/* glpapi02.c (problem retrieving routines) */ /*********************************************************************** * This code is part of GLPK (GNU Linear Programming Kit). * * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, * Moscow Aviation Institute, Moscow, Russia. All rights reserved. * E-mail: . * * GLPK is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GLPK is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with GLPK. If not, see . ***********************************************************************/ #include "glpapi.h" /*********************************************************************** * NAME * * glp_get_prob_name - retrieve problem name * * SYNOPSIS * * const char *glp_get_prob_name(glp_prob *lp); * * RETURNS * * The routine glp_get_prob_name returns a pointer to an internal * buffer, which contains symbolic name of the problem. However, if the * problem has no assigned name, the routine returns NULL. */ const char *glp_get_prob_name(glp_prob *lp) { char *name; name = lp->name; return name; } /*********************************************************************** * NAME * * glp_get_obj_name - retrieve objective function name * * SYNOPSIS * * const char *glp_get_obj_name(glp_prob *lp); * * RETURNS * * The routine glp_get_obj_name returns a pointer to an internal * buffer, which contains a symbolic name of the objective function. * However, if the objective function has no assigned name, the routine * returns NULL. */ const char *glp_get_obj_name(glp_prob *lp) { char *name; name = lp->obj; return name; } /*********************************************************************** * NAME * * glp_get_obj_dir - retrieve optimization direction flag * * SYNOPSIS * * int glp_get_obj_dir(glp_prob *lp); * * RETURNS * * The routine glp_get_obj_dir returns the optimization direction flag * (i.e. "sense" of the objective function): * * GLP_MIN - minimization; * GLP_MAX - maximization. */ int glp_get_obj_dir(glp_prob *lp) { int dir = lp->dir; return dir; } /*********************************************************************** * NAME * * glp_get_num_rows - retrieve number of rows * * SYNOPSIS * * int glp_get_num_rows(glp_prob *lp); * * RETURNS * * The routine glp_get_num_rows returns the current number of rows in * the specified problem object. */ int glp_get_num_rows(glp_prob *lp) { int m = lp->m; return m; } /*********************************************************************** * NAME * * glp_get_num_cols - retrieve number of columns * * SYNOPSIS * * int glp_get_num_cols(glp_prob *lp); * * RETURNS * * The routine glp_get_num_cols returns the current number of columns * in the specified problem object. */ int glp_get_num_cols(glp_prob *lp) { int n = lp->n; return n; } /*********************************************************************** * NAME * * glp_get_row_name - retrieve row name * * SYNOPSIS * * const char *glp_get_row_name(glp_prob *lp, int i); * * RETURNS * * The routine glp_get_row_name returns a pointer to an internal * buffer, which contains symbolic name of i-th row. However, if i-th * row has no assigned name, the routine returns NULL. */ const char *glp_get_row_name(glp_prob *lp, int i) { char *name; if (!(1 <= i && i <= lp->m)) xerror("glp_get_row_name: i = %d; row number out of range\n", i); name = lp->row[i]->name; return name; } /*********************************************************************** * NAME * * glp_get_col_name - retrieve column name * * SYNOPSIS * * const char *glp_get_col_name(glp_prob *lp, int j); * * RETURNS * * The routine glp_get_col_name returns a pointer to an internal * buffer, which contains symbolic name of j-th column. However, if j-th * column has no assigned name, the routine returns NULL. */ const char *glp_get_col_name(glp_prob *lp, int j) { char *name; if (!