[1] | 1 | /* glpios03.c (branch-and-cut driver) */ |
---|
| 2 | |
---|
| 3 | /*********************************************************************** |
---|
| 4 | * This code is part of GLPK (GNU Linear Programming Kit). |
---|
| 5 | * |
---|
| 6 | * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
---|
| 7 | * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
---|
| 8 | * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
---|
| 9 | * E-mail: <mao@gnu.org>. |
---|
| 10 | * |
---|
| 11 | * GLPK is free software: you can redistribute it and/or modify it |
---|
| 12 | * under the terms of the GNU General Public License as published by |
---|
| 13 | * the Free Software Foundation, either version 3 of the License, or |
---|
| 14 | * (at your option) any later version. |
---|
| 15 | * |
---|
| 16 | * GLPK is distributed in the hope that it will be useful, but WITHOUT |
---|
| 17 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
| 18 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
---|
| 19 | * License for more details. |
---|
| 20 | * |
---|
| 21 | * You should have received a copy of the GNU General Public License |
---|
| 22 | * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
---|
| 23 | ***********************************************************************/ |
---|
| 24 | |
---|
| 25 | #include "glpios.h" |
---|
| 26 | |
---|
| 27 | /*********************************************************************** |
---|
| 28 | * show_progress - display current progress of the search |
---|
| 29 | * |
---|
| 30 | * This routine displays some information about current progress of the |
---|
| 31 | * search. |
---|
| 32 | * |
---|
| 33 | * The information includes: |
---|
| 34 | * |
---|
| 35 | * the current number of iterations performed by the simplex solver; |
---|
| 36 | * |
---|
| 37 | * the objective value for the best known integer feasible solution, |
---|
| 38 | * which is upper (minimization) or lower (maximization) global bound |
---|
| 39 | * for optimal solution of the original mip problem; |
---|
| 40 | * |
---|
| 41 | * the best local bound for active nodes, which is lower (minimization) |
---|
| 42 | * or upper (maximization) global bound for optimal solution of the |
---|
| 43 | * original mip problem; |
---|
| 44 | * |
---|
| 45 | * the relative mip gap, in percents; |
---|
| 46 | * |
---|
| 47 | * the number of open (active) subproblems; |
---|
| 48 | * |
---|
| 49 | * the number of completely explored subproblems, i.e. whose nodes have |
---|
| 50 | * been removed from the tree. */ |
---|
| 51 | |
---|
| 52 | static void show_progress(glp_tree *T, int bingo) |
---|
| 53 | { int p; |
---|
| 54 | double temp; |
---|
| 55 | char best_mip[50], best_bound[50], *rho, rel_gap[50]; |
---|
| 56 | /* format the best known integer feasible solution */ |
---|
| 57 | if (T->mip->mip_stat == GLP_FEAS) |
---|
| 58 | sprintf(best_mip, "%17.9e", T->mip->mip_obj); |
---|
| 59 | else |
---|
| 60 | sprintf(best_mip, "%17s", "not found yet"); |
---|
| 61 | /* determine reference number of an active subproblem whose local |
---|
| 62 | bound is best */ |
---|
| 63 | p = ios_best_node(T); |
---|
| 64 | /* format the best bound */ |
---|
| 65 | if (p == 0) |
---|
| 66 | sprintf(best_bound, "%17s", "tree is empty"); |
---|
| 67 | else |
---|
| 68 | { temp = T->slot[p].node->bound; |
---|
| 69 | if (temp == -DBL_MAX) |
---|
| 70 | sprintf(best_bound, "%17s", "-inf"); |
---|
| 71 | else if (temp == +DBL_MAX) |
---|
| 72 | sprintf(best_bound, "%17s", "+inf"); |
---|
| 73 | else |
---|
| 74 | sprintf(best_bound, "%17.9e", temp); |
---|
| 75 | } |
---|
| 76 | /* choose the relation sign between global bounds */ |
---|
| 77 | if (T->mip->dir == GLP_MIN) |
---|
| 78 | rho = ">="; |
---|
| 79 | else if (T->mip->dir == GLP_MAX) |
---|
| 80 | rho = "<="; |
---|
| 81 | else |
---|
| 82 | xassert(T != T); |
---|
| 83 | /* format the relative mip gap */ |
---|
| 84 | temp = ios_relative_gap(T); |
---|
| 85 | if (temp == 0.0) |
---|
| 86 | sprintf(rel_gap, " 0.0%%"); |
---|
| 87 | else if (temp < 0.001) |
---|
| 88 | sprintf(rel_gap, "< 0.1%%"); |
---|
| 89 | else if (temp <= 9.999) |
---|
| 90 | sprintf(rel_gap, "%5.1f%%", 100.0 * temp); |
---|
| 91 | else |
---|
| 92 | sprintf(rel_gap, "%6s", ""); |
---|
| 93 | /* display progress of the search */ |
---|
| 94 | xprintf("+%6d: %s %s %s %s %s (%d; %d)\n", |
---|
| 95 | T->mip->it_cnt, bingo ? ">>>>>" : "mip =", best_mip, rho, |
---|
| 96 | best_bound, rel_gap, T->a_cnt, T->t_cnt - T->n_cnt); |
---|
| 97 | T->tm_lag = xtime(); |
---|
| 98 | return; |
---|
| 99 | } |
---|
| 100 | |
---|
| 101 | /*********************************************************************** |
---|
| 102 | * is_branch_hopeful - check if specified branch is hopeful |
---|
| 103 | * |
---|
| 104 | * This routine checks if the specified subproblem can have an integer |
---|
| 105 | * optimal solution which is better than the best known one. |
---|
| 106 | * |
---|
| 107 | * The check is based on comparison of the local objective bound stored |
---|
| 108 | * in the subproblem descriptor and the incumbent objective value which |
---|
| 109 | * is the global objective bound. |
---|
| 110 | * |
---|
| 111 | * If there is a chance that the specified subproblem can have a better |
---|
| 112 | * integer optimal solution, the routine returns non-zero. Otherwise, if |
---|
| 113 | * the corresponding branch can pruned, zero is returned. */ |
---|
| 114 | |
---|
| 115 | static int is_branch_hopeful(glp_tree *T, int p) |
---|
| 116 | { xassert(1 <= p && p <= T->nslots); |
---|
| 117 | xassert(T->slot[p].node != NULL); |
---|
| 118 | return ios_is_hopeful(T, T->slot[p].node->bound); |
---|
| 119 | } |
---|
| 120 | |
---|
| 121 | /*********************************************************************** |
---|
| 122 | * check_integrality - check integrality of basic solution |
---|
| 123 | * |
---|
| 124 | * This routine checks if the basic solution of LP relaxation of the |
---|
| 125 | * current subproblem satisfies to integrality conditions, i.e. that all |
---|
| 126 | * variables of integer kind have integral primal values. (The solution |
---|
| 127 | * is assumed to be optimal.) |
---|
| 128 | * |
---|
| 129 | * For each variable of integer kind the routine computes the following |
---|
| 130 | * quantity: |
---|
| 131 | * |
---|
| 132 | * ii(x[j]) = min(x[j] - floor(x[j]), ceil(x[j]) - x[j]), (1) |
---|
| 133 | * |
---|
| 134 | * which is a measure of the integer infeasibility (non-integrality) of |
---|
