[Lemon-commits] Alpar Juttner: Merge

Lemon HG hg at lemon.cs.elte.hu
Wed Mar 4 16:35:20 CET 2009


details:   http://lemon.cs.elte.hu/hg/lemon/rev/d59dcc933e59
changeset: 569:d59dcc933e59
user:      Alpar Juttner <alpar [at] cs.elte.hu>
date:      Wed Mar 04 14:09:45 2009 +0000
description:
	Merge

diffstat:

5 files changed, 647 insertions(+)
lemon/Makefile.am      |    1 
lemon/gomory_hu.h      |  551 ++++++++++++++++++++++++++++++++++++++++++++++++
test/CMakeLists.txt    |    1 
test/Makefile.am       |    2 
test/gomory_hu_test.cc |   92 ++++++++

diffs (truncated from 694 to 300 lines):

diff --git a/lemon/Makefile.am b/lemon/Makefile.am
--- a/lemon/Makefile.am
+++ b/lemon/Makefile.am
@@ -68,6 +68,7 @@
 	lemon/euler.h \
 	lemon/full_graph.h \
 	lemon/glpk.h \
+	lemon/gomory_hu.h \
 	lemon/graph_to_eps.h \
 	lemon/grid_graph.h \
 	lemon/hypercube_graph.h \
diff --git a/lemon/gomory_hu.h b/lemon/gomory_hu.h
new file mode 100644
--- /dev/null
+++ b/lemon/gomory_hu.h
@@ -0,0 +1,551 @@
+/* -*- C++ -*-
+ *
+ * This file is a part of LEMON, a generic C++ optimization library
+ *
+ * Copyright (C) 2003-2008
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+#ifndef LEMON_GOMORY_HU_TREE_H
+#define LEMON_GOMORY_HU_TREE_H
+
+#include <limits>
+
+#include <lemon/core.h>
+#include <lemon/preflow.h>
+#include <lemon/concept_check.h>
+#include <lemon/concepts/maps.h>
+
+/// \ingroup min_cut
+/// \file 
+/// \brief Gomory-Hu cut tree in graphs.
+
+namespace lemon {
+
+  /// \ingroup min_cut
+  ///
+  /// \brief Gomory-Hu cut tree algorithm
+  ///
+  /// The Gomory-Hu tree is a tree on the node set of a given graph, but it
+  /// may contain edges which are not in the original graph. It has the
+  /// property that the minimum capacity edge of the path between two nodes 
+  /// in this tree has the same weight as the minimum cut in the graph
+  /// between these nodes. Moreover the components obtained by removing
+  /// this edge from the tree determine the corresponding minimum cut.
+  ///
+  /// Therefore once this tree is computed, the minimum cut between any pair
+  /// of nodes can easily be obtained.
+  /// 
+  /// The algorithm calculates \e n-1 distinct minimum cuts (currently with
+  /// the \ref Preflow algorithm), therefore the algorithm has
+  /// \f$(O(n^3\sqrt{e})\f$ overall time complexity. It calculates a
+  /// rooted Gomory-Hu tree, its structure and the weights can be obtained
+  /// by \c predNode(), \c predValue() and \c rootDist().
+  /// 
+  /// The members \c minCutMap() and \c minCutValue() calculate
+  /// the minimum cut and the minimum cut value between any two nodes
+  /// in the graph. You can also list (iterate on) the nodes and the
+  /// edges of the cuts using \c MinCutNodeIt and \c MinCutEdgeIt.
+  ///
+  /// \tparam GR The type of the undirected graph the algorithm runs on.
+  /// \tparam CAP The type of the edge map describing the edge capacities.
+  /// It is \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>" by default.
+#ifdef DOXYGEN
+  template <typename GR,
+	    typename CAP>
+#else
+  template <typename GR,
+	    typename CAP = typename GR::template EdgeMap<int> >
+#endif
+  class GomoryHu {
+  public:
+
+    /// The graph type
+    typedef GR Graph;
+    /// The type of the edge capacity map
+    typedef CAP Capacity;
+    /// The value type of capacities
+    typedef typename Capacity::Value Value;
+    
+  private:
+
+    TEMPLATE_GRAPH_TYPEDEFS(Graph);
+
+    const Graph& _graph;
+    const Capacity& _capacity;
+
+    Node _root;
+    typename Graph::template NodeMap<Node>* _pred;
+    typename Graph::template NodeMap<Value>* _weight;
+    typename Graph::template NodeMap<int>* _order;
+
+    void createStructures() {
+      if (!_pred) {
+	_pred = new typename Graph::template NodeMap<Node>(_graph);
+      }
+      if (!_weight) {
+	_weight = new typename Graph::template NodeMap<Value>(_graph);
+      }
+      if (!_order) {
+	_order = new typename Graph::template NodeMap<int>(_graph);
+      }
+    }
+
+    void destroyStructures() {
+      if (_pred) {
+	delete _pred;
+      }
+      if (_weight) {
+	delete _weight;
+      }
+      if (_order) {
+	delete _order;
+      }
+    }
+  
+  public:
+
+    /// \brief Constructor
+    ///
+    /// Constructor
+    /// \param graph The undirected graph the algorithm runs on.
+    /// \param capacity The edge capacity map.
+    GomoryHu(const Graph& graph, const Capacity& capacity) 
+      : _graph(graph), _capacity(capacity),