(1 <= j && j <= lp->n)) xerror("glp_get_col_name: j = %d; column number out of range\n" , j); name = lp->col[j]->name; return name; } /*********************************************************************** * NAME * * glp_get_row_type - retrieve row type * * SYNOPSIS * * int glp_get_row_type(glp_prob *lp, int i); * * RETURNS * * The routine glp_get_row_type returns the type of i-th row, i.e. the * type of corresponding auxiliary variable, as follows: * * GLP_FR - free (unbounded) variable; * GLP_LO - variable with lower bound; * GLP_UP - variable with upper bound; * GLP_DB - double-bounded variable; * GLP_FX - fixed variable. */ int glp_get_row_type(glp_prob *lp, int i) { if (!(1 <= i && i <= lp->m)) xerror("glp_get_row_type: i = %d; row number out of range\n", i); return lp->row[i]->type; } /*********************************************************************** * NAME * * glp_get_row_lb - retrieve row lower bound * * SYNOPSIS * * double glp_get_row_lb(glp_prob *lp, int i); * * RETURNS * * The routine glp_get_row_lb returns the lower bound of i-th row, i.e. * the lower bound of corresponding auxiliary variable. However, if the * row has no lower bound, the routine returns -DBL_MAX. */ double glp_get_row_lb(glp_prob *lp, int i) { double lb; if (!(1 <= i && i <= lp->m)) xerror("glp_get_row_lb: i = %d; row number out of range\n", i); switch (lp->row[i]->type) { case GLP_FR: case GLP_UP: lb = -DBL_MAX; break; case GLP_LO: case GLP_DB: case GLP_FX: lb = lp->row[i]->lb; break; default: xassert(lp != lp); } return lb; } /*********************************************************************** * NAME * * glp_get_row_ub - retrieve row upper bound * * SYNOPSIS * * double glp_get_row_ub(glp_prob *lp, int i); * * RETURNS * * The routine glp_get_row_ub returns the upper bound of i-th row, i.e. * the upper bound of corresponding auxiliary variable. However, if the * row has no upper bound, the routine returns +DBL_MAX. */ double glp_get_row_ub(glp_prob *lp, int i) { double ub; if (!(1 <= i && i <= lp->m)) xerror("glp_get_row_ub: i = %d; row number out of range\n", i); switch (lp->row[i]->type) { case GLP_FR: case GLP_LO: ub = +DBL_MAX; break; case GLP_UP: case GLP_DB: case GLP_FX: ub = lp->row[i]->ub; break; default: xassert(lp != lp); } return ub; } /*********************************************************************** * NAME * * glp_get_col_type - retrieve column type * * SYNOPSIS * * int glp_get_col_type(glp_prob *lp, int j); * * RETURNS * * The routine glp_get_col_type returns the type of j-th column, i.e. * the type of corresponding structural variable, as follows: * * GLP_FR - free (unbounded) variable; * GLP_LO - variable with lower bound; * GLP_UP - variable with upper bound; * GLP_DB - double-bounded variable; * GLP_FX - fixed variable. */ int glp_get_col_type(glp_prob *lp, int j) { if (!(1 <= j && j <= lp->n)) xerror("glp_get_col_type: j = %d; column number out of range\n" , j); return lp->col[j]->type; } /*********************************************************************** * NAME * * glp_get_col_lb - retrieve column lower bound * * SYNOPSIS * * double glp_get_col_lb(glp_prob *lp, int j); * * RETURNS * * The routine glp_get_col_lb returns the lower bound of j-th column, * i.e. the lower bound of corresponding structural variable. However, * if the column has no lower bound, the routine returns -DBL_MAX. */ double glp_get_col_lb(glp_prob *lp, int j) { double lb; if (!(1 <= j && j <= lp->n)) xerror("glp_get_col_lb: j = %d; column number out of range\n", j); switch (lp->col[j]->type) { case GLP_FR: case GLP_UP: lb = -DBL_MAX; break; case GLP_LO: case GLP_DB: case GLP_FX: lb = lp->col[j]->lb; break; default: xassert(lp != lp); } return lb; } /*********************************************************************** * NAME * * glp_get_col_ub - retrieve column upper bound * * SYNOPSIS * * double glp_get_col_ub(glp_prob *lp, int j); * * RETURNS * * The routine glp_get_col_ub returns the upper bound of j-th column, * i.e. the upper bound of corresponding structural variable. However, * if the column has no upper bound, the routine returns +DBL_MAX. */ double glp_get_col_ub(glp_prob *lp, int j) { double ub; if (!