[Lemon-commits] [lemon_svn] deba: r2251 - hugo/trunk/lemon
Lemon SVN
svn at lemon.cs.elte.hu
Mon Nov 6 20:51:15 CET 2006
Author: deba
Date: Fri Oct 14 12:58:54 2005
New Revision: 2251
Added:
hugo/trunk/lemon/linear_heap.h
Modified:
hugo/trunk/lemon/Makefile.am
Log:
Heap not for the dijkstra
It will be used in the minCut algorithm
Modified: hugo/trunk/lemon/Makefile.am
==============================================================================
--- hugo/trunk/lemon/Makefile.am (original)
+++ hugo/trunk/lemon/Makefile.am Fri Oct 14 12:58:54 2005
@@ -41,6 +41,7 @@
iterable_maps.h \
johnson.h \
kruskal.h \
+ linear_heap.h \
list_graph.h \
lp.h \
lp_base.h \
@@ -48,6 +49,7 @@
lp_glpk.h \
lp_skeleton.h \
maps.h \
+ matrix_maps.h \
max_matching.h \
min_cost_flow.h \
suurballe.h \
@@ -57,6 +59,7 @@
smart_graph.h \
time_measure.h \
topology.h \
+ traits.h \
unionfind.h \
xy.h \
concept_check.h \
@@ -82,6 +85,7 @@
concept/graph.h \
concept/graph_component.h \
concept/undir_graph.h \
+ concept/matrix_maps.h \
concept/maps.h \
concept/heap.h \
concept/path.h
Added: hugo/trunk/lemon/linear_heap.h
==============================================================================
--- (empty file)
+++ hugo/trunk/lemon/linear_heap.h Fri Oct 14 12:58:54 2005
@@ -0,0 +1,486 @@
+/* -*- C++ -*-
+ * lemon/linear_heap.h - Part of LEMON, a generic C++ optimization library
+ *
+ * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+#ifndef LEMON_LINEAR_HEAP_H
+#define LEMON_LINEAR_HEAP_H
+
+///\ingroup auxdat
+///\file
+///\brief Binary Heap implementation.
+
+#include <vector>
+#include <utility>
+#include <functional>
+
+namespace lemon {
+
+ /// \addtogroup auxdat
+ /// @{
+
+ /// \brief A Linear Heap implementation.
+ ///
+ /// This class implements the \e linear \e heap data structure. A \e heap
+ /// is a data structure for storing items with specified values called \e
+ /// priorities in such a way that finding the item with minimum priority is
+ /// efficient. The linear heap is very simple implementation, it can store
+ /// only integer priorities and it stores for each priority in the [0..C]
+ /// range a list of items. So it should be used only when the priorities
+ /// are small. It is not intended to use as dijkstra heap.
+ ///
+ /// \param _Item Type of the items to be stored.
+ /// \param _ItemIntMap A read and writable Item int map, used internally
+ /// to handle the cross references.
+ /// \param minimize If the given parameter is true then the heap gives back
+ /// the lowest priority.
+ template <typename _Item, typename _ItemIntMap, bool minimize = true >
+ class LinearHeap {
+
+ public:
+ typedef _Item Item;
+ typedef int Prio;
+ typedef std::pair<Item, Prio> Pair;
+ typedef _ItemIntMap ItemIntMap;
+
+ /// \brief Type to represent the items states.
+ ///
+ /// Each Item element have a state associated to it. It may be "in heap",
+ /// "pre heap" or "post heap". The latter two are indifferent from the
+ /// heap's point of view, but may be useful to the user.
+ ///
+ /// The ItemIntMap \e should be initialized in such way that it maps
+ /// PRE_HEAP (-1) to any element to be put in the heap...
+ enum state_enum {
+ IN_HEAP = 0,
+ PRE_HEAP = -1,
+ POST_HEAP = -2
+ };
+
+ public:
+ /// \brief The constructor.
