[Lemon-commits] [lemon_svn] deba: r2486 - hugo/trunk/lemon/concept

Lemon SVN svn at lemon.cs.elte.hu
Mon Nov 6 20:53:03 CET 2006


Author: deba
Date: Thu Jan 26 18:18:12 2006
New Revision: 2486

Added:
   hugo/trunk/lemon/concept/bpugraph.h

Log:
The pre BpUGraph concept



Added: hugo/trunk/lemon/concept/bpugraph.h
==============================================================================
--- (empty file)
+++ hugo/trunk/lemon/concept/bpugraph.h	Thu Jan 26 18:18:12 2006
@@ -0,0 +1,906 @@
+/* -*- C++ -*-
+ *
+ * lemon/concept/ugraph_component.h - Part of LEMON, a generic
+ * C++ optimization library
+ *
+ * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi
+ * Kutatocsoport (Egervary Research Group on Combinatorial Optimization,
+ * EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+/// \ingroup graph_concepts
+/// \file
+/// \brief Undirected bipartite graphs and components of.
+
+
+#ifndef LEMON_CONCEPT_BPUGRAPH_H
+#define LEMON_CONCEPT_BPUGRAPH_H
+
+#include <lemon/concept/graph_component.h>
+
+#include <lemon/concept/graph.h>
+#include <lemon/concept/ugraph.h>
+
+#include <lemon/utility.h>
+
+namespace lemon {
+  namespace concept {
+
+    /// \addtogroup graph_concepts
+    /// @{
+
+
+    /// \brief Class describing the concept of Bipartite Undirected Graphs.
+    ///
+    /// This class describes the common interface of all 
+    /// Undirected Bipartite Graphs.
+    ///
+    /// As all concept describing classes it provides only interface
+    /// without any sensible implementation. So any algorithm for
+    /// bipartite undirected graph should compile with this class, but it 
+    /// will not run properly, of course.
+    ///
+    /// In LEMON bipartite undirected graphs also fulfill the concept of 
+    /// the undirected graphs (\ref lemon::concept::UGraph "UGraph Concept"). 
+    ///
+    /// You can assume that all undirected bipartite graph can be handled
+    /// as an undirected graph and consequently as a static graph.
+    ///
+    /// The bipartite graph stores two types of nodes which are named
+    /// ANode and BNode. Even so the graph type does not contain ANode
+    /// and BNode classes, becaue the nodes can be accessed just with the
+    /// common Node class. 
+    ///
+    /// The iteration on the partition can be done with the ANodeIt and 
+    /// BNodeIt classes. The node map can be used to map values to the nodes
+    /// and similarly we can use to map values for just the ANodes and
+    /// BNodes the ANodeMap and BNodeMap template classes.
+
+    class BpUGraph {
+    public:
+      /// \todo undocumented
+      ///
+      typedef True UTag;
+
+      /// \brief The base type of node iterators, 
+      /// or in other words, the trivial node iterator.
+      ///
+      /// This is the base type of each node iterator,
+      /// thus each kind of node iterator converts to this.
+      /// More precisely each kind of node iterator should be inherited 
+      /// from the trivial node iterator. The Node class represents
+      /// both of two types of nodes. 
+      class Node {
+      public:
+        /// Default constructor
+
+        /// @warning The default constructor sets the iterator
+        /// to an undefined value.
+        Node() { }
+        /// Copy constructor.
+
+        /// Copy constructor.
+        ///
+        Node(const Node&) { }
+
+        /// Invalid constructor \& conversion.
+
+        /// This constructor initializes the iterator to be invalid.
+        /// \sa Invalid for more details.
+        Node(Invalid) { }
+        /// Equality operator
+
+        /// Two iterators are equal if and only if they point to the
+        /// same object or both are invalid.
+        bool operator==(Node) const { return true; }
+
+        /// Inequality operator
+        
+        /// \sa operator==(Node n)
+        ///
+        bool operator!=(Node) const { return true; }
+
+	/// Artificial ordering operator.
+	
+	/// To allow the use of graph descriptors as key type in std::map or
+	/// similar associative container we require this.
+	///
+	/// \note This operator only have to define some strict ordering of
+	/// the items; this order has nothing to do with the iteration
+	/// ordering of the items.
