[Lemon-commits] Peter Kovacs: Add a test file for the connectivi...

Lemon HG hg at lemon.cs.elte.hu
Thu May 7 13:25:24 CEST 2009


details:   http://lemon.cs.elte.hu/hg/lemon/rev/76cbcb3e9bbb
changeset: 691:76cbcb3e9bbb
user:      Peter Kovacs <kpeter [at] inf.elte.hu>
date:      Wed May 06 14:46:05 2009 +0200
description:
	Add a test file for the connectivity functions (#285) The Euler
	tools have a separate test file.

diffstat:

 test/CMakeLists.txt       |    1 +
 test/Makefile.am          |    2 +
 test/connectivity_test.cc |  297 +++++++++++++++++++++++++++++++++++++++++++++++++
 3 files changed, 300 insertions(+), 0 deletions(-)

diffs (truncated from 332 to 300 lines):

diff --git a/test/CMakeLists.txt b/test/CMakeLists.txt
--- a/test/CMakeLists.txt
+++ b/test/CMakeLists.txt
@@ -9,6 +9,7 @@
   adaptors_test
   bfs_test
   circulation_test
+  connectivity_test
   counter_test
   dfs_test
   digraph_test
diff --git a/test/Makefile.am b/test/Makefile.am
--- a/test/Makefile.am
+++ b/test/Makefile.am
@@ -9,6 +9,7 @@
 	test/adaptors_test \
 	test/bfs_test \
 	test/circulation_test \
+	test/connectivity_test \
 	test/counter_test \
 	test/dfs_test \
 	test/digraph_test \
@@ -54,6 +55,7 @@
 test_bfs_test_SOURCES = test/bfs_test.cc
 test_circulation_test_SOURCES = test/circulation_test.cc
 test_counter_test_SOURCES = test/counter_test.cc
+test_connectivity_test_SOURCES = test/connectivity_test.cc
 test_dfs_test_SOURCES = test/dfs_test.cc
 test_digraph_test_SOURCES = test/digraph_test.cc
 test_dijkstra_test_SOURCES = test/dijkstra_test.cc
diff --git a/test/connectivity_test.cc b/test/connectivity_test.cc
new file mode 100644
--- /dev/null
+++ b/test/connectivity_test.cc
@@ -0,0 +1,297 @@
+/* -*- mode: C++; indent-tabs-mode: nil; -*-
+ *
+ * This file is a part of LEMON, a generic C++ optimization library.
+ *
+ * Copyright (C) 2003-2009
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+#include <lemon/connectivity.h>
+#include <lemon/list_graph.h>
+#include <lemon/adaptors.h>
+
+#include "test_tools.h"
+
+using namespace lemon;
+
+
+int main()
+{
+  typedef ListDigraph Digraph;
+  typedef Undirector<Digraph> Graph;
+  
+  {
+    Digraph d;
+    Digraph::NodeMap<int> order(d);
+    Graph g(d);
+    
+    check(stronglyConnected(d), "The empty digraph is strongly connected");
+    check(countStronglyConnectedComponents(d) == 0,
+          "The empty digraph has 0 strongly connected component");
+    check(connected(g), "The empty graph is connected");
+    check(countConnectedComponents(g) == 0,
+          "The empty graph has 0 connected component");
+
+    check(biNodeConnected(g), "The empty graph is bi-node-connected");
+    check(countBiNodeConnectedComponents(g) == 0,
+          "The empty graph has 0 bi-node-connected component");
+    check(biEdgeConnected(g), "The empty graph is bi-edge-connected");
+    check(countBiEdgeConnectedComponents(g) == 0,
+          "The empty graph has 0 bi-edge-connected component");
+          
+    check(dag(d), "The empty digraph is DAG.");
+    check(checkedTopologicalSort(d, order), "The empty digraph is DAG.");
+    check(loopFree(d), "The empty digraph is loop-free.");
+    check(parallelFree(d), "The empty digraph is parallel-free.");
+    check(simpleGraph(d), "The empty digraph is simple.");
+
+    check(acyclic(g), "The empty graph is acyclic.");
+    check(tree(g), "The empty graph is tree.");
+    check(bipartite(g), "The empty graph is bipartite.");
+    check(loopFree(g), "The empty graph is loop-free.");
+    check(parallelFree(g), "The empty graph is parallel-free.");
+    check(simpleGraph(g), "The empty graph is simple.");
+  }
+
+  {
+    Digraph d;
+    Digraph::NodeMap<int> order(d);
+    Graph g(d);
+    Digraph::Node n = d.addNode();
+
+    check(stronglyConnected(d), "This digraph is strongly connected");