+ ///
+ /// The constructor.
+ /// \param _index should be given to the constructor, since it is used
+ /// internally to handle the cross references. The value of the map
+ /// should be PRE_HEAP (-1) for each element.
+ explicit LinearHeap(ItemIntMap &_index) : index(_index), minimal(0) {}
+
+ /// The number of items stored in the heap.
+ ///
+ /// \brief Returns the number of items stored in the heap.
+ int size() const { return data.size(); }
+
+ /// \brief Checks if the heap stores no items.
+ ///
+ /// Returns \c true if and only if the heap stores no items.
+ bool empty() const { return data.empty(); }
+
+ /// \brief Make empty this heap.
+ ///
+ /// Make empty this heap.
+ void clear() {
+ for (int i = 0; i < (int)data.size(); ++i) {
+ index[data[i].item] = -2;
+ }
+ data.clear(); first.clear(); minimal = 0;
+ }
+
+ private:
+
+ void relocate_last(int idx) {
+ if (idx + 1 < (int)data.size()) {
+ data[idx] = data.back();
+ if (data[idx].prev != -1) {
+ data[data[idx].prev].next = idx;
+ } else {
+ first[data[idx].value] = idx;
+ }
+ if (data[idx].next != -1) {
+ data[data[idx].next].prev = idx;
+ }
+ index[data[idx].item] = idx;
+ }
+ data.pop_back();
+ }
+
+ void unlace(int idx) {
+ if (data[idx].prev != -1) {
+ data[data[idx].prev].next = data[idx].next;
+ } else {
+ first[data[idx].value] = data[idx].next;
+ }
+ if (data[idx].next != -1) {
+ data[data[idx].next].prev = data[idx].prev;
+ }
+ }
+
+ void lace(int idx) {
+ if ((int)first.size() <= data[idx].value) {
+ first.resize(data[idx].value + 1, -1);
+ }
+ data[idx].next = first[data[idx].value];
+ if (data[idx].next != -1) {
+ data[data[idx].next].prev = idx;
+ }
+ first[data[idx].value] = idx;
+ data[idx].prev = -1;
+ }
+
+ public:
+ /// \brief Insert a pair of item and priority into the heap.
+ ///
+ /// Adds \c p.first to the heap with priority \c p.second.
+ /// \param p The pair to insert.
+ void push(const Pair& p) {
+ push(p.first, p.second);
+ }
+
+ /// \brief Insert an item into the heap with the given priority.
+ ///
+ /// Adds \c i to the heap with priority \c p.
+ /// \param i The item to insert.
+ /// \param p The priority of the item.
+ void push(const Item &i, const Prio &p) {
+ int idx = data.size();
+ index[i] = idx;
+ data.push_back(LinearItem(i, p));
+ lace(idx);
+ if (p < minimal) {
+ minimal = p;
+ }
+ }
+
+ /// \brief Returns the item with minimum priority relative to \c Compare.
+ ///
+ /// This method returns the item with minimum priority relative to \c
+ /// Compare.
+ /// \pre The heap must be nonempty.
+ Item top() const {
+ while (first[minimal] == -1) {
+ ++minimal;
+ }
+ return data[first[minimal]].item;
+ }
+
+ /// \brief Returns the minimum priority relative to \c Compare.
+ ///
+ /// It returns the minimum priority relative to \c Compare.
+ /// \pre The heap must be nonempty.
+ Prio prio() const {
+ while (first[minimal] == -1) {
+ ++minimal;
+ }
+ return minimal;
+ }
+
+ /// \brief Deletes the item with minimum priority relative to \c Compare.
+ ///
+ /// This method deletes the item with minimum priority relative to \c
+ /// Compare from the heap.
+ /// \pre The heap must be non-empty.