+	///
+	/// \bug This is a technical requirement. Do we really need this?
+	bool operator<(Node) const { return false; }
+
+      };
+    
+      /// This iterator goes through each node.
+
+      /// This iterator goes through each node.
+      /// Its usage is quite simple, for example you can count the number
+      /// of nodes in graph \c g of type \c Graph like this:
+      /// \code
+      /// int count=0;
+      /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
+      /// \endcode
+      class NodeIt : public Node {
+      public:
+        /// Default constructor
+
+        /// @warning The default constructor sets the iterator
+        /// to an undefined value.
+        NodeIt() { }
+        /// Copy constructor.
+        
+        /// Copy constructor.
+        ///
+        NodeIt(const NodeIt& n) : Node(n) { }
+        /// Invalid constructor \& conversion.
+
+        /// Initialize the iterator to be invalid.
+        /// \sa Invalid for more details.
+        NodeIt(Invalid) { }
+        /// Sets the iterator to the first node.
+
+        /// Sets the iterator to the first node of \c g.
+        ///
+        NodeIt(const BpUGraph&) { }
+        /// Node -> NodeIt conversion.
+
+        /// Sets the iterator to the node of \c the graph pointed by 
+	/// the trivial iterator.
+        /// This feature necessitates that each time we 
+        /// iterate the edge-set, the iteration order is the same.
+        NodeIt(const BpUGraph&, const Node&) { }
+        /// Next node.
+
+        /// Assign the iterator to the next node.
+        ///
+        NodeIt& operator++() { return *this; }
+      };
+
+      /// This iterator goes through each ANode.
+
+      /// This iterator goes through each ANode.
+      /// Its usage is quite simple, for example you can count the number
+      /// of nodes in graph \c g of type \c Graph like this:
+      /// \code
+      /// int count=0;
+      /// for (Graph::ANodeIt n(g); n!=INVALID; ++n) ++count;
+      /// \endcode
+      class ANodeIt : public Node {
+      public:
+        /// Default constructor
+
+        /// @warning The default constructor sets the iterator
+        /// to an undefined value.
+        ANodeIt() { }
+        /// Copy constructor.
+        
+        /// Copy constructor.
+        ///
+        ANodeIt(const ANodeIt& n) : Node(n) { }
+        /// Invalid constructor \& conversion.
+
+        /// Initialize the iterator to be invalid.
+        /// \sa Invalid for more details.
+        ANodeIt(Invalid) { }
+        /// Sets the iterator to the first node.
+
+        /// Sets the iterator to the first node of \c g.
+        ///
+        ANodeIt(const BpUGraph&) { }
+        /// Node -> ANodeIt conversion.
+
+        /// Sets the iterator to the node of \c the graph pointed by 
+	/// the trivial iterator.
+        /// This feature necessitates that each time we 
+        /// iterate the edge-set, the iteration order is the same.
+        ANodeIt(const BpUGraph&, const Node&) { }
+        /// Next node.
+
+        /// Assign the iterator to the next node.
+        ///
+        ANodeIt& operator++() { return *this; }
+      };
+
+      /// This iterator goes through each BNode.
+
+      /// This iterator goes through each BNode.
+      /// Its usage is quite simple, for example you can count the number
+      /// of nodes in graph \c g of type \c Graph like this:
+      /// \code
+      /// int count=0;
+      /// for (Graph::BNodeIt n(g); n!=INVALID; ++n) ++count;
+      /// \endcode
+      class BNodeIt : public Node {
+      public:
+        /// Default constructor
+
+        /// @warning The default constructor sets the iterator
+        /// to an undefined value.
+        BNodeIt() { }
+        /// Copy constructor.
+        
+        /// Copy constructor.
+        ///
+        BNodeIt(const BNodeIt& n) : Node(n) { }
+        /// Invalid constructor \& conversion.
+
+        /// Initialize the iterator to be invalid.
+        /// \sa Invalid for more details.
+        BNodeIt(Invalid) { }
+        /// Sets the iterator to the first node.
+
+        /// Sets the iterator to the first node of \c g.
+        ///
+        BNodeIt(const BpUGraph&) { }
+        /// Node -> BNodeIt conversion.
