/* glpapi16.c (graph and network analysis routines) */ /*********************************************************************** * This code is part of GLPK (GNU Linear Programming Kit). * * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, * Moscow Aviation Institute, Moscow, Russia. All rights reserved. * E-mail: . * * GLPK is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GLPK is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with GLPK. If not, see . ***********************************************************************/ #include "glpapi.h" #include "glpnet.h" /*********************************************************************** * NAME * * glp_weak_comp - find all weakly connected components of graph * * SYNOPSIS * * int glp_weak_comp(glp_graph *G, int v_num); * * DESCRIPTION * * The routine glp_weak_comp finds all weakly connected components of * the specified graph. * * The parameter v_num specifies an offset of the field of type int * in the vertex data block, to which the routine stores the number of * a (weakly) connected component containing that vertex. If v_num < 0, * no component numbers are stored. * * The components are numbered in arbitrary order from 1 to nc, where * nc is the total number of components found, 0 <= nc <= |V|. * * RETURNS * * The routine returns nc, the total number of components found. */ int glp_weak_comp(glp_graph *G, int v_num) { glp_vertex *v; glp_arc *a; int f, i, j, nc, nv, pos1, pos2, *prev, *next, *list; if (v_num >= 0 && v_num > G->v_size - (int)sizeof(int)) xerror("glp_weak_comp: v_num = %d; invalid offset\n", v_num); nv = G->nv; if (nv == 0) { nc = 0; goto done; } /* allocate working arrays */ prev = xcalloc(1+nv, sizeof(int)); next = xcalloc(1+nv, sizeof(int)); list = xcalloc(1+nv, sizeof(int)); /* if vertex i is unlabelled, prev[i] is the index of previous unlabelled vertex, and next[i] is the index of next unlabelled vertex; if vertex i is labelled, then prev[i] < 0, and next[i] is the connected component number */ /* initially all vertices are unlabelled */ f = 1; for (i = 1; i <= nv; i++) prev[i] = i - 1, next[i] = i + 1; next[nv] = 0; /* main loop (until all vertices have been labelled) */ nc = 0; while (f != 0) { /* take an unlabelled vertex */ i = f; /* and remove it from the list of unlabelled vertices */ f = next[i]; if (f != 0) prev[f] = 0; /* label the vertex; it begins a new component */ prev[i] = -1, next[i] = ++nc; /* breadth first search */ list[1] = i, pos1 = pos2 = 1; while (pos1 <= pos2) { /* dequeue vertex i */ i = list[pos1++]; /* consider all arcs incoming to vertex i */ for (a = G->v[i]->in; a != NULL; a = a->h_next) { /* vertex j is adjacent to vertex i */ j = a->tail->i; if (prev[j] >= 0) { /* vertex j is unlabelled */ /* remove it from the list of unlabelled vertices */ if (prev[j] == 0) f = next[j]; else next[prev[j]] = next[j]; if (next[j] == 0) ; else prev[next[j]] = prev[j]; /* label the vertex */ prev[j] = -1, next[j] = nc; /* and enqueue it for further consideration */ list[++pos2] = j; } } /* consider all arcs outgoing from vertex i */ for (a = G->v[i]->out; a != NULL; a = a->t_next) { /* vertex j is adjacent to vertex i */ j = a->head->i; if (prev[j] >= 0) { /* vertex j is unlabelled */ /* remove it from the list of unlabelled vertices */ if (prev[j] == 0) f = next[j]; else next[prev[j]] = next[j]; if (next[j] == 0) ; else prev[next[j]] = prev[j]; /* label the vertex */ prev[j] = -1, next[j] = nc; /* and enqueue it for further consideration */ list[++pos2] = j; } } } } /* store component numbers */ if (v_num >= 0) { for (i = 1; i <= nv; i++) { v = G->v[i]; memcpy((char *)v->data + v_num, &next[i], sizeof(int)); } } /* free working arrays */ xfree(prev); xfree(next); xfree(list); done: return nc; } /*********************************************************************** * NAME * * glp_strong_comp - find all strongly connected components of graph * * SYNOPSIS * * int glp_strong_comp(glp_graph *G, int v_num); * * DESCRIPTION * * The routine glp_strong_comp finds all strongly connected components * of the specified graph. * * The parameter v_num specifies an offset of the field of type int * in the vertex data block, to which the routine stores the number of * a strongly connected component containing that vertex. If v_num < 