
LEMON
Library for Efficient Modeling and Optimization in Networks

Alpár Jüttner, Balázs Dezső, Péter Kovács

Dept. of Operations Research
Eötvös Loránd University, Budapest

April 30, 2010

Overview

1 Introduction to LEMON
What is LEMON?
Graph Structures
Iterators
Maps
Algorithms
Undirected Graphs
Graph Adaptors
LP Interface
Tools
Technical Support
Users

2 Performance
Shortest Paths
Maximum Flows
Minimum Cost Flows
Planar Embedding

3 History and Statistics
4 Summary

Section 1

1 Introduction to LEMON

LEMON

What is LEMON?

LEMON is an abbreviation for
Library for Efficient Modeling and Optimization in Networks.

It is an open source C++ template library for optimization tasks
related to graphs and networks.
It provides highly efficient implementations of common data
structures and algorithms.
It is maintained by the EGRES group at Eötvös Loránd
University, Budapest, Hungary.
http://lemon.cs.elte.hu

Sponsors:

http://lemon.cs.elte.hu

Design Goals

Genericity:
clear separation of data structures and algorithms,
excessive use of modern software development paradigms.

Running time efficiency:
to be appropriate for using in running time critical applications.

Ease of use:
elegant and convenient interface based on clear design concepts,
provide a large set of flexible components,
make it easy to implement new algorithms and tools,
support easy integration into existing applications.

Applicability for production use:
open source code with a very permissive licensing scheme
(Boost 1.0 license).

Motivation

We missed a tool like that.
Source code of commercial libraries cannot be examined or
improved.
Other open source graph libraries are not well designed and lack
sophisticated implementations.

We observed a need for such a graph library in the (industrial)
research.

Commercial tools are not always appropriate.

We wanted something better than the existing ones.

We wanted to attract more people to applied research.
Students participating in the development of LEMON

learn programming by implementing new features,
get experience in collaborative development,
can more easily be involved in other research projects.

LICENSE (same as BOOST)

Copyright (C) 2003-2010 Egerváry Jenő Kombinatorikus
Optimalizálási Kutatócsoport (Egerváry Combinatorial
Optimization Research Group, EGRES).

Permission is hereby granted, free of charge, to any person or
organization obtaining a copy of the software and accompanying
documentation covered by this license (the "Software") to use,
reproduce, display, distribute, execute, and transmit the
Software, and to prepare derivative works of the Software, and
to permit third-parties to whom the Software is furnished to
do so, all subject to the following:

The copyright notices in the Software and this entire
statement, including the above license grant, this restriction
and the following disclaimer, must be included in all copies
of the Software, in whole or in part, and all derivative works
of the Software, unless such copies or derivative works are
solely in the form of machine-executable object code generated
by a source language processor.

...

LEMON Components

Efficient data structures for graphs and related data.
Flexible and very fast implementations of several combinatorial
algorithms (graph search, shortest paths, flow and matching
problems etc.).
Input-output support for various graph file formats.

An own flexible file format: LGF.

A uniform and high-level interface for different LP and MIP
solvers (GLPK, Clp, Cbc, CPLEX, SoPlex).
Detailed documentation.
Build environment.

Graph Structures

LEMON contains highly efficient graph implementations (both in
terms of running time and memory space).
They have easy-to-use interface.

Generic design:
C++ template programming is heavily used.
There are generic graph concepts and several graph
implementations for diverging purposes.
The algorithms work with arbitrary graph structures.
Users can also write their own graph classes.

Building Graphs

Creating a graph
using namespace lemon;
ListDigraph g;

Adding nodes and arcs
ListDigraph::Node u = g.addNode();
ListDigraph::Node v = g.addNode();
ListDigraph::Arc a = g.addArc(u,v);

Removing items
g.erase(a);
g.erase(v);

Iterators

The graph structures provide several iterators for traversing the
nodes and arcs.

Iteration on nodes
for (ListDigraph::NodeIt v(g); v != INVALID; ++v) {...}

Iteration on arcs
for (ListDigraph::ArcIt a(g); a != INVALID; ++a)
for (ListDigraph::OutArcIt a(g,v); a != INVALID; ++a)
for (ListDigraph::InArcIt a(g,v); a != INVALID; ++a)

Note: INVALID is a constant, which converts to each and every iterator and graph item type.

Iterators

Contrary to C++ STL, LEMON iterators are convertible to the
corresponding item types without having to use operator*().
This provides a more convenient interface.
The program context always indicates whether we refer to the
iterator or to the graph item.

