# A TRANSPORTATION PROBLEM # # This problem finds a least cost shipping schedule that meets # requirements at markets and supplies at factories. # # References: # Dantzig G B, "Linear Programming and Extensions." # Princeton University Press, Princeton, New Jersey, 1963, # Chapter 3-3. set I; /* canning plants */ set J; /* markets */ param a{i in I}; /* capacity of plant i in cases */ param b{j in J}; /* demand at market j in cases */ param d{i in I, j in J}; /* distance in thousands of miles */ param f; /* freight in dollars per case per thousand miles */ param c{i in I, j in J} := f * d[i,j] / 1000; /* transport cost in thousands of dollars per case */ var x{i in I, j in J} >= 0; /* shipment quantities in cases */ minimize cost: sum{i in I, j in J} c[i,j] * x[i,j]; /* total transportation costs in thousands of dollars */ s.t. supply{i in I}: sum{j in J} x[i,j] <= a[i]; /* observe supply limit at plant i */ s.t. demand{j in J}: sum{i in I} x[i,j] >= b[j]; /* satisfy demand at market j */ data; set I := Seattle San-Diego; set J := New-York Chicago Topeka; param a := Seattle 350 San-Diego 600; param b := New-York 325 Chicago 300 Topeka 275; param d : New-York Chicago Topeka := Seattle 2.5 1.7 1.8 San-Diego 2.5 1.8 1.4 ; param f := 90; end;