| 135 | * x[j] (for example, ii(2.1) = 0.1, ii(3.7) = 0.3, ii(5.0) = 0). It is |
---|
| 136 | * understood that 0 <= ii(x[j]) <= 0.5, and variable x[j] is integer |
---|
| 137 | * feasible if ii(x[j]) = 0. However, due to floating-point arithmetic |
---|
| 138 | * the routine checks less restrictive condition: |
---|
| 139 | * |
---|
| 140 | * ii(x[j]) <= tol_int, (2) |
---|
| 141 | * |
---|
| 142 | * where tol_int is a given tolerance (small positive number) and marks |
---|
| 143 | * each variable which does not satisfy to (2) as integer infeasible by |
---|
| 144 | * setting its fractionality flag. |
---|
| 145 | * |
---|
| 146 | * In order to characterize integer infeasibility of the basic solution |
---|
| 147 | * in the whole the routine computes two parameters: ii_cnt, which is |
---|
| 148 | * the number of variables with the fractionality flag set, and ii_sum, |
---|
| 149 | * which is the sum of integer infeasibilities (1). */ |
---|
| 150 | |
---|
| 151 | static void check_integrality(glp_tree *T) |
---|
| 152 | { glp_prob *mip = T->mip; |
---|
| 153 | int j, type, ii_cnt = 0; |
---|
| 154 | double lb, ub, x, temp1, temp2, ii_sum = 0.0; |
---|
| 155 | /* walk through the set of columns (structural variables) */ |
---|
| 156 | for (j = 1; j <= mip->n; j++) |
---|
| 157 | { GLPCOL *col = mip->col[j]; |
---|
| 158 | T->non_int[j] = 0; |
---|
| 159 | /* if the column is not integer, skip it */ |
---|
| 160 | if (col->kind != GLP_IV) continue; |
---|
| 161 | /* if the column is non-basic, it is integer feasible */ |
---|
| 162 | if (col->stat != GLP_BS) continue; |
---|
| 163 | /* obtain the type and bounds of the column */ |
---|
| 164 | type = col->type, lb = col->lb, ub = col->ub; |
---|
| 165 | /* obtain value of the column in optimal basic solution */ |
---|
| 166 | x = col->prim; |
---|
| 167 | /* if the column's primal value is close to the lower bound, |
---|
| 168 | the column is integer feasible within given tolerance */ |
---|
| 169 | if (type == GLP_LO || type == GLP_DB || type == GLP_FX) |
---|
| 170 | { temp1 = lb - T->parm->tol_int; |
---|
| 171 | temp2 = lb + T->parm->tol_int; |
---|
| 172 | if (temp1 <= x && x <= temp2) continue; |
---|
| 173 | #if 0 |
---|
| 174 | /* the lower bound must not be violated */ |
---|
| 175 | xassert(x >= lb); |
---|
| 176 | #else |
---|
| 177 | if (x < lb) continue; |
---|
| 178 | #endif |
---|
| 179 | } |
---|
| 180 | /* if the column's primal value is close to the upper bound, |
---|
| 181 | the column is integer feasible within given tolerance */ |
---|
| 182 | if (type == GLP_UP || type == GLP_DB || type == GLP_FX) |
---|
| 183 | { temp1 = ub - T->parm->tol_int; |
---|
| 184 | temp2 = ub + T->parm->tol_int; |
---|
| 185 | if (temp1 <= x && x <= temp2) continue; |
---|
| 186 | #if 0 |
---|
| 187 | /* the upper bound must not be violated */ |
---|
| 188 | xassert(x <= ub); |
---|
| 189 | #else |
---|
| 190 | if (x > ub) continue; |
---|
| 191 | #endif |
---|
| 192 | } |
---|
| 193 | /* if the column's primal value is close to nearest integer, |
---|
| 194 | the column is integer feasible within given tolerance */ |
---|
| 195 | temp1 = floor(x + 0.5) - T->parm->tol_int; |
---|
| 196 | temp2 = floor(x + 0.5) + T->parm->tol_int; |
---|
| 197 | if (temp1 <= x && x <= temp2) continue; |
---|
| 198 | /* otherwise the column is integer infeasible */ |
---|
| 199 | T->non_int[j] = 1; |
---|
| 200 | /* increase the number of fractional-valued columns */ |
---|
| 201 | ii_cnt++; |
---|
| 202 | /* compute the sum of integer infeasibilities */ |
---|
| 203 | temp1 = x - floor(x); |
---|
| 204 | temp2 = ceil(x) - x; |
---|
| 205 | xassert(temp1 > 0.0 && temp2 > 0.0); |
---|
| 206 | ii_sum += (temp1 <= temp2 ? temp1 : temp2); |
---|
| 207 | } |
---|
| 208 | /* store ii_cnt and ii_sum to the current problem descriptor */ |
---|
| 209 | xassert(T->curr != NULL); |
---|
| 210 | T->curr->ii_cnt = ii_cnt; |
---|
| 211 | T->curr->ii_sum = ii_sum; |
---|
| 212 | /* and also display these parameters */ |
---|
| 213 | if (T->parm->msg_lev >= GLP_MSG_DBG) |
---|
| 214 | { if (ii_cnt == 0) |
---|
| 215 | xprintf("There are no fractional columns\n"); |
---|
| 216 | else if (ii_cnt == 1) |
---|
| 217 | xprintf("There is one fractional column, integer infeasibil" |
---|
| 218 | "ity is %.3e\n", ii_sum); |
---|
| 219 | else |
---|
| 220 | xprintf("There are %d fractional columns, integer infeasibi" |
---|
| 221 | "lity is %.3e\n", ii_cnt, ii_sum); |
---|
| 222 | } |
---|
| 223 | return; |
---|
| 224 | } |
---|
| 225 | |
---|
| 226 | /*********************************************************************** |
---|
| 227 | * record_solution - record better integer feasible solution |
---|
| 228 | * |
---|
| 229 | * This routine records optimal basic solution of LP relaxation of the |
---|
| 230 | * current subproblem, which being integer feasible is better than the |
---|
| 231 | * best known integer feasible solution. */ |
---|
| 232 | |
---|
| 233 | static void record_solution(glp_tree *T) |
---|
| 234 | { glp_prob *mip = T->mip; |
---|
| 235 | int i, j; |
---|
| 236 | mip->mip_stat = GLP_FEAS; |
---|
| 237 | mip->mip_obj = mip->obj_val; |
---|
| 238 | for (i = 1; i <= mip->m; i++) |
---|
| 239 | { GLPROW *row = mip->row[i]; |
---|
| 240 | row->mipx = row->prim; |
---|
| 241 | } |
---|
| 242 | for (j = 1; j <= mip->n; j++) |
---|
| 243 | { GLPCOL *col = mip->col[j]; |
---|
| 244 | if (col->kind == GLP_CV) |
---|
| 245 | col->mipx = col->prim; |
---|
| 246 | else if (col->kind == GLP_IV) |
---|
| 247 | { /* value of the integer column must be integral */ |
---|
| 248 | col->mipx = floor(col->prim + 0.5); |
---|
| 249 | } |
---|
| 250 | else |
---|
| 251 | xassert(col != col); |
---|
| 252 | } |
---|
| 253 | T->sol_cnt++; |
---|
| 254 | return; |
---|
| 255 | } |
---|
| 256 | |
---|
| 257 | /*********************************************************************** |
---|
| 258 | * fix_by_red_cost - fix non-basic integer columns by reduced costs |
---|
| 259 | * |
---|
| 260 | * This routine fixes some non-basic integer columns if their reduced |
---|
| 261 | * costs indicate that increasing (decreasing) the column at least by |
---|
| 262 | * one involves the objective value becoming worse than the incumbent |
---|
| 263 | * objective value. */ |
---|
| 264 | |
---|
| 265 | static void fix_by_red_cost(glp_tree *T) |
---|
| 266 | { glp_prob *mip = T->mip; |
---|
| 267 | int j, stat, fixed = 0; |
---|
| 268 | double obj, lb, ub, dj; |
---|
| 269 | /* the global bound must exist */ |
---|
| 270 | xassert(T->mip->mip_stat == GLP_FEAS); |