+ void pop() {
+ while (first[minimal] == -1) {
+ ++minimal;
+ }
+ int idx = first[minimal];
+ index[data[idx].item] = -2;
+ unlace(idx);
+ relocate_last(idx);
+ }
+
+ /// \brief Deletes \c i from the heap.
+ ///
+ /// This method deletes item \c i from the heap, if \c i was
+ /// already stored in the heap.
+ /// \param i The item to erase.
+ void erase(const Item &i) {
+ int idx = index[i];
+ index[data[idx].item] = -2;
+ unlace(idx);
+ relocate_last(idx);
+ }
+
+
+ /// \brief Returns the priority of \c i.
+ ///
+ /// This function returns the priority of item \c i.
+ /// \pre \c i must be in the heap.
+ /// \param i The item.
+ Prio operator[](const Item &i) const {
+ int idx = index[i];
+ return data[idx].value;
+ }
+
+ /// \brief \c i gets to the heap with priority \c p independently
+ /// if \c i was already there.
+ ///
+ /// This method calls \ref push(\c i, \c p) if \c i is not stored
+ /// in the heap and sets the priority of \c i to \c p otherwise.
+ /// \param i The item.
+ /// \param p The priority.
+ void set(const Item &i, const Prio &p) {
+ int idx = index[i];
+ if (idx < 0) {
+ push(i,p);
+ } else if (p > data[idx].value) {
+ increase(i, p);
+ } else {
+ decrease(i, p);
+ }
+ }
+
+ /// \brief Decreases the priority of \c i to \c p.
+
+ /// This method decreases the priority of item \c i to \c p.
+ /// \pre \c i must be stored in the heap with priority at least \c
+ /// p relative to \c Compare.
+ /// \param i The item.
+ /// \param p The priority.
+ void decrease(const Item &i, const Prio &p) {
+ int idx = index[i];
+ unlace(idx);
+ data[idx].value = p;
+ if (p < minimal) {
+ minimal = p;
+ }
+ lace(idx);
+ }
+
+ /// \brief Increases the priority of \c i to \c p.
+ ///
+ /// This method sets the priority of item \c i to \c p.
+ /// \pre \c i must be stored in the heap with priority at most \c
+ /// p relative to \c Compare.
+ /// \param i The item.
+ /// \param p The priority.
+ void increase(const Item &i, const Prio &p) {
+ int idx = index[i];
+ unlace(idx);
+ data[idx].value = p;
+ lace(idx);
+ }
+
+ /// \brief Returns if \c item is in, has already been in, or has
+ /// never been in the heap.
+ ///
+ /// This method returns PRE_HEAP if \c item has never been in the
+ /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
+ /// otherwise. In the latter case it is possible that \c item will
+ /// get back to the heap again.
+ /// \param i The item.
+ state_enum state(const Item &i) const {
+ int idx = index[i];
+ if (idx >= 0) idx = 0;
+ return state_enum(idx);
+ }
+
+ private:
+
+ struct LinearItem {
+ LinearItem(const Item& _item, int _value)
+ : item(_item), value(_value) {}
+
+ Item item;
+ int value;
+
+ int prev, next;
+ };
+
+ ItemIntMap& index;
+ std::vector<int> first;
+ std::vector<LinearItem> data;
+ mutable int minimal;
+
+ }; // class LinearHeap
+
+
+ template <typename _Item, typename _ItemIntMap>
+ class LinearHeap<_Item, _ItemIntMap, false> {
+
+ public:
+ typedef _Item Item;
+ typedef int Prio;
+ typedef std::pair<Item, Prio> Pair;
+ typedef _ItemIntMap ItemIntMap;
+
+ enum state_enum {
+ IN_HEAP = 0,