+	_pred(0), _weight(0), _order(0) 
+    {
+      checkConcept<concepts::ReadMap<Edge, Value>, Capacity>();
+    }
+
+
+    /// \brief Destructor
+    ///
+    /// Destructor
+    ~GomoryHu() {
+      destroyStructures();
+    }
+
+  private:
+  
+    // Initialize the internal data structures
+    void init() {
+      createStructures();
+
+      _root = NodeIt(_graph);
+      for (NodeIt n(_graph); n != INVALID; ++n) {
+	_pred->set(n, _root);
+	_order->set(n, -1);
+      }
+      _pred->set(_root, INVALID);
+      _weight->set(_root, std::numeric_limits<Value>::max()); 
+    }
+
+
+    // Start the algorithm
+    void start() {
+      Preflow<Graph, Capacity> fa(_graph, _capacity, _root, INVALID);
+
+      for (NodeIt n(_graph); n != INVALID; ++n) {
+	if (n == _root) continue;
+
+	Node pn = (*_pred)[n];
+	fa.source(n);
+	fa.target(pn);
+
+	fa.runMinCut();
+
+	_weight->set(n, fa.flowValue());
+
+	for (NodeIt nn(_graph); nn != INVALID; ++nn) {
+	  if (nn != n && fa.minCut(nn) && (*_pred)[nn] == pn) {
+	    _pred->set(nn, n);
+	  }
+	}
+	if ((*_pred)[pn] != INVALID && fa.minCut((*_pred)[pn])) {
+	  _pred->set(n, (*_pred)[pn]);
+	  _pred->set(pn, n);
+	  _weight->set(n, (*_weight)[pn]);
+	  _weight->set(pn, fa.flowValue());	
+	}
+      }
+
+      _order->set(_root, 0);
+      int index = 1;
+
+      for (NodeIt n(_graph); n != INVALID; ++n) {
+	std::vector<Node> st;
+	Node nn = n;
+	while ((*_order)[nn] == -1) {
+	  st.push_back(nn);
+	  nn = (*_pred)[nn];
+	}
+	while (!st.empty()) {
+	  _order->set(st.back(), index++);
+	  st.pop_back();
+	}
+      }
+    }
+
+  public:
+
+    ///\name Execution Control
+ 
+    ///@{
+
+    /// \brief Run the Gomory-Hu algorithm.
+    ///
+    /// This function runs the Gomory-Hu algorithm.
+    void run() {
+      init();
+      start();
+    }
+    
+    /// @}
+
+    ///\name Query Functions
+    ///The results of the algorithm can be obtained using these
+    ///functions.\n
+    ///\ref run() "run()" should be called before using them.\n
+    ///See also \ref MinCutNodeIt and \ref MinCutEdgeIt.
+
+    ///@{
+
+    /// \brief Return the predecessor node in the Gomory-Hu tree.
+    ///
+    /// This function returns the predecessor node in the Gomory-Hu tree.
+    /// If the node is
+    /// the root of the Gomory-Hu tree, then it returns \c INVALID.
+    Node predNode(const Node& node) {
+      return (*_pred)[node];
+    }
+
+    /// \brief Return the distance from the root node in the Gomory-Hu tree.
+    ///
+    /// This function returns the distance of \c node from the root node
+    /// in the Gomory-Hu tree.
+    int rootDist(const Node& node) {
+      return (*_order)[node];
+    }
+
+    /// \brief Return the weight of the predecessor edge in the
+    /// Gomory-Hu tree.
+    ///
+    /// This function returns the weight of the predecessor edge in the
+    /// Gomory-Hu tree.  If the node is the root, the result is undefined.
+    Value predValue(const Node& node) {
+      return (*_weight)[node];
+    }
+
+    /// \brief Return the minimum cut value between two nodes
+    ///
+    /// This function returns the minimum cut value between two nodes. The
+    /// algorithm finds the nearest common ancestor in the Gomory-Hu
+    /// tree and calculates the minimum weight edge on the paths to
+    /// the ancestor.
+    Value minCutValue(const Node& s, const Node& t) const {
+      Node sn = s, tn = t;
+      Value value = std::numeric_limits<Value>::max();
+      
+      while (sn != tn) {
+	if ((*_order)[sn] < (*_order)[tn]) {
+	  if ((*_weight)[tn] <= value) value = (*_weight)[tn];
+	  tn = (*_pred)[tn];
+	} else {
+	  if ((*_weight)[sn] <= value) value = (*_weight)[sn];
+	  sn = (*_pred)[sn];
+	}
+      }
+      return value;
+    }
+
+    /// \brief Return the minimum cut between two nodes
+    ///
+    /// This function returns the minimum cut between the nodes \c s and \c t
+    /// in the \c cutMap parameter by setting the nodes in the component of
+    /// \c s to \c true and the other nodes to \c false.
+    ///
+    /// For higher level interfaces, see MinCutNodeIt and MinCutEdgeIt.
+    template <typename CutMap>
+    Value minCutMap(const Node& s, ///< The base node.
+                    const Node& t,
+                    ///< The node you want to separate from node \c s.
+                    CutMap& cutMap
+                    ///< The cut will be returned in this map.
+                    /// It must be a \c bool (or convertible) 



More information about the Lemon-commits mailing list