---|
| 271 | /* basic solution of LP relaxation must be optimal */ |
---|
| 272 | xassert(mip->pbs_stat == GLP_FEAS && mip->dbs_stat == GLP_FEAS); |
---|
| 273 | /* determine the objective function value */ |
---|
| 274 | obj = mip->obj_val; |
---|
| 275 | /* walk through the column list */ |
---|
| 276 | for (j = 1; j <= mip->n; j++) |
---|
| 277 | { GLPCOL *col = mip->col[j]; |
---|
| 278 | /* if the column is not integer, skip it */ |
---|
| 279 | if (col->kind != GLP_IV) continue; |
---|
| 280 | /* obtain bounds of j-th column */ |
---|
| 281 | lb = col->lb, ub = col->ub; |
---|
| 282 | /* and determine its status and reduced cost */ |
---|
| 283 | stat = col->stat, dj = col->dual; |
---|
| 284 | /* analyze the reduced cost */ |
---|
| 285 | switch (mip->dir) |
---|
| 286 | { case GLP_MIN: |
---|
| 287 | /* minimization */ |
---|
| 288 | if (stat == GLP_NL) |
---|
| 289 | { /* j-th column is non-basic on its lower bound */ |
---|
| 290 | if (dj < 0.0) dj = 0.0; |
---|
| 291 | if (obj + dj >= mip->mip_obj) |
---|
| 292 | glp_set_col_bnds(mip, j, GLP_FX, lb, lb), fixed++; |
---|
| 293 | } |
---|
| 294 | else if (stat == GLP_NU) |
---|
| 295 | { /* j-th column is non-basic on its upper bound */ |
---|
| 296 | if (dj > 0.0) dj = 0.0; |
---|
| 297 | if (obj - dj >= mip->mip_obj) |
---|
| 298 | glp_set_col_bnds(mip, j, GLP_FX, ub, ub), fixed++; |
---|
| 299 | } |
---|
| 300 | break; |
---|
| 301 | case GLP_MAX: |
---|
| 302 | /* maximization */ |
---|
| 303 | if (stat == GLP_NL) |
---|
| 304 | { /* j-th column is non-basic on its lower bound */ |
---|
| 305 | if (dj > 0.0) dj = 0.0; |
---|
| 306 | if (obj + dj <= mip->mip_obj) |
---|
| 307 | glp_set_col_bnds(mip, j, GLP_FX, lb, lb), fixed++; |
---|
| 308 | } |
---|
| 309 | else if (stat == GLP_NU) |
---|
| 310 | { /* j-th column is non-basic on its upper bound */ |
---|
| 311 | if (dj < 0.0) dj = 0.0; |
---|
| 312 | if (obj - dj <= mip->mip_obj) |
---|
| 313 | glp_set_col_bnds(mip, j, GLP_FX, ub, ub), fixed++; |
---|
| 314 | } |
---|
| 315 | break; |
---|
| 316 | default: |
---|
| 317 | xassert(T != T); |
---|
| 318 | } |
---|
| 319 | } |
---|
| 320 | if (T->parm->msg_lev >= GLP_MSG_DBG) |
---|
| 321 | { if (fixed == 0) |
---|
| 322 | /* nothing to say */; |
---|
| 323 | else if (fixed == 1) |
---|
| 324 | xprintf("One column has been fixed by reduced cost\n"); |
---|
| 325 | else |
---|
| 326 | xprintf("%d columns have been fixed by reduced costs\n", |
---|
| 327 | fixed); |
---|
| 328 | } |
---|
| 329 | /* fixing non-basic columns on their current bounds does not |
---|
| 330 | change the basic solution */ |
---|
| 331 | xassert(mip->pbs_stat == GLP_FEAS && mip->dbs_stat == GLP_FEAS); |
---|
| 332 | return; |
---|
| 333 | } |
---|
| 334 | |
---|
| 335 | /*********************************************************************** |
---|
| 336 | * branch_on - perform branching on specified variable |
---|
| 337 | * |
---|
| 338 | * This routine performs branching on j-th column (structural variable) |
---|
| 339 | * of the current subproblem. The specified column must be of integer |
---|
| 340 | * kind and must have a fractional value in optimal basic solution of |
---|
| 341 | * LP relaxation of the current subproblem (i.e. only columns for which |
---|
| 342 | * the flag non_int[j] is set are valid candidates to branch on). |
---|
| 343 | * |
---|
| 344 | * Let x be j-th structural variable, and beta be its primal fractional |
---|
| 345 | * value in the current basic solution. Branching on j-th variable is |
---|
| 346 | * dividing the current subproblem into two new subproblems, which are |
---|
| 347 | * identical to the current subproblem with the following exception: in |
---|
| 348 | * the first subproblem that begins the down-branch x has a new upper |
---|
| 349 | * bound x <= floor(beta), and in the second subproblem that begins the |
---|
| 350 | * up-branch x has a new lower bound x >= ceil(beta). |
---|
| 351 | * |
---|
| 352 | * Depending on estimation of local bounds for down- and up-branches |
---|
| 353 | * this routine returns the following: |
---|
| 354 | * |
---|
| 355 | * 0 - both branches have been created; |
---|
| 356 | * 1 - one branch is hopeless and has been pruned, so now the current |
---|
| 357 | * subproblem is other branch; |
---|
| 358 | * 2 - both branches are hopeless and have been pruned; new subproblem |
---|
| 359 | * selection is needed to continue the search. */ |
---|
| 360 | |
---|
| 361 | static int branch_on(glp_tree *T, int j, int next) |
---|
| 362 | { glp_prob *mip = T->mip; |
---|
| 363 | IOSNPD *node; |
---|
| 364 | int m = mip->m; |
---|
| 365 | int n = mip->n; |
---|
| 366 | int type, dn_type, up_type, dn_bad, up_bad, p, ret, clone[1+2]; |
---|
| 367 | double lb, ub, beta, new_ub, new_lb, dn_lp, up_lp, dn_bnd, up_bnd; |
---|
| 368 | /* determine bounds and value of x[j] in optimal solution to LP |
---|
| 369 | relaxation of the current subproblem */ |
---|
| 370 | xassert(1 <= j && j <= n); |
---|
| 371 | type = mip->col[j]->type; |
---|
| 372 | lb = mip->col[j]->lb; |
---|
| 373 | ub = mip->col[j]->ub; |
---|
| 374 | beta = mip->col[j]->prim; |
---|
| 375 | /* determine new bounds of x[j] for down- and up-branches */ |
---|
| 376 | new_ub = floor(beta); |
---|
| 377 | new_lb = ceil(beta); |
---|
| 378 | switch (type) |
---|
| 379 | { case GLP_FR: |
---|
| 380 | dn_type = GLP_UP; |
---|
| 381 | up_type = GLP_LO; |
---|
| 382 | break; |
---|
| 383 | case GLP_LO: |
---|
| 384 | xassert(lb <= new_ub); |
---|
| 385 | dn_type = (lb == new_ub ? GLP_FX : GLP_DB); |
---|
| 386 | xassert(lb + 1.0 <= new_lb); |
---|
| 387 | up_type = GLP_LO; |
---|
| 388 | break; |
---|
| 389 | case GLP_UP: |
---|
| 390 | xassert(new_ub <= ub - 1.0); |
---|
| 391 | dn_type = GLP_UP; |
---|
| 392 | xassert(new_lb <= ub); |
---|
| 393 | up_type = (new_lb == ub ? GLP_FX : GLP_DB); |
---|
| 394 | break; |
---|
| 395 | case GLP_DB: |
---|
| 396 | xassert(lb <= new_ub && new_ub <= ub - 1.0); |
---|
| 397 | dn_type = (lb == new_ub ? GLP_FX : GLP_DB); |
---|
| 398 | xassert(lb + 1.0 <= new_lb && new_lb <= ub); |
---|
| 399 | up_type = (new_lb == ub ? GLP_FX : GLP_DB); |
---|
| 400 | break; |
---|
| 401 | default: |
---|
| 402 | xassert(type != type); |
---|
| 403 | } |
---|
| 404 | /* compute local bounds to LP relaxation for both branches */ |
---|
| 405 | ios_eval_degrad(T, j, &dn_lp, &up_lp); |
---|
| 406 | /* and improve them by rounding */ |
---|
| 407 | dn_bnd = ios_round_bound(T, dn_lp); |
---|
| 408 | up_bnd = ios_round_bound(T, up_lp); |