+
+        /// Sets the iterator to the node of \c the graph pointed by 
+	/// the trivial iterator.
+        /// This feature necessitates that each time we 
+        /// iterate the edge-set, the iteration order is the same.
+        BNodeIt(const BpUGraph&, const Node&) { }
+        /// Next node.
+
+        /// Assign the iterator to the next node.
+        ///
+        BNodeIt& operator++() { return *this; }
+      };
+    
+    
+      /// The base type of the undirected edge iterators.
+
+      /// The base type of the undirected edge iterators.
+      ///
+      class UEdge {
+      public:
+        /// Default constructor
+
+        /// @warning The default constructor sets the iterator
+        /// to an undefined value.
+        UEdge() { }
+        /// Copy constructor.
+
+        /// Copy constructor.
+        ///
+        UEdge(const UEdge&) { }
+        /// Initialize the iterator to be invalid.
+
+        /// Initialize the iterator to be invalid.
+        ///
+        UEdge(Invalid) { }
+        /// Equality operator
+
+        /// Two iterators are equal if and only if they point to the
+        /// same object or both are invalid.
+        bool operator==(UEdge) const { return true; }
+        /// Inequality operator
+
+        /// \sa operator==(UEdge n)
+        ///
+        bool operator!=(UEdge) const { return true; }
+
+	/// Artificial ordering operator.
+	
+	/// To allow the use of graph descriptors as key type in std::map or
+	/// similar associative container we require this.
+	///
+	/// \note This operator only have to define some strict ordering of
+	/// the items; this order has nothing to do with the iteration
+	/// ordering of the items.
+	///
+	/// \bug This is a technical requirement. Do we really need this?
+	bool operator<(UEdge) const { return false; }
+      };
+
+      /// This iterator goes through each undirected edge.
+
+      /// This iterator goes through each undirected edge of a graph.
+      /// Its usage is quite simple, for example you can count the number
+      /// of undirected edges in a graph \c g of type \c Graph as follows:
+      /// \code
+      /// int count=0;
+      /// for(Graph::UEdgeIt e(g); e!=INVALID; ++e) ++count;
+      /// \endcode
+      class UEdgeIt : public UEdge {
+      public:
+        /// Default constructor
+
+        /// @warning The default constructor sets the iterator
+        /// to an undefined value.
+        UEdgeIt() { }
+        /// Copy constructor.
+
+        /// Copy constructor.
+        ///
+        UEdgeIt(const UEdgeIt& e) : UEdge(e) { }
+        /// Initialize the iterator to be invalid.
+
+        /// Initialize the iterator to be invalid.
+        ///
+        UEdgeIt(Invalid) { }
+        /// This constructor sets the iterator to the first undirected edge.
+    
+        /// This constructor sets the iterator to the first undirected edge.
+        UEdgeIt(const BpUGraph&) { }
+        /// UEdge -> UEdgeIt conversion
+
+        /// Sets the iterator to the value of the trivial iterator.
+        /// This feature necessitates that each time we
+        /// iterate the undirected edge-set, the iteration order is the 
+	/// same.
+        UEdgeIt(const BpUGraph&, const UEdge&) { } 
+        /// Next undirected edge
+        
+        /// Assign the iterator to the next undirected edge.
+        UEdgeIt& operator++() { return *this; }
+      };
+
+      /// \brief This iterator goes trough the incident undirected 
+      /// edges of a node.
+      ///
+      /// This iterator goes trough the incident undirected edges
+      /// of a certain node
+      /// of a graph.
+      /// Its usage is quite simple, for example you can compute the
+      /// degree (i.e. count the number
+      /// of incident edges of a node \c n
+      /// in graph \c g of type \c Graph as follows.
+      /// \code
+      /// int count=0;
+      /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
+      /// \endcode
+      class IncEdgeIt : public UEdge {
+      public:
+        /// Default constructor
+
+        /// @warning The default constructor sets the iterator
+        /// to an undefined value.
+        IncEdgeIt() { }
+        /// Copy constructor.
+
+        /// Copy constructor.
+        ///
+        IncEdgeIt(const IncEdgeIt& e) : UEdge(e) { }
+        /// Initialize the iterator to be invalid.
+
+        /// Initialize the iterator to be invalid.