+    check(countStronglyConnectedComponents(d) == 1,
+          "This digraph has 1 strongly connected component");
+    check(connected(g), "This graph is connected");
+    check(countConnectedComponents(g) == 1,
+          "This graph has 1 connected component");
+
+    check(biNodeConnected(g), "This graph is bi-node-connected");
+    check(countBiNodeConnectedComponents(g) == 0,
+          "This graph has 0 bi-node-connected component");
+    check(biEdgeConnected(g), "This graph is bi-edge-connected");
+    check(countBiEdgeConnectedComponents(g) == 1,
+          "This graph has 1 bi-edge-connected component");
+          
+    check(dag(d), "This digraph is DAG.");
+    check(checkedTopologicalSort(d, order), "This digraph is DAG.");
+    check(loopFree(d), "This digraph is loop-free.");
+    check(parallelFree(d), "This digraph is parallel-free.");
+    check(simpleGraph(d), "This digraph is simple.");
+
+    check(acyclic(g), "This graph is acyclic.");
+    check(tree(g), "This graph is tree.");
+    check(bipartite(g), "This graph is bipartite.");
+    check(loopFree(g), "This graph is loop-free.");
+    check(parallelFree(g), "This graph is parallel-free.");
+    check(simpleGraph(g), "This graph is simple.");
+  }
+
+  {
+    Digraph d;
+    Digraph::NodeMap<int> order(d);
+    Graph g(d);
+    
+    Digraph::Node n1 = d.addNode();
+    Digraph::Node n2 = d.addNode();
+    Digraph::Node n3 = d.addNode();
+    Digraph::Node n4 = d.addNode();
+    Digraph::Node n5 = d.addNode();
+    Digraph::Node n6 = d.addNode();
+    
+    d.addArc(n1, n3);
+    d.addArc(n3, n2);
+    d.addArc(n2, n1);
+    d.addArc(n4, n2);
+    d.addArc(n4, n3);
+    d.addArc(n5, n6);
+    d.addArc(n6, n5);
+
+    check(!stronglyConnected(d), "This digraph is not strongly connected");
+    check(countStronglyConnectedComponents(d) == 3,
+          "This digraph has 3 strongly connected components");
+    check(!connected(g), "This graph is not connected");
+    check(countConnectedComponents(g) == 2,
+          "This graph has 2 connected components");
+
+    check(!dag(d), "This digraph is not DAG.");
+    check(!checkedTopologicalSort(d, order), "This digraph is not DAG.");
+    check(loopFree(d), "This digraph is loop-free.");
+    check(parallelFree(d), "This digraph is parallel-free.");
+    check(simpleGraph(d), "This digraph is simple.");
+
+    check(!acyclic(g), "This graph is not acyclic.");
+    check(!tree(g), "This graph is not tree.");
+    check(!bipartite(g), "This graph is not bipartite.");
+    check(loopFree(g), "This graph is loop-free.");
+    check(!parallelFree(g), "This graph is not parallel-free.");
+    check(!simpleGraph(g), "This graph is not simple.");
+    
+    d.addArc(n3, n3);
+    
+    check(!loopFree(d), "This digraph is not loop-free.");
+    check(!loopFree(g), "This graph is not loop-free.");
+    check(!simpleGraph(d), "This digraph is not simple.");
+    
+    d.addArc(n3, n2);
+    
+    check(!parallelFree(d), "This digraph is not parallel-free.");
+  }
+  
+  {
+    Digraph d;
+    Digraph::ArcMap<bool> cutarcs(d, false);
+    Graph g(d);
+    
+    Digraph::Node n1 = d.addNode();
+    Digraph::Node n2 = d.addNode();
+    Digraph::Node n3 = d.addNode();
+    Digraph::Node n4 = d.addNode();
+    Digraph::Node n5 = d.addNode();
+    Digraph::Node n6 = d.addNode();
+    Digraph::Node n7 = d.addNode();
+    Digraph::Node n8 = d.addNode();
+
+    d.addArc(n1, n2);
+    d.addArc(n5, n1);
+    d.addArc(n2, n8);
+    d.addArc(n8, n5);
+    d.addArc(n6, n4);
+    d.addArc(n4, n6);
+    d.addArc(n2, n5);
+    d.addArc(n1, n8);
+    d.addArc(n6, n7);
+    d.addArc(n7, n6);
+   
+    check(!stronglyConnected(d), "This digraph is not strongly connected");
+    check(countStronglyConnectedComponents(d) == 3,
