/* glpmpl.h (GNU MathProg translator) */ /*********************************************************************** * This code is part of GLPK (GNU Linear Programming Kit). * * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, * Moscow Aviation Institute, Moscow, Russia. All rights reserved. * E-mail: . * * GLPK is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GLPK is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with GLPK. If not, see . ***********************************************************************/ #ifndef GLPMPL_H #define GLPMPL_H #include "glpavl.h" #include "glprng.h" typedef struct MPL MPL; typedef char STRING; typedef struct SYMBOL SYMBOL; typedef struct TUPLE TUPLE; typedef struct ARRAY ELEMSET; typedef struct ELEMVAR ELEMVAR; typedef struct FORMULA FORMULA; typedef struct ELEMCON ELEMCON; typedef union VALUE VALUE; typedef struct ARRAY ARRAY; typedef struct MEMBER MEMBER; #if 1 /* many C compilers have DOMAIN declared in :( */ #undef DOMAIN #define DOMAIN DOMAIN1 #endif typedef struct DOMAIN DOMAIN; typedef struct DOMAIN_BLOCK DOMAIN_BLOCK; typedef struct DOMAIN_SLOT DOMAIN_SLOT; typedef struct SET SET; typedef struct WITHIN WITHIN; typedef struct GADGET GADGET; typedef struct PARAMETER PARAMETER; typedef struct CONDITION CONDITION; typedef struct VARIABLE VARIABLE; typedef struct CONSTRAINT CONSTRAINT; typedef struct TABLE TABLE; typedef struct TABARG TABARG; typedef struct TABFLD TABFLD; typedef struct TABIN TABIN; typedef struct TABOUT TABOUT; typedef struct TABDCA TABDCA; typedef union OPERANDS OPERANDS; typedef struct ARG_LIST ARG_LIST; typedef struct CODE CODE; typedef struct CHECK CHECK; typedef struct DISPLAY DISPLAY; typedef struct DISPLAY1 DISPLAY1; typedef struct PRINTF PRINTF; typedef struct PRINTF1 PRINTF1; typedef struct FOR FOR; typedef struct STATEMENT STATEMENT; typedef struct TUPLE SLICE; /**********************************************************************/ /* * * TRANSLATOR DATABASE * * */ /**********************************************************************/ #define A_BINARY 101 /* something binary */ #define A_CHECK 102 /* check statement */ #define A_CONSTRAINT 103 /* model constraint */ #define A_DISPLAY 104 /* display statement */ #define A_ELEMCON 105 /* elemental constraint/objective */ #define A_ELEMSET 106 /* elemental set */ #define A_ELEMVAR 107 /* elemental variable */ #define A_EXPRESSION 108 /* expression */ #define A_FOR 109 /* for statement */ #define A_FORMULA 110 /* formula */ #define A_INDEX 111 /* dummy index */ #define A_INPUT 112 /* input table */ #define A_INTEGER 113 /* something integer */ #define A_LOGICAL 114 /* something logical */ #define A_MAXIMIZE 115 /* objective has to be maximized */ #define A_MINIMIZE 116 /* objective has to be minimized */ #define A_NONE 117 /* nothing */ #define A_NUMERIC 118 /* something numeric */ #define A_OUTPUT 119 /* output table */ #define A_PARAMETER 120 /* model parameter */ #define A_PRINTF 121 /* printf statement */ #define A_SET 122 /* model set */ #define A_SOLVE 123 /* solve statement */ #define A_SYMBOLIC 124 /* something symbolic */ #define A_TABLE 125 /* data table */ #define A_TUPLE 126 /* n-tuple */ #define A_VARIABLE 127 /* model variable */ #define MAX_LENGTH 100 /* maximal length of any symbolic value (this includes symbolic names, numeric and string literals, and all symbolic values that may appear during the evaluation phase) */ #define CONTEXT_SIZE 60 /* size of the context queue, in characters */ #define OUTBUF_SIZE 1024 /* size of the output buffer, in characters */ struct MPL { /* translator database */ /*--------------------------------------------------------------*/ /* scanning segment */ int line; /* number of the current text line */ int c; /* the current character or EOF */ int token; /* the current token: */ #define T_EOF 201 /* end of file */ #define T_NAME 202 /* symbolic name (model section only) */ #define T_SYMBOL 203 /* symbol (data section only) */ #define T_NUMBER 204 /* numeric literal */ #define T_STRING 205 /* string literal */ #define T_AND 206 /* and && */ #define T_BY 207 /* by */ #define T_CROSS 208 /* cross */ #define T_DIFF 209 /* diff */ #define T_DIV 210 /* div */ #define T_ELSE 211 /* else */ #define T_IF 212 /* if */ #define T_IN 213 /* in */ #define T_INFINITY 214 /* Infinity */ #define T_INTER 215 /* inter */ #define T_LESS 216 /* less */ #define T_MOD 217 /* mod */ #define T_NOT 218 /* not ! */ #define T_OR 219 /* or || */ #define T_SPTP 220 /* s.t. */ #define T_SYMDIFF 221 /* symdiff */ #define T_THEN 222 /* then */ #define T_UNION 223 /* union */ #define T_WITHIN 224 /* within */ #define T_PLUS 225 /* + */ #define T_MINUS 226 /* - */ #define T_ASTERISK 227 /* * */ #define T_SLASH 228 /* / */ #define T_POWER 229 /* ^ ** */ #define T_LT 230 /* < */ #define T_LE 231 /* <= */ #define T_EQ 232 /* = == */ #define T_GE 233 /* >= */ #define T_GT 234 /* > */ #define T_NE 235 /* <> != */ #define T_CONCAT 236 /* & */ #define T_BAR 237 /* | */ #define T_POINT 238 /* . */ #define T_COMMA 239 /* , */ #define T_COLON 240 /* : */ #define T_SEMICOLON 241 /* ; */ #define T_ASSIGN 242 /* := */ #define T_DOTS 243 /* .. */ #define T_LEFT 244 /* ( */ #define T_RIGHT 245 /* ) */ #define T_LBRACKET 246 /* [ */ #define T_RBRACKET 247 /* ] */ #define T_LBRACE 248 /* { */ #define T_RBRACE 249 /* } */ #define T_APPEND 250 /* >> */ #define T_TILDE 251 /* ~ */ #define T_INPUT 252 /* <- */ int imlen; /* length of the current token */ char *image; /* char image[MAX_LENGTH+1]; */ /* image of the current token */ double value; /* value of the current token (for T_NUMBER only) */ int b_token; /* the previous token */ int b_imlen; /* length of the previous token */ char *b_image; /* char b_image[MAX_LENGTH+1]; */ /* image of the previous token */ double b_value; /* value of the previous token (if token is T_NUMBER) */ int f_dots; /* if this flag is set, the next token should be recognized as T_DOTS, not as T_POINT */ int f_scan; /* if this flag is set, the next token is already scanned */ int f_token; /* the next token */ int f_imlen; /* length of the next token */ char *f_image; /* char f_image[MAX_LENGTH+1]; */ /* image of the next token */ double f_value; /* value of the next token (if token is T_NUMBER) */ char *context; /* char context[CONTEXT_SIZE]; */ /* context circular queue (not null-terminated!) */ int c_ptr; /* pointer to the current position in the context queue */ int flag_d; /* if this flag is set, the data section is being processed */ /*--------------------------------------------------------------*/ /* translating segment */ DMP *pool; /* memory pool used to allocate all data instances created during the translation phase */ AVL *tree; /* symbolic name table: node.type = A_INDEX => node.link -> DOMAIN_SLOT node.type = A_SET => node.link -> SET node.type = A_PARAMETER => node.link -> PARAMETER node.type = A_VARIABLE => node.link -> VARIABLE node.type = A_CONSTRANT => node.link -> CONSTRAINT */ STATEMENT *model; /* linked list of model statements in the original order */ int flag_x; /* if this flag is set, the current token being left parenthesis begins a slice that allows recognizing any undeclared symbolic names as dummy indices; this flag is automatically reset once the next token has been scanned */ int as_within; /* the warning "in understood as within" has been issued */ int as_in; /* the warning "within understood as in" has been issued */ int as_binary; /* the warning "logical understood as binary" has been issued */ int flag_s; /* if this flag is set, the solve statement has been parsed */ /*--------------------------------------------------------------*/ /* common segment */ DMP *strings; /* memory pool to allocate STRING data structures */ DMP *symbols; /* memory pool to allocate SYMBOL data structures */ DMP *tuples; /* memory pool to allocate TUPLE data structures */ DMP *arrays; /* memory pool to allocate ARRAY data structures */ DMP *members; /* memory pool to allocate MEMBER data structures */ DMP *elemvars; /* memory pool to allocate ELEMVAR data structures */ DMP *formulae; /* memory pool to allocate FORMULA data structures */ DMP *elemcons; /* memory pool to allocate ELEMCON data structures */ ARRAY *a_list; /* linked list of all arrays in the database */ char *sym_buf; /* char sym_buf[255+1]; */ /* working buffer used by the routine format_symbol */ char *tup_buf; /* char tup_buf[255+1]; */ /* working buffer used by the routine format_tuple */ /*--------------------------------------------------------------*/ /* generating/postsolving segment */ RNG *rand; /* pseudo-random number generator */ int flag_p; /* if this flag is set, the postsolving phase is in effect */ STATEMENT *stmt; /* model statement being currently executed */ TABDCA *dca; /* pointer to table driver communication area for table statement currently executed */ int m; /* number of rows in the problem, m >= 0 */ int n; /* number of columns in the problem, n >= 0 */ ELEMCON **row; /* ELEMCON *row[1+m]; */ /* row[0] is not used; row[i] is elemental constraint or objective, which corresponds to i-th row of the problem, 1 <= i <= m */ ELEMVAR **col; /* ELEMVAR *col[1+n]; */ /* col[0] is not used; col[j] is elemental variable, which corresponds to j-th column of the problem, 1 <= j <= n */ /*--------------------------------------------------------------*/ /* input/output segment */ XFILE *in_fp; /* stream assigned to the input text file */ char *in_file; /* name of the input text file */ XFILE *out_fp; /* stream assigned to the output text file used