+        ///
+        IncEdgeIt(Invalid) { }
+        /// This constructor sets the iterator to first incident edge.
+    
+        /// This constructor set the iterator to the first incident edge of
+        /// the node.
+        IncEdgeIt(const BpUGraph&, const Node&) { }
+        /// UEdge -> IncEdgeIt conversion
+
+        /// Sets the iterator to the value of the trivial iterator \c e.
+        /// This feature necessitates that each time we 
+        /// iterate the edge-set, the iteration order is the same.
+        IncEdgeIt(const BpUGraph&, const UEdge&) { }
+        /// Next incident edge
+
+        /// Assign the iterator to the next incident edge
+	/// of the corresponding node.
+        IncEdgeIt& operator++() { return *this; }
+      };
+
+      /// The directed edge type.
+
+      /// The directed edge type. It can be converted to the
+      /// undirected edge.
+      class Edge : public UEdge {
+      public:
+        /// Default constructor
+
+        /// @warning The default constructor sets the iterator
+        /// to an undefined value.
+        Edge() { }
+        /// Copy constructor.
+
+        /// Copy constructor.
+        ///
+        Edge(const Edge& e) : UEdge(e) { }
+        /// Initialize the iterator to be invalid.
+
+        /// Initialize the iterator to be invalid.
+        ///
+        Edge(Invalid) { }
+        /// Equality operator
+
+        /// Two iterators are equal if and only if they point to the
+        /// same object or both are invalid.
+        bool operator==(Edge) const { return true; }
+        /// Inequality operator
+
+        /// \sa operator==(Edge n)
+        ///
+        bool operator!=(Edge) const { return true; }
+
+	/// Artificial ordering operator.
+	
+	/// To allow the use of graph descriptors as key type in std::map or
+	/// similar associative container we require this.
+	///
+	/// \note This operator only have to define some strict ordering of
+	/// the items; this order has nothing to do with the iteration
+	/// ordering of the items.
+	///
+	/// \bug This is a technical requirement. Do we really need this?
+	bool operator<(Edge) const { return false; }
+	
+      }; 
+      /// This iterator goes through each directed edge.
+
+      /// This iterator goes through each edge of a graph.
+      /// Its usage is quite simple, for example you can count the number
+      /// of edges in a graph \c g of type \c Graph as follows:
+      /// \code
+      /// int count=0;
+      /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
+      /// \endcode
+      class EdgeIt : public Edge {
+      public:
+        /// Default constructor
+
+        /// @warning The default constructor sets the iterator
+        /// to an undefined value.
+        EdgeIt() { }
+        /// Copy constructor.
+
+        /// Copy constructor.
+        ///
+        EdgeIt(const EdgeIt& e) : Edge(e) { }
+        /// Initialize the iterator to be invalid.
+
+        /// Initialize the iterator to be invalid.
+        ///
+        EdgeIt(Invalid) { }
+        /// This constructor sets the iterator to the first edge.
+    
+        /// This constructor sets the iterator to the first edge of \c g.
+        ///@param g the graph
+        EdgeIt(const BpUGraph &g) { ignore_unused_variable_warning(g); }
+        /// Edge -> EdgeIt conversion
+
+        /// Sets the iterator to the value of the trivial iterator \c e.
+        /// This feature necessitates that each time we 
+        /// iterate the edge-set, the iteration order is the same.
+        EdgeIt(const BpUGraph&, const Edge&) { } 
+        ///Next edge
+        
+        /// Assign the iterator to the next edge.
+        EdgeIt& operator++() { return *this; }
+      };
+   
+      /// This iterator goes trough the outgoing directed edges of a node.
+
+      /// This iterator goes trough the \e outgoing edges of a certain node
+      /// of a graph.
+      /// Its usage is quite simple, for example you can count the number
+      /// of outgoing edges of a node \c n
+      /// in graph \c g of type \c Graph as follows.
+      /// \code
+      /// int count=0;
+      /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count;
+      /// \endcode
+    
+      class OutEdgeIt : public Edge {
+      public:
+        /// Default constructor
+
+        /// @warning The default constructor sets the iterator
+        /// to an undefined value.
+        OutEdgeIt() { }
+        /// Copy constructor.
+
+        /// Copy constructor.
