[Lemon-commits] [lemon_svn] athos: r3036 - hugo/trunk/lemon
Lemon SVN
svn at lemon.cs.elte.hu
Mon Nov 6 21:51:59 CET 2006
Author: athos
Date: Mon Oct 30 17:12:44 2006
New Revision: 3036
Modified:
hugo/trunk/lemon/hao_orlin.h
Log:
Small bugs in the documentation.
Modified: hugo/trunk/lemon/hao_orlin.h
==============================================================================
--- hugo/trunk/lemon/hao_orlin.h (original)
+++ hugo/trunk/lemon/hao_orlin.h Mon Oct 30 17:12:44 2006
@@ -42,11 +42,11 @@
///
/// \brief %Hao-Orlin algorithm to find a minimum cut in directed graphs.
///
- /// Hao-Orlin calculates a minimum cut in a directed graph \f$
- /// D=(V,A) \f$. It takes a fixed node \f$ source \in V \f$ and consists
+ /// Hao-Orlin calculates a minimum cut in a directed graph
+ /// \f$ D=(V,A) \f$. It takes a fixed node \f$ source \in V \f$ and consists
/// of two phases: in the first phase it determines a minimum cut
- /// with \f$ source \f$ on the source-side (i.e. a set \f$ X\subsetneq V
- /// \f$ with \f$ source \in X \f$ and minimal out-degree) and in the
+ /// with \f$ source \f$ on the source-side (i.e. a set \f$ X\subsetneq V \f$
+ /// with \f$ source \in X \f$ and minimal out-degree) and in the
/// second phase it determines a minimum cut with \f$ source \f$ on the
/// sink-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \notin X \f$
/// and minimal out-degree). Obviously, the smaller of these two
@@ -56,8 +56,9 @@
/// highest-label rule). The purpose of such an algorithm is testing
/// network reliability. For an undirected graph with \f$ n \f$
/// nodes and \f$ e \f$ edges you can use the algorithm of Nagamochi
- /// and Ibaraki which solves the undirected problem in \f$ O(ne +
- /// n^2 \log(n)) \f$ time: it is implemented in the MinCut algorithm
+ /// and Ibaraki which solves the undirected problem in
+ /// \f$ O(ne + n^2 \log(n)) \f$ time: it is implemented in the MinCut
+ /// algorithm
/// class.
///
/// \param _Graph is the graph type of the algorithm.
@@ -535,8 +536,8 @@
/// source-side.
///
/// \brief Calculates a minimum cut with \f$ source \f$ on the
- /// source-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \in X
- /// \f$ and minimal out-degree).
+ /// source-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \in X \f$
+ /// and minimal out-degree).
void calculateOut() {
for (NodeIt it(*_graph); it != INVALID; ++it) {
if (it != _source) {
@@ -550,8 +551,8 @@
/// source-side.
///
/// \brief Calculates a minimum cut with \f$ source \f$ on the
- /// source-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \in X
- /// \f$ and minimal out-degree). The \c target is the initial target
+ /// source-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \in X \f$
+ /// and minimal out-degree). The \c target is the initial target
/// for the push-relabel algorithm.
void calculateOut(const Node& target) {
findMinCut(target, true, *_out_res_graph, *_out_current_edge);
@@ -561,8 +562,9 @@
/// sink-side.
///
/// \brief Calculates a minimum cut with \f$ source \f$ on the
- /// sink-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \notin X
- /// \f$ and minimal out-degree).
+ /// sink-side (i.e. a set \f$ X\subsetneq V \f$ with
+ /// \f$ source \notin X \f$
+ /// and minimal out-degree).
void calculateIn() {
for (NodeIt it(*_graph); it != INVALID; ++it) {
if (it != _source) {
@@ -576,8 +578,9 @@
/// sink-side.
///
/// \brief Calculates a minimum cut with \f$ source \f$ on the
- /// sink-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \notin
- /// X \f$ and minimal out-degree). The \c target is the initial
+ /// sink-side (i.e. a set \f$ X\subsetneq V
+ /// \f$ with \f$ source \notin X \f$ and minimal out-degree).
+ /// The \c target is the initial
/// target for the push-relabel algorithm.
void calculateIn(const Node& target) {
findMinCut(target, false, *_in_res_graph, *_in_current_edge);
More information about the Lemon-commits
mailing list