[Lemon-commits] [lemon_svn] deba: r2486 - hugo/trunk/lemon/concept
Lemon SVN
svn at lemon.cs.elte.hu
Mon Nov 6 20:53:03 CET 2006
Author: deba
Date: Thu Jan 26 18:18:12 2006
New Revision: 2486
Added:
hugo/trunk/lemon/concept/bpugraph.h
Log:
The pre BpUGraph concept
Added: hugo/trunk/lemon/concept/bpugraph.h
==============================================================================
--- (empty file)
+++ hugo/trunk/lemon/concept/bpugraph.h Thu Jan 26 18:18:12 2006
@@ -0,0 +1,906 @@
+/* -*- C++ -*-
+ *
+ * lemon/concept/ugraph_component.h - Part of LEMON, a generic
+ * C++ optimization library
+ *
+ * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi
+ * Kutatocsoport (Egervary Research Group on Combinatorial Optimization,
+ * EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+/// \ingroup graph_concepts
+/// \file
+/// \brief Undirected bipartite graphs and components of.
+
+
+#ifndef LEMON_CONCEPT_BPUGRAPH_H
+#define LEMON_CONCEPT_BPUGRAPH_H
+
+#include <lemon/concept/graph_component.h>
+
+#include <lemon/concept/graph.h>
+#include <lemon/concept/ugraph.h>
+
+#include <lemon/utility.h>
+
+namespace lemon {
+ namespace concept {
+
+ /// \addtogroup graph_concepts
+ /// @{
+
+
+ /// \brief Class describing the concept of Bipartite Undirected Graphs.
+ ///
+ /// This class describes the common interface of all
+ /// Undirected Bipartite Graphs.
+ ///
+ /// As all concept describing classes it provides only interface
+ /// without any sensible implementation. So any algorithm for
+ /// bipartite undirected graph should compile with this class, but it
+ /// will not run properly, of course.
+ ///
+ /// In LEMON bipartite undirected graphs also fulfill the concept of
+ /// the undirected graphs (\ref lemon::concept::UGraph "UGraph Concept").
+ ///
+ /// You can assume that all undirected bipartite graph can be handled
+ /// as an undirected graph and consequently as a static graph.
+ ///
+ /// The bipartite graph stores two types of nodes which are named
+ /// ANode and BNode. Even so the graph type does not contain ANode
+ /// and BNode classes, becaue the nodes can be accessed just with the
+ /// common Node class.
+ ///
+ /// The iteration on the partition can be done with the ANodeIt and
+ /// BNodeIt classes. The node map can be used to map values to the nodes
+ /// and similarly we can use to map values for just the ANodes and
+ /// BNodes the ANodeMap and BNodeMap template classes.
+
+ class BpUGraph {
+ public:
+ /// \todo undocumented
+ ///
+ typedef True UTag;
+
+ /// \brief The base type of node iterators,
+ /// or in other words, the trivial node iterator.
+ ///
+ /// This is the base type of each node iterator,
+ /// thus each kind of node iterator converts to this.
+ /// More precisely each kind of node iterator should be inherited
+ /// from the trivial node iterator. The Node class represents
+ /// both of two types of nodes.
+ class Node {
+ public:
+ /// Default constructor
+
+ /// @warning The default constructor sets the iterator
+ /// to an undefined value.
+ Node() { }
+ /// Copy constructor.
+
+ /// Copy constructor.
+ ///
+ Node(const Node&) { }
+
+ /// Invalid constructor \& conversion.
+
+ /// This constructor initializes the iterator to be invalid.
+ /// \sa Invalid for more details.
+ Node(Invalid) { }
+ /// Equality operator
+
+ /// Two iterators are equal if and only if they point to the
+ /// same object or both are invalid.
+ bool operator==(Node) const { return true; }
+
+ /// Inequality operator
+
+ /// \sa operator==(Node n)
+ ///
+ bool operator!=(Node) const { return true; }
+
+ /// Artificial ordering operator.
+
+ /// To allow the use of graph descriptors as key type in std::map or
+ /// similar associative container we require this.
+ ///
+ /// \note This operator only have to define some strict ordering of
+ /// the items; this order has nothing to do with the iteration
+ /// ordering of the items.