Example: Printing node identifiers
for (ListDigraph::NodeIt v(g); v!=INVALID; ++v) {

std::cout << g.id(v) << std::endl;
}

← iterator
← item

Iterators

Contrary to C++ STL, LEMON iterators are convertible to the
corresponding item types without having to use operator*().
This provides a more convenient interface.
The program context always indicates whether we refer to the
iterator or to the graph item.

Example: Printing node identifiers
for (ListDigraph::NodeIt v(g); v!=INVALID; ++v) {

std::cout << g.id(v) << std::endl;
}

← iterator
← item

Iterators

Contrary to C++ STL, LEMON iterators are convertible to the
corresponding item types without having to use operator*().
This provides a more convenient interface.
The program context always indicates whether we refer to the
iterator or to the graph item.

Example: Printing node identifiers
for (ListDigraph::NodeIt v(g); v!=INVALID; ++v) {

std::cout << g.id(v) << std::endl;
}

← iterator
← item

Maps

The graph classes represent only the pure structure of the graph.
All associated data (e.g. node labels, arc costs or capacities) are
stored separately using so-called maps.

Creating maps
ListDigraph::NodeMap<std::string> label(g);
ListDigraph::ArcMap<int> cost(g);

Accessing map values
label[s] = "source";
cost[e] = 2 * cost[f];

Benefits of Graph Maps

Efficient. Accessing map values is as fast as reading or writing
an array.

Dynamic. You can create and destruct maps freely.

Whenever you need, you can allocate a new map.
When you leave its scope, the map will be deallocated
automatically.
The lifetimes of maps are not bound to the lifetime of the graph.

Automatic. The maps are updated automatically on the
changes of the graph.

If you add new nodes or arcs to the graph, the storage of the
existing maps will be expanded and the new slots will be
initialized.
If you remove items from the graph, the corresponding values in
the maps will be properly destructed.

Map Concepts

LEMON maps are not just storage classes. They are concepts of
any key–value based data access.

This design provides great flexibility.

Users can write their own maps.
LEMON provides several “lightweight” map adaptor classes in
addition to the standard graph maps.

Map Concepts

LEMON maps are not just storage classes. They are concepts of
any key–value based data access.

This design provides great flexibility.

Users can write their own maps.

LEMON provides several “lightweight” map adaptor classes in
addition to the standard graph maps.

Example: Constant map
class MyMap {
public:

typedef ListDigraph::Arc Key;
typedef double Value;
Value operator[](Key k) const { return 3.14; }

};

Map Concepts

LEMON maps are not just storage classes. They are concepts of
any key–value based data access.

This design provides great flexibility.

Users can write their own maps.
LEMON provides several “lightweight” map adaptor classes in
addition to the standard graph maps.

Map Adaptors

A map adaptor class is attached to another map and performs
various operations on the original data.
This is done “on the fly” when the access operations are called.
The original storage is neither modified nor copied.

Map Adaptors

A map adaptor class is attached to another map and performs
various operations on the original data.
This is done “on the fly” when the access operations are called.
The original storage is neither modified nor copied.

Standard method
ListDigraph::ArcMap<int> cost(g);
... // set arc costs
algorithm(g, cost);
... // increase arc costs by 100
algorithm(g, cost);

Map Adaptors

A map adaptor class is attached to another map and performs
various operations on the original data.
This is done “on the fly” when the access operations are called.
The original storage is neither modified nor copied.

Using map adaptor
ListDigraph::ArcMap<int> cost(g);
... // set arc costs
algorithm(g, cost);
algorithm(g, shiftMap(cost, 100));

Algorithms I.

Graph search
BFS, DFS

Algorithms I.

Graph search

Shortest paths
Dijkstra (with various heaps)
Bellman-Ford
Suurballe

Algorithms I.

Graph search

Shortest paths

Spanning trees
Kruskal
Min. cost arborescence

Algorithms I.

Graph search

Shortest paths

Spanning trees

Connectivity
Connected components
Strongly connected components
Topological ordering
2-connected components, articulation nodes

Algorithms I.

Graph search

Shortest paths

Spanning trees

Connectivity

Algorithms II.

Network flows
Maximum flow
Feasible circulation
Minimum cost flow
Minimum cut

Algorithms II.

Network flows
Maximum flow

Preflow push-relabel (with various heuristics)

Feasible circulation
Minimum cost flow
Minimum cut

Algorithms II.

Network flows
Maximum flow
Feasible circulation

generalized version (push-relabel algorithm)

Minimum cost flow
Minimum cut

Algorithms II.

Network flows
Maximum flow
Feasible circulation
Minimum cost flow

Cycle-canceling (3 versions)
Capacity scaling
Cost scaling (3 versions with various heuristics)
Network simplex (5 different pivot rules)

Minimum cut

Algorithms II.