0, * no component numbers are stored. * * The components are numbered in arbitrary order from 1 to nc, where * nc is the total number of components found, 0 <= nc <= |V|. However, * the component numbering has the property that for every arc (i->j) * in the graph the condition num(i) >= num(j) holds. * * RETURNS * * The routine returns nc, the total number of components found. */ int glp_strong_comp(glp_graph *G, int v_num) { glp_vertex *v; glp_arc *a; int i, k, last, n, na, nc, *icn, *ip, *lenr, *ior, *ib, *lowl, *numb, *prev; if (v_num >= 0 && v_num > G->v_size - (int)sizeof(int)) xerror("glp_strong_comp: v_num = %d; invalid offset\n", v_num); n = G->nv; if (n == 0) { nc = 0; goto done; } na = G->na; icn = xcalloc(1+na, sizeof(int)); ip = xcalloc(1+n, sizeof(int)); lenr = xcalloc(1+n, sizeof(int)); ior = xcalloc(1+n, sizeof(int)); ib = xcalloc(1+n, sizeof(int)); lowl = xcalloc(1+n, sizeof(int)); numb = xcalloc(1+n, sizeof(int)); prev = xcalloc(1+n, sizeof(int)); k = 1; for (i = 1; i <= n; i++) { v = G->v[i]; ip[i] = k; for (a = v->out; a != NULL; a = a->t_next) icn[k++] = a->head->i; lenr[i] = k - ip[i]; } xassert(na == k-1); nc = mc13d(n, icn, ip, lenr, ior, ib, lowl, numb, prev); if (v_num >= 0) { xassert(ib[1] == 1); for (k = 1; k <= nc; k++) { last = (k < nc ? ib[k+1] : n+1); xassert(ib[k] < last); for (i = ib[k]; i < last; i++) { v = G->v[ior[i]]; memcpy((char *)v->data + v_num, &k, sizeof(int)); } } } xfree(icn); xfree(ip); xfree(lenr); xfree(ior); xfree(ib); xfree(lowl); xfree(numb); xfree(prev); done: return nc; } /*********************************************************************** * NAME * * glp_top_sort - topological sorting of acyclic digraph * * SYNOPSIS * * int glp_top_sort(glp_graph *G, int v_num); * * DESCRIPTION * * The routine glp_top_sort performs topological sorting of vertices of * the specified acyclic digraph. * * The parameter v_num specifies an offset of the field of type int in * the vertex data block, to which the routine stores the vertex number * assigned. If v_num < 0, vertex numbers are not stored. * * The vertices are numbered from 1 to n, where n is the total number * of vertices in the graph. The vertex numbering has the property that * for every arc (i->j) in the graph the condition num(i) < num(j) * holds. Special case num(i) = 0 means that vertex i is not assigned a * number, because the graph is *not* acyclic. * * RETURNS * * If the graph is acyclic and therefore all the vertices have been * assigned numbers, the routine glp_top_sort returns zero. Otherwise, * if the graph is not acyclic, the routine returns the number of * vertices which have not been numbered, i.e. for which num(i) = 0. */ static int top_sort(glp_graph *G, int num[]) { glp_arc *a; int i, j, cnt, top, *stack, *indeg; /* allocate working arrays */ indeg = xcalloc(1+G->nv, sizeof(int)); stack = xcalloc(1+G->nv, sizeof(int)); /* determine initial indegree of each vertex; push into the stack the vertices having zero indegree */ top = 0; for (i = 1; i <= G->nv; i++) { num[i] = indeg[i] = 0; for (a = G->v[i]->in; a != NULL; a = a->h_next) indeg[i]++; if (indeg[i] == 0) stack[++top] = i; } /* assign numbers to vertices in the sorted order */ cnt = 0; while (top > 0) { /* pull vertex i from the stack */ i = stack[top--]; /* it has zero indegree in the current graph */ xassert(indeg[i] == 0); /* so assign it a next number */ xassert(num[i] == 0); num[i] = ++cnt; /* remove vertex i from the current graph, update indegree of its adjacent vertices, and push into the stack new vertices whose indegree becomes zero */ for (a = G->v[i]->out; a != NULL; a = a->t_next) { j = a->head->i; /* there exists arc (i->j) in the graph */ xassert(indeg[j] > 0); indeg[j]--; if (indeg[j] == 0) stack[++top] = j; } } /* free working arrays */ xfree(indeg); xfree(stack); return G->nv - cnt; } int glp_top_sort(glp_graph *G, int v_num) { glp_vertex *v; int i, cnt, *num; if (v_num >= 0 && v_num > G->v_size - (int)sizeof(int)) xerror("glp_top_sort: v_num = %d; invalid offset\n", v_num); if (G->nv == 0) { cnt = 0; goto done; } num = xcalloc(1+G->nv, sizeof(int)); cnt = top_sort(G, num); if (v_num >= 0) { for (i = 1; i <= G->nv; i++) { v = G->v[i]; memcpy((char *)v->data + v_num, &num[i], sizeof(int)); } } xfree(num); done: return cnt; } /* eof */