+ ///
+ /// \bug This is a technical requirement. Do we really need this?
+ bool operator<(Node) const { return false; }
+
+ };
+
+ /// This iterator goes through each node.
+
+ /// This iterator goes through each node.
+ /// Its usage is quite simple, for example you can count the number
+ /// of nodes in graph \c g of type \c Graph like this:
+ /// \code
+ /// int count=0;
+ /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
+ /// \endcode
+ class NodeIt : public Node {
+ public:
+ /// Default constructor
+
+ /// @warning The default constructor sets the iterator
+ /// to an undefined value.
+ NodeIt() { }
+ /// Copy constructor.
+
+ /// Copy constructor.
+ ///
+ NodeIt(const NodeIt& n) : Node(n) { }
+ /// Invalid constructor \& conversion.
+
+ /// Initialize the iterator to be invalid.
+ /// \sa Invalid for more details.
+ NodeIt(Invalid) { }
+ /// Sets the iterator to the first node.
+
+ /// Sets the iterator to the first node of \c g.
+ ///
+ NodeIt(const BpUGraph&) { }
+ /// Node -> NodeIt conversion.
+
+ /// Sets the iterator to the node of \c the graph pointed by
+ /// the trivial iterator.
+ /// This feature necessitates that each time we
+ /// iterate the edge-set, the iteration order is the same.
+ NodeIt(const BpUGraph&, const Node&) { }
+ /// Next node.
+
+ /// Assign the iterator to the next node.
+ ///
+ NodeIt& operator++() { return *this; }
+ };
+
+ /// This iterator goes through each ANode.
+
+ /// This iterator goes through each ANode.
+ /// Its usage is quite simple, for example you can count the number
+ /// of nodes in graph \c g of type \c Graph like this:
+ /// \code
+ /// int count=0;
+ /// for (Graph::ANodeIt n(g); n!=INVALID; ++n) ++count;
+ /// \endcode
+ class ANodeIt : public Node {
+ public:
+ /// Default constructor
+
+ /// @warning The default constructor sets the iterator
+ /// to an undefined value.
+ ANodeIt() { }
+ /// Copy constructor.
+
+ /// Copy constructor.
+ ///
+ ANodeIt(const ANodeIt& n) : Node(n) { }
+ /// Invalid constructor \& conversion.
+
+ /// Initialize the iterator to be invalid.
+ /// \sa Invalid for more details.
+ ANodeIt(Invalid) { }
+ /// Sets the iterator to the first node.
+
+ /// Sets the iterator to the first node of \c g.
+ ///
+ ANodeIt(const BpUGraph&) { }
+ /// Node -> ANodeIt conversion.
+
+ /// Sets the iterator to the node of \c the graph pointed by
+ /// the trivial iterator.
+ /// This feature necessitates that each time we
+ /// iterate the edge-set, the iteration order is the same.
+ ANodeIt(const BpUGraph&, const Node&) { }
+ /// Next node.
+
+ /// Assign the iterator to the next node.
+ ///
+ ANodeIt& operator++() { return *this; }
+ };
+
+ /// This iterator goes through each BNode.
+
+ /// This iterator goes through each BNode.
+ /// Its usage is quite simple, for example you can count the number
+ /// of nodes in graph \c g of type \c Graph like this:
+ /// \code
+ /// int count=0;
+ /// for (Graph::BNodeIt n(g); n!=INVALID; ++n) ++count;
+ /// \endcode
+ class BNodeIt : public Node {
+ public:
+ /// Default constructor
+
+ /// @warning The default constructor sets the iterator
+ /// to an undefined value.
+ BNodeIt() { }
+ /// Copy constructor.
+
+ /// Copy constructor.
+ ///
+ BNodeIt(const BNodeIt& n) : Node(n) { }
+ /// Invalid constructor \& conversion.
+
+ /// Initialize the iterator to be invalid.
+ /// \sa Invalid for more details.
+ BNodeIt(Invalid) { }
+ /// Sets the iterator to the first node.
+
+ /// Sets the iterator to the first node of \c g.
+ ///
+ BNodeIt(const BpUGraph&) { }
+ /// Node -> BNodeIt conversion.
+
+ /// Sets the iterator to the node of \c the graph pointed by
+ /// the trivial iterator.
