/* glpapi07.c (exact simplex solver) */ /*********************************************************************** * This code is part of GLPK (GNU Linear Programming Kit). * * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, * Moscow Aviation Institute, Moscow, Russia. All rights reserved. * E-mail: . * * GLPK is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GLPK is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with GLPK. If not, see . ***********************************************************************/ #include "glpapi.h" #include "glpssx.h" /*********************************************************************** * NAME * * glp_exact - solve LP problem in exact arithmetic * * SYNOPSIS * * int glp_exact(glp_prob *lp, const glp_smcp *parm); * * DESCRIPTION * * The routine glp_exact is a tentative implementation of the primal * two-phase simplex method based on exact (rational) arithmetic. It is * similar to the routine glp_simplex, however, for all internal * computations it uses arithmetic of rational numbers, which is exact * in mathematical sense, i.e. free of round-off errors unlike floating * point arithmetic. * * Note that the routine glp_exact uses inly two control parameters * passed in the structure glp_smcp, namely, it_lim and tm_lim. * * RETURNS * * 0 The LP problem instance has been successfully solved. This code * does not necessarily mean that the solver has found optimal * solution. It only means that the solution process was successful. * * GLP_EBADB * Unable to start the search, because the initial basis specified * in the problem object is invalid--the number of basic (auxiliary * and structural) variables is not the same as the number of rows in * the problem object. * * GLP_ESING * Unable to start the search, because the basis matrix correspodning * to the initial basis is exactly singular. * * GLP_EBOUND * Unable to start the search, because some double-bounded variables * have incorrect bounds. * * GLP_EFAIL * The problem has no rows/columns. * * GLP_EITLIM * The search was prematurely terminated, because the simplex * iteration limit has been exceeded. * * GLP_ETMLIM * The search was prematurely terminated, because the time limit has * been exceeded. */ static void set_d_eps(mpq_t x, double val) { /* convert double val to rational x obtaining a more adequate fraction than provided by mpq_set_d due to allowing a small approximation error specified by a given relative tolerance; for example, mpq_set_d would give the following 1/3 ~= 0.333333333333333314829616256247391... -> -> 6004799503160661/18014398509481984 while this routine gives exactly 1/3 */ int s, n, j; double f, p, q, eps = 1e-9; mpq_t temp; xassert(-DBL_MAX <= val && val <= +DBL_MAX); #if 1 /* 30/VII-2008 */ if (val == floor(val)) { /* if val is integral, do not approximate */ mpq_set_d(x, val); goto done; } #endif if (val > 0.0) s = +1; else if (val < 0.0) s = -1; else { mpq_set_si(x, 0, 1); goto done; } f = frexp(fabs(val), &n); /* |val| = f * 2^n, where 0.5 <= f < 1.0 */ fp2rat(f, 0.1 * eps, &p, &q); /* f ~= p / q, where p and q are integers */ mpq_init(temp); mpq_set_d(x, p); mpq_set_d(temp, q); mpq_div(x, x, temp); mpq_set_si(temp, 1, 1); for (j = 1; j <= abs(n); j++) mpq_add(temp, temp, temp); if (n > 0) mpq_mul(x, x, temp); else if (n < 0) mpq_div(x, x, temp); mpq_clear(temp); if (s < 0) mpq_neg(x, x); /* check that the desired tolerance has been attained */ xassert(fabs(val - mpq_get_d(x)) <= eps * (1.0 + fabs(val))); done: return; } static void load_data(SSX *ssx, LPX *lp) { /* load LP problem data into simplex solver workspace */ int m = ssx->m; int n = ssx->n; int nnz = ssx->A_ptr[n+1]-1; int j, k, type, loc, len, *ind; double