---|
| 409 | /* check local bounds for down- and up-branches */ |
---|
| 410 | dn_bad = !ios_is_hopeful(T, dn_bnd); |
---|
| 411 | up_bad = !ios_is_hopeful(T, up_bnd); |
---|
| 412 | if (dn_bad && up_bad) |
---|
| 413 | { if (T->parm->msg_lev >= GLP_MSG_DBG) |
---|
| 414 | xprintf("Both down- and up-branches are hopeless\n"); |
---|
| 415 | ret = 2; |
---|
| 416 | goto done; |
---|
| 417 | } |
---|
| 418 | else if (up_bad) |
---|
| 419 | { if (T->parm->msg_lev >= GLP_MSG_DBG) |
---|
| 420 | xprintf("Up-branch is hopeless\n"); |
---|
| 421 | glp_set_col_bnds(mip, j, dn_type, lb, new_ub); |
---|
| 422 | T->curr->lp_obj = dn_lp; |
---|
| 423 | if (mip->dir == GLP_MIN) |
---|
| 424 | { if (T->curr->bound < dn_bnd) |
---|
| 425 | T->curr->bound = dn_bnd; |
---|
| 426 | } |
---|
| 427 | else if (mip->dir == GLP_MAX) |
---|
| 428 | { if (T->curr->bound > dn_bnd) |
---|
| 429 | T->curr->bound = dn_bnd; |
---|
| 430 | } |
---|
| 431 | else |
---|
| 432 | xassert(mip != mip); |
---|
| 433 | ret = 1; |
---|
| 434 | goto done; |
---|
| 435 | } |
---|
| 436 | else if (dn_bad) |
---|
| 437 | { if (T->parm->msg_lev >= GLP_MSG_DBG) |
---|
| 438 | xprintf("Down-branch is hopeless\n"); |
---|
| 439 | glp_set_col_bnds(mip, j, up_type, new_lb, ub); |
---|
| 440 | T->curr->lp_obj = up_lp; |
---|
| 441 | if (mip->dir == GLP_MIN) |
---|
| 442 | { if (T->curr->bound < up_bnd) |
---|
| 443 | T->curr->bound = up_bnd; |
---|
| 444 | } |
---|
| 445 | else if (mip->dir == GLP_MAX) |
---|
| 446 | { if (T->curr->bound > up_bnd) |
---|
| 447 | T->curr->bound = up_bnd; |
---|
| 448 | } |
---|
| 449 | else |
---|
| 450 | xassert(mip != mip); |
---|
| 451 | ret = 1; |
---|
| 452 | goto done; |
---|
| 453 | } |
---|
| 454 | /* both down- and up-branches seem to be hopeful */ |
---|
| 455 | if (T->parm->msg_lev >= GLP_MSG_DBG) |
---|
| 456 | xprintf("Branching on column %d, primal value is %.9e\n", |
---|
| 457 | j, beta); |
---|
| 458 | /* determine the reference number of the current subproblem */ |
---|
| 459 | xassert(T->curr != NULL); |
---|
| 460 | p = T->curr->p; |
---|
| 461 | T->curr->br_var = j; |
---|
| 462 | T->curr->br_val = beta; |
---|
| 463 | /* freeze the current subproblem */ |
---|
| 464 | ios_freeze_node(T); |
---|
| 465 | /* create two clones of the current subproblem; the first clone |
---|
| 466 | begins the down-branch, the second one begins the up-branch */ |
---|
| 467 | ios_clone_node(T, p, 2, clone); |
---|
| 468 | if (T->parm->msg_lev >= GLP_MSG_DBG) |
---|
| 469 | xprintf("Node %d begins down branch, node %d begins up branch " |
---|
| 470 | "\n", clone[1], clone[2]); |
---|
| 471 | /* set new upper bound of j-th column in the down-branch */ |
---|
| 472 | node = T->slot[clone[1]].node; |
---|
| 473 | xassert(node != NULL); |
---|
| 474 | xassert(node->up != NULL); |
---|
| 475 | xassert(node->b_ptr == NULL); |
---|
| 476 | node->b_ptr = dmp_get_atom(T->pool, sizeof(IOSBND)); |
---|
| 477 | node->b_ptr->k = m + j; |
---|
| 478 | node->b_ptr->type = (unsigned char)dn_type; |
---|
| 479 | node->b_ptr->lb = lb; |
---|
| 480 | node->b_ptr->ub = new_ub; |
---|
| 481 | node->b_ptr->next = NULL; |
---|
| 482 | node->lp_obj = dn_lp; |
---|
| 483 | if (mip->dir == GLP_MIN) |
---|
| 484 | { if (node->bound < dn_bnd) |
---|
| 485 | node->bound = dn_bnd; |
---|
| 486 | } |
---|
| 487 | else if (mip->dir == GLP_MAX) |
---|
| 488 | { if (node->bound > dn_bnd) |
---|
| 489 | node->bound = dn_bnd; |
---|
| 490 | } |
---|
| 491 | else |
---|
| 492 | xassert(mip != mip); |
---|
| 493 | /* set new lower bound of j-th column in the up-branch */ |
---|
| 494 | node = T->slot[clone[2]].node; |
---|
| 495 | xassert(node != NULL); |
---|
| 496 | xassert(node->up != NULL); |
---|
| 497 | xassert(node->b_ptr == NULL); |
---|
| 498 | node->b_ptr = dmp_get_atom(T->pool, sizeof(IOSBND)); |
---|
| 499 | node->b_ptr->k = m + j; |
---|
| 500 | node->b_ptr->type = (unsigned char)up_type; |
---|
| 501 | node->b_ptr->lb = new_lb; |
---|
| 502 | node->b_ptr->ub = ub; |
---|
| 503 | node->b_ptr->next = NULL; |
---|
| 504 | node->lp_obj = up_lp; |
---|
| 505 | if (mip->dir == GLP_MIN) |
---|
| 506 | { if (node->bound < up_bnd) |
---|
| 507 | node->bound = up_bnd; |
---|
| 508 | } |
---|
| 509 | else if (mip->dir == GLP_MAX) |
---|
| 510 | { if (node->bound > up_bnd) |
---|
| 511 | node->bound = up_bnd; |
---|
| 512 | } |
---|
| 513 | else |
---|
| 514 | xassert(mip != mip); |
---|
| 515 | /* suggest the subproblem to be solved next */ |
---|
| 516 | xassert(T->child == 0); |
---|
| 517 | if (next == GLP_NO_BRNCH) |
---|
| 518 | T->child = 0; |
---|
| 519 | else if (next == GLP_DN_BRNCH) |
---|
| 520 | T->child = clone[1]; |
---|
| 521 | else if (next == GLP_UP_BRNCH) |
---|
| 522 | T->child = clone[2]; |
---|
| 523 | else |
---|
| 524 | xassert(next != next); |
---|
| 525 | ret = 0; |
---|
| 526 | done: return ret; |
---|
| 527 | } |
---|
| 528 | |
---|
| 529 | /*********************************************************************** |
---|
| 530 | * cleanup_the_tree - prune hopeless branches from the tree |
---|
| 531 | * |
---|
| 532 | * This routine walks through the active list and checks the local |
---|
| 533 | * bound for every active subproblem. If the local bound indicates that |
---|
| 534 | * the subproblem cannot have integer optimal solution better than the |
---|
| 535 | * incumbent objective value, the routine deletes such subproblem that, |
---|
| 536 | * in turn, involves pruning the corresponding branch of the tree. */ |
---|
| 537 | |
---|
| 538 | static void cleanup_the_tree(glp_tree *T) |
---|
| 539 | { IOSNPD *node, *next_node; |
---|
| 540 | int count = 0; |
---|
| 541 | /* the global bound must exist */ |
---|
| 542 | xassert(T->mip->mip_stat == GLP_FEAS); |
---|
| 543 | /* walk through the list of active subproblems */ |
---|
| 544 | for (node = T->head; node != NULL; node = next_node) |
---|
| 545 | { /* deleting some active problem node may involve deleting its |
---|
| 546 | parents recursively; however, all its parents being created |
---|
| 547 | *before* it are always *precede* it in the node list, so |
---|
| 548 | the next problem node is never affected by such deletion */ |
---|
| 549 | next_node = node->next; |
---|
| 550 | /* if the branch is hopeless, prune it */ |
---|
| 551 | if (!is_branch_hopeful(T, node->p)) |
---|
| 552 | ios_delete_node(T, node->p), count++; |
---|
| 553 | } |
---|
| 554 | if (T->parm->msg_lev >= GLP_MSG_DBG) |
---|
| 555 | { if (count == 1) |
---|
| 556 | xprintf("One hopeless branch has been pruned\n"); |
