[Lemon-commits] [lemon_svn] deba: r2965 - hugo/trunk/lemon
Lemon SVN
svn at lemon.cs.elte.hu
Mon Nov 6 21:51:31 CET 2006
Author: deba
Date: Fri Sep 29 13:36:30 2006
New Revision: 2965
Modified:
hugo/trunk/lemon/hao_orlin.h
hugo/trunk/lemon/min_cut.h
Log:
Doc fix
Modified: hugo/trunk/lemon/hao_orlin.h
==============================================================================
--- hugo/trunk/lemon/hao_orlin.h (original)
+++ hugo/trunk/lemon/hao_orlin.h Fri Sep 29 13:36:30 2006
@@ -51,7 +51,7 @@
/// algorithm and it calculates the minimum cut in \f$ O(n^3) \f$
/// time. The purpose of such algorithm is testing network
/// reliability. For sparse undirected graph you can use the
- /// algorithm of Nagamochi and Ibraki which solves the undirected
+ /// algorithm of Nagamochi and Ibaraki which solves the undirected
/// problem in \f$ O(ne + n^2 \log(n)) \f$ time and it is implemented in the
/// MinCut algorithm class.
///
Modified: hugo/trunk/lemon/min_cut.h
==============================================================================
--- hugo/trunk/lemon/min_cut.h (original)
+++ hugo/trunk/lemon/min_cut.h Fri Sep 29 13:36:30 2006
@@ -830,18 +830,19 @@
/// \ingroup topology
///
- /// \brief Calculates the min cut in an undirected graph.
+ /// \brief Calculates the minimum cut in an undirected graph.
///
- /// Calculates the min cut in an undirected graph.
- /// The algorithm separates the graph's nodes into two partitions with the
- /// min sum of edge capacities between the two partitions. The
- /// algorithm can be used to test the network reliability specifically
- /// to test how many links have to be destroyed in the network to split it
- /// at least two distinict subnetwork.
+ /// Calculates the minimum cut in an undirected graph with the
+ /// Nagamochi-Ibaraki algorithm. The algorithm separates the graph's
+ /// nodes into two partitions with the minimum sum of edge capacities
+ /// between the two partitions. The algorithm can be used to test
+ /// the network reliability specifically to test how many links have
+ /// to be destroyed in the network to split it at least two
+ /// distinict subnetwork.
///
/// The complexity of the algorithm is \f$ O(ne\log(n)) \f$ but with
- /// Fibonacci heap it can be decreased to \f$ O(ne+n^2\log(n)) \f$. When
- /// the neutral capacity map is used then it uses BucketHeap which
+ /// Fibonacci heap it can be decreased to \f$ O(ne+n^2\log(n))
+ /// \f$. When capacity map is neutral then it uses BucketHeap which
/// results \f$ O(ne) \f$ time complexity.
#ifdef DOXYGEN
template <typename _Graph, typename _CapacityMap, typename _Traits>
More information about the Lemon-commits
mailing list