to write all data produced by display and printf statements; NULL means the data should be sent to stdout via the routine xprintf */ char *out_file; /* name of the output text file */ #if 0 /* 08/XI-2009 */ char *out_buf; /* char out_buf[OUTBUF_SIZE] */ /* buffer to accumulate output data */ int out_cnt; /* count of data bytes stored in the output buffer */ #endif XFILE *prt_fp; /* stream assigned to the print text file; may be NULL */ char *prt_file; /* name of the output print file */ /*--------------------------------------------------------------*/ /* solver interface segment */ jmp_buf jump; /* jump address for non-local go to in case of error */ int phase; /* phase of processing: 0 - database is being or has been initialized 1 - model section is being or has been read 2 - data section is being or has been read 3 - model is being or has been generated/postsolved 4 - model processing error has occurred */ char *mod_file; /* name of the input text file, which contains model section */ char *mpl_buf; /* char mpl_buf[255+1]; */ /* working buffer used by some interface routines */ }; /**********************************************************************/ /* * * PROCESSING MODEL SECTION * * */ /**********************************************************************/ #define alloc(type) ((type *)dmp_get_atomv(mpl->pool, sizeof(type))) /* allocate atom of given type */ #define enter_context _glp_mpl_enter_context void enter_context(MPL *mpl); /* enter current token into context queue */ #define print_context _glp_mpl_print_context void print_context(MPL *mpl); /* print current content of context queue */ #define get_char _glp_mpl_get_char void get_char(MPL *mpl); /* scan next character from input text file */ #define append_char _glp_mpl_append_char void append_char(MPL *mpl); /* append character to current token */ #define get_token _glp_mpl_get_token void get_token(MPL *mpl); /* scan next token from input text file */ #define unget_token _glp_mpl_unget_token void unget_token(MPL *mpl); /* return current token back to input stream */ #define is_keyword _glp_mpl_is_keyword int is_keyword(MPL *mpl, char *keyword); /* check if current token is given non-reserved keyword */ #define is_reserved _glp_mpl_is_reserved int is_reserved(MPL *mpl); /* check if current token is reserved keyword */ #define make_code _glp_mpl_make_code CODE *make_code(MPL *mpl, int op, OPERANDS *arg, int type, int dim); /* generate pseudo-code (basic routine) */ #define make_unary _glp_mpl_make_unary CODE *make_unary(MPL *mpl, int op, CODE *x, int type, int dim); /* generate pseudo-code for unary operation */ #define make_binary _glp_mpl_make_binary CODE *make_binary(MPL *mpl, int op, CODE *x, CODE *y, int type, int dim); /* generate pseudo-code for binary operation */ #define make_ternary _glp_mpl_make_ternary CODE *make_ternary(MPL *mpl, int op, CODE *x, CODE *y, CODE *z, int type, int dim); /* generate pseudo-code for ternary operation */ #define numeric_literal _glp_mpl_numeric_literal CODE *numeric_literal(MPL *mpl); /* parse reference to numeric literal */ #define string_literal _glp_mpl_string_literal CODE *string_literal(MPL *mpl); /* parse reference to string literal */ #define create_arg_list _glp_mpl_create_arg_list ARG_LIST *create_arg_list(MPL *mpl); /* create empty operands list */ #define expand_arg_list _glp_mpl_expand_arg_list ARG_LIST *expand_arg_list(MPL *mpl, ARG_LIST *list, CODE *x); /* append operand to operands list */ #define arg_list_len _glp_mpl_arg_list_len int arg_list_len(MPL *mpl, ARG_LIST *list); /* determine length of operands list */ #define subscript_list _glp_mpl_subscript_list ARG_LIST *subscript_list(MPL *mpl); /* parse subscript list */ #define object_reference _glp_mpl_object_reference CODE *object_reference(MPL *mpl); /* parse reference to named object */ #define numeric_argument _glp_mpl_numeric_argument CODE *numeric_argument(MPL *mpl, char *func); /* parse argument passed to built-in function */ #define symbolic_argument _glp_mpl_symbolic_argument CODE *symbolic_argument(MPL *mpl, char *func); #define elemset_argument _glp_mpl_elemset_argument CODE *elemset_argument(MPL *mpl, char *func); #define function_reference _glp_mpl_function_reference CODE *function_reference(MPL *mpl); /* parse reference to built-in function */ #define create_domain _glp_mpl_create_domain DOMAIN *create_domain(MPL *mpl); /* create empty domain */ #define create_block _glp_mpl_create_block DOMAIN_BLOCK *create_block(MPL *mpl); /* create empty domain block */ #define append_block _glp_mpl_append_block void append_block(MPL *mpl, DOMAIN *domain, DOMAIN_BLOCK *block); /* append domain block to specified domain */ #define append_slot _glp_mpl_append_slot DOMAIN_SLOT *append_slot(MPL *mpl, DOMAIN_BLOCK *block, char *name, CODE *code); /* create and append new slot to domain block */ #define expression_list _glp_mpl_expression_list CODE *expression_list(MPL *mpl); /* parse expression list */ #define literal_set _glp_mpl_literal_set CODE *literal_set(MPL *mpl, CODE *code); /* parse literal set */ #define indexing_expression _glp_mpl_indexing_expression DOMAIN *indexing_expression(MPL *mpl); /* parse indexing expression */ #define close_scope _glp_mpl_close_scope void close_scope(MPL *mpl, DOMAIN *domain); /* close scope of indexing expression */ #define iterated_expression _glp_mpl_iterated_expression CODE *iterated_expression(MPL *mpl); /* parse iterated expression */ #define domain_arity _glp_mpl_domain_arity int domain_arity(MPL *mpl, DOMAIN *domain); /* determine arity of domain */ #define set_expression _glp_mpl_set_expression CODE *set_expression(MPL *mpl); /* parse set expression */ #define branched_expression _glp_mpl_branched_expression CODE *branched_expression(MPL *mpl); /* parse conditional expression */ #define primary_expression _glp_mpl_primary_expression CODE *primary_expression(MPL *mpl); /* parse primary expression */ #define error_preceding _glp_mpl_error_preceding void error_preceding(MPL *mpl, char *opstr); /* raise error if preceding operand has wrong type */ #define error_following _glp_mpl_error_following void error_following(MPL *mpl, char *opstr); /* raise error if following operand has wrong type */ #define error_dimension _glp_mpl_error_dimension void error_dimension(MPL *mpl, char *opstr, int dim1, int dim2); /* raise error if operands have different dimension */ #define expression_0 _glp_mpl_expression_0 CODE *expression_0(MPL *mpl); /* parse expression of level 0 */ #define expression_1 _glp_mpl_expression_1 CODE *expression_1(MPL *mpl); /* parse expression of level 1 */ #define expression_2 _glp_mpl_expression_2 CODE *expression_2(MPL *mpl); /* parse expression of level 2 */ #define expression_3 _glp_mpl_expression_3 CODE *expression_3(MPL *mpl); /* parse expression of level 3 */ #define expression_4 _glp_mpl_expression_4 CODE *expression_4(MPL *mpl); /* parse expression of level 4 */ #define expression_5 _glp_mpl_expression_5 CODE *expression_5(MPL *mpl); /* parse expression of level 5 */ #define expression_6 _glp_mpl_expression_6 CODE *expression_6(MPL *mpl); /* parse expression of level 6 */ #define expression_7 _glp_mpl_expression_7 CODE *expression_7(MPL *mpl); /* parse expression of level 7 */ #define expression_8 _glp_mpl_expression_8 CODE *expression_8(MPL *mpl); /* parse expression of level 8 */ #define expression_9 _glp_mpl_expression_9 CODE *expression_9(MPL *mpl); /* parse expression of level 9 */ #define expression_10 _glp_mpl_expression_10 CODE *expression_10(MPL *mpl); /* parse expression of level 10 */ #define expression_11 _glp_mpl_expression_11 CODE *expression_11(MPL *mpl); /* parse expression of level 11 */ #define expression_12 _glp_mpl_expression_12 CODE *expression_12(MPL *mpl); /* parse expression of level 12 */ #define expression_13 _glp_mpl_expression_13 CODE *expression_13(MPL *mpl); /* parse expression of level 13 */ #define set_statement _glp_mpl_set_statement SET *set_statement(MPL *mpl); /* parse set statement */ #define parameter_statement _glp_mpl_parameter_statement PARAMETER *parameter_statement(MPL *mpl); /* parse parameter statement */ #define variable_statement _glp_mpl_variable_statement VARIABLE *variable_statement(MPL *mpl); /* parse variable statement */ #define constraint_statement _glp_mpl_constraint_statement CONSTRAINT *constraint_statement(MPL *mpl); /* parse constraint statement */ #define objective_statement _glp_mpl_objective_statement CONSTRAINT *objective_statement(MPL *mpl); /* parse objective statement */ #define table_statement _glp_mpl_table_statement TABLE *table_statement(MPL *mpl); /* parse table statement */ #define solve_statement _glp_mpl_solve_statement void *solve_statement(MPL *mpl); /* parse solve statement */ #define check_statement _glp_mpl_check_statement CHECK *check_statement(MPL *mpl); /* parse check statement */ #define display_statement _glp_mpl_display_statement DISPLAY *display_statement(MPL *mpl); /* parse display statement */ #define printf_statement _glp_mpl_printf_statement PRINTF *printf_statement(MPL *mpl); /* parse printf statement */ #define for_statement _glp_mpl_for_statement FOR *for_statement(MPL *mpl); /* parse for statement */ #define end_statement _glp_mpl_end_statement void end_statement(MPL *mpl); /* parse end statement */ #define simple_statement _glp_mpl_simple_statement STATEMENT *simple_statement(MPL *mpl, int spec); /* parse simple statement */ #define model_section _glp_mpl_model_section void model_section(MPL *mpl); /* parse model section */ /**********************************************************************/ /* * * PROCESSING DATA SECTION * * */ /**********************************************************************/ #if 2 + 2 == 5 struct SLICE /* see TUPLE */ { /* component of slice; the slice itself is associated with its first component; slices are similar to n-tuples with exception that some slice components (which are indicated by asterisks) don't refer to any symbols */ SYMBOL *sym; /* symbol, which this component refers to; can be NULL */ SLICE *next; /* the next component of slice */ }; #endif #define create_slice _glp_mpl_create_slice SLICE *create_slice(MPL *mpl); /* create slice */ #define expand_slice _glp_mpl_expand_slice SLICE *expand_slice ( MPL *mpl, SLICE *slice, /* destroyed */ SYMBOL *sym /* destroyed */ ); /* append new component to slice */ #define slice_dimen _glp_mpl_slice_dimen int slice_dimen ( MPL *mpl, SLICE *slice /* not changed */ ); /* determine dimension of slice */ #define slice_arity _glp_mpl_slice_arity int slice_arity ( MPL *mpl, SLICE *slice /* not changed */ ); /* determine arity of slice */ #define fake_slice _glp_mpl_fake_slice SLICE *fake_slice(MPL *mpl, int dim); /* create fake slice of all asterisks */ #define delete_slice _glp_mpl_delete_slice void delete_slice ( MPL *mpl, SLICE *slice /* destroyed */ ); /* delete slice */ #define is_number _glp_mpl_is_number int is_number(MPL *mpl); /* check if current token is number */ #define is_symbol _glp_mpl_is_symbol int is_symbol(MPL *mpl); /* check if current token is symbol */ #define is_literal _glp_mpl_is_literal int is_literal(MPL *mpl, char *literal); /* check if current token is given symbolic literal */ #define read_number _glp_mpl_read_number double read_number(MPL *mpl); /* read number */ #define read_symbol _glp_mpl_read_symbol SYMBOL *read_symbol(MPL *mpl); /* read symbol */ #define read_slice _glp_mpl_read_slice SLICE *read_slice ( MPL *mpl, char *name, /* not changed */ int dim ); /* read slice */ #define select_set _glp_mpl_select_set SET *select_set ( MPL *mpl, char *name /* not changed */ ); /* select set to saturate it with elemental sets */ #define simple_format _glp_mpl_simple_format void simple_format ( MPL *mpl, SET *set, /* not changed */ MEMBER *memb, /* modified */ SLICE *slice /* not changed */ ); /* read set data block in simple format */ #define matrix_format _glp_mpl_matrix_format void matrix_format ( MPL *mpl, SET *set, /* not changed */ MEMBER *memb, /* modified */ SLICE *slice, /* not changed */ int tr ); /* read set data block in matrix format */ #define set_data _glp_mpl_set_data void set_data(MPL *mpl); /* read set data */ #define select_parameter _glp_mpl_select_parameter PARAMETER *select_parameter ( MPL *mpl, char *name /* not changed */ ); /* select parameter to saturate it with data */ #define set_default _glp_mpl_set_default void set_default ( MPL *mpl, PARAMETER *par, /* not changed */ SYMBOL *altval /* destroyed */ ); /* set default parameter value */ #define read_value _glp_mpl_read_value MEMBER *read_value ( MPL *mpl, PARAMETER *par, /* not changed */ TUPLE *tuple /* destroyed */ ); /* read value and assign it to parameter member */ #define plain_format _glp_mpl_plain_format void plain_format ( MPL *mpl, PARAMETER *par, /* not changed */ SLICE *slice /* not changed */ ); /* read parameter data block in plain format */ #define tabular_format _glp_mpl_tabular_format void tabular_format ( MPL *mpl, PARAMETER *par, /* not changed */ SLICE *slice, /* not changed */ int tr ); /* read parameter data block in tabular format */ #define tabbing_format _glp_mpl_tabbing_format void tabbing_format ( MPL *mpl, SYMBOL *altval /* not changed */ ); /* read parameter data block in tabbing format */ #define parameter_data _glp_mpl_parameter_data void parameter_data(MPL *mpl); /* read parameter data */ #define data_section _glp_mpl_data_section void data_section(MPL *mpl); /* read data section */ /**********************************************************************/ /* * * FLOATING-POINT NUMBERS * * */ /**********************************************************************/ #define fp_add _glp_mpl_fp_add double fp_add(MPL *mpl, double x, double y); /* floating-point addition */ #define fp_sub _glp_mpl_fp_sub double fp_sub(MPL *mpl, double x, double y); /* floating-point subtraction */ #define fp_less _glp_mpl_fp_less double fp_less(MPL *mpl, double x, double y); /* floating-point non-negative subtraction */ #define fp_mul _glp_mpl_fp_mul double fp_mul(MPL *mpl, double x, double y); /* floating-point multiplication */ #define fp_div _glp_mpl_fp_div double fp_div(MPL *mpl, double x, double y); /* floating-point division */ #define fp_idiv _glp_mpl_fp_idiv double fp_idiv(MPL *mpl, double x, double y); /* floating-point quotient of exact division */ #define fp_mod _glp_mpl_fp_mod double fp_mod(MPL *mpl, double x, double y); /* floating-point remainder of exact division */ #define fp_power _glp_mpl_fp_power double fp_power(MPL *mpl, double x, double y); /* floating-point exponentiation (raise to power) */ #define fp_exp _glp_mpl_fp_exp double fp_exp(MPL *mpl, double x); /* floating-point base-e exponential */ #define fp_log _glp_mpl_fp_log double fp_log(MPL *mpl, double x); /* floating-point natural logarithm */ #define fp_log10 _glp_mpl_fp_log10 double fp_log10(MPL *mpl, double x); /* floating-point common (decimal) logarithm */ #define fp_sqrt _glp_mpl_fp_sqrt double fp_sqrt(MPL *mpl, double x); /* floating-point square root */ #define fp_sin _glp_mpl_fp_sin double fp_sin(MPL *mpl, double x); /* floating-point trigonometric sine */ #define fp_cos _glp_mpl_fp_cos double fp_cos(MPL *mpl, double x); /* floating-point trigonometric cosine */ #define fp_atan _glp_mpl_fp_atan double fp_atan(MPL *mpl, double x); /* floating-point trigonometric arctangent */ #define fp_atan2 _glp_mpl_fp_atan2 double fp_atan2(MPL *mpl, double y, double x); /* floating-point trigonometric arctangent */ #define fp_round _glp_mpl_fp_round double fp_round(MPL *mpl, double x, double n); /* round floating-point value to n fractional digits */ #define fp_trunc _glp_mpl_fp_trunc double fp_trunc(MPL *mpl, double x, double n); /* truncate floating-point value to n fractional digits */ /**********************************************************************/ /* * * PSEUDO-RANDOM NUMBER GENERATORS * * */ /**********************************************************************/ #define fp_irand224 _glp_mpl_fp_irand224 double fp_irand224(MPL *mpl); /* pseudo-random integer in the range [0, 2^24) */ #define fp_uniform01 _glp_mpl_fp_uniform01 double fp_uniform01(MPL *mpl); /* pseudo-random number in the range [0, 1) */ #define fp_uniform _glp_mpl_uniform double fp_uniform(MPL *mpl, double a, double b); /* pseudo-random number in the range [a, b) */ #define fp_normal01 _glp_mpl_fp_normal01 double fp_normal01(MPL *mpl); /* Gaussian random variate with mu = 0 and sigma = 1 */ #define fp_normal _glp_mpl_fp_normal double fp_normal(MPL *mpl, double mu, double sigma); /* Gaussian random variate with specified mu and sigma */ /**********************************************************************/ /* * * DATE/TIME * * */ /**********************************************************************/ #define fn_gmtime _glp_mpl_fn_gmtime double fn_gmtime(MPL *mpl); /* obtain the current calendar time (UTC) */ #define fn_str2time _glp_mpl_fn_str2time double fn_str2time(MPL *mpl, const char *str, const char *fmt); /* convert character string to the calendar time */ #define fn_time2str _glp_mpl_fn_time2str void fn_time2str(MPL *mpl, char *str, double t, const char *fmt); /* convert the calendar time to character string */ /**********************************************************************/ /* * * CHARACTER STRINGS * * */ /**********************************************************************/ #define create_string _glp_mpl_create_string STRING *create_string ( MPL *mpl, char buf[MAX_LENGTH+1] /* not changed */ ); /* create character string */ #define copy_string _glp_mpl_copy_string STRING *copy_string ( MPL *mpl, STRING *str /* not changed */ ); /* make copy of character string */ #define compare_strings _glp_mpl_compare_strings int compare_strings ( MPL *mpl, STRING *str1, /* not changed */ STRING *str2 /* not changed */ ); /* compare one character string with another */ #define fetch_string _glp_mpl_fetch_string char *fetch_string ( MPL *mpl, STRING *str, /* not changed */ char buf[MAX_LENGTH+1] /* modified */ ); /* extract content of character string */ #define delete_string _glp_mpl_delete_string void delete_string ( MPL *mpl, STRING *str /* destroyed */ ); /* delete character string */ /**********************************************************************/ /* * * SYMBOLS * * */ /**********************************************************************/ struct SYMBOL { /* symbol (numeric or abstract quantity) */ double num; /* numeric value of symbol (used only if str == NULL) */ STRING *str; /* abstract value of symbol (used only if str != NULL) */ }; #define create_symbol_num _glp_mpl_create_symbol_num SYMBOL *create_symbol_num(MPL *mpl, double num); /* create symbol of numeric type */ #define create_symbol_str _glp_mpl_create_symbol_str SYMBOL *create_symbol_str ( MPL *mpl, STRING *str /* destroyed */ ); /* create symbol of abstract type */ #define copy_symbol _glp_mpl_copy_symbol SYMBOL *copy_symbol ( MPL *mpl, SYMBOL *sym /* not changed */ ); /* make copy of symbol */ #define compare_symbols _glp_mpl_compare_symbols int compare_symbols ( MPL *mpl, SYMBOL *sym1, /* not changed */ SYMBOL *sym2 /* not changed */ ); /* compare one symbol with another */ #define delete_symbol _glp_mpl_delete_symbol void delete_symbol ( MPL *mpl, SYMBOL *sym /* destroyed */ ); /* delete symbol */ #define format_symbol _glp_mpl_format_symbol char *format_symbol ( MPL *mpl, SYMBOL *sym /* not changed */ ); /* format symbol for displaying or printing */ #define concat_symbols _glp_mpl_concat_symbols SYMBOL *concat_symbols ( MPL *mpl, SYMBOL *sym1, /* destroyed */ SYMBOL *sym2 /* destroyed */ ); /* concatenate one symbol with another */ /**********************************************************************/ /* * * N-TUPLES * * */ /**********************************************************************/ struct TUPLE { /* component of n-tuple; the n-tuple itself is associated with its first component; (note that 0-tuple has no components) */ SYMBOL *sym; /* symbol, which the component refers to; cannot be NULL */ TUPLE *next; /* the next component of n-tuple */ }; #define create_tuple _glp_mpl_create_tuple TUPLE *create_tuple(MPL *mpl); /* create n-tuple */ #define expand_tuple _glp_mpl_expand_tuple TUPLE *expand_tuple ( MPL *mpl, TUPLE *tuple, /* destroyed */ SYMBOL *sym /* destroyed */ ); /* append symbol to n-tuple */ #define tuple_dimen _glp_mpl_tuple_dimen int tuple_dimen ( MPL *mpl, TUPLE *tuple /* not changed */ ); /* determine dimension of n-tuple */ #define copy_tuple _glp_mpl_copy_tuple TUPLE *copy_tuple ( MPL *mpl, TUPLE *tuple /* not changed */ ); /* make copy of n-tuple */ #define compare_tuples _glp_mpl_compare_tuples int compare_tuples ( MPL *mpl, TUPLE *tuple1, /* not changed */ TUPLE *tuple2 /* not changed */ ); /* compare one n-tuple with another */ #define build_subtuple _glp_mpl_build_subtuple TUPLE *build_subtuple ( MPL *mpl, TUPLE *tuple, /* not changed */ int dim ); /* build subtuple of given n-tuple */ #define delete_tuple _glp_mpl_delete_tuple void delete_tuple ( MPL *mpl, TUPLE *tuple /* destroyed */ ); /* delete n-tuple */ #define format_tuple _glp_mpl_format_tuple char *format_tuple ( MPL *mpl, int c, TUPLE *tuple /* not changed */ ); /* format n-tuple for displaying or printing */ /**********************************************************************/ /* * * ELEMENTAL SETS * * */ /**********************************************************************/ #if 2 + 2 == 5 struct ELEMSET /* see ARRAY */ { /* elemental set of n-tuples; formally it is a "value" assigned to members of model sets (like numbers and symbols, which are values assigned to members of model parameters); note that a simple model set is not an elemental set, it is 0-dimensional array, the only member of which (if it exists) is assigned an elemental set */ #endif #define create_elemset _glp_mpl_create_elemset ELEMSET *create_elemset(MPL *mpl, int dim); /* create elemental set */ #define find_tuple _glp_mpl_find_tuple MEMBER *find_tuple ( MPL *mpl, ELEMSET *set, /* not changed */ TUPLE *tuple /* not changed */ ); /* check if elemental set contains given n-tuple */ #define add_tuple _glp_mpl_add_tuple MEMBER *add_tuple ( MPL *mpl, ELEMSET *set, /* modified */ TUPLE *tuple /* destroyed */ ); /* add new n-tuple to elemental set */ #define check_then_add _glp_mpl_check_then_add MEMBER *check_then_add ( MPL *mpl, ELEMSET *set, /* modified */ TUPLE *tuple /* destroyed */ ); /* check and add new n-tuple to elemental set */ #define copy_elemset _glp_mpl_copy_elemset ELEMSET *copy_elemset ( MPL *mpl, ELEMSET *set /* not changed */ ); /* make copy of elemental set */ #define delete_elemset _glp_mpl_delete_elemset void delete_elemset ( MPL *mpl, ELEMSET *set /* destroyed */ ); /* delete elemental set */ #define arelset_size _glp_mpl_arelset_size int arelset_size(MPL *mpl, double t0, double tf, double dt); /* compute size of "arithmetic" elemental set */ #define arelset_member _glp_mpl_arelset_member double arelset_member(MPL *mpl, double t0, double tf, double dt, int j); /* compute member of "arithmetic" elemental set */ #define create_arelset _glp_mpl_create_arelset ELEMSET *create_arelset(MPL *mpl, double t0, double tf, double dt); /* create "arithmetic" elemental set */ #define set_union _glp_mpl_set_union ELEMSET *set_union ( MPL *mpl, ELEMSET *X, /* destroyed */ ELEMSET *Y /* destroyed */ ); /* union of two elemental sets */ #define set_diff _glp_mpl_set_diff ELEMSET *set_diff ( MPL *mpl, ELEMSET *X, /* destroyed */ ELEMSET *Y /* destroyed */ ); /* difference between two elemental sets */ #define set_symdiff _glp_mpl_set_symdiff ELEMSET *set_symdiff ( MPL *mpl, ELEMSET *X, /* destroyed */ ELEMSET *Y /* destroyed */ ); /* symmetric difference between two elemental sets */ #define set_inter _glp_mpl_set_inter ELEMSET *set_inter ( MPL *mpl, ELEMSET *X, /* destroyed */ ELEMSET *Y /* destroyed */ ); /* intersection of two elemental sets */ #define set_cross _glp_mpl_set_cross ELEMSET *set_cross ( MPL *mpl, ELEMSET *X, /* destroyed */ ELEMSET *Y /* destroyed */ ); /* cross (Cartesian) product of two elemental sets */ /**********************************************************************/ /* * * ELEMENTAL VARIABLES * * */ /**********************************************************************/ struct ELEMVAR { /* elemental variable; formally it is a "value" assigned to members of model variables (like numbers and symbols, which are values assigned to members of model parameters) */ int j; /* LP column number assigned to this elemental variable */ VARIABLE *var; /* model variable, which contains this elemental variable */ MEMBER *memb; /* array member, which is assigned this elemental variable */ double lbnd; /* lower bound */ double ubnd; /* upper bound */ double temp; /* working quantity used in operations on linear forms; normally it contains floating-point zero */ #if 1 /* 15/V-2010 */ int stat; double prim, dual; /* solution components provided by the solver */ #endif }; /**********************************************************************/ /* * * LINEAR FORMS * * */ /**********************************************************************/ struct FORMULA { /* term of linear form c * x, where c is a coefficient, x is an elemental variable; the linear form itself is the sum of terms and is associated with its first term; (note that the linear form may be empty that means the sum is equal to zero) */ double coef; /* coefficient at elemental variable or constant term */ ELEMVAR *var; /* reference to elemental variable; NULL means constant term */ FORMULA *next; /* the next term of linear form */ }; #define constant_term _glp_mpl_constant_term FORMULA *constant_term(MPL *mpl, double coef); /* create constant term */ #define single_variable _glp_mpl_single_variable FORMULA *single_variable ( MPL *mpl, ELEMVAR *var /* referenced */ ); /* create single variable */ #define copy_formula _glp_mpl_copy_formula FORMULA *copy_formula ( MPL *mpl, FORMULA *form /* not changed */ ); /* make copy of linear form */ #define delete_formula _glp_mpl_delete_formula void delete_formula ( MPL *mpl, FORMULA *form /* destroyed */ ); /* delete linear form */ #define linear_comb _glp_mpl_linear_comb FORMULA *linear_comb ( MPL *mpl, double a, FORMULA *fx, /* destroyed */ double b, FORMULA *fy /* destroyed */ ); /* linear combination of two linear forms */ #define remove_constant _glp_mpl_remove_constant FORMULA *remove_constant ( MPL *mpl, FORMULA *form, /* destroyed */ double *coef /* modified */ ); /* remove constant term from linear form */ #define reduce_terms _glp_mpl_reduce_terms FORMULA *reduce_terms ( MPL *mpl, FORMULA *form /* destroyed */ ); /* reduce identical terms in linear form */ /**********************************************************************/ /* * * ELEMENTAL CONSTRAINTS * * */ /**********************************************************************/ struct ELEMCON { /* elemental constraint; formally it is a "value" assigned to members of model constraints (like numbers or symbols, which are values assigned to members of model parameters) */ int i; /* LP row number assigned to this elemental constraint */ CONSTRAINT *con; /* model constraint, which contains this elemental constraint */ MEMBER *memb; /* array member, which is assigned this elemental constraint */ FORMULA *form; /* linear form */ double lbnd; /* lower bound */ double ubnd; /* upper bound */ #if 1 /* 15/V-2010 */ int stat; double prim, dual; /* solution components provided by the solver */ #endif }; /**********************************************************************/ /* * * GENERIC VALUES * * */ /**********************************************************************/ union VALUE { /* generic value, which can be assigned to object member or be a result of evaluation of expression */ /* indicator that specifies the particular type of generic value is stored in the corresponding array or pseudo-code descriptor and can be one of the following: A_NONE - no value A_NUMERIC - floating-point number A_SYMBOLIC - symbol A_LOGICAL - logical value A_TUPLE - n-tuple A_ELEMSET - elemental set A_ELEMVAR - elemental variable A_FORMULA - linear form A_ELEMCON - elemental constraint */ void *none; /* null */ double num; /* value */ SYMBOL *sym; /* value */ int bit; /* value */ TUPLE *tuple; /* value */ ELEMSET *set; /* value */ ELEMVAR *var; /* reference */ FORMULA *form; /* value */ ELEMCON *con; /* reference */ }; #define delete_value _glp_mpl_delete_value void delete_value ( MPL *mpl, int type, VALUE *value /* content destroyed */ ); /* delete generic value */ /**********************************************************************/ /* * * SYMBOLICALLY