErasingFirstGraphWrapperBase<_Graph, FirstOutEdgesMap> > {
-  public:
-    typedef _Graph Graph;
-    typedef IterableGraphExtender<
-      ErasingFirstGraphWrapperBase<_Graph, FirstOutEdgesMap> > Parent;
-    ErasingFirstGraphWrapper(Graph& _graph, 
-			     FirstOutEdgesMap& _first_out_edges) { 
-      setGraph(_graph);
-      setFirstOutEdgesMap(_first_out_edges);
-    } 
-
-  };
-
-  ///@}
-
-} //namespace lemon
-
-#endif //LEMON_GRAPH_WRAPPER_H
-
+   The main parts of LEMON are the different graph structures, 
+   generic graph algorithms, graph concepts which couple these, and 
+   graph wrappers. While the previous ones are more or less clear, the 
+   latter notion needs further explanation.
+   Graph wrappers are graph classes which serve for considering graph 
+   structures in different ways. A short example makes the notion much 
+   clearer. 
+   Suppose that we have an instance \c g of a directed graph
+   type say \c ListGraph and an algorithm 
+   \code template<typename Graph> int algorithm(const Graph&); \endcode 
+   is needed to run on the reversely oriented graph. 
+   It may be expensive (in time or in memory usage) to copy 
+   \c g with the reverse orientation. 
+   Thus, a wrapper class
+   \code template<typename Graph> class RevGraphWrapper; \endcode is used. 
+   The code looks as follows
+   \code
+   ListGraph g;
+   RevGraphWrapper<ListGraph> rgw(g);
+   int result=algorithm(rgw);
+   \endcode
+   After running the algorithm, the original graph \c g 
+   remains untouched. Thus the graph wrapper used above is to consider the 
+   original graph with reverse orientation. 
+   This techniques gives rise to an elegant code, and 
+   based on stable graph wrappers, complex algorithms can be 
+   implemented easily. 
+   In flow, circulation and bipartite matching problems, the residual 
+   graph is of particular importance. Combining a wrapper implementing 
+   this, shortest path algorithms and minimum mean cycle algorithms, 
+   a range of weighted and cardinality optimization algorithms can be 
+   obtained. For lack of space, for other examples, 
+   the interested user is referred to the detailed documentation of graph 
+   wrappers. 
+   The behavior of graph wrappers can be very different. Some of them keep 
+   capabilities of the original graph while in other cases this would be 
+   meaningless. This means that the concepts that they are a model of depend 
+   on the graph wrapper, and the wrapped graph(s). 
+   If an edge of \c rgw is deleted, this is carried out by 
+   deleting the corresponding edge of \c g. But for a residual 
+   graph, this operation has no sense. 
+   Let we stand one more example here to simplify your work. 
+   wrapper class
+   \code template<typename Graph> class RevGraphWrapper; \endcode 
+   has constructor 
+   <tt> RevGraphWrapper(Graph& _g)</tt>. 
+   This means that in a situation, 
+   when a <tt> const ListGraph& </tt> reference to a graph is given, 
+   then it have to be instantiated with <tt>Graph=const ListGraph</tt>.
+   \code
+   int algorithm1(const ListGraph& g) {
+   RevGraphWrapper<const ListGraph> rgw(g);
+   return algorithm2(rgw);
+   }
+   \endcode
+*/

Modified: hugo/trunk/src/lemon/graph_wrapper.h
==============================================================================
--- hugo/trunk/src/lemon/graph_wrapper.h	(original)
+++ hugo/trunk/src/lemon/graph_wrapper.h	Wed Feb 23 23:00:05 2005
@@ -34,66 +34,12 @@
 