+        ///
+        OutEdgeIt(const OutEdgeIt& e) : Edge(e) { }
+        /// Initialize the iterator to be invalid.
+
+        /// Initialize the iterator to be invalid.
+        ///
+        OutEdgeIt(Invalid) { }
+        /// This constructor sets the iterator to the first outgoing edge.
+    
+        /// This constructor sets the iterator to the first outgoing edge of
+        /// the node.
+        ///@param n the node
+        ///@param g the graph
+        OutEdgeIt(const BpUGraph& n, const Node& g) {
+	  ignore_unused_variable_warning(n);
+	  ignore_unused_variable_warning(g);
+	}
+        /// Edge -> OutEdgeIt conversion
+
+        /// Sets the iterator to the value of the trivial iterator.
+	/// This feature necessitates that each time we 
+        /// iterate the edge-set, the iteration order is the same.
+        OutEdgeIt(const BpUGraph&, const Edge&) { }
+        ///Next outgoing edge
+        
+        /// Assign the iterator to the next 
+        /// outgoing edge of the corresponding node.
+        OutEdgeIt& operator++() { return *this; }
+      };
+
+      /// This iterator goes trough the incoming directed edges of a node.
+
+      /// This iterator goes trough the \e incoming edges of a certain node
+      /// of a graph.
+      /// Its usage is quite simple, for example you can count the number
+      /// of outgoing edges of a node \c n
+      /// in graph \c g of type \c Graph as follows.
+      /// \code
+      /// int count=0;
+      /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count;
+      /// \endcode
+
+      class InEdgeIt : public Edge {
+      public:
+        /// Default constructor
+
+        /// @warning The default constructor sets the iterator
+        /// to an undefined value.
+        InEdgeIt() { }
+        /// Copy constructor.
+
+        /// Copy constructor.
+        ///
+        InEdgeIt(const InEdgeIt& e) : Edge(e) { }
+        /// Initialize the iterator to be invalid.
+
+        /// Initialize the iterator to be invalid.
+        ///
+        InEdgeIt(Invalid) { }
+        /// This constructor sets the iterator to first incoming edge.
+    
+        /// This constructor set the iterator to the first incoming edge of
+        /// the node.
+        ///@param n the node
+        ///@param g the graph
+        InEdgeIt(const BpUGraph& g, const Node& n) { 
+	  ignore_unused_variable_warning(n);
+	  ignore_unused_variable_warning(g);
+	}
+        /// Edge -> InEdgeIt conversion
+
+        /// Sets the iterator to the value of the trivial iterator \c e.
+        /// This feature necessitates that each time we 
+        /// iterate the edge-set, the iteration order is the same.
+        InEdgeIt(const BpUGraph&, const Edge&) { }
+        /// Next incoming edge
+
+        /// Assign the iterator to the next inedge of the corresponding node.
+        ///
+        InEdgeIt& operator++() { return *this; }
+      };
+
+      /// \brief Read write map of the nodes to type \c T.
+      /// 
+      /// ReadWrite map of the nodes to type \c T.
+      /// \sa Reference
+      /// \warning Making maps that can handle bool type (NodeMap<bool>)
+      /// needs some extra attention!
+      /// \todo Wrong documentation
+      template<class T> 
+      class NodeMap : public ReadWriteMap< Node, T >
+      {
+      public:
+
+        ///\e
+        NodeMap(const BpUGraph&) { }
+        ///\e
+        NodeMap(const BpUGraph&, T) { }
+
+        ///Copy constructor
+        NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
+        ///Assignment operator
+        NodeMap& operator=(const NodeMap&) { return *this; }
+        // \todo fix this concept
+      };
+
+      /// \brief Read write map of the ANodes to type \c T.
+      /// 
+      /// ReadWrite map of the ANodes to type \c T.
+      /// \sa Reference
+      /// \warning Making maps that can handle bool type (NodeMap<bool>)
+      /// needs some extra attention!
+      /// \todo Wrong documentation
+      template<class T> 
+      class ANodeMap : public ReadWriteMap< Node, T >
+      {
+      public:
+
+        ///\e
+        ANodeMap(const BpUGraph&) { }
+        ///\e
+        ANodeMap(const BpUGraph&, T) { }
+
+        ///Copy constructor
+        ANodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
+        ///Assignment operator
+        ANodeMap& operator=(const NodeMap&) { return *this; }
+        // \todo fix this concept
+      };
+
+      /// \brief Read write map of the BNodes to type \c T.