+ /// This feature necessitates that each time we
+ /// iterate the edge-set, the iteration order is the same.
+ BNodeIt(const BpUGraph&, const Node&) { }
+ /// Next node.
+
+ /// Assign the iterator to the next node.
+ ///
+ BNodeIt& operator++() { return *this; }
+ };
+
+
+ /// The base type of the undirected edge iterators.
+
+ /// The base type of the undirected edge iterators.
+ ///
+ class UEdge {
+ public:
+ /// Default constructor
+
+ /// @warning The default constructor sets the iterator
+ /// to an undefined value.
+ UEdge() { }
+ /// Copy constructor.
+
+ /// Copy constructor.
+ ///
+ UEdge(const UEdge&) { }
+ /// Initialize the iterator to be invalid.
+
+ /// Initialize the iterator to be invalid.
+ ///
+ UEdge(Invalid) { }
+ /// Equality operator
+
+ /// Two iterators are equal if and only if they point to the
+ /// same object or both are invalid.
+ bool operator==(UEdge) const { return true; }
+ /// Inequality operator
+
+ /// \sa operator==(UEdge n)
+ ///
+ bool operator!=(UEdge) const { return true; }
+
+ /// Artificial ordering operator.
+
+ /// To allow the use of graph descriptors as key type in std::map or
+ /// similar associative container we require this.
+ ///
+ /// \note This operator only have to define some strict ordering of
+ /// the items; this order has nothing to do with the iteration
+ /// ordering of the items.
+ ///
+ /// \bug This is a technical requirement. Do we really need this?
+ bool operator<(UEdge) const { return false; }
+ };
+
+ /// This iterator goes through each undirected edge.
+
+ /// This iterator goes through each undirected edge of a graph.
+ /// Its usage is quite simple, for example you can count the number
+ /// of undirected edges in a graph \c g of type \c Graph as follows:
+ /// \code
+ /// int count=0;
+ /// for(Graph::UEdgeIt e(g); e!=INVALID; ++e) ++count;
+ /// \endcode
+ class UEdgeIt : public UEdge {
+ public:
+ /// Default constructor
+
+ /// @warning The default constructor sets the iterator
+ /// to an undefined value.
+ UEdgeIt() { }
+ /// Copy constructor.
+
+ /// Copy constructor.
+ ///
+ UEdgeIt(const UEdgeIt& e) : UEdge(e) { }
+ /// Initialize the iterator to be invalid.
+
+ /// Initialize the iterator to be invalid.
+ ///
+ UEdgeIt(Invalid) { }
+ /// This constructor sets the iterator to the first undirected edge.
+
+ /// This constructor sets the iterator to the first undirected edge.
+ UEdgeIt(const BpUGraph&) { }
+ /// UEdge -> UEdgeIt conversion
+
+ /// Sets the iterator to the value of the trivial iterator.
+ /// This feature necessitates that each time we
+ /// iterate the undirected edge-set, the iteration order is the
+ /// same.
+ UEdgeIt(const BpUGraph&, const UEdge&) { }
+ /// Next undirected edge
+
+ /// Assign the iterator to the next undirected edge.
+ UEdgeIt& operator++() { return *this; }
+ };
+
+ /// \brief This iterator goes trough the incident undirected
+ /// edges of a node.
+ ///
+ /// This iterator goes trough the incident undirected edges
+ /// of a certain node
+ /// of a graph.
+ /// Its usage is quite simple, for example you can compute the
+ /// degree (i.e. count the number
+ /// of incident edges of a node \c n
+ /// in graph \c g of type \c Graph as follows.
+ /// \code
+ /// int count=0;
+ /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
+ /// \endcode
+ class IncEdgeIt : public UEdge {
+ public:
+ /// Default constructor
+
+ /// @warning The default constructor sets the iterator
+ /// to an undefined value.
+ IncEdgeIt() { }
+ /// Copy constructor.
+
+ /// Copy constructor.
+ ///
+ IncEdgeIt(const IncEdgeIt& e) : UEdge(e) { }
+ /// Initialize the iterator to be invalid.
+
+ /// Initialize the iterator to be invalid.