(1 <= j && j <= lp->n)) xerror("glp_get_col_ub: j = %d; column number out of range\n", j); switch (lp->col[j]->type) { case GLP_FR: case GLP_LO: ub = +DBL_MAX; break; case GLP_UP: case GLP_DB: case GLP_FX: ub = lp->col[j]->ub; break; default: xassert(lp != lp); } return ub; } /*********************************************************************** * NAME * * glp_get_obj_coef - retrieve obj. coefficient or constant term * * SYNOPSIS * * double glp_get_obj_coef(glp_prob *lp, int j); * * RETURNS * * The routine glp_get_obj_coef returns the objective coefficient at * j-th structural variable (column) of the specified problem object. * * If the parameter j is zero, the routine returns the constant term * ("shift") of the objective function. */ double glp_get_obj_coef(glp_prob *lp, int j) { if (!(0 <= j && j <= lp->n)) xerror("glp_get_obj_coef: j = %d; column number out of range\n" , j); return j == 0 ? lp->c0 : lp->col[j]->coef; } /*********************************************************************** * NAME * * glp_get_num_nz - retrieve number of constraint coefficients * * SYNOPSIS * * int glp_get_num_nz(glp_prob *lp); * * RETURNS * * The routine glp_get_num_nz returns the number of (non-zero) elements * in the constraint matrix of the specified problem object. */ int glp_get_num_nz(glp_prob *lp) { int nnz = lp->nnz; return nnz; } /*********************************************************************** * NAME * * glp_get_mat_row - retrieve row of the constraint matrix * * SYNOPSIS * * int glp_get_mat_row(glp_prob *lp, int i, int ind[], double val[]); * * DESCRIPTION * * The routine glp_get_mat_row scans (non-zero) elements of i-th row * of the constraint matrix of the specified problem object and stores * their column indices and numeric values to locations ind[1], ..., * ind[len] and val[1], ..., val[len], respectively, where 0 <= len <= n * is the number of elements in i-th row, n is the number of columns. * * The parameter ind and/or val can be specified as NULL, in which case * corresponding information is not stored. * * RETURNS * * The routine glp_get_mat_row returns the length len, i.e. the number * of (non-zero) elements in i-th row. */ int glp_get_mat_row(glp_prob *lp, int i, int ind[], double val[]) { GLPAIJ *aij; int len; if (!(1 <= i && i <= lp->m)) xerror("glp_get_mat_row: i = %d; row number out of range\n", i); len = 0; for (aij = lp->row[i]->ptr; aij != NULL; aij = aij->r_next) { len++; if (ind != NULL) ind[len] = aij->col->j; if (val != NULL) val[len] = aij->val; } xassert(len <= lp->n); return len; } /*********************************************************************** * NAME * * glp_get_mat_col - retrieve column of the constraint matrix * * SYNOPSIS * * int glp_get_mat_col(glp_prob *lp, int j, int ind[], double val[]); * * DESCRIPTION * * The routine glp_get_mat_col scans (non-zero) elements of j-th column * of the constraint matrix of the specified problem object and stores * their row indices and numeric values to locations ind[1], ..., * ind[len] and val[1], ..., val[len], respectively, where 0 <= len <= m * is the number of elements in j-th column, m is the number of rows. * * The parameter ind or/and val can be specified as NULL, in which case * corresponding information is not stored. * * RETURNS * * The routine glp_get_mat_col returns the length len, i.e. the number * of (non-zero) elements in j-th column. */ int glp_get_mat_col(glp_prob *lp, int j, int ind[], double val[]) { GLPAIJ *aij; int len; if (!(1 <= j && j <= lp->n)) xerror("glp_get_mat_col: j = %d; column number out of range\n", j); len = 0; for (aij = lp->col[j]->ptr; aij != NULL; aij = aij->c_next) { len++; if (ind != NULL) ind[len] = aij->row->i; if (val != NULL) val[len] = aij->val; } xassert(len <= lp->m); return len; } /* eof */