+          "This digraph has 3 strongly connected components");
+    Digraph::NodeMap<int> scomp1(d);
+    check(stronglyConnectedComponents(d, scomp1) == 3,
+          "This digraph has 3 strongly connected components");
+    check(scomp1[n1] != scomp1[n3] && scomp1[n1] != scomp1[n4] &&
+          scomp1[n3] != scomp1[n4], "Wrong stronglyConnectedComponents()");
+    check(scomp1[n1] == scomp1[n2] && scomp1[n1] == scomp1[n5] &&
+          scomp1[n1] == scomp1[n8], "Wrong stronglyConnectedComponents()");
+    check(scomp1[n4] == scomp1[n6] && scomp1[n4] == scomp1[n7],
+          "Wrong stronglyConnectedComponents()");
+    Digraph::ArcMap<bool> scut1(d, false);
+    check(stronglyConnectedCutArcs(d, scut1) == 0,
+          "This digraph has 0 strongly connected cut arc.");
+    for (Digraph::ArcIt a(d); a != INVALID; ++a) {
+      check(!scut1[a], "Wrong stronglyConnectedCutArcs()");
+    }
+
+    check(!connected(g), "This graph is not connected");
+    check(countConnectedComponents(g) == 3,
+          "This graph has 3 connected components");
+    Graph::NodeMap<int> comp(g);
+    check(connectedComponents(g, comp) == 3,
+          "This graph has 3 connected components");
+    check(comp[n1] != comp[n3] && comp[n1] != comp[n4] &&
+          comp[n3] != comp[n4], "Wrong connectedComponents()");
+    check(comp[n1] == comp[n2] && comp[n1] == comp[n5] &&
+          comp[n1] == comp[n8], "Wrong connectedComponents()");
+    check(comp[n4] == comp[n6] && comp[n4] == comp[n7],
+          "Wrong connectedComponents()");
+
+    cutarcs[d.addArc(n3, n1)] = true;
+    cutarcs[d.addArc(n3, n5)] = true;
+    cutarcs[d.addArc(n3, n8)] = true;
+    cutarcs[d.addArc(n8, n6)] = true;
+    cutarcs[d.addArc(n8, n7)] = true;
+
+    check(!stronglyConnected(d), "This digraph is not strongly connected");
+    check(countStronglyConnectedComponents(d) == 3,
+          "This digraph has 3 strongly connected components");
+    Digraph::NodeMap<int> scomp2(d);
+    check(stronglyConnectedComponents(d, scomp2) == 3,
+          "This digraph has 3 strongly connected components");
+    check(scomp2[n3] == 0, "Wrong stronglyConnectedComponents()");
+    check(scomp2[n1] == 1 && scomp2[n2] == 1 && scomp2[n5] == 1 &&
+          scomp2[n8] == 1, "Wrong stronglyConnectedComponents()");
+    check(scomp2[n4] == 2 && scomp2[n6] == 2 && scomp2[n7] == 2,
+          "Wrong stronglyConnectedComponents()");
+    Digraph::ArcMap<bool> scut2(d, false);
+    check(stronglyConnectedCutArcs(d, scut2) == 5,
+          "This digraph has 5 strongly connected cut arcs.");
+    for (Digraph::ArcIt a(d); a != INVALID; ++a) {
+      check(scut2[a] == cutarcs[a], "Wrong stronglyConnectedCutArcs()");
+    }
+  }
+
+  {
+    // DAG example for topological sort from the book New Algorithms
+    // (T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein)
+    Digraph d;
+    Digraph::NodeMap<int> order(d);
+    
+    Digraph::Node belt = d.addNode();
+    Digraph::Node trousers = d.addNode();
+    Digraph::Node necktie = d.addNode();
+    Digraph::Node coat = d.addNode();
+    Digraph::Node socks = d.addNode();
+    Digraph::Node shirt = d.addNode();
+    Digraph::Node shoe = d.addNode();
+    Digraph::Node watch = d.addNode();
+    Digraph::Node pants = d.addNode();
+
+    d.addArc(socks, shoe);
+    d.addArc(pants, shoe);
+    d.addArc(pants, trousers);
+    d.addArc(trousers, shoe);
+    d.addArc(trousers, belt);
+    d.addArc(belt, coat);
+    d.addArc(shirt, belt);
+    d.addArc(shirt, necktie);
+    d.addArc(necktie, coat);
+    
+    check(dag(d), "This digraph is DAG.");
+    topologicalSort(d, order);
+    for (Digraph::ArcIt a(d); a != INVALID; ++a) {
+      check(order[d.source(a)] < order[d.target(a)],
+            "Wrong topologicalSort()");
+    }
+  }



More information about the Lemon-commits mailing list