---|
| 557 | else if (count > 1) |
---|
| 558 | xprintf("%d hopeless branches have been pruned\n", count); |
---|
| 559 | } |
---|
| 560 | return; |
---|
| 561 | } |
---|
| 562 | |
---|
| 563 | /**********************************************************************/ |
---|
| 564 | |
---|
| 565 | static void generate_cuts(glp_tree *T) |
---|
| 566 | { /* generate generic cuts with built-in generators */ |
---|
| 567 | if (!(T->parm->mir_cuts == GLP_ON || |
---|
| 568 | T->parm->gmi_cuts == GLP_ON || |
---|
| 569 | T->parm->cov_cuts == GLP_ON || |
---|
| 570 | T->parm->clq_cuts == GLP_ON)) goto done; |
---|
| 571 | #if 1 /* 20/IX-2008 */ |
---|
| 572 | { int i, max_cuts, added_cuts; |
---|
| 573 | max_cuts = T->n; |
---|
| 574 | if (max_cuts < 1000) max_cuts = 1000; |
---|
| 575 | added_cuts = 0; |
---|
| 576 | for (i = T->orig_m+1; i <= T->mip->m; i++) |
---|
| 577 | { if (T->mip->row[i]->origin == GLP_RF_CUT) |
---|
| 578 | added_cuts++; |
---|
| 579 | } |
---|
| 580 | /* xprintf("added_cuts = %d\n", added_cuts); */ |
---|
| 581 | if (added_cuts >= max_cuts) goto done; |
---|
| 582 | } |
---|
| 583 | #endif |
---|
| 584 | /* generate and add to POOL all cuts violated by x* */ |
---|
| 585 | if (T->parm->gmi_cuts == GLP_ON) |
---|
| 586 | { if (T->curr->changed < 5) |
---|
| 587 | ios_gmi_gen(T); |
---|
| 588 | } |
---|
| 589 | if (T->parm->mir_cuts == GLP_ON) |
---|
| 590 | { xassert(T->mir_gen != NULL); |
---|
| 591 | ios_mir_gen(T, T->mir_gen); |
---|
| 592 | } |
---|
| 593 | if (T->parm->cov_cuts == GLP_ON) |
---|
| 594 | { /* cover cuts works well along with mir cuts */ |
---|
| 595 | /*if (T->round <= 5)*/ |
---|
| 596 | ios_cov_gen(T); |
---|
| 597 | } |
---|
| 598 | if (T->parm->clq_cuts == GLP_ON) |
---|
| 599 | { if (T->clq_gen != NULL) |
---|
| 600 | { if (T->curr->level == 0 && T->curr->changed < 50 || |
---|
| 601 | T->curr->level > 0 && T->curr->changed < 5) |
---|
| 602 | ios_clq_gen(T, T->clq_gen); |
---|
| 603 | } |
---|
| 604 | } |
---|
| 605 | done: return; |
---|
| 606 | } |
---|
| 607 | |
---|
| 608 | /**********************************************************************/ |
---|
| 609 | |
---|
| 610 | static void remove_cuts(glp_tree *T) |
---|
| 611 | { /* remove inactive cuts (some valueable globally valid cut might |
---|
| 612 | be saved in the global cut pool) */ |
---|
| 613 | int i, cnt = 0, *num = NULL; |
---|
| 614 | xassert(T->curr != NULL); |
---|
| 615 | for (i = T->orig_m+1; i <= T->mip->m; i++) |
---|
| 616 | { if (T->mip->row[i]->origin == GLP_RF_CUT && |
---|
| 617 | T->mip->row[i]->level == T->curr->level && |
---|
| 618 | T->mip->row[i]->stat == GLP_BS) |
---|
| 619 | { if (num == NULL) |
---|
| 620 | num = xcalloc(1+T->mip->m, sizeof(int)); |
---|
| 621 | num[++cnt] = i; |
---|
| 622 | } |
---|
| 623 | } |
---|
| 624 | if (cnt > 0) |
---|
| 625 | { glp_del_rows(T->mip, cnt, num); |
---|
| 626 | #if 0 |
---|
| 627 | xprintf("%d inactive cut(s) removed\n", cnt); |
---|
| 628 | #endif |
---|
| 629 | xfree(num); |
---|
| 630 | xassert(glp_factorize(T->mip) == 0); |
---|
| 631 | } |
---|
| 632 | return; |
---|
| 633 | } |
---|
| 634 | |
---|
| 635 | /**********************************************************************/ |
---|
| 636 | |
---|
| 637 | static void display_cut_info(glp_tree *T) |
---|
| 638 | { glp_prob *mip = T->mip; |
---|
| 639 | int i, gmi = 0, mir = 0, cov = 0, clq = 0, app = 0; |
---|
| 640 | for (i = mip->m; i > 0; i--) |
---|
| 641 | { GLPROW *row; |
---|
| 642 | row = mip->row[i]; |
---|
| 643 | /* if (row->level < T->curr->level) break; */ |
---|
| 644 | if (row->origin == GLP_RF_CUT) |
---|
| 645 | { if (row->klass == GLP_RF_GMI) |
---|
| 646 | gmi++; |
---|
| 647 | else if (row->klass == GLP_RF_MIR) |
---|
| 648 | mir++; |
---|
| 649 | else if (row->klass == GLP_RF_COV) |
---|
| 650 | cov++; |
---|
| 651 | else if (row->klass == GLP_RF_CLQ) |
---|
| 652 | clq++; |
---|
| 653 | else |
---|
| 654 | app++; |
---|
| 655 | } |
---|
| 656 | } |
---|
| 657 | xassert(T->curr != NULL); |
---|
| 658 | if (gmi + mir + cov + clq + app > 0) |
---|
| 659 | { xprintf("Cuts on level %d:", T->curr->level); |
---|
| 660 | if (gmi > 0) xprintf(" gmi = %d;", gmi); |
---|
| 661 | if (mir > 0) xprintf(" mir = %d;", mir); |
---|
| 662 | if (cov > 0) xprintf(" cov = %d;", cov); |
---|
| 663 | if (clq > 0) xprintf(" clq = %d;", clq); |
---|
| 664 | if (app > 0) xprintf(" app = %d;", app); |
---|
| 665 | xprintf("\n"); |
---|
| 666 | } |
---|
| 667 | return; |
---|
| 668 | } |
---|
| 669 | |
---|
| 670 | /*********************************************************************** |
---|
| 671 | * NAME |
---|
| 672 | * |
---|
| 673 | * ios_driver - branch-and-cut driver |
---|
| 674 | * |
---|
| 675 | * SYNOPSIS |
---|
| 676 | * |
---|
| 677 | * #include "glpios.h" |
---|
| 678 | * int ios_driver(glp_tree *T); |
---|
| 679 | * |
---|
| 680 | * DESCRIPTION |
---|
| 681 | * |
---|
| 682 | * The routine ios_driver is a branch-and-cut driver. It controls the |
---|
| 683 | * MIP solution process. |
---|
| 684 | * |
---|
| 685 | * RETURNS |
---|
| 686 | * |
---|
| 687 | * 0 The MIP problem instance has been successfully solved. This code |
---|
| 688 | * does not necessarily mean that the solver has found optimal |
---|
| 689 | * solution. It only means that the solution process was successful. |
---|
| 690 | * |
---|
| 691 | * GLP_EFAIL |
---|
| 692 | * The search was prematurely terminated due to the solver failure. |
---|
| 693 | * |
---|
| 694 | * GLP_EMIPGAP |
---|
| 695 | * The search was prematurely terminated, because the relative mip |
---|
| 696 | * gap tolerance has been reached. |
---|
| 697 | * |
---|
| 698 | * GLP_ETMLIM |
---|
| 699 | * The search was prematurely terminated, because the time limit has |
---|
| 700 | * been exceeded. |
---|
| 701 | * |
---|
| 702 | * GLP_ESTOP |
---|
| 703 | * The search was prematurely terminated by application. */ |
---|
| 704 | |
---|
| 705 | int ios_driver(glp_tree *T) |
---|
| 706 | { int p, curr_p, p_stat, d_stat, ret; |
---|
| 707 | #if 1 /* carry out to glp_tree */ |
---|
| 708 | int pred_p = 0; |
---|
| 709 | /* if the current subproblem has been just created due to |
---|
| 710 | branching, pred_p is the reference number of its parent |
---|
| 711 | subproblem, otherwise pred_p is zero */ |
---|
| 712 | #endif |
---|
| 713 | glp_long ttt = T->tm_beg; |
---|
| 714 | #if 0 |
---|
| 715 | ((glp_iocp *)T->parm)->msg_lev = GLP_MSG_DBG; |
---|
| 716 | #endif |
---|
| 717 | /* on entry to the B&B driver it is assumed that the active list |
---|