+ PRE_HEAP = -1,
+ POST_HEAP = -2
+ };
+
+ public:
+
+ explicit LinearHeap(ItemIntMap &_index) : index(_index), maximal(-1) {}
+
+ int size() const { return data.size(); }
+ bool empty() const { return data.empty(); }
+
+ void clear() {
+ for (int i = 0; i < (int)data.size(); ++i) {
+ index[data[i].item] = -2;
+ }
+ data.clear(); first.clear(); maximal = -1;
+ }
+
+ private:
+
+ void relocate_last(int idx) {
+ if (idx + 1 != (int)data.size()) {
+ data[idx] = data.back();
+ if (data[idx].prev != -1) {
+ data[data[idx].prev].next = idx;
+ } else {
+ first[data[idx].value] = idx;
+ }
+ if (data[idx].next != -1) {
+ data[data[idx].next].prev = idx;
+ }
+ index[data[idx].item] = idx;
+ }
+ data.pop_back();
+ }
+
+ void unlace(int idx) {
+ if (data[idx].prev != -1) {
+ data[data[idx].prev].next = data[idx].next;
+ } else {
+ first[data[idx].value] = data[idx].next;
+ }
+ if (data[idx].next != -1) {
+ data[data[idx].next].prev = data[idx].prev;
+ }
+ }
+
+ void lace(int idx) {
+ if ((int)first.size() <= data[idx].value) {
+ first.resize(data[idx].value + 1, -1);
+ }
+ data[idx].next = first[data[idx].value];
+ if (data[idx].next != -1) {
+ data[data[idx].next].prev = idx;
+ }
+ first[data[idx].value] = idx;
+ data[idx].prev = -1;
+ }
+
+ public:
+
+ void push(const Pair& p) {
+ push(p.first, p.second);
+ }
+
+ void push(const Item &i, const Prio &p) {
+ int idx = data.size();
+ index[i] = idx;
+ data.push_back(LinearItem(i, p));
+ lace(idx);
+ if (data[idx].value > maximal) {
+ maximal = data[idx].value;
+ }
+ }
+
+ Item top() const {
+ while (first[maximal] == -1) {
+ --maximal;
+ }
+ return data[first[maximal]].item;
+ }
+
+ Prio prio() const {
+ while (first[maximal] == -1) {
+ --maximal;
+ }
+ return maximal;
+ }
+
+ void pop() {
+ while (first[maximal] == -1) {
+ --maximal;
+ }
+ int idx = first[maximal];
+ index[data[idx].item] = -2;
+ unlace(idx);
+ relocate_last(idx);
+ }
+
+ void erase(const Item &i) {
+ int idx = index[i];
+ index[data[idx].item] = -2;
+ unlace(idx);
+ relocate_last(idx);
+ }
+
+ Prio operator[](const Item &i) const {
+ int idx = index[i];
+ return data[idx].value;
+ }
+
+ void set(const Item &i, const Prio &p) {
+ int idx = index[i];
+ if (idx < 0) {
+ push(i,p);
+ } else if (p > data[idx].value) {
+ decrease(i, p);
+ } else {
+ increase(i, p);
+ }
+ }
+
+ void decrease(const Item &i, const Prio &p) {
+ int idx = index[i];
+ unlace(idx);
+ data[idx].value = p;
+ if (p > maximal) {
+ maximal = p;
+ }
+ lace(idx);
+ }
+
+ void increase(const Item &i, const Prio &p) {
+ int idx = index[i];
+ unlace(idx);
+ data[idx].value = p;
+ lace(idx);
+ }
+
+ state_enum state(const Item &i) const {
+ int idx = index[i];
+ if (idx >= 0) idx = 0;
+ return state_enum(idx);
+ }
+
+ private:
+
+ struct LinearItem {
+ LinearItem(const Item& _item, int _value)
+ : item(_item), value(_value) {}
+
+ Item item;
+ int value;
+
+ int prev, next;
+ };
+
+ ItemIntMap& index;
+ std::vector<int> first;
+ std::vector<LinearItem> data;
+ mutable int maximal;
+
+ }; // class LinearHeap
+
+}
+
+#endif
More information about the Lemon-commits
mailing list