   // Graph wrappers
 
-  /*! \addtogroup gwrappers
-    The main parts of LEMON are the different graph structures, 
-    generic graph algorithms, graph concepts which couple these, and 
-    graph wrappers. While the previous ones are more or less clear, the 
-    latter notion needs further explanation.
-    Graph wrappers are graph classes which serve for considering graph 
-    structures in different ways. A short example makes the notion much 
-    clearer. 
-    Suppose that we have an instance \c g of a directed graph
-    type say \c ListGraph and an algorithm 
-    \code template<typename Graph> int algorithm(const Graph&); \endcode 
-    is needed to run on the reversely oriented graph. 
-    It may be expensive (in time or in memory usage) to copy 
-    \c g with the reverse orientation. 
-    Thus, a wrapper class
-    \code template<typename Graph> class RevGraphWrapper; \endcode is used. 
-    The code looks as follows
-    \code
-    ListGraph g;
-    RevGraphWrapper<ListGraph> rgw(g);
-    int result=algorithm(rgw);
-    \endcode
-    After running the algorithm, the original graph \c g 
-    remains untouched. Thus the graph wrapper used above is to consider the 
-    original graph with reverse orientation. 
-    This techniques gives rise to an elegant code, and 
-    based on stable graph wrappers, complex algorithms can be 
-    implemented easily. 
-    In flow, circulation and bipartite matching problems, the residual 
-    graph is of particular importance. Combining a wrapper implementing 
-    this, shortest path algorithms and minimum mean cycle algorithms, 
-    a range of weighted and cardinality optimization algorithms can be 
-    obtained. For lack of space, for other examples, 
-    the interested user is referred to the detailed documentation of graph 
-    wrappers. 
-    The behavior of graph wrappers can be very different. Some of them keep 
-    capabilities of the original graph while in other cases this would be 
-    meaningless. This means that the concepts that they are a model of depend 
-    on the graph wrapper, and the wrapped graph(s). 
-    If an edge of \c rgw is deleted, this is carried out by 
-    deleting the corresponding edge of \c g. But for a residual 
-    graph, this operation has no sense. 
-    Let we stand one more example here to simplify your work. 
-    wrapper class
-    \code template<typename Graph> class RevGraphWrapper; \endcode 
-    has constructor 
-    <tt> RevGraphWrapper(Graph& _g)</tt>. 
-    This means that in a situation, 
-    when a <tt> const ListGraph& </tt> reference to a graph is given, 
-    then it have to be instantiated with <tt>Graph=const ListGraph</tt>.
-    \code
-    int algorithm1(const ListGraph& g) {
-    RevGraphWrapper<const ListGraph> rgw(g);
-    return algorithm2(rgw);
-    }
-    \endcode
-
+  /*!
     \addtogroup gwrappers
     @{
+   */
 
+  /*! 
     Base type for the Graph Wrappers
 
     \warning Graph wrappers are in even more experimental state than the other

Modified: hugo/trunk/src/lemon/maps.h
==============================================================================
--- hugo/trunk/src/lemon/maps.h	(original)
+++ hugo/trunk/src/lemon/maps.h	Wed Feb 23 23:00:05 2005
@@ -590,7 +590,7 @@
   ///that is it provides an <tt>operator()</tt> to read its values.
   ///
   ///For the sake of convenience it also works as a ususal map, i.e
-  ///<tt>operator[]</tt> and the \c Key and \c Valu typedefs also exist.
+  ///<tt>operator[]</tt> and the \c Key and \c Value typedefs also exist.
 
   template<class M> 
   class MapFunctor

Modified: hugo/trunk/src/lemon/max_matching.h
==============================================================================
--- hugo/trunk/src/lemon/max_matching.h	(original)
+++ hugo/trunk/src/lemon/max_matching.h	Wed Feb 23 23:00:05 2005
@@ -161,7 +161,7 @@
     ///map[v] must be an \c UndirEdge incident to \c v. This map must
     ///have the property that if \c g.oppositeNode(u,map[u])==v then
     ///\c \c g.oppositeNode(v,map[v])==u holds, and now some edge
-    ///joining \c u to \v will be an edge of the matching.
+    ///joining \c u to \c v will be an edge of the matching.
     template<typename NMapE>
     void readNMapEdge(NMapE& map) {
      for(NodeIt v(g); v!=INVALID; ++v) {



More information about the Lemon-commits mailing list