| 718 | contains the only active (i.e. root) subproblem, which is the |
---|
| 719 | original MIP problem to be solved */ |
---|
| 720 | loop: /* main loop starts here */ |
---|
| 721 | /* at this point the current subproblem does not exist */ |
---|
| 722 | xassert(T->curr == NULL); |
---|
| 723 | /* if the active list is empty, the search is finished */ |
---|
| 724 | if (T->head == NULL) |
---|
| 725 | { if (T->parm->msg_lev >= GLP_MSG_DBG) |
---|
| 726 | xprintf("Active list is empty!\n"); |
---|
| 727 | xassert(dmp_in_use(T->pool).lo == 0); |
---|
| 728 | ret = 0; |
---|
| 729 | goto done; |
---|
| 730 | } |
---|
| 731 | /* select some active subproblem to continue the search */ |
---|
| 732 | xassert(T->next_p == 0); |
---|
| 733 | /* let the application program select subproblem */ |
---|
| 734 | if (T->parm->cb_func != NULL) |
---|
| 735 | { xassert(T->reason == 0); |
---|
| 736 | T->reason = GLP_ISELECT; |
---|
| 737 | T->parm->cb_func(T, T->parm->cb_info); |
---|
| 738 | T->reason = 0; |
---|
| 739 | if (T->stop) |
---|
| 740 | { ret = GLP_ESTOP; |
---|
| 741 | goto done; |
---|
| 742 | } |
---|
| 743 | } |
---|
| 744 | if (T->next_p != 0) |
---|
| 745 | { /* the application program has selected something */ |
---|
| 746 | ; |
---|
| 747 | } |
---|
| 748 | else if (T->a_cnt == 1) |
---|
| 749 | { /* the only active subproblem exists, so select it */ |
---|
| 750 | xassert(T->head->next == NULL); |
---|
| 751 | T->next_p = T->head->p; |
---|
| 752 | } |
---|
| 753 | else if (T->child != 0) |
---|
| 754 | { /* select one of branching childs suggested by the branching |
---|
| 755 | heuristic */ |
---|
| 756 | T->next_p = T->child; |
---|
| 757 | } |
---|
| 758 | else |
---|
| 759 | { /* select active subproblem as specified by the backtracking |
---|
| 760 | technique option */ |
---|
| 761 | T->next_p = ios_choose_node(T); |
---|
| 762 | } |
---|
| 763 | /* the active subproblem just selected becomes current */ |
---|
| 764 | ios_revive_node(T, T->next_p); |
---|
| 765 | T->next_p = T->child = 0; |
---|
| 766 | /* invalidate pred_p, if it is not the reference number of the |
---|
| 767 | parent of the current subproblem */ |
---|
| 768 | if (T->curr->up != NULL && T->curr->up->p != pred_p) pred_p = 0; |
---|
| 769 | /* determine the reference number of the current subproblem */ |
---|
| 770 | p = T->curr->p; |
---|
| 771 | if (T->parm->msg_lev >= GLP_MSG_DBG) |
---|
| 772 | { xprintf("-----------------------------------------------------" |
---|
| 773 | "-------------------\n"); |
---|
| 774 | xprintf("Processing node %d at level %d\n", p, T->curr->level); |
---|
| 775 | } |
---|
| 776 | /* if it is the root subproblem, initialize cut generators */ |
---|
| 777 | if (p == 1) |
---|
| 778 | { if (T->parm->gmi_cuts == GLP_ON) |
---|
| 779 | { if (T->parm->msg_lev >= GLP_MSG_ALL) |
---|
| 780 | xprintf("Gomory's cuts enabled\n"); |
---|
| 781 | } |
---|
| 782 | if (T->parm->mir_cuts == GLP_ON) |
---|
| 783 | { if (T->parm->msg_lev >= GLP_MSG_ALL) |
---|
| 784 | xprintf("MIR cuts enabled\n"); |
---|
| 785 | xassert(T->mir_gen == NULL); |
---|
| 786 | T->mir_gen = ios_mir_init(T); |
---|
| 787 | } |
---|
| 788 | if (T->parm->cov_cuts == GLP_ON) |
---|
| 789 | { if (T->parm->msg_lev >= GLP_MSG_ALL) |
---|
| 790 | xprintf("Cover cuts enabled\n"); |
---|
| 791 | } |
---|
| 792 | if (T->parm->clq_cuts == GLP_ON) |
---|
| 793 | { xassert(T->clq_gen == NULL); |
---|
| 794 | if (T->parm->msg_lev >= GLP_MSG_ALL) |
---|
| 795 | xprintf("Clique cuts enabled\n"); |
---|
| 796 | T->clq_gen = ios_clq_init(T); |
---|
| 797 | } |
---|
| 798 | } |
---|
| 799 | more: /* minor loop starts here */ |
---|
| 800 | /* at this point the current subproblem needs either to be solved |
---|
| 801 | for the first time or re-optimized due to reformulation */ |
---|
| 802 | /* display current progress of the search */ |
---|
| 803 | if (T->parm->msg_lev >= GLP_MSG_DBG || |
---|
| 804 | T->parm->msg_lev >= GLP_MSG_ON && |
---|
| 805 | (double)(T->parm->out_frq - 1) <= |
---|
| 806 | 1000.0 * xdifftime(xtime(), T->tm_lag)) |
---|
| 807 | show_progress(T, 0); |
---|
| 808 | if (T->parm->msg_lev >= GLP_MSG_ALL && |
---|
| 809 | xdifftime(xtime(), ttt) >= 60.0) |
---|
| 810 | { glp_long total; |
---|
| 811 | glp_mem_usage(NULL, NULL, &total, NULL); |
---|
| 812 | xprintf("Time used: %.1f secs. Memory used: %.1f Mb.\n", |
---|
| 813 | xdifftime(xtime(), T->tm_beg), xltod(total) / 1048576.0); |
---|
| 814 | ttt = xtime(); |
---|
| 815 | } |
---|
| 816 | /* check the mip gap */ |
---|
| 817 | if (T->parm->mip_gap > 0.0 && |
---|
| 818 | ios_relative_gap(T) <= T->parm->mip_gap) |
---|
| 819 | { if (T->parm->msg_lev >= GLP_MSG_DBG) |
---|
| 820 | xprintf("Relative gap tolerance reached; search terminated " |
---|
| 821 | "\n"); |
---|
| 822 | ret = GLP_EMIPGAP; |
---|
| 823 | goto done; |
---|
| 824 | } |
---|
| 825 | /* check if the time limit has been exhausted */ |
---|
| 826 | if (T->parm->tm_lim < INT_MAX && |
---|
| 827 | (double)(T->parm->tm_lim - 1) <= |
---|
| 828 | 1000.0 * xdifftime(xtime(), T->tm_beg)) |
---|
| 829 | { if (T->parm->msg_lev >= GLP_MSG_DBG) |
---|
| 830 | xprintf("Time limit exhausted; search terminated\n"); |
---|
| 831 | ret = GLP_ETMLIM; |
---|
| 832 | goto done; |
---|
| 833 | } |
---|
| 834 | /* let the application program preprocess the subproblem */ |
---|
| 835 | if (T->parm->cb_func != NULL) |
---|
| 836 | { xassert(T->reason == 0); |
---|
| 837 | T->reason = GLP_IPREPRO; |
---|
| 838 | T->parm->cb_func(T, T->parm->cb_info); |
---|
| 839 | T->reason = 0; |
---|
| 840 | if (T->stop) |
---|
| 841 | { ret = GLP_ESTOP; |
---|
| 842 | goto done; |
---|
| 843 | } |
---|
| 844 | } |
---|
| 845 | /* perform basic preprocessing */ |
---|
| 846 | if (T->parm->pp_tech == GLP_PP_NONE) |
---|
| 847 | ; |
---|
| 848 | else if (T->parm->pp_tech == GLP_PP_ROOT) |
---|
| 849 | { if (T->curr->level == 0) |
---|
| 850 | { if (ios_preprocess_node(T, 100)) |
---|
| 851 | goto fath; |
---|
| 852 | } |
---|
| 853 | } |
---|
| 854 | else if (T->parm->pp_tech == GLP_PP_ALL) |
---|
| 855 | { if (ios_preprocess_node(T, T->curr->level == 0 ? 100 : 10)) |
---|
| 856 | goto fath; |
---|
| 857 | } |
---|
| 858 | else |
---|
| 859 | xassert(T != T); |
---|
| 860 | /* preprocessing may improve the global bound */ |
---|
| 861 | if (!is_branch_hopeful(T, p)) |
---|
| 862 | { xprintf("*** not tested yet ***\n"); |
---|
| 863 | goto fath; |
---|
| 864 | } |
---|
| 865 | /* solve LP relaxation of the current subproblem */ |
---|
| 866 | if (T->parm->msg_lev >= GLP_MSG_DBG) |