INDEXED ARRAYS * * */ /**********************************************************************/ struct ARRAY { /* multi-dimensional array, a set of members indexed over simple or compound sets of symbols; arrays are used to represent the contents of model objects (i.e. sets, parameters, variables, constraints, and objectives); arrays also are used as "values" that are assigned to members of set objects, in which case the array itself represents an elemental set */ int type; /* type of generic values assigned to the array members: A_NONE - none (members have no assigned values) A_NUMERIC - floating-point numbers A_SYMBOLIC - symbols A_ELEMSET - elemental sets A_ELEMVAR - elemental variables A_ELEMCON - elemental constraints */ int dim; /* dimension of the array that determines number of components in n-tuples for all members of the array, dim >= 0; dim = 0 means the array is 0-dimensional */ int size; /* size of the array, i.e. number of its members */ MEMBER *head; /* the first array member; NULL means the array is empty */ MEMBER *tail; /* the last array member; NULL means the array is empty */ AVL *tree; /* the search tree intended to find array members for logarithmic time; NULL means the search tree doesn't exist */ ARRAY *prev; /* the previous array in the translator database */ ARRAY *next; /* the next array in the translator database */ }; struct MEMBER { /* array member */ TUPLE *tuple; /* n-tuple, which identifies the member; number of its components is the same for all members within the array and determined by the array dimension; duplicate members are not allowed */ MEMBER *next; /* the next array member */ VALUE value; /* generic value assigned to the member */ }; #define create_array _glp_mpl_create_array ARRAY *create_array(MPL *mpl, int type, int dim); /* create array */ #define find_member _glp_mpl_find_member MEMBER *find_member ( MPL *mpl, ARRAY *array, /* not changed */ TUPLE *tuple /* not changed */ ); /* find array member with given n-tuple */ #define add_member _glp_mpl_add_member MEMBER *add_member ( MPL *mpl, ARRAY *array, /* modified */ TUPLE *tuple /* destroyed */ ); /* add new member to array */ #define delete_array _glp_mpl_delete_array void delete_array ( MPL *mpl, ARRAY *array /* destroyed */ ); /* delete array */ /**********************************************************************/ /* * * DOMAINS AND DUMMY INDICES * * */ /**********************************************************************/ struct DOMAIN { /* domain (a simple or compound set); syntactically domain looks like '{ i in I, (j,k) in S, t in T : }'; domains are used to define sets, over which model objects are indexed, and also as constituents of iterated operators */ DOMAIN_BLOCK *list; /* linked list of domain blocks (in the example above such blocks are 'i in I', '(j,k) in S', and 't in T'); this list cannot be empty */ CODE *code; /* pseudo-code for computing the logical predicate, which follows the colon; NULL means no predicate is specified */ }; struct DOMAIN_BLOCK { /* domain block; syntactically domain blocks look like 'i in I', '(j,k) in S', and 't in T' in the example above (in the sequel sets like I, S, and T are called basic sets) */ DOMAIN_SLOT *list; /* linked list of domain slots (i.e. indexing positions); number of slots in this list is the same as dimension of n-tuples in the basic set; this list cannot be empty */ CODE *code; /* pseudo-code for computing basic set; cannot be NULL */ TUPLE *backup; /* if this n-tuple is not empty, current values of dummy indices in the domain block are the same as components of this n-tuple (note that this n-tuple may have larger dimension than number of dummy indices in this block, in which case extra components are ignored); this n-tuple is used to restore former values of dummy indices, if they were changed due to recursive calls to the domain block */ DOMAIN_BLOCK *next; /* the next block in the same domain */ }; struct DOMAIN_SLOT { /* domain slot; it specifies an individual indexing position and defines the corresponding dummy index */ char *name; /* symbolic name of the dummy index; null pointer means the dummy index is not explicitly specified */ CODE *code; /* pseudo-code for computing symbolic value, at which the dummy index is bound; NULL means the dummy index is free within the domain scope */ SYMBOL *value; /* current value assigned to the dummy index; NULL means no value is assigned at the moment */ CODE *list; /* linked list of pseudo-codes with operation O_INDEX referring to this slot; this linked list is used to invalidate resultant values of the operation, which depend on this dummy index */ DOMAIN_SLOT *next; /* the next slot in the same domain block */ }; #define assign_dummy_index _glp_mpl_assign_dummy_index void assign_dummy_index ( MPL *mpl, DOMAIN_SLOT *slot, /* modified */ SYMBOL *value /* not changed */ ); /* assign new value to dummy index */ #define update_dummy_indices _glp_mpl_update_dummy_indices void update_dummy_indices ( MPL *mpl, DOMAIN_BLOCK *block /* not changed */ ); /* update current values of dummy indices */ #define enter_domain_block _glp_mpl_enter_domain_block int enter_domain_block ( MPL *mpl, DOMAIN_BLOCK *block, /* not changed */ TUPLE *tuple, /* not changed */ void *info, void (*func)(MPL *mpl, void *info) ); /* enter domain block */ #define eval_within_domain _glp_mpl_eval_within_domain int eval_within_domain ( MPL *mpl, DOMAIN *domain, /* not changed */ TUPLE *tuple, /* not changed */ void *info, void (*func)(MPL *mpl, void *info) ); /* perform evaluation within domain scope */ #define loop_within_domain _glp_mpl_loop_within_domain void loop_within_domain ( MPL *mpl, DOMAIN *domain, /* not changed */ void *info, int (*func)(MPL *mpl, void *info) ); /* perform iterations within domain scope */ #define out_of_domain _glp_mpl_out_of_domain void out_of_domain ( MPL *mpl, char *name, /* not changed */ TUPLE *tuple /* not changed */ ); /* raise domain exception */ #define get_domain_tuple _glp_mpl_get_domain_tuple TUPLE *get_domain_tuple ( MPL *mpl, DOMAIN *domain /* not changed */ ); /* obtain current n-tuple from domain */ #define clean_domain _glp_mpl_clean_domain void clean_domain(MPL *mpl, DOMAIN *domain); /* clean domain */ /**********************************************************************/ /* * * MODEL SETS * * */ /**********************************************************************/ struct SET { /* model set */ char *name; /* symbolic name; cannot be NULL */ char *alias; /* alias; NULL means alias is not specified */ int dim; /* aka arity */ /* dimension (number of subscripts); dim = 0 means 0-dimensional (unsubscripted) set, dim > 0 means set of sets */ DOMAIN *domain; /* subscript domain; NULL for 0-dimensional set */ int dimen; /* dimension of n-tuples, which members of this set consist of (note that the model set itself is an array of elemental sets, which are its members; so, don't confuse this dimension with dimension of the model set); always non-zero */ WITHIN *within; /* list of supersets, which restrict each member of the set to be in every superset from this list; this list can be empty */ CODE *assign; /* pseudo-code for computing assigned value; can be NULL */ CODE *option; /* pseudo-code for computing default value; can be NULL */ GADGET *gadget; /* plain set used to initialize the array of sets; can be NULL */ int data; /* data status flag: 0 - no data are provided in the data section 1 - data are provided, but not checked yet 2 - data are provided and have been checked */ ARRAY *array; /* array of members, which are assigned elemental sets */ }; struct WITHIN { /* restricting superset list entry */ CODE *code; /* pseudo-code for computing the superset; cannot be NULL */ WITHIN *next; /* the next entry for the same set or parameter */ }; struct GADGET { /* plain set used to initialize the array of sets with data */ SET *set; /* pointer to plain set; cannot be NULL */ int ind[20]; /* ind[dim+dimen]; */ /* permutation of integers 1, 2, ..., dim+dimen */ }; #define check_elem_set _glp_mpl_check_elem_set void check_elem_set ( MPL *mpl, SET *set, /* not changed */ TUPLE *tuple, /* not changed */ ELEMSET *refer /* not changed */ ); /* check elemental set assigned to set member */ #define take_member_set _glp_mpl_take_member_set ELEMSET *take_member_set /* returns reference, not value */ ( MPL *mpl, SET *set, /* not changed */ TUPLE *tuple /* not changed */ ); /* obtain elemental set assigned to set member */ #define eval_member_set _glp_mpl_eval_member_set ELEMSET *eval_member_set /* returns reference, not value */ ( MPL *mpl, SET *set, /* not changed */ TUPLE *tuple /* not changed */ ); /* evaluate elemental set assigned to set member */ #define eval_whole_set _glp_mpl_eval_whole_set void eval_whole_set(MPL *mpl, SET *set); /* evaluate model set over entire domain */ #define clean_set _glp_mpl_clean_set void clean_set(MPL *mpl, SET *set); /* clean model set */ /**********************************************************************/ /* * * MODEL PARAMETERS * * */ /**********************************************************************/ struct PARAMETER { /* model parameter */ char *name; /* symbolic name; cannot be NULL */ char *alias; /* alias; NULL means alias is not specified */ int dim; /* aka arity */ /* dimension (number of subscripts); dim = 0 means 0-dimensional (unsubscripted) parameter */ DOMAIN *domain; /* subscript domain; NULL for 0-dimensional parameter */ int type; /* parameter type: A_NUMERIC - numeric A_INTEGER - integer A_BINARY - binary A_SYMBOLIC - symbolic */ CONDITION *cond; /* list of conditions, which restrict each parameter member to satisfy to every condition from this list; this list is used only for numeric parameters and can be empty */ WITHIN *in; /* list of supersets, which restrict each parameter member to be in every superset from this list; this list is used only for symbolic parameters and can be empty */ CODE *assign; /* pseudo-code for computing assigned value; can be NULL */ CODE *option; /* pseudo-code for computing default value; can be NULL */ int data; /* data status flag: 0 - no data are provided in the data section 1 - data are provided, but not checked yet 2 - data are provided and have been checked */ SYMBOL *defval; /* default value provided in the data section; can be NULL */ ARRAY *array; /* array of members, which are assigned numbers or symbols */ }; struct CONDITION { /* restricting condition list entry */ int rho; /* flag that specifies the form of the condition: O_LT - less than O_LE - less than or equal to O_EQ - equal to O_GE - greater than or equal to O_GT - greater than O_NE - not equal to */ CODE *code; /* pseudo-code for computing the reference value */ CONDITION *next; /* the next entry for the same parameter */ }; #define check_value_num _glp_mpl_check_value_num void check_value_num ( MPL *mpl, PARAMETER *par, /* not changed */ TUPLE *tuple, /* not changed */ double value ); /* check numeric value assigned to parameter member */ #define take_member_num _glp_mpl_take_member_num double take_member_num ( MPL *mpl, PARAMETER *par, /* not changed */ TUPLE *tuple /* not changed */ ); /* obtain numeric value assigned to parameter member */ #define eval_member_num _glp_mpl_eval_member_num double eval_member_num ( MPL *mpl, PARAMETER *par, /* not changed */ TUPLE *tuple /* not changed */ ); /* evaluate numeric value assigned to parameter member */ #define check_value_sym _glp_mpl_check_value_sym void check_value_sym ( MPL *mpl, PARAMETER *par, /* not changed */ TUPLE *tuple, /* not changed */ SYMBOL *value /* not changed */ ); /* check symbolic value assigned to parameter member */ #define take_member_sym _glp_mpl_take_member_sym SYMBOL *take_member_sym /* returns value, not reference */ ( MPL *mpl, PARAMETER *par, /* not changed */ TUPLE *tuple /* not changed */ ); /* obtain symbolic value assigned to parameter member */ #define eval_member_sym _glp_mpl_eval_member_sym SYMBOL *eval_member_sym /* returns value, not reference */ ( MPL *mpl, PARAMETER *par, /* not changed */ TUPLE *tuple /* not changed */ ); /* evaluate symbolic value assigned to parameter member */ #define eval_whole_par _glp_mpl_eval_whole_par void eval_whole_par(MPL *mpl, PARAMETER *par); /* evaluate model parameter over entire domain */ #define clean_parameter _glp_mpl_clean_parameter void clean_parameter(MPL *mpl, PARAMETER *par); /* clean model parameter */ /**********************************************************************/ /* * * MODEL VARIABLES * * */ /**********************************************************************/ struct VARIABLE { /* model variable */ char *name; /* symbolic name; cannot be NULL */ char *alias; /* alias; NULL means alias is not specified */ int dim; /* aka arity */ /* dimension (number of subscripts); dim = 0 means 0-dimensional (unsubscripted) variable */ DOMAIN *domain; /* subscript domain; NULL for 0-dimensional variable */ int type; /* variable type: A_NUMERIC - continuous A_INTEGER - integer A_BINARY - binary */ CODE *lbnd; /* pseudo-code for computing lower bound; NULL means lower bound is not specified */ CODE *ubnd; /* pseudo-code for computing upper bound; NULL means upper bound is not specified */ /* if both the pointers lbnd and ubnd refer to the same code, the variable is fixed at the corresponding value */ ARRAY *array; /* array of members, which are assigned elemental variables */ }; #define take_member_var _glp_mpl_take_member_var ELEMVAR *take_member_var /* returns reference */ ( MPL *mpl, VARIABLE *var, /* not changed */ TUPLE *tuple /* not changed */ ); /* obtain reference to elemental variable */ #define eval_member_var _glp_mpl_eval_member_var ELEMVAR *eval_member_var /* returns reference */ ( MPL *mpl, VARIABLE *var, /* not changed */ TUPLE *tuple /* not changed */ ); /* evaluate reference to elemental variable */ #define eval_whole_var _glp_mpl_eval_whole_var void eval_whole_var(MPL *mpl, VARIABLE *var); /* evaluate model variable over entire domain */ #define clean_variable _glp_mpl_clean_variable void clean_variable(MPL *mpl, VARIABLE *var); /* clean model variable */ /**********************************************************************/ /* * * MODEL CONSTRAINTS AND OBJECTIVES * * */ /**********************************************************************/ struct CONSTRAINT { /* model constraint or objective */ char *name; /* symbolic name; cannot be NULL */ char *alias; /* alias; NULL means alias is not specified */ int dim; /* aka arity */ /* dimension (number of subscripts); dim = 0 means 0-dimensional (unsubscripted) constraint */ DOMAIN *domain; /* subscript domain; NULL for 0-dimensional constraint */ int type; /* constraint type: A_CONSTRAINT - constraint A_MINIMIZE - objective (minimization) A_MAXIMIZE - objective (maximization) */ CODE *code; /* pseudo-code for computing main linear form; cannot be NULL */ CODE *lbnd; /* pseudo-code for computing lower bound; NULL means lower bound is not specified */ CODE *ubnd; /* pseudo-code for computing upper bound; NULL means upper bound is not specified */ /* if both the pointers lbnd and ubnd refer to the same code, the constraint has the form of equation */ ARRAY *array; /* array of members, which are assigned elemental constraints */ }; #define take_member_con _glp_mpl_take_member_con ELEMCON *take_member_con /* returns reference */ ( MPL *mpl, CONSTRAINT *con, /* not changed */ TUPLE *tuple /* not changed */ ); /* obtain reference to elemental constraint */ #define eval_member_con _glp_mpl_eval_member_con ELEMCON *eval_member_con /* returns reference */ ( MPL *mpl, CONSTRAINT *con, /* not changed */ TUPLE *tuple /* not changed */ ); /* evaluate reference to elemental constraint */ #define eval_whole_con _glp_mpl_eval_whole_con void eval_whole_con(MPL *mpl, CONSTRAINT *con); /* evaluate model constraint over entire domain */ #define clean_constraint _glp_mpl_clean_constraint void clean_constraint(MPL *mpl, CONSTRAINT *con); /* clean model constraint */ /**********************************************************************/ /* * * DATA TABLES * * */ /**********************************************************************/ struct TABLE { /* data table */ char *name; /* symbolic name; cannot be NULL */ char *alias; /* alias; NULL means alias is not specified */ int type; /* table type: A_INPUT - input table A_OUTPUT - output table */ TABARG *arg; /* argument list; cannot be empty */ union { struct { SET *set; /* input set; NULL means the set is not specified */ TABFLD *fld; /* field list; cannot be empty */ TABIN *list; /* input list; can be empty */ } in; struct { DOMAIN *domain; /* subscript domain; cannot be NULL */ TABOUT *list; /* output list; cannot be empty */ } out; } u; }; struct TABARG { /* table argument list entry */ CODE *code; /* pseudo-code for computing the argument */ TABARG *next; /* next entry for the same table */ }; struct TABFLD { /* table field list entry */ char *name; /* field name; cannot be NULL */ TABFLD *next; /* next entry for the same table */ }; struct TABIN { /* table input list entry */ PARAMETER *par; /* parameter to be read; cannot be NULL */ char *name; /* column name; cannot be NULL */ TABIN *next; /* next entry for the same table */ }; struct TABOUT { /* table output list entry */ CODE *code; /* pseudo-code for computing the value to be written */ char *name; /* column name; cannot be NULL */ TABOUT *next; /* next entry for the same table */ }; struct TABDCA { /* table driver communication area */ int id; /* driver identifier (set by mpl_tab_drv_open) */ void *link; /* driver link pointer (set by mpl_tab_drv_open) */ int na; /* number of arguments */ char **arg; /* char *arg[1+ns]; */ /* arg[k], 1 <= k <= ns, is pointer to k-th argument */ int nf; /* number of fields */ char **name; /* char *name[1+nc]; */ /* name[k], 1 <= k <= nc, is name of k-th field */ int *type; /* int type[1+nc]; */ /* type[k], 1 <= k <= nc, is type of k-th field: '?' - value not assigned 'N' - number 'S' - character string */ double *num; /* double num[1+nc]; */ /* num[k], 1 <= k <= nc, is numeric value of k-th field */ char **str; /* str[k], 1 <= k <= nc, is string value of k-th field */ }; #define mpl_tab_num_args _glp_mpl_tab_num_args int mpl_tab_num_args(TABDCA *dca); #define mpl_tab_get_arg _glp_mpl_tab_get_arg const char *mpl_tab_get_arg(TABDCA *dca, int k); #define mpl_tab_num_flds _glp_mpl_tab_num_flds int mpl_tab_num_flds(TABDCA *dca); #define mpl_tab_get_name _glp_mpl_tab_get_name const char *mpl_tab_get_name(TABDCA *dca, int k); #define mpl_tab_get_type _glp_mpl_tab_get_type int mpl_tab_get_type(TABDCA *dca, int k); #define mpl_tab_get_num _glp_mpl_tab_get_num double mpl_tab_get_num(TABDCA *dca, int k); #define mpl_tab_get_str _glp_mpl_tab_get_str const char *mpl_tab_get_str(TABDCA *dca, int k); #define mpl_tab_set_num _glp_mpl_tab_set_num void mpl_tab_set_num(TABDCA *dca, int k, double num); #define mpl_tab_set_str _glp_mpl_tab_set_str void mpl_tab_set_str(TABDCA *dca, int k, const char *str); #define mpl_tab_drv_open _glp_mpl_tab_drv_open void mpl_tab_drv_open(MPL *mpl, int mode); #define