Network flows
Maximum flow
Feasible circulation
Minimum cost flow
Minimum cut

Hao-Orlin
Gomory-Hu

Algorithms II.

Network flows

Matching
Max. cardinality matching
Max. weighted matching
Fractional matching

Algorithms II.

Network flows

Matching

Minimum mean cycle
Karp
Hartmann-Orlin
Howard

Algorithms II.

Network flows

Matching

Minimum mean cycle

Planar graphs
Planar embedding
Planar drawing

Algorithms II.

Network flows

Matching

Minimum mean cycle

Planar graphs

Auxiliary algorithms
Radix sort

Algorithms II.

Network flows

Matching

Minimum mean cycle

Planar graphs

Auxiliary algorithms

Others

Data structures
Graphs and maps
Path structures
Priority queues (binary, D-ary, Fibonacci, pairing, radix, bucket,
etc. heaps)
Union-find structures
Auxiliary data structures

Others

Data structures

Input-output support
LEMON Graph Format (LGF)
Other graph formats: DIMACS, Nauty
EPS exporting

Others

Data structures

Input-output support

General optimization tools
High-level common interface for LP and MIP solvers

Others

Data structures

Input-output support

General optimization tools

Mersenne-Twister pseudo-random generator

Best statistical properties and very fast
Uniform, Gauss, Exponential, Pareto, Weibull, etc. distributions

Others

Data structures

Input-output support

General optimization tools

Mersenne-Twister pseudo-random generator

Auxiliary tools
Time measuring tools and counters
Command line argument parser
etc.

Others

Data structures

Input-output support

General optimization tools

Mersenne-Twister pseudo-random generator

Auxiliary tools

Algorithm Interfaces

Class interface

Function-type interface

Algorithm Interfaces

Class interface
Complex initializations.
Flexible execution control:

step-by-step execution,
multiple execution,
custom stop conditions.

Complex queries.
The used data structures (maps, heaps, etc.) can be changed.

Function-type interface

Algorithm Interfaces

Class interface
Complex initializations.
Flexible execution control.
Complex queries.
The used data structures (maps, heaps, etc.) can be changed.

Function-type interface
Single execution: “this is the input”, “put the results here”.
Simpler usage:

template parameters do not have to be given explicitly,
arguments can be set using named parameters,
temporary expressions can be passed as reference parameters.

It provides less flexibility in the initialization, execution and
queries.

Using Algorithms

Class interface
Dijkstra<ListDigraph> dijk(g, length);
dijk.distMap(dist);

dijk.run(s);

std::cout << dist[t] << std::endl;

Function-type interface
dijkstra(g, length).distMap(dist).run(s);

Using Algorithms

Class interface
Dijkstra<ListDigraph> dijk(g, length);
dijk.distMap(dist);

dijk.init();
dijk.addSource(s1); dijk.addSource(s2);
dijk.start();

std::cout << dist[t] << std::endl;

Function-type interface
dijkstra(g, length).distMap(dist).run(s);

Using Algorithms

Class interface
Dijkstra<ListDigraph> dijk(g, length);
dijk.distMap(dist);

dijk.init();
dijk.addSource(s1); dijk.addSource(s2);
dijk.start();

std::cout << dist[t] << std::endl;

Function-type interface
dijkstra(g, length).distMap(dist).run(s);

Using Algorithms

Example: Number of connected components
template <typename GR>
int numberOfComponents(const GR &g) {

int c = 0;
Bfs<GR> bfs(g);
bfs.init();
for (typename GR::NodeIt v(g); v != INVALID; ++v) {

if (!bfs.reached(v)) {
c++;
bfs.addSource(v);
bfs.start();

}
}
return c;

}

Undirected Graphs

An undirected graph is also considered as a directed one at the
same time.
Each undirected edge can also be regarded as two oppositely
directed arcs.
As a result, each algorithm working on a directed graph naturally
runs on an undirected graph, as well.

varc

arc

u

edge

u v

Graph Adaptors

LEMON also provides graph adaptor classes (similarly to map
adaptors).
They serve for considering other graphs in different ways using
the storage and operations of the original structure.
Another view of a graph can be obtained without having to
modify or copy the actual storage.
This technique yields convenient and elegant codes.

Graph Adaptors

LEMON also provides graph adaptor classes (similarly to map
adaptors).
They serve for considering other graphs in different ways using
the storage and operations of the original structure.
Another view of a graph can be obtained without having to
modify or copy the actual storage.
This technique yields convenient and elegant codes.

