Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Inc., February 1993.
Ursula Bünnagel, Bernhard Korte, and Jens Vygen. Efficient implementation of the Goldberg-Tarjan minimum-cost flow algorithm. Optimization Methods and Software, 10:157–174, 1998.
COIN-OR – Computational Infrastructure for Operations Research.
Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms. The MIT Press, 2nd edition, 2001.
George B. Dantzig. Linear Programming and Extensions. Princeton University Press, 1963.
Ali Dasdan and Rajesh K. Gupta. Faster maximum and minimum mean cycle alogrithms for system performance analysis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 17(10):889–899, 1998.
Ali Dasdan. Experimental analysis of the fastest optimum cycle ratio and mean algorithms. ACM Trans. Des. Autom. Electron. Syst., 9:385–418, 2004.
B. Dezs H o, A. Jüttner, and P. Kovács. LEMON – an open source C++ graph template library. Electronic Notes in Theoretical Computer Science, 264:23–45, 2011. Proc. 2nd Workshop on Generative Technologies.
Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic efficiency for network flow problems. Journal of the ACM, 19(2):248–264, 1972.
EGRES – Egerváry Research Group on Combinatorial Optimization.
Andrew V. Goldberg and Robert E. Tarjan. A new approach to the maximum flow problem. Journal of the ACM, 35(4):921–940, 1988.
Andrew V. Goldberg and Robert E. Tarjan. Finding minimum-cost circulations by canceling negative cycles. Journal of the ACM, 36(4):873–886, 1989.
Andrew V. Goldberg and Robert E. Tarjan. Finding minimum-cost circulations by successive approximation. Mathematics of Operations Research, 15(3):430–466, 1990.
Andrew V. Goldberg. An efficient implementation of a scaling minimum-cost flow algorithm. Journal of Algorithms, 22(1):1–29, 1997.
Andrea Grosso, Marco Locatelli, and Wayne Pullan. Simple ingredients leading to very efficient heuristics for the maximum clique problem. Journal of Heuristics, 14(6):587–612, 2008.
Mark Hartmann and James B. Orlin. Finding minimum cost to time ratio cycles with small integral transit times. Networks, 23:567–574, 1993.
Richard M. Karp. A characterization of the minimum cycle mean in a digraph. Discrete Math., 23:309–311, 1978.
Damian J. Kelly and Garrett M. O'Neill. The minimum cost flow problem and the network simplex method. Master's thesis, University College, Dublin, Ireland, September 1991.
Z. Király and P. Kovács. Efficient implementations of minimum-cost flow algorithms. Acta Universitatis Sapientiae, Informatica, 4:67–118, 2012.
Morton Klein. A primal method for minimal cost flows with applications to the assignment and transportation problems. Management Science, 14:205–220, 1967.