+ ///
+ IncEdgeIt(Invalid) { }
+ /// This constructor sets the iterator to first incident edge.
+
+ /// This constructor set the iterator to the first incident edge of
+ /// the node.
+ IncEdgeIt(const BpUGraph&, const Node&) { }
+ /// UEdge -> IncEdgeIt conversion
+
+ /// Sets the iterator to the value of the trivial iterator \c e.
+ /// This feature necessitates that each time we
+ /// iterate the edge-set, the iteration order is the same.
+ IncEdgeIt(const BpUGraph&, const UEdge&) { }
+ /// Next incident edge
+
+ /// Assign the iterator to the next incident edge
+ /// of the corresponding node.
+ IncEdgeIt& operator++() { return *this; }
+ };
+
+ /// The directed edge type.
+
+ /// The directed edge type. It can be converted to the
+ /// undirected edge.
+ class Edge : public UEdge {
+ public:
+ /// Default constructor
+
+ /// @warning The default constructor sets the iterator
+ /// to an undefined value.
+ Edge() { }
+ /// Copy constructor.
+
+ /// Copy constructor.
+ ///
+ Edge(const Edge& e) : UEdge(e) { }
+ /// Initialize the iterator to be invalid.
+
+ /// Initialize the iterator to be invalid.
+ ///
+ Edge(Invalid) { }
+ /// Equality operator
+
+ /// Two iterators are equal if and only if they point to the
+ /// same object or both are invalid.
+ bool operator==(Edge) const { return true; }
+ /// Inequality operator
+
+ /// \sa operator==(Edge n)
+ ///
+ bool operator!=(Edge) const { return true; }
+
+ /// Artificial ordering operator.
+
+ /// To allow the use of graph descriptors as key type in std::map or
+ /// similar associative container we require this.
+ ///
+ /// \note This operator only have to define some strict ordering of
+ /// the items; this order has nothing to do with the iteration
+ /// ordering of the items.
+ ///
+ /// \bug This is a technical requirement. Do we really need this?
+ bool operator<(Edge) const { return false; }
+
+ };
+ /// This iterator goes through each directed edge.
+
+ /// This iterator goes through each edge of a graph.
+ /// Its usage is quite simple, for example you can count the number
+ /// of edges in a graph \c g of type \c Graph as follows:
+ /// \code
+ /// int count=0;
+ /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
+ /// \endcode
+ class EdgeIt : public Edge {
+ public:
+ /// Default constructor
+
+ /// @warning The default constructor sets the iterator
+ /// to an undefined value.
+ EdgeIt() { }
+ /// Copy constructor.
+
+ /// Copy constructor.
+ ///
+ EdgeIt(const EdgeIt& e) : Edge(e) { }
+ /// Initialize the iterator to be invalid.
+
+ /// Initialize the iterator to be invalid.
+ ///
+ EdgeIt(Invalid) { }
+ /// This constructor sets the iterator to the first edge.
+
+ /// This constructor sets the iterator to the first edge of \c g.
+ ///@param g the graph
+ EdgeIt(const BpUGraph &g) { ignore_unused_variable_warning(g); }
+ /// Edge -> EdgeIt conversion
+
+ /// Sets the iterator to the value of the trivial iterator \c e.
+ /// This feature necessitates that each time we
+ /// iterate the edge-set, the iteration order is the same.
+ EdgeIt(const BpUGraph&, const Edge&) { }
+ ///Next edge
+
+ /// Assign the iterator to the next edge.
+ EdgeIt& operator++() { return *this; }
+ };
+
+ /// This iterator goes trough the outgoing directed edges of a node.
+
+ /// This iterator goes trough the \e outgoing edges of a certain node
+ /// of a graph.
+ /// Its usage is quite simple, for example you can count the number
+ /// of outgoing edges of a node \c n
+ /// in graph \c g of type \c Graph as follows.
+ /// \code
+ /// int count=0;
+ /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count;
+ /// \endcode
+
+ class OutEdgeIt : public Edge {
+ public:
+ /// Default constructor
+
+ /// @warning The default constructor sets the iterator
+ /// to an undefined value.
+ OutEdgeIt() { }
+ /// Copy constructor.
+
+ /// Copy constructor.