---|
| 867 | xprintf("Solving LP relaxation...\n"); |
---|
| 868 | ret = ios_solve_node(T); |
---|
| 869 | if (!(ret == 0 || ret == GLP_EOBJLL || ret == GLP_EOBJUL)) |
---|
| 870 | { if (T->parm->msg_lev >= GLP_MSG_ERR) |
---|
| 871 | xprintf("ios_driver: unable to solve current LP relaxation;" |
---|
| 872 | " glp_simplex returned %d\n", ret); |
---|
| 873 | ret = GLP_EFAIL; |
---|
| 874 | goto done; |
---|
| 875 | } |
---|
| 876 | /* analyze status of the basic solution to LP relaxation found */ |
---|
| 877 | p_stat = T->mip->pbs_stat; |
---|
| 878 | d_stat = T->mip->dbs_stat; |
---|
| 879 | if (p_stat == GLP_FEAS && d_stat == GLP_FEAS) |
---|
| 880 | { /* LP relaxation has optimal solution */ |
---|
| 881 | if (T->parm->msg_lev >= GLP_MSG_DBG) |
---|
| 882 | xprintf("Found optimal solution to LP relaxation\n"); |
---|
| 883 | } |
---|
| 884 | else if (d_stat == GLP_NOFEAS) |
---|
| 885 | { /* LP relaxation has no dual feasible solution */ |
---|
| 886 | /* since the current subproblem cannot have a larger feasible |
---|
| 887 | region than its parent, there is something wrong */ |
---|
| 888 | if (T->parm->msg_lev >= GLP_MSG_ERR) |
---|
| 889 | xprintf("ios_driver: current LP relaxation has no dual feas" |
---|
| 890 | "ible solution\n"); |
---|
| 891 | ret = GLP_EFAIL; |
---|
| 892 | goto done; |
---|
| 893 | } |
---|
| 894 | else if (p_stat == GLP_INFEAS && d_stat == GLP_FEAS) |
---|
| 895 | { /* LP relaxation has no primal solution which is better than |
---|
| 896 | the incumbent objective value */ |
---|
| 897 | xassert(T->mip->mip_stat == GLP_FEAS); |
---|
| 898 | if (T->parm->msg_lev >= GLP_MSG_DBG) |
---|
| 899 | xprintf("LP relaxation has no solution better than incumben" |
---|
| 900 | "t objective value\n"); |
---|
| 901 | /* prune the branch */ |
---|
| 902 | goto fath; |
---|
| 903 | } |
---|
| 904 | else if (p_stat == GLP_NOFEAS) |
---|
| 905 | { /* LP relaxation has no primal feasible solution */ |
---|
| 906 | if (T->parm->msg_lev >= GLP_MSG_DBG) |
---|
| 907 | xprintf("LP relaxation has no feasible solution\n"); |
---|
| 908 | /* prune the branch */ |
---|
| 909 | goto fath; |
---|
| 910 | } |
---|
| 911 | else |
---|
| 912 | { /* other cases cannot appear */ |
---|
| 913 | xassert(T->mip != T->mip); |
---|
| 914 | } |
---|
| 915 | /* at this point basic solution to LP relaxation of the current |
---|
| 916 | subproblem is optimal */ |
---|
| 917 | xassert(p_stat == GLP_FEAS && d_stat == GLP_FEAS); |
---|
| 918 | xassert(T->curr != NULL); |
---|
| 919 | T->curr->lp_obj = T->mip->obj_val; |
---|
| 920 | /* thus, it defines a local bound to integer optimal solution of |
---|
| 921 | the current subproblem */ |
---|
| 922 | { double bound = T->mip->obj_val; |
---|
| 923 | /* some local bound to the current subproblem could be already |
---|
| 924 | set before, so we should only improve it */ |
---|
| 925 | bound = ios_round_bound(T, bound); |
---|
| 926 | if (T->mip->dir == GLP_MIN) |
---|
| 927 | { if (T->curr->bound < bound) |
---|
| 928 | T->curr->bound = bound; |
---|
| 929 | } |
---|
| 930 | else if (T->mip->dir == GLP_MAX) |
---|
| 931 | { if (T->curr->bound > bound) |
---|
| 932 | T->curr->bound = bound; |
---|
| 933 | } |
---|
| 934 | else |
---|
| 935 | xassert(T->mip != T->mip); |
---|
| 936 | if (T->parm->msg_lev >= GLP_MSG_DBG) |
---|
| 937 | xprintf("Local bound is %.9e\n", bound); |
---|
| 938 | } |
---|
| 939 | /* if the local bound indicates that integer optimal solution of |
---|
| 940 | the current subproblem cannot be better than the global bound, |
---|
| 941 | prune the branch */ |
---|
| 942 | if (!is_branch_hopeful(T, p)) |
---|
| 943 | { if (T->parm->msg_lev >= GLP_MSG_DBG) |
---|
| 944 | xprintf("Current branch is hopeless and can be pruned\n"); |
---|
| 945 | goto fath; |
---|
| 946 | } |
---|
| 947 | /* let the application program generate additional rows ("lazy" |
---|
| 948 | constraints) */ |
---|
| 949 | xassert(T->reopt == 0); |
---|
| 950 | xassert(T->reinv == 0); |
---|
| 951 | if (T->parm->cb_func != NULL) |
---|
| 952 | { xassert(T->reason == 0); |
---|
| 953 | T->reason = GLP_IROWGEN; |
---|
| 954 | T->parm->cb_func(T, T->parm->cb_info); |
---|
| 955 | T->reason = 0; |
---|
| 956 | if (T->stop) |
---|
| 957 | { ret = GLP_ESTOP; |
---|
| 958 | goto done; |
---|
| 959 | } |
---|
| 960 | if (T->reopt) |
---|
| 961 | { /* some rows were added; re-optimization is needed */ |
---|
| 962 | T->reopt = T->reinv = 0; |
---|
| 963 | goto more; |
---|
| 964 | } |
---|
| 965 | if (T->reinv) |
---|
| 966 | { /* no rows were added, however, some inactive rows were |
---|
| 967 | removed */ |
---|
| 968 | T->reinv = 0; |
---|
| 969 | xassert(glp_factorize(T->mip) == 0); |
---|
| 970 | } |
---|
| 971 | } |
---|
| 972 | /* check if the basic solution is integer feasible */ |
---|
| 973 | check_integrality(T); |
---|
| 974 | /* if the basic solution satisfies to all integrality conditions, |
---|
| 975 | it is a new, better integer feasible solution */ |
---|
| 976 | if (T->curr->ii_cnt == 0) |
---|
| 977 | { if (T->parm->msg_lev >= GLP_MSG_DBG) |
---|
| 978 | xprintf("New integer feasible solution found\n"); |
---|
| 979 | if (T->parm->msg_lev >= GLP_MSG_ALL) |
---|
| 980 | display_cut_info(T); |
---|
| 981 | record_solution(T); |
---|
| 982 | if (T->parm->msg_lev >= GLP_MSG_ON) |
---|
| 983 | show_progress(T, 1); |
---|
| 984 | /* make the application program happy */ |
---|
| 985 | if (T->parm->cb_func != NULL) |
---|
| 986 | { xassert(T->reason == 0); |
---|
| 987 | T->reason = GLP_IBINGO; |
---|
| 988 | T->parm->cb_func(T, T->parm->cb_info); |
---|
| 989 | T->reason = 0; |
---|
| 990 | if (T->stop) |
---|
| 991 | { ret = GLP_ESTOP; |
---|
| 992 | goto done; |
---|
| 993 | } |
---|
| 994 | } |
---|
| 995 | /* since the current subproblem has been fathomed, prune its |
---|
| 996 | branch */ |
---|
| 997 | goto fath; |
---|
| 998 | } |
---|
| 999 | /* at this point basic solution to LP relaxation of the current |
---|
| 1000 | subproblem is optimal, but integer infeasible */ |
---|
| 1001 | /* try to fix some non-basic structural variables of integer kind |
---|
| 1002 | on their current bounds due to reduced costs */ |
---|
| 1003 | if (T->mip->mip_stat == GLP_FEAS) |
---|
| 1004 | fix_by_red_cost(T); |
---|
| 1005 | /* let the application program try to find some solution to the |
---|
| 1006 | original MIP with a primal heuristic */ |
---|
| 1007 | if (T->parm->cb_func != NULL) |
---|
| 1008 | { xassert(T->reason == 0); |
---|
| 1009 | T->reason = GLP_IHEUR; |
---|