Working with the original graph
algorithm(g);

Graph Adaptors

LEMON also provides graph adaptor classes (similarly to map
adaptors).
They serve for considering other graphs in different ways using
the storage and operations of the original structure.
Another view of a graph can be obtained without having to
modify or copy the actual storage.
This technique yields convenient and elegant codes.

Working with the reverse oriented graph
algorithm(reverseDigraph(g));

Using Graph Adaptors

Obtaining a subgraph

SubDigraph adaptor

Original digraph

Using Graph Adaptors

Combining adaptors

Original digraph

Undirector adaptor

SubDigraph adaptor

Example: Finding Disjoint Paths

The maximum number of arc disjoint paths between two nodes
can be found by computing a maximum flow using uniform arc
capacities.

Example: Finding Disjoint Paths

For finding node disjoint paths, the maximum flow algorithm can
be used in conjunction with the SplitNodes adaptor.
It splits each node into an in-node and an out-node.

LP Interface

LEMON provides a convenient, high-level interface for several
linear programming (LP) and mixed integer programming (MIP)
solvers.

Currently supported:
GLPK: open source (GNU license)

Clp, Cbc: open source (COIN-OR LP and MIP solvers)
CPLEX: commercial
SoPlex: academic license

Additional wrapper classes for other solvers can be implemented
easily.

Using the LP Interface

Building and solving an LP problem
Lp lp;
Lp::Col x1 = lp.addCol();
Lp::Col x2 = lp.addCol();

lp.max();
lp.obj(10 * x1 + 6 * x2);

lp.addRow(0 <= x1 + x2 <= 100);
lp.addRow(2 * x1 <= x2 + 32);

lp.colLowerBound(x1, 0);

lp.solve();

std::cout << "Solution: " << lp.primal() << std::endl;
std::cout << "x1 = " << lp.primal(x1) << std::endl;
std::cout << "x2 = " << lp.primal(x2) << std::endl;

Mathematical formulation

max 10x1 + 6x2

0 ≤ x1 + x2 ≤ 100

2x1 ≤ x2 + 32

x1 ≥ 0

Using the LP Interface

Building and solving an LP problem
Lp lp;
Lp::Col x1 = lp.addCol();
Lp::Col x2 = lp.addCol();

lp.max();
lp.obj(10 * x1 + 6 * x2);

lp.addRow(0 <= x1 + x2 <= 100);
lp.addRow(2 * x1 <= x2 + 32);

lp.colLowerBound(x1, 0);

lp.solve();

std::cout << "Solution: " << lp.primal() << std::endl;
std::cout << "x1 = " << lp.primal(x1) << std::endl;
std::cout << "x2 = " << lp.primal(x2) << std::endl;

Mathematical formulation

max 10x1 + 6x2

0 ≤ x1 + x2 ≤ 100

2x1 ≤ x2 + 32

x1 ≥ 0

LGF – LEMON Graph Format

Example graph
@nodes
label coordinate
0 (20,100)
1 (40,120)
...
41 (600,100)
@arcs

label length
0 1 0 16
0 2 1 12
2 12 2 20
...
36 41 123 21
@attributes
source 0
caption "A shortest path problem"

LGF – LEMON Graph Format

Example graph
@nodes
label coordinate
0 (20,100)
...
41 (600,100)
@arcs

label length
0 1 0 16
...
36 41 123 21
@attributes
source 0
caption "A shortest path problem"

Reading the graph
digraphReader(g, "input.lgf")
.nodeMap("coord", coord)
.arcMap("length", length)
.attribute("caption", title)
.node("source", src)
.run();

Postscript Exporting

EPS example

4

3

21

0

Postscript Exporting

EPS example

4

3

21

0

Exporting to EPS
graphToEps(g, "graph.eps")

.copyright("(c) 2003-2010 LEMON Project")

.title("Sample EPS figure").coords(coords)

.nodeScale(2).nodeSizes(sizes).nodeTexts(id).nodeTextSize(3)

.nodeColors(composeMap(palette, colors)).nodeShapes(shapes)

.arcColors(composeMap(palette, acolors))

.arcWidthScale(.3).arcWidths(widths)

.drawArrows().arrowWidth(1).arrowLength(1)

.enableParallel().parArcDist(1)

.run();

gLEMON – A Graph Editor for LEMON

Technical Support

Extensive documentation:
Reference manual (generated using Doxygen)
Tutorial

Mailing lists.
Version control (Mercurial).
Bug tracker system (Trac).
Build environment:

Autotools (Linux)
CMake (Windows)

Support of different compilers:
GNU C++
Intel C++
IBM xlC
Microsoft Visual C++

Users of LEMON

Several projects at ELTE and BME, Budapest
ZIB, Berlin
Ericsson Research
CPqD, Brazil
Personal users
etc.

