[Lemon-commits] [lemon_svn] athos: r3036 - hugo/trunk/lemon

Lemon SVN svn at lemon.cs.elte.hu
Mon Nov 6 21:51:59 CET 2006


Author: athos
Date: Mon Oct 30 17:12:44 2006
New Revision: 3036

Modified:
   hugo/trunk/lemon/hao_orlin.h

Log:
Small bugs in the documentation.

Modified: hugo/trunk/lemon/hao_orlin.h
==============================================================================
--- hugo/trunk/lemon/hao_orlin.h	(original)
+++ hugo/trunk/lemon/hao_orlin.h	Mon Oct 30 17:12:44 2006
@@ -42,11 +42,11 @@
   ///
   /// \brief %Hao-Orlin algorithm to find a minimum cut in directed graphs.
   ///
-  /// Hao-Orlin calculates a minimum cut in a directed graph \f$
-  /// D=(V,A) \f$. It takes a fixed node \f$ source \in V \f$ and consists
+  /// Hao-Orlin calculates a minimum cut in a directed graph 
+  /// \f$ D=(V,A) \f$. It takes a fixed node \f$ source \in V \f$ and consists
   /// of two phases: in the first phase it determines a minimum cut
-  /// with \f$ source \f$ on the source-side (i.e. a set \f$ X\subsetneq V
-  /// \f$ with \f$ source \in X \f$ and minimal out-degree) and in the
+  /// with \f$ source \f$ on the source-side (i.e. a set \f$ X\subsetneq V \f$
+  /// with \f$ source \in X \f$ and minimal out-degree) and in the
   /// second phase it determines a minimum cut with \f$ source \f$ on the
   /// sink-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \notin X \f$
   /// and minimal out-degree). Obviously, the smaller of these two
@@ -56,8 +56,9 @@
   /// highest-label rule). The purpose of such an algorithm is testing
   /// network reliability. For an undirected graph with \f$ n \f$
   /// nodes and \f$ e \f$ edges you can use the algorithm of Nagamochi
-  /// and Ibaraki which solves the undirected problem in \f$ O(ne +
-  /// n^2 \log(n)) \f$ time: it is implemented in the MinCut algorithm
+  /// and Ibaraki which solves the undirected problem in 
+  /// \f$ O(ne + n^2 \log(n)) \f$ time: it is implemented in the MinCut 
+  /// algorithm
   /// class.
   ///
   /// \param _Graph is the graph type of the algorithm.
@@ -535,8 +536,8 @@
     /// source-side.
     ///
     /// \brief Calculates a minimum cut with \f$ source \f$ on the
-    /// source-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \in X
-    /// \f$ and minimal out-degree).
+    /// source-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \in X \f$
+    ///  and minimal out-degree).
     void calculateOut() {
       for (NodeIt it(*_graph); it != INVALID; ++it) {
         if (it != _source) {
@@ -550,8 +551,8 @@
     /// source-side.
     ///
     /// \brief Calculates a minimum cut with \f$ source \f$ on the
-    /// source-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \in X
-    /// \f$ and minimal out-degree). The \c target is the initial target
+    /// source-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \in X \f$
+    ///  and minimal out-degree). The \c target is the initial target
     /// for the push-relabel algorithm.
     void calculateOut(const Node& target) {
       findMinCut(target, true, *_out_res_graph, *_out_current_edge);
@@ -561,8 +562,9 @@
     /// sink-side.
     ///
     /// \brief Calculates a minimum cut with \f$ source \f$ on the
-    /// sink-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \notin X
-    /// \f$ and minimal out-degree).
+    /// sink-side (i.e. a set \f$ X\subsetneq V \f$ with 
+    /// \f$ source \notin X \f$
+    /// and minimal out-degree).
     void calculateIn() {
       for (NodeIt it(*_graph); it != INVALID; ++it) {
         if (it != _source) {
@@ -576,8 +578,9 @@
     /// sink-side.
     ///
     /// \brief Calculates a minimum cut with \f$ source \f$ on the
-    /// sink-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \notin
-    /// X \f$ and minimal out-degree).  The \c target is the initial
+    /// sink-side (i.e. a set \f$ X\subsetneq V 
+    /// \f$ with \f$ source \notin X \f$ and minimal out-degree).  
+    /// The \c target is the initial
     /// target for the push-relabel algorithm.
     void calculateIn(const Node& target) {
       findMinCut(target, false, *_in_res_graph, *_in_current_edge);



More information about the Lemon-commits mailing list