| 1010 | T->parm->cb_func(T, T->parm->cb_info); |
---|
| 1011 | T->reason = 0; |
---|
| 1012 | if (T->stop) |
---|
| 1013 | { ret = GLP_ESTOP; |
---|
| 1014 | goto done; |
---|
| 1015 | } |
---|
| 1016 | /* check if the current branch became hopeless */ |
---|
| 1017 | if (!is_branch_hopeful(T, p)) |
---|
| 1018 | { if (T->parm->msg_lev >= GLP_MSG_DBG) |
---|
| 1019 | xprintf("Current branch became hopeless and can be prune" |
---|
| 1020 | "d\n"); |
---|
| 1021 | goto fath; |
---|
| 1022 | } |
---|
| 1023 | } |
---|
| 1024 | /* try to find solution with the feasibility pump heuristic */ |
---|
| 1025 | if (T->parm->fp_heur) |
---|
| 1026 | { xassert(T->reason == 0); |
---|
| 1027 | T->reason = GLP_IHEUR; |
---|
| 1028 | ios_feas_pump(T); |
---|
| 1029 | T->reason = 0; |
---|
| 1030 | /* check if the current branch became hopeless */ |
---|
| 1031 | if (!is_branch_hopeful(T, p)) |
---|
| 1032 | { if (T->parm->msg_lev >= GLP_MSG_DBG) |
---|
| 1033 | xprintf("Current branch became hopeless and can be prune" |
---|
| 1034 | "d\n"); |
---|
| 1035 | goto fath; |
---|
| 1036 | } |
---|
| 1037 | } |
---|
| 1038 | /* it's time to generate cutting planes */ |
---|
| 1039 | xassert(T->local != NULL); |
---|
| 1040 | xassert(T->local->size == 0); |
---|
| 1041 | /* let the application program generate some cuts; note that it |
---|
| 1042 | can add cuts either to the local cut pool or directly to the |
---|
| 1043 | current subproblem */ |
---|
| 1044 | if (T->parm->cb_func != NULL) |
---|
| 1045 | { xassert(T->reason == 0); |
---|
| 1046 | T->reason = GLP_ICUTGEN; |
---|
| 1047 | T->parm->cb_func(T, T->parm->cb_info); |
---|
| 1048 | T->reason = 0; |
---|
| 1049 | if (T->stop) |
---|
| 1050 | { ret = GLP_ESTOP; |
---|
| 1051 | goto done; |
---|
| 1052 | } |
---|
| 1053 | } |
---|
| 1054 | /* try to generate generic cuts with built-in generators |
---|
| 1055 | (as suggested by Matteo Fischetti et al. the built-in cuts |
---|
| 1056 | are not generated at each branching node; an intense attempt |
---|
| 1057 | of generating new cuts is only made at the root node, and then |
---|
| 1058 | a moderate effort is spent after each backtracking step) */ |
---|
| 1059 | if (T->curr->level == 0 || pred_p == 0) |
---|
| 1060 | { xassert(T->reason == 0); |
---|
| 1061 | T->reason = GLP_ICUTGEN; |
---|
| 1062 | generate_cuts(T); |
---|
| 1063 | T->reason = 0; |
---|
| 1064 | } |
---|
| 1065 | /* if the local cut pool is not empty, select useful cuts and add |
---|
| 1066 | them to the current subproblem */ |
---|
| 1067 | if (T->local->size > 0) |
---|
| 1068 | { xassert(T->reason == 0); |
---|
| 1069 | T->reason = GLP_ICUTGEN; |
---|
| 1070 | ios_process_cuts(T); |
---|
| 1071 | T->reason = 0; |
---|
| 1072 | } |
---|
| 1073 | /* clear the local cut pool */ |
---|
| 1074 | ios_clear_pool(T, T->local); |
---|
| 1075 | /* perform re-optimization, if necessary */ |
---|
| 1076 | if (T->reopt) |
---|
| 1077 | { T->reopt = 0; |
---|
| 1078 | T->curr->changed++; |
---|
| 1079 | goto more; |
---|
| 1080 | } |
---|
| 1081 | /* no cuts were generated; remove inactive cuts */ |
---|
| 1082 | remove_cuts(T); |
---|
| 1083 | if (T->parm->msg_lev >= GLP_MSG_ALL && T->curr->level == 0) |
---|
| 1084 | display_cut_info(T); |
---|
| 1085 | /* update history information used on pseudocost branching */ |
---|
| 1086 | if (T->pcost != NULL) ios_pcost_update(T); |
---|
| 1087 | /* it's time to perform branching */ |
---|
| 1088 | xassert(T->br_var == 0); |
---|
| 1089 | xassert(T->br_sel == 0); |
---|
| 1090 | /* let the application program choose variable to branch on */ |
---|
| 1091 | if (T->parm->cb_func != NULL) |
---|
| 1092 | { xassert(T->reason == 0); |
---|
| 1093 | xassert(T->br_var == 0); |
---|
| 1094 | xassert(T->br_sel == 0); |
---|
| 1095 | T->reason = GLP_IBRANCH; |
---|
| 1096 | T->parm->cb_func(T, T->parm->cb_info); |
---|
| 1097 | T->reason = 0; |
---|
| 1098 | if (T->stop) |
---|
| 1099 | { ret = GLP_ESTOP; |
---|
| 1100 | goto done; |
---|
| 1101 | } |
---|
| 1102 | } |
---|
| 1103 | /* if nothing has been chosen, choose some variable as specified |
---|
| 1104 | by the branching technique option */ |
---|
| 1105 | if (T->br_var == 0) |
---|
| 1106 | T->br_var = ios_choose_var(T, &T->br_sel); |
---|
| 1107 | /* perform actual branching */ |
---|
| 1108 | curr_p = T->curr->p; |
---|
| 1109 | ret = branch_on(T, T->br_var, T->br_sel); |
---|
| 1110 | T->br_var = T->br_sel = 0; |
---|
| 1111 | if (ret == 0) |
---|
| 1112 | { /* both branches have been created */ |
---|
| 1113 | pred_p = curr_p; |
---|
| 1114 | goto loop; |
---|
| 1115 | } |
---|
| 1116 | else if (ret == 1) |
---|
| 1117 | { /* one branch is hopeless and has been pruned, so now the |
---|
| 1118 | current subproblem is other branch */ |
---|
| 1119 | /* the current subproblem should be considered as a new one, |
---|
| 1120 | since one bound of the branching variable was changed */ |
---|
| 1121 | T->curr->solved = T->curr->changed = 0; |
---|
| 1122 | goto more; |
---|
| 1123 | } |
---|
| 1124 | else if (ret == 2) |
---|
| 1125 | { /* both branches are hopeless and have been pruned; new |
---|
| 1126 | subproblem selection is needed to continue the search */ |
---|
| 1127 | goto fath; |
---|
| 1128 | } |
---|
| 1129 | else |
---|
| 1130 | xassert(ret != ret); |
---|
| 1131 | fath: /* the current subproblem has been fathomed */ |
---|
| 1132 | if (T->parm->msg_lev >= GLP_MSG_DBG) |
---|
| 1133 | xprintf("Node %d fathomed\n", p); |
---|
| 1134 | /* freeze the current subproblem */ |
---|
| 1135 | ios_freeze_node(T); |
---|
| 1136 | /* and prune the corresponding branch of the tree */ |
---|
| 1137 | ios_delete_node(T, p); |
---|
| 1138 | /* if a new integer feasible solution has just been found, other |
---|
| 1139 | branches may become hopeless and therefore must be pruned */ |
---|
| 1140 | if (T->mip->mip_stat == GLP_FEAS) cleanup_the_tree(T); |
---|
| 1141 | /* new subproblem selection is needed due to backtracking */ |
---|
| 1142 | pred_p = 0; |
---|
| 1143 | goto loop; |
---|
| 1144 | done: /* display progress of the search on exit from the solver */ |
---|
| 1145 | if (T->parm->msg_lev >= GLP_MSG_ON) |
---|
| 1146 | show_progress(T, 0); |
---|
| 1147 | if (T->mir_gen != NULL) |
---|
| 1148 | ios_mir_term(T->mir_gen), T->mir_gen = NULL; |
---|
| 1149 | if (T->clq_gen != NULL) |
---|
| 1150 | ios_clq_term(T->clq_gen), T->clq_gen = NULL; |
---|
| 1151 | /* return to the calling program */ |
---|
| 1152 | return ret; |
---|
| 1153 | } |
---|
| 1154 | |
---|
| 1155 | /* eof */ |
---|