LEMON is a part of the COIN-OR software collection.
http://www.coin-or.org/

http://www.coin-or.org/

User Reviews

“I use LEMON to solve the problem of tangent plane orientation in surface
reconstruction... In my project I decided to use LEMON because it was
easier to understand and use than other projects like "boost" and I also
found that it runs fast.”

“I searched long and hard for a graph library I could use. Yours was the only
library that is robust, has documentation that makes sense, and is not
obfuscated by excessive use of templates. For example, I spent quite some
time with the Boost Graph Library and got nowhere. It builds generality upon
generality.”

Section 2

2 Performance

Performance

The performance of LEMON is compared to its major competitors:

BGL – Boost Graph Library
LEDA library

VS

Shortest Paths

Benchmark results for Dijkstra’s algorithm:

0.001s

0.01s

0.1s

1s

10s

100s

 1000 10000 100000 1000000

ru
nn

in
g

tim
e

(lo
g

sc
al

e)

number of nodes (log scale)

LEMON
BGL
LEDA

Sparse networks

0.001s

0.01s

0.1s

1s

10s

100s

 1000 10000 100000

ru
nn

in
g

tim
e

(lo
g

sc
al

e)

number of nodes (log scale)

LEMON
BGL
LEDA

Dense networks

Maximum Flows

Benchmark results for the push-relabel algorithm:

0.001s

0.01s

0.1s

1s

10s

100s

 1000 10000 100000 1000000

ru
nn

in
g

tim
e

(lo
g

sc
al

e)

number of nodes (log scale)

LEMON
BGL
LEDA

Sparse networks

0.001s

0.01s

0.1s

1s

10s

100s

 1000 10000 100000

ru
nn

in
g

tim
e

(lo
g

sc
al

e)

number of nodes (log scale)

LEMON
BGL
LEDA

Dense networks

Minimum Cost Flows

Benchmark results for minimum cost flow algorithms:

0.01s

0.1s

1s

10s

100s

1000s

 1000 10000 100000 1000000

ru
nn

in
g

tim
e

(lo
g

sc
al

e)

number of nodes (log scale)

LEMON CostScaling
LEDA

Sparse networks

0.01s

0.1s

1s

10s

100s

1000s

 1000 10000 100000

ru
nn

in
g

tim
e

(lo
g

sc
al

e)

number of nodes (log scale)

LEMON CostScaling
LEDA

Dense networks

Note: BGL does not provide a minimum cost flow algorithm, but it has been among the plans of

the developers for a long time.

Planar Embedding

Benchmark results for planar embedding algorithms:

0.001s

0.01s

0.1s

1s

 0 2000 4000 6000 8000 10000

ru
nn

in
g

tim
e

(lo
g

sc
al

e)

number of nodes

LEMON
BGL
LEDA

Section 3

3 History and Statistics

History of LEMON

2003–2007 LEMON 0.x series
Development versions without stable API.
Latest release: LEMON 0.7.

2008– LEMON 1.x series
Stable releases ensuring full backward compatibility.
Major versions:
2008-10-13 LEMON 1.0 released
2009-05-13 LEMON 1.1 released
2010-03-19 LEMON 1.2 released

2009-03-27 LEMON joins to the COIN-OR initiative.
http://www.coin-or.org/

http://www.coin-or.org/

SLOC – Source Lines of Code

 0

 10000

 20000

 30000

 40000

 50000

 60000

2007-10 2008-01 2008-04 2008-07 2008-10 2009-01 2009-04 2009-07 2009-10 2010-01 2010-04

lemon test tools scripts demo Total

C++ 45,032 8340 983 238 54,593 (97.98%)
Python 513 513 (0.92%)
other 130 478 608 (1.09%)

Total: 45,032 8340 1113 991 238 55,714

Section 4

4 Summary

Summary

LEMON is a highly efficient C++ graph template library
providing convenient and flexible components.

It is open source with a very premissive license.

LEMON turned out to be significantly more efficient than its two
major competitors, BGL and LEDA.

Therefore, LEMON is favorable for both research and
development in the areas of combinatorial optimization and
network design.

The End

Thank you for the attention!

http://lemon.cs.elte.hu

http://lemon.cs.elte.hu

	Overview
	Introduction to LEMON
	What is LEMON?
	Graph Structures
	Iterators
	Maps
	Algorithms
	Undirected Graphs
	Graph Adaptors
	LP Interface
	Tools
	Technical Support
	Users

	Performance
	Shortest Paths
	Maximum Flows
	Minimum Cost Flows
	Planar Embedding

	History and Statistics
	Summary