mpl_tab_drv_read _glp_mpl_tab_drv_read int mpl_tab_drv_read(MPL *mpl); #define mpl_tab_drv_write _glp_mpl_tab_drv_write void mpl_tab_drv_write(MPL *mpl); #define mpl_tab_drv_close _glp_mpl_tab_drv_close void mpl_tab_drv_close(MPL *mpl); /**********************************************************************/ /* * * PSEUDO-CODE * * */ /**********************************************************************/ union OPERANDS { /* operands that participate in pseudo-code operation (choice of particular operands depends on the operation code) */ /*--------------------------------------------------------------*/ double num; /* O_NUMBER */ /* floaing-point number to be taken */ /*--------------------------------------------------------------*/ char *str; /* O_STRING */ /* character string to be taken */ /*--------------------------------------------------------------*/ struct /* O_INDEX */ { DOMAIN_SLOT *slot; /* domain slot, which contains dummy index to be taken */ CODE *next; /* the next pseudo-code with op = O_INDEX, which refers to the same slot as this one; pointer to the beginning of this list is stored in the corresponding domain slot */ } index; /*--------------------------------------------------------------*/ struct /* O_MEMNUM, O_MEMSYM */ { PARAMETER *par; /* model parameter, which contains member to be taken */ ARG_LIST *list; /* list of subscripts; NULL for 0-dimensional parameter */ } par; /*--------------------------------------------------------------*/ struct /* O_MEMSET */ { SET *set; /* model set, which contains member to be taken */ ARG_LIST *list; /* list of subscripts; NULL for 0-dimensional set */ } set; /*--------------------------------------------------------------*/ struct /* O_MEMVAR */ { VARIABLE *var; /* model variable, which contains member to be taken */ ARG_LIST *list; /* list of subscripts; NULL for 0-dimensional variable */ #if 1 /* 15/V-2010 */ int suff; /* suffix specified: */ #define DOT_NONE 0x00 /* none (means variable itself) */ #define DOT_LB 0x01 /* .lb (lower bound) */ #define DOT_UB 0x02 /* .ub (upper bound) */ #define DOT_STATUS 0x03 /* .status (status) */ #define DOT_VAL 0x04 /* .val (primal value) */ #define DOT_DUAL 0x05 /* .dual (dual value) */ #endif } var; #if 1 /* 15/V-2010 */ /*--------------------------------------------------------------*/ struct /* O_MEMCON */ { CONSTRAINT *con; /* model constraint, which contains member to be taken */ ARG_LIST *list; /* list of subscripys; NULL for 0-dimensional constraint */ int suff; /* suffix specified (see O_MEMVAR above) */ } con; #endif /*--------------------------------------------------------------*/ ARG_LIST *list; /* O_TUPLE, O_MAKE, n-ary operations */ /* list of operands */ /*--------------------------------------------------------------*/ DOMAIN_BLOCK *slice; /* O_SLICE */ /* domain block, which specifies slice (i.e. n-tuple that contains free dummy indices); this operation is never evaluated */ /*--------------------------------------------------------------*/ struct /* unary, binary, ternary operations */ { CODE *x; /* pseudo-code for computing first operand */ CODE *y; /* pseudo-code for computing second operand */ CODE *z; /* pseudo-code for computing third operand */ } arg; /*--------------------------------------------------------------*/ struct /* iterated operations */ { DOMAIN *domain; /* domain, over which the operation is performed */ CODE *x; /* pseudo-code for computing "integrand" */ } loop; /*--------------------------------------------------------------*/ }; struct ARG_LIST { /* operands list entry */ CODE *x; /* pseudo-code for computing operand */ ARG_LIST *next; /* the next operand of the same operation */ }; struct CODE { /* pseudo-code (internal form of expressions) */ int op; /* operation code: */ #define O_NUMBER 301 /* take floating-point number */ #define O_STRING 302 /* take character string */ #define O_INDEX 303 /* take dummy index */ #define O_MEMNUM 304 /* take member of numeric parameter */ #define O_MEMSYM 305 /* take member of symbolic parameter */ #define O_MEMSET 306 /* take member of set */ #define O_MEMVAR 307 /* take member of variable */ #define O_MEMCON 308 /* take member of constraint */ #define O_TUPLE 309 /* make n-tuple */ #define O_MAKE 310 /* make elemental set of n-tuples */ #define O_SLICE 311 /* define domain block (dummy op) */ /* 0-ary operations --------------------*/ #define O_IRAND224 312 /* pseudo-random in [0, 2^24-1] */ #define O_UNIFORM01 313 /* pseudo-random in [0, 1) */ #define O_NORMAL01 314 /* gaussian random, mu = 0, sigma = 1 */ #define O_GMTIME 315 /* current calendar time (UTC) */ /* unary operations --------------------*/ #define O_CVTNUM 316 /* conversion to numeric */ #define O_CVTSYM 317 /* conversion to symbolic */ #define O_CVTLOG 318 /* conversion to logical */ #define O_CVTTUP 319 /* conversion to 1-tuple */ #define O_CVTLFM 320 /* conversion to linear form */ #define O_PLUS 321 /* unary plus */ #define O_MINUS 322 /* unary minus */ #define O_NOT 323 /* negation (logical "not") */ #define O_ABS 324 /* absolute value */ #define O_CEIL 325 /* round upward ("ceiling of x") */ #define O_FLOOR 326 /* round downward ("floor of x") */ #define O_EXP 327 /* base-e exponential */ #define O_LOG 328 /* natural logarithm */ #define O_LOG10 329 /* common (decimal) logarithm */ #define O_SQRT 330 /* square root */ #define O_SIN 331 /* trigonometric sine */ #define O_COS 332 /* trigonometric cosine */ #define O_ATAN 333 /* trigonometric arctangent */ #define O_ROUND 334 /* round to nearest integer */ #define O_TRUNC 335 /* truncate to nearest integer */ #define O_CARD 336 /* cardinality of set */ #define O_LENGTH 337 /* length of symbolic value */ /* binary operations -------------------*/ #define O_ADD 338 /* addition */ #define O_SUB 339 /* subtraction */ #define O_LESS 340 /* non-negative subtraction */ #define O_MUL 341 /* multiplication */ #define O_DIV 342 /* division */ #define O_IDIV 343 /* quotient of exact division */ #define O_MOD 344 /* remainder of exact division */ #define O_POWER 345 /* exponentiation (raise to power) */ #define O_ATAN2 346 /* trigonometric arctangent */ #define O_ROUND2 347 /* round to n fractional digits */ #define O_TRUNC2 348 /* truncate to n fractional digits */ #define O_UNIFORM 349 /* pseudo-random in [a, b) */ #define O_NORMAL 350 /* gaussian random, given mu and sigma */ #define O_CONCAT 351 /* concatenation */ #define O_LT 352 /* comparison on 'less than' */ #define O_LE 353 /* comparison on 'not greater than' */ #define O_EQ 354 /* comparison on 'equal to' */ #define O_GE 355 /* comparison on 'not less than' */ #define O_GT 356 /* comparison on 'greater than' */ #define O_NE 357 /* comparison on 'not equal to' */ #define O_AND 358 /* conjunction (logical "and") */ #define O_OR 359 /* disjunction (logical "or") */ #define O_UNION 360 /* union */ #define O_DIFF 361 /* difference */ #define O_SYMDIFF 362 /* symmetric difference */ #define O_INTER 363 /* intersection */ #define O_CROSS 364 /* cross (Cartesian) product */ #define O_IN 365 /* test on 'x in Y' */ #define O_NOTIN 366 /* test on 'x not in Y' */ #define O_WITHIN 367 /* test on 'X within Y' */ #define O_NOTWITHIN 368 /* test on 'X not within Y' */ #define O_SUBSTR 369 /* substring */ #define O_STR2TIME 370 /* convert string to time */ #define O_TIME2STR 371 /* convert time to string */ /* ternary operations ------------------*/ #define O_DOTS 372 /* build "arithmetic" set */ #define O_FORK 373 /* if-then-else */ #define O_SUBSTR3 374 /* substring */ /* n-ary operations --------------------*/ #define O_MIN 375 /* minimal value (n-ary) */ #define O_MAX 376 /* maximal value (n-ary) */ /* iterated operations -----------------*/ #define O_SUM 377 /* summation */ #define O_PROD 378 /* multiplication */ #define O_MINIMUM 379 /* minimum */ #define O_MAXIMUM 380 /* maximum */ #define O_FORALL 381 /* conjunction (A-quantification) */ #define O_EXISTS 382 /* disjunction (E-quantification) */ #define O_SETOF 383 /* compute elemental set */ #define O_BUILD 384 /* build elemental set */ OPERANDS arg; /* operands that participate in the operation */ int type; /* type of the resultant value: A_NUMERIC - numeric A_SYMBOLIC - symbolic A_LOGICAL - logical A_TUPLE - n-tuple A_ELEMSET - elemental set A_FORMULA - linear form */ int dim; /* dimension of the resultant value; for A_TUPLE and A_ELEMSET it is the dimension of the corresponding n-tuple(s) and cannot be zero; for other resultant types it is always zero */ CODE *up; /* parent pseudo-code, which refers to this pseudo-code as to its operand; NULL means this pseudo-code has no parent and defines an expression, which is not contained in another expression */ int vflag; /* volatile flag; being set this flag means that this operation has a side effect; for primary expressions this flag is set directly by corresponding parsing routines (for example, if primary expression is a reference to a function that generates pseudo-random numbers); in other cases this flag is inherited from operands */ int valid; /* if this flag is set, the resultant value, which is a temporary result of evaluating this operation on particular values of operands, is valid; if this flag is clear, the resultant value doesn't exist and therefore not valid; having been evaluated the resultant value is stored here and not destroyed until the dummy indices, which this value depends on, have been changed (and if it doesn't depend on dummy indices at all, it is never destroyed); thus, if the resultant value is valid, evaluating