lb, ub, coef, *val; xassert(lpx_get_num_rows(lp) == m); xassert(lpx_get_num_cols(lp) == n); xassert(lpx_get_num_nz(lp) == nnz); /* types and bounds of rows and columns */ for (k = 1; k <= m+n; k++) { if (k <= m) { type = lpx_get_row_type(lp, k); lb = lpx_get_row_lb(lp, k); ub = lpx_get_row_ub(lp, k); } else { type = lpx_get_col_type(lp, k-m); lb = lpx_get_col_lb(lp, k-m); ub = lpx_get_col_ub(lp, k-m); } switch (type) { case LPX_FR: type = SSX_FR; break; case LPX_LO: type = SSX_LO; break; case LPX_UP: type = SSX_UP; break; case LPX_DB: type = SSX_DB; break; case LPX_FX: type = SSX_FX; break; default: xassert(type != type); } ssx->type[k] = type; set_d_eps(ssx->lb[k], lb); set_d_eps(ssx->ub[k], ub); } /* optimization direction */ switch (lpx_get_obj_dir(lp)) { case LPX_MIN: ssx->dir = SSX_MIN; break; case LPX_MAX: ssx->dir = SSX_MAX; break; default: xassert(lp != lp); } /* objective coefficients */ for (k = 0; k <= m+n; k++) { if (k == 0) coef = lpx_get_obj_coef(lp, 0); else if (k <= m) coef = 0.0; else coef = lpx_get_obj_coef(lp, k-m); set_d_eps(ssx->coef[k], coef); } /* constraint coefficients */ ind = xcalloc(1+m, sizeof(int)); val = xcalloc(1+m, sizeof(double)); loc = 0; for (j = 1; j <= n; j++) { ssx->A_ptr[j] = loc+1; len = lpx_get_mat_col(lp, j, ind, val); for (k = 1; k <= len; k++) { loc++; ssx->A_ind[loc] = ind[k]; set_d_eps(ssx->A_val[loc], val[k]); } } xassert(loc == nnz); xfree(ind); xfree(val); return; } static int load_basis(SSX *ssx, LPX *lp) { /* load current LP basis into simplex solver workspace */ int m = ssx->m; int n = ssx->n; int *type = ssx->type; int *stat = ssx->stat; int *Q_row = ssx->Q_row; int *Q_col = ssx->Q_col; int i, j, k; xassert(lpx_get_num_rows(lp) == m); xassert(lpx_get_num_cols(lp) == n); /* statuses of rows and columns */ for (k = 1; k <= m+n; k++) { if (k <= m) stat[k] = lpx_get_row_stat(lp, k); else stat[k] = lpx_get_col_stat(lp, k-m); switch (stat[k]) { case LPX_BS: stat[k] = SSX_BS; break; case LPX_NL: stat[k] = SSX_NL; xassert(type[k] == SSX_LO || type[k] == SSX_DB); break; case LPX_NU: stat[k] = SSX_NU; xassert(type[k] == SSX_UP || type[k] == SSX_DB); break; case LPX_NF: stat[k] = SSX_NF; xassert(type[k] == SSX_FR); break; case LPX_NS: stat[k] = SSX_NS; xassert(type[k] == SSX_FX); break; default: xassert(stat != stat); } } /* build permutation matix Q */ i = j = 0; for (k = 1; k <= m+n; k++) { if (stat[k] == SSX_BS) { i++; if (i > m) return 1; Q_row[k] = i, Q_col[i] = k; } else { j++; if (j > n) return 1; Q_row[k] = m+j, Q_col[m+j] = k; } } xassert(i == m && j == n); return 0; } int glp_exact(glp_prob *lp, const glp_smcp *parm) { glp_smcp _parm; SSX *ssx; int m = lpx_get_num_rows(lp); int n = lpx_get_num_cols(lp); int nnz = lpx_get_num_nz(lp); int i, j, k, type, pst, dst, ret, *stat; double lb, ub, *prim, *dual, sum; if (parm == NULL) parm = &_parm, glp_init_smcp((glp_smcp *)parm); /* check control parameters */ if (parm->it_lim < 0) xerror("glp_exact: it_lim = %d; invalid parameter\n", parm->it_lim); if (parm->tm_lim < 0) xerror("glp_exact: tm_lim = %d; invalid parameter\n", parm->tm_lim); /* the problem must have at least one row and one column */ if (!(m > 0 && n > 0)) { xprintf("glp_exact: problem has no rows/columns\n"); return GLP_EFAIL; } #if 1 /* basic solution is currently undefined */ lp->pbs_stat = lp->dbs_stat = GLP_UNDEF; lp->obj_val = 0.0; lp->some = 0; #endif /* check that all double-bounded variables have correct bounds */ for (k = 1; k <= m+n; k++) { if (k <= m) { type = lpx_get_row_type(lp, k); lb = lpx_get_row_lb(lp, k); ub = lpx_get_row_ub(lp, k); } else { type = lpx_get_col_type(lp, k-m); lb = lpx_get_col_lb(lp, k-m); ub = lpx_get_col_ub(lp, k-m); } if (type == LPX_DB && lb >= ub) { xprintf("glp_exact: %s %d has invalid bounds\n", k <= m ? "row" : "column", k <= m ? k : k-m); return GLP_EBOUND; } } /* create the simplex solver workspace */ xprintf("glp_exact: %d rows, %d columns, %d non-zeros\n", m, n, nnz); #ifdef HAVE_GMP xprintf("GNU MP bignum library is being used\n"); #else xprintf("GLPK bignum module is being used\n"); xprintf("(Consider installing GNU MP to attain a much better perf" "ormance.)