+      /// 
+      /// ReadWrite map of the BNodes to type \c T.
+      /// \sa Reference
+      /// \warning Making maps that can handle bool type (NodeMap<bool>)
+      /// needs some extra attention!
+      /// \todo Wrong documentation
+      template<class T> 
+      class BNodeMap : public ReadWriteMap< Node, T >
+      {
+      public:
+
+        ///\e
+        BNodeMap(const BpUGraph&) { }
+        ///\e
+        BNodeMap(const BpUGraph&, T) { }
+
+        ///Copy constructor
+        BNodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
+        ///Assignment operator
+        BNodeMap& operator=(const NodeMap&) { return *this; }
+        // \todo fix this concept
+      };
+
+      /// \brief Read write map of the directed edges to type \c T.
+      ///
+      /// Reference map of the directed edges to type \c T.
+      /// \sa Reference
+      /// \warning Making maps that can handle bool type (EdgeMap<bool>)
+      /// needs some extra attention!
+      /// \todo Wrong documentation
+      template<class T> 
+      class EdgeMap : public ReadWriteMap<Edge,T>
+      {
+      public:
+
+        ///\e
+        EdgeMap(const BpUGraph&) { }
+        ///\e
+        EdgeMap(const BpUGraph&, T) { }
+        ///Copy constructor
+        EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) { }
+        ///Assignment operator
+        EdgeMap& operator=(const EdgeMap&) { return *this; }
+        // \todo fix this concept    
+      };
+
+      /// Read write map of the undirected edges to type \c T.
+
+      /// Reference map of the edges to type \c T.
+      /// \sa Reference
+      /// \warning Making maps that can handle bool type (UEdgeMap<bool>)
+      /// needs some extra attention!
+      /// \todo Wrong documentation
+      template<class T> 
+      class UEdgeMap : public ReadWriteMap<UEdge,T>
+      {
+      public:
+
+        ///\e
+        UEdgeMap(const BpUGraph&) { }
+        ///\e
+        UEdgeMap(const BpUGraph&, T) { }
+        ///Copy constructor
+        UEdgeMap(const UEdgeMap& em) : ReadWriteMap<UEdge,T>(em) {}
+        ///Assignment operator
+        UEdgeMap &operator=(const UEdgeMap&) { return *this; }
+        // \todo fix this concept    
+      };
+
+      /// \brief Direct the given undirected edge.
+      ///
+      /// Direct the given undirected edge. The returned edge source
+      /// will be the given edge.
+      Edge direct(const UEdge&, const Node&) const {
+	return INVALID;
+      }
+
+      /// \brief Direct the given undirected edge.
+      ///
+      /// Direct the given undirected edge. The returned edge source
+      /// will be the source of the undirected edge if the given bool
+      /// is true.
+      Edge direct(const UEdge&, bool) const {
+	return INVALID;
+      }
+
+      /// \brief Returns true when the given node is an ANode.
+      ///
+      /// Returns true when the given node is an ANode.
+      bool aNode(Node) const { return true;}
+
+      /// \brief Returns true when the given node is an BNode.
+      ///
+      /// Returns true when the given node is an BNode.
+      bool bNode(Node) const { return true;}
+
+      /// \brief Returns the edge's end node which is in the ANode set.
+      ///
+      /// Returns the edge's end node which is in the ANode set.
+      Node aNode(UEdge) const { return INVALID;}
+
+      /// \brief Returns the edge's end node which is in the BNode set.
+      ///
+      /// Returns the edge's end node which is in the BNode set.
+      Node bNode(UEdge) const { return INVALID;}
+
+      /// \brief Returns true if the edge has default orientation.
+      ///
+      /// Returns whether the given directed edge is same orientation as
+      /// the corresponding undirected edge.
+      bool direction(Edge) const { return true; }
+
+      /// \brief Returns the opposite directed edge.
+      ///
+      /// Returns the opposite directed edge.