+ ///
+ OutEdgeIt(const OutEdgeIt& e) : Edge(e) { }
+ /// Initialize the iterator to be invalid.
+
+ /// Initialize the iterator to be invalid.
+ ///
+ OutEdgeIt(Invalid) { }
+ /// This constructor sets the iterator to the first outgoing edge.
+
+ /// This constructor sets the iterator to the first outgoing edge of
+ /// the node.
+ ///@param n the node
+ ///@param g the graph
+ OutEdgeIt(const BpUGraph& n, const Node& g) {
+ ignore_unused_variable_warning(n);
+ ignore_unused_variable_warning(g);
+ }
+ /// Edge -> OutEdgeIt conversion
+
+ /// Sets the iterator to the value of the trivial iterator.
+ /// This feature necessitates that each time we
+ /// iterate the edge-set, the iteration order is the same.
+ OutEdgeIt(const BpUGraph&, const Edge&) { }
+ ///Next outgoing edge
+
+ /// Assign the iterator to the next
+ /// outgoing edge of the corresponding node.
+ OutEdgeIt& operator++() { return *this; }
+ };
+
+ /// This iterator goes trough the incoming directed edges of a node.
+
+ /// This iterator goes trough the \e incoming edges of a certain node
+ /// of a graph.
+ /// Its usage is quite simple, for example you can count the number
+ /// of outgoing edges of a node \c n
+ /// in graph \c g of type \c Graph as follows.
+ /// \code
+ /// int count=0;
+ /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count;
+ /// \endcode
+
+ class InEdgeIt : public Edge {
+ public:
+ /// Default constructor
+
+ /// @warning The default constructor sets the iterator
+ /// to an undefined value.
+ InEdgeIt() { }
+ /// Copy constructor.
+
+ /// Copy constructor.
+ ///
+ InEdgeIt(const InEdgeIt& e) : Edge(e) { }
+ /// Initialize the iterator to be invalid.
+
+ /// Initialize the iterator to be invalid.
+ ///
+ InEdgeIt(Invalid) { }
+ /// This constructor sets the iterator to first incoming edge.
+
+ /// This constructor set the iterator to the first incoming edge of
+ /// the node.
+ ///@param n the node
+ ///@param g the graph
+ InEdgeIt(const BpUGraph& g, const Node& n) {
+ ignore_unused_variable_warning(n);
+ ignore_unused_variable_warning(g);
+ }
+ /// Edge -> InEdgeIt conversion
+
+ /// Sets the iterator to the value of the trivial iterator \c e.
+ /// This feature necessitates that each time we
+ /// iterate the edge-set, the iteration order is the same.
+ InEdgeIt(const BpUGraph&, const Edge&) { }
+ /// Next incoming edge
+
+ /// Assign the iterator to the next inedge of the corresponding node.
+ ///
+ InEdgeIt& operator++() { return *this; }
+ };
+
+ /// \brief Read write map of the nodes to type \c T.
+ ///
+ /// ReadWrite map of the nodes to type \c T.
+ /// \sa Reference
+ /// \warning Making maps that can handle bool type (NodeMap<bool>)
+ /// needs some extra attention!
+ /// \todo Wrong documentation
+ template<class T>
+ class NodeMap : public ReadWriteMap< Node, T >
+ {
+ public:
+
+ ///\e
+ NodeMap(const BpUGraph&) { }
+ ///\e
+ NodeMap(const BpUGraph&, T) { }
+
+ ///Copy constructor
+ NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
+ ///Assignment operator
+ NodeMap& operator=(const NodeMap&) { return *this; }
+ // \todo fix this concept
+ };
+
+ /// \brief Read write map of the ANodes to type \c T.
+ ///
+ /// ReadWrite map of the ANodes to type \c T.
+ /// \sa Reference
+ /// \warning Making maps that can handle bool type (NodeMap<bool>)
+ /// needs some extra attention!
+ /// \todo Wrong documentation
+ template<class T>
+ class ANodeMap : public ReadWriteMap< Node, T >
+ {
+ public:
+
+ ///\e
+ ANodeMap(const BpUGraph&) { }
+ ///\e
+ ANodeMap(const BpUGraph&, T) { }
+
+ ///Copy constructor
+ ANodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
+ ///Assignment operator
+ ANodeMap& operator=(const NodeMap&) { return *this; }
+ // \todo fix this concept
+ };
+
+ /// \brief Read write map of the BNodes to type \c T.