\n"); #endif ssx = ssx_create(m, n, nnz); /* load LP problem data into the workspace */ load_data(ssx, lp); /* load current LP basis into the workspace */ if (load_basis(ssx, lp)) { xprintf("glp_exact: initial LP basis is invalid\n"); ret = GLP_EBADB; goto done; } /* inherit some control parameters from the LP object */ #if 0 ssx->it_lim = lpx_get_int_parm(lp, LPX_K_ITLIM); ssx->it_cnt = lpx_get_int_parm(lp, LPX_K_ITCNT); ssx->tm_lim = lpx_get_real_parm(lp, LPX_K_TMLIM); #else ssx->it_lim = parm->it_lim; ssx->it_cnt = lp->it_cnt; ssx->tm_lim = (double)parm->tm_lim / 1000.0; #endif ssx->out_frq = 5.0; ssx->tm_beg = xtime(); ssx->tm_lag = xlset(0); /* solve LP */ ret = ssx_driver(ssx); /* copy back some statistics to the LP object */ #if 0 lpx_set_int_parm(lp, LPX_K_ITLIM, ssx->it_lim); lpx_set_int_parm(lp, LPX_K_ITCNT, ssx->it_cnt); lpx_set_real_parm(lp, LPX_K_TMLIM, ssx->tm_lim); #else lp->it_cnt = ssx->it_cnt; #endif /* analyze the return code */ switch (ret) { case 0: /* optimal solution found */ ret = 0; pst = LPX_P_FEAS, dst = LPX_D_FEAS; break; case 1: /* problem has no feasible solution */ ret = 0; pst = LPX_P_NOFEAS, dst = LPX_D_INFEAS; break; case 2: /* problem has unbounded solution */ ret = 0; pst = LPX_P_FEAS, dst = LPX_D_NOFEAS; #if 1 xassert(1 <= ssx->q && ssx->q <= n); lp->some = ssx->Q_col[m + ssx->q]; xassert(1 <= lp->some && lp->some <= m+n); #endif break; case 3: /* iteration limit exceeded (phase I) */ ret = GLP_EITLIM; pst = LPX_P_INFEAS, dst = LPX_D_INFEAS; break; case 4: /* iteration limit exceeded (phase II) */ ret = GLP_EITLIM; pst = LPX_P_FEAS, dst = LPX_D_INFEAS; break; case 5: /* time limit exceeded (phase I) */ ret = GLP_ETMLIM; pst = LPX_P_INFEAS, dst = LPX_D_INFEAS; break; case 6: /* time limit exceeded (phase II) */ ret = GLP_ETMLIM; pst = LPX_P_FEAS, dst = LPX_D_INFEAS; break; case 7: /* initial basis matrix is singular */ ret = GLP_ESING; goto done; default: xassert(ret != ret); } /* obtain final basic solution components */ stat = xcalloc(1+m+n, sizeof(int)); prim = xcalloc(1+m+n, sizeof(double)); dual = xcalloc(1+m+n, sizeof(double)); for (k = 1; k <= m+n; k++) { if (ssx->stat[k] == SSX_BS) { i = ssx->Q_row[k]; /* x[k] = xB[i] */ xassert(1 <= i && i <= m); stat[k] = LPX_BS; prim[k] = mpq_get_d(ssx->bbar[i]); dual[k] = 0.0; } else { j = ssx->Q_row[k] - m; /* x[k] = xN[j] */ xassert(1 <= j && j <= n); switch (ssx->stat[k]) { case SSX_NF: stat[k] = LPX_NF; prim[k] = 0.0; break; case SSX_NL: stat[k] = LPX_NL; prim[k] = mpq_get_d(ssx->lb[k]); break; case SSX_NU: stat[k] = LPX_NU; prim[k] = mpq_get_d(ssx->ub[k]); break; case SSX_NS: stat[k] = LPX_NS; prim[k] = mpq_get_d(ssx->lb[k]); break; default: xassert(ssx != ssx); } dual[k] = mpq_get_d(ssx->cbar[j]); } } /* and store them into the LP object */ pst = pst - LPX_P_UNDEF + GLP_UNDEF; dst = dst - LPX_D_UNDEF + GLP_UNDEF; for (k = 1; k <= m+n; k++) stat[k] = stat[k] - LPX_BS + GLP_BS; sum = lpx_get_obj_coef(lp, 0); for (j = 1; j <= n; j++) sum += lpx_get_obj_coef(lp, j) * prim[m+j]; lpx_put_solution(lp, 1, &pst, &dst, &sum, &stat[0], &prim[0], &dual[0], &stat[m], &prim[m], &dual[m]); xfree(stat); xfree(prim); xfree(dual); done: /* delete the simplex solver workspace */ ssx_delete(ssx); /* return to the application program */ return ret; } /* eof */