+      Edge oppositeEdge(Edge) const { return INVALID; }
+
+      /// \brief Opposite node on an edge
+      ///
+      /// \return the opposite of the given Node on the given Edge
+      Node oppositeNode(Node, UEdge) const { return INVALID; }
+
+      /// \brief First node of the undirected edge.
+      ///
+      /// \return the first node of the given UEdge.
+      ///
+      /// Naturally uectected edges don't have direction and thus
+      /// don't have source and target node. But we use these two methods
+      /// to query the two endnodes of the edge. The direction of the edge
+      /// which arises this way is called the inherent direction of the
+      /// undirected edge, and is used to define the "default" direction
+      /// of the directed versions of the edges.
+      /// \sa direction
+      Node source(UEdge) const { return INVALID; }
+
+      /// \brief Second node of the undirected edge.
+      Node target(UEdge) const { return INVALID; }
+
+      /// \brief Source node of the directed edge.
+      Node source(Edge) const { return INVALID; }
+
+      /// \brief Target node of the directed edge.
+      Node target(Edge) const { return INVALID; }
+
+      /// \brief Base node of the iterator
+      ///
+      /// Returns the base node (the source in this case) of the iterator
+      Node baseNode(OutEdgeIt e) const {
+	return source(e);
+      }
+
+      /// \brief Running node of the iterator
+      ///
+      /// Returns the running node (the target in this case) of the
+      /// iterator
+      Node runningNode(OutEdgeIt e) const {
+	return target(e);
+      }
+
+      /// \brief Base node of the iterator
+      ///
+      /// Returns the base node (the target in this case) of the iterator
+      Node baseNode(InEdgeIt e) const {
+	return target(e);
+      }
+      /// \brief Running node of the iterator
+      ///
+      /// Returns the running node (the source in this case) of the
+      /// iterator
+      Node runningNode(InEdgeIt e) const {
+	return source(e);
+      }
+
+      /// \brief Base node of the iterator
+      ///
+      /// Returns the base node of the iterator
+      Node baseNode(IncEdgeIt) const {
+	return INVALID;
+      }
+      
+      /// \brief Running node of the iterator
+      ///
+      /// Returns the running node of the iterator
+      Node runningNode(IncEdgeIt) const {
+	return INVALID;
+      }
+
+      template <typename Graph>
+      struct Constraints {
+	void constraints() {
+	}
+      };
+
+    };
+
+    /// \brief An empty non-static undirected graph class.
+    ///    
+    /// This class provides everything that \ref BpUGraph does.
+    /// Additionally it enables building graphs from scratch.
+    class ExtendableBpUGraph : public BpUGraph {
+    public:
+      
+      /// \brief Add a new ANode to the graph.
+      ///
+      /// Add a new ANode to the graph.
+      /// \return the new node.
+      Node addANode();
+
+      /// \brief Add a new ANode to the graph.
+      ///
+      /// Add a new ANode to the graph.
+      /// \return the new node.
+      Node addBNode();
+
+      /// \brief Add a new undirected edge to the graph.
+      ///
+      /// Add a new undirected edge to the graph. One of the nodes
+      /// should be ANode and the other should be BNode.
+      /// \pre The nodes are not in the same nodeset.
+      /// \return the new edge.
+      UEdge addEdge(const Node& from, const Node& to);
+
+      /// \brief Resets the graph.
+      ///
+      /// This function deletes all undirected edges and nodes of the graph.
+      /// It also frees the memory allocated to store them.
+      void clear() { }
+
+      template <typename Graph>
+      struct Constraints {
+	void constraints() {}
+      };
+
+    };
+
+    /// \brief An empty erasable undirected graph class.
+    ///
+    /// This class is an extension of \ref ExtendableBpUGraph. It makes it
+    /// possible to erase undirected edges or nodes.
+    class ErasableBpUGraph : public ExtendableBpUGraph {
+    public:
+
+      /// \brief Deletes a node.
+      ///
+      /// Deletes a node.
+      ///
+      void erase(Node) { }
+      /// \brief Deletes an undirected edge.
+      ///
+      /// Deletes an undirected edge.
+      ///
+      void erase(UEdge) { }
+
+      template <typename Graph>
+      struct Constraints {
+	void constraints() {}
+      };
+
+    };
+
+    /// @}
+
+  }
+
+}
+
+#endif



More information about the Lemon-commits mailing list