+ ///
+ /// ReadWrite map of the BNodes to type \c T.
+ /// \sa Reference
+ /// \warning Making maps that can handle bool type (NodeMap<bool>)
+ /// needs some extra attention!
+ /// \todo Wrong documentation
+ template<class T>
+ class BNodeMap : public ReadWriteMap< Node, T >
+ {
+ public:
+
+ ///\e
+ BNodeMap(const BpUGraph&) { }
+ ///\e
+ BNodeMap(const BpUGraph&, T) { }
+
+ ///Copy constructor
+ BNodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
+ ///Assignment operator
+ BNodeMap& operator=(const NodeMap&) { return *this; }
+ // \todo fix this concept
+ };
+
+ /// \brief Read write map of the directed edges to type \c T.
+ ///
+ /// Reference map of the directed edges to type \c T.
+ /// \sa Reference
+ /// \warning Making maps that can handle bool type (EdgeMap<bool>)
+ /// needs some extra attention!
+ /// \todo Wrong documentation
+ template<class T>
+ class EdgeMap : public ReadWriteMap<Edge,T>
+ {
+ public:
+
+ ///\e
+ EdgeMap(const BpUGraph&) { }
+ ///\e
+ EdgeMap(const BpUGraph&, T) { }
+ ///Copy constructor
+ EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) { }
+ ///Assignment operator
+ EdgeMap& operator=(const EdgeMap&) { return *this; }
+ // \todo fix this concept
+ };
+
+ /// Read write map of the undirected edges to type \c T.
+
+ /// Reference map of the edges to type \c T.
+ /// \sa Reference
+ /// \warning Making maps that can handle bool type (UEdgeMap<bool>)
+ /// needs some extra attention!
+ /// \todo Wrong documentation
+ template<class T>
+ class UEdgeMap : public ReadWriteMap<UEdge,T>
+ {
+ public:
+
+ ///\e
+ UEdgeMap(const BpUGraph&) { }
+ ///\e
+ UEdgeMap(const BpUGraph&, T) { }
+ ///Copy constructor
+ UEdgeMap(const UEdgeMap& em) : ReadWriteMap<UEdge,T>(em) {}
+ ///Assignment operator
+ UEdgeMap &operator=(const UEdgeMap&) { return *this; }
+ // \todo fix this concept
+ };
+
+ /// \brief Direct the given undirected edge.
+ ///
+ /// Direct the given undirected edge. The returned edge source
+ /// will be the given edge.
+ Edge direct(const UEdge&, const Node&) const {
+ return INVALID;
+ }
+
+ /// \brief Direct the given undirected edge.
+ ///
+ /// Direct the given undirected edge. The returned edge source
+ /// will be the source of the undirected edge if the given bool
+ /// is true.
+ Edge direct(const UEdge&, bool) const {
+ return INVALID;
+ }
+
+ /// \brief Returns true when the given node is an ANode.
+ ///
+ /// Returns true when the given node is an ANode.
+ bool aNode(Node) const { return true;}
+
+ /// \brief Returns true when the given node is an BNode.
+ ///
+ /// Returns true when the given node is an BNode.
+ bool bNode(Node) const { return true;}
+
+ /// \brief Returns the edge's end node which is in the ANode set.
+ ///
+ /// Returns the edge's end node which is in the ANode set.
+ Node aNode(UEdge) const { return INVALID;}
+
+ /// \brief Returns the edge's end node which is in the BNode set.
+ ///
+ /// Returns the edge's end node which is in the BNode set.
+ Node bNode(UEdge) const { return INVALID;}
+
+ /// \brief Returns true if the edge has default orientation.
+ ///
+ /// Returns whether the given directed edge is same orientation as
+ /// the corresponding undirected edge.
+ bool direction(Edge) const { return true; }
+
+ /// \brief Returns the opposite directed edge.
+ ///
+ /// Returns the opposite directed edge.
+ Edge oppositeEdge(Edge) const { return INVALID; }
+
+ /// \brief Opposite node on an edge
+ ///
+ /// \return the opposite of the given Node on the given Edge
+ Node oppositeNode(Node, UEdge) const { return INVALID; }
+
+ /// \brief First node of the undirected edge.
+ ///
+ /// \return the first node of the given UEdge.
+ ///
+ /// Naturally uectected edges don't have direction and thus
+ /// don't have source and target node. But we use these two methods
+ /// to query the two endnodes of the edge. The direction of the edge
+ /// which arises this way is called the inherent direction of the
+ /// undirected edge, and is used to define the "default" direction
+ /// of the directed versions of the edges.
+ /// \sa direction
+ Node source(UEdge) const { return INVALID; }
+
+ /// \brief Second node of the undirected edge.
+ Node target(UEdge) const { return INVALID; }
+
+ /// \brief Source node of the directed edge.
+ Node source(Edge) const { return INVALID; }
+
+ /// \brief Target node of the directed edge.
+ Node target(Edge) const { return INVALID; }
+
+ /// \brief Base node of the iterator
+ ///
+ /// Returns the base node (the source in this case) of the iterator
+ Node baseNode(OutEdgeIt e) const {
+ return source(e);
+ }
+
+ /// \brief Running node of the iterator
+ ///
+ /// Returns the running node (the target in this case) of the
+ /// iterator
+ Node runningNode(OutEdgeIt e) const {
+ return target(e);
+ }
+
+ /// \brief Base node of the iterator
+ ///
+ /// Returns the base node (the target in this case) of the iterator
+ Node baseNode(InEdgeIt e) const {
+ return target(e);
+ }
+ /// \brief Running node of the iterator
+ ///
+ /// Returns the running node (the source in this case) of the
+ /// iterator
+ Node runningNode(InEdgeIt e) const {
+ return source(e);
+ }
+
+ /// \brief Base node of the iterator
+ ///
+ /// Returns the base node of the iterator
+ Node baseNode(IncEdgeIt) const {
+ return INVALID;
+ }
+
+ /// \brief Running node of the iterator
+ ///
+ /// Returns the running node of the iterator
+ Node runningNode(IncEdgeIt) const {
+ return INVALID;
+ }
+
+ template <typename Graph>
+ struct Constraints {
+ void constraints() {
+ }
+ };
+
+ };
+
+ /// \brief An empty non-static undirected graph class.
+ ///
+ /// This class provides everything that \ref BpUGraph does.
+ /// Additionally it enables building graphs from scratch.
+ class ExtendableBpUGraph : public BpUGraph {
+ public:
+
+ /// \brief Add a new ANode to the graph.
+ ///
+ /// Add a new ANode to the graph.
+ /// \return the new node.
+ Node addANode();
+
+ /// \brief Add a new ANode to the graph.
+ ///
+ /// Add a new ANode to the graph.
+ /// \return the new node.
+ Node addBNode();
+
+ /// \brief Add a new undirected edge to the graph.
+ ///
+ /// Add a new undirected edge to the graph. One of the nodes
+ /// should be ANode and the other should be BNode.
+ /// \pre The nodes are not in the same nodeset.
+ /// \return the new edge.
+ UEdge addEdge(const Node& from, const Node& to);
+
+ /// \brief Resets the graph.
+ ///
+ /// This function deletes all undirected edges and nodes of the graph.
+ /// It also frees the memory allocated to store them.
+ void clear() { }
+
+ template <typename Graph>
+ struct Constraints {
+ void constraints() {}
+ };
+
+ };
+
+ /// \brief An empty erasable undirected graph class.
+ ///
+ /// This class is an extension of \ref ExtendableBpUGraph. It makes it
+ /// possible to erase undirected edges or nodes.
+ class ErasableBpUGraph : public ExtendableBpUGraph {
+ public:
+
+ /// \brief Deletes a node.
+ ///
+ /// Deletes a node.
+ ///
+ void erase(Node) { }
+ /// \brief Deletes an undirected edge.
+ ///
+ /// Deletes an undirected edge.
+ ///
+ void erase(UEdge) { }
+
+ template <typename Graph>
+ struct Constraints {
+ void constraints() {}
+ };
+
+ };
+
+ /// @}
+
+ }
+
+}
+
+#endif
More information about the Lemon-commits
mailing list