routine can immediately take its copy not computing the result from scratch; this mechanism is similar to moving invariants out of loops and allows improving efficiency at the expense of some extra memory needed to keep temporary results */ /* however, if the volatile flag (see above) is set, even if the resultant value is valid, evaluating routine computes it as if it were not valid, i.e. caching is not used in this case */ VALUE value; /* resultant value in generic format */ }; #define eval_numeric _glp_mpl_eval_numeric double eval_numeric(MPL *mpl, CODE *code); /* evaluate pseudo-code to determine numeric value */ #define eval_symbolic _glp_mpl_eval_symbolic SYMBOL *eval_symbolic(MPL *mpl, CODE *code); /* evaluate pseudo-code to determine symbolic value */ #define eval_logical _glp_mpl_eval_logical int eval_logical(MPL *mpl, CODE *code); /* evaluate pseudo-code to determine logical value */ #define eval_tuple _glp_mpl_eval_tuple TUPLE *eval_tuple(MPL *mpl, CODE *code); /* evaluate pseudo-code to construct n-tuple */ #define eval_elemset _glp_mpl_eval_elemset ELEMSET *eval_elemset(MPL *mpl, CODE *code); /* evaluate pseudo-code to construct elemental set */ #define is_member _glp_mpl_is_member int is_member(MPL *mpl, CODE *code, TUPLE *tuple); /* check if n-tuple is in set specified by pseudo-code */ #define eval_formula _glp_mpl_eval_formula FORMULA *eval_formula(MPL *mpl, CODE *code); /* evaluate pseudo-code to construct linear form */ #define clean_code _glp_mpl_clean_code void clean_code(MPL *mpl, CODE *code); /* clean pseudo-code */ /**********************************************************************/ /* * * MODEL STATEMENTS * * */ /**********************************************************************/ struct CHECK { /* check statement */ DOMAIN *domain; /* subscript domain; NULL means domain is not used */ CODE *code; /* code for computing the predicate to be checked */ }; struct DISPLAY { /* display statement */ DOMAIN *domain; /* subscript domain; NULL means domain is not used */ DISPLAY1 *list; /* display list; cannot be empty */ }; struct DISPLAY1 { /* display list entry */ int type; /* item type: A_INDEX - dummy index A_SET - model set A_PARAMETER - model parameter A_VARIABLE - model variable A_CONSTRAINT - model constraint/objective A_EXPRESSION - expression */ union { DOMAIN_SLOT *slot; SET *set; PARAMETER *par; VARIABLE *var; CONSTRAINT *con; CODE *code; } u; /* item to be displayed */ #if 0 /* 15/V-2010 */ ARG_LIST *list; /* optional subscript list (for constraint/objective only) */ #endif DISPLAY1 *next; /* the next entry for the same statement */ }; struct PRINTF { /* printf statement */ DOMAIN *domain; /* subscript domain; NULL means domain is not used */ CODE *fmt; /* pseudo-code for computing format string */ PRINTF1 *list; /* printf list; can be empty */ CODE *fname; /* pseudo-code for computing filename to redirect the output; NULL means the output goes to stdout */ int app; /* if this flag is set, the output is appended */ }; struct PRINTF1 { /* printf list entry */ CODE *code; /* pseudo-code for computing value to be printed */ PRINTF1 *next; /* the next entry for the same statement */ }; struct FOR { /* for statement */ DOMAIN *domain; /* subscript domain; cannot be NULL */ STATEMENT *list; /* linked list of model statements within this for statement in the original order */ }; struct STATEMENT { /* model statement */ int line; /* number of source text line, where statement begins */ int type; /* statement type: A_SET - set statement A_PARAMETER - parameter statement A_VARIABLE - variable statement A_CONSTRAINT - constraint/objective statement A_TABLE - table statement A_SOLVE - solve statement A_CHECK - check statement A_DISPLAY - display statement A_PRINTF - printf statement A_FOR - for statement */ union { SET *set; PARAMETER *par; VARIABLE *var; CONSTRAINT *con; TABLE *tab; void *slv; /* currently not used (set to NULL) */ CHECK *chk; DISPLAY *dpy; PRINTF *prt; FOR *fur; } u; /* specific part of statement */ STATEMENT *next; /* the next statement; in this list statements follow in the same order as they appear in the model section */ }; #define execute_table _glp_mpl_execute_table void execute_table(MPL *mpl, TABLE *tab); /* execute table statement */ #define free_dca _glp_mpl_free_dca void free_dca(MPL *mpl); /* free table driver communucation area */ #define clean_table _glp_mpl_clean_table void clean_table(MPL *mpl, TABLE *tab); /* clean table statement */ #define execute_check _glp_mpl_execute_check void execute_check(MPL *mpl, CHECK *chk); /* execute check statement */ #define clean_check _glp_mpl_clean_check void clean_check(MPL *mpl, CHECK *chk); /* clean check statement */ #define execute_display _glp_mpl_execute_display void execute_display(MPL *mpl, DISPLAY *dpy); /* execute display statement */ #define clean_display _glp_mpl_clean_display void clean_display(MPL *mpl, DISPLAY *dpy); /* clean display statement */ #define execute_printf _glp_mpl_execute_printf void execute_printf(MPL *mpl, PRINTF *prt); /* execute printf statement */ #define clean_printf _glp_mpl_clean_printf void clean_printf(MPL *mpl, PRINTF *prt); /* clean printf statement */ #define execute_for _glp_mpl_execute_for void execute_for(MPL *mpl, FOR *fur); /* execute for statement */ #define clean_for _glp_mpl_clean_for void clean_for(MPL *mpl, FOR *fur); /* clean for statement */ #define execute_statement _glp_mpl_execute_statement void execute_statement(MPL *mpl, STATEMENT *stmt); /* execute specified model statement */ #define clean_statement _glp_mpl_clean_statement void clean_statement(MPL *mpl, STATEMENT *stmt); /* clean specified model statement */ /**********************************************************************/ /* * * GENERATING AND POSTSOLVING MODEL * * */ /**********************************************************************/ #define alloc_content _glp_mpl_alloc_content void alloc_content(MPL *mpl); /* allocate content arrays for all model objects */ #define generate_model _glp_mpl_generate_model void generate_model(MPL *mpl); /* generate model */ #define build_problem _glp_mpl_build_problem void build_problem(MPL *mpl); /* build problem instance */ #define postsolve_model _glp_mpl_postsolve_model void postsolve_model(MPL *mpl); /* postsolve model */ #define clean_model _glp_mpl_clean_model void clean_model(MPL *mpl); /* clean model content */ /**********************************************************************/ /* * * INPUT/OUTPUT * * */ /**********************************************************************/ #define open_input _glp_mpl_open_input void open_input(MPL *mpl, char *file); /* open input text file */ #define read_char _glp_mpl_read_char int read_char(MPL *mpl); /* read next character from input text file */ #define close_input _glp_mpl_close_input void close_input(MPL *mpl); /* close input text file */ #define open_output _glp_mpl_open_output void open_output(MPL *mpl, char *file); /* open output text file */ #define write_char _glp_mpl_write_char void write_char(MPL *mpl, int c); /* write next character to output text file */ #define write_text _glp_mpl_write_text void write_text(MPL *mpl, char *fmt, ...); /* format and write text to output text file */ #define flush_output _glp_mpl_flush_output void flush_output(MPL *mpl); /* finalize writing data to output text file */ /**********************************************************************/ /* * * SOLVER INTERFACE * * */ /**********************************************************************/ #define MPL_FR 401 /* free (unbounded) */ #define MPL_LO 402 /* lower bound */ #define MPL_UP 403 /* upper bound */ #define MPL_DB 404 /* both lower and upper bounds */ #define MPL_FX 405 /* fixed */ #define MPL_ST 411 /* constraint */ #define MPL_MIN 412 /* objective (minimization) */ #define MPL_MAX 413 /* objective (maximization) */ #define MPL_NUM 421 /* continuous */ #define MPL_INT 422 /* integer */ #define MPL_BIN 423 /* binary */ #define error _glp_mpl_error void error(MPL *mpl, char *fmt, ...); /* print error message and terminate model processing */ #define warning _glp_mpl_warning void warning(MPL *mpl, char *fmt, ...); /* print warning message and continue model processing */ #define mpl_initialize _glp_mpl_initialize MPL *mpl_initialize(void); /* create and initialize translator database */ #define mpl_read_model _glp_mpl_read_model int mpl_read_model(MPL *mpl, char *file, int skip_data); /* read model section and optional data section */ #define mpl_read_data _glp_mpl_read_data int mpl_read_data(MPL *mpl, char *file); /* read data section */ #define mpl_generate _glp_mpl_generate int mpl_generate(MPL *mpl, char *file); /* generate model */ #define mpl_get_prob_name _glp_mpl_get_prob_name char *mpl_get_prob_name(MPL *mpl); /* obtain problem (model) name */ #define mpl_get_num_rows _glp_mpl_get_num_rows int mpl_get_num_rows(MPL *mpl); /* determine number of rows */ #define mpl_get_num_cols _glp_mpl_get_num_cols int mpl_get_num_cols(MPL *mpl); /* determine number of columns */ #define mpl_get_row_name _glp_mpl_get_row_name char *mpl_get_row_name(MPL *mpl, int i); /* obtain row name */ #define mpl_get_row_kind _glp_mpl_get_row_kind int mpl_get_row_kind(MPL *mpl, int i); /* determine row kind */ #define mpl_get_row_bnds _glp_mpl_get_row_bnds int mpl_get_row_bnds(MPL *mpl, int i, double *lb, double *ub); /* obtain row bounds */ #define mpl_get_mat_row _glp_mpl_get_mat_row int mpl_get_mat_row(MPL *mpl, int i, int ndx[], double val[]); /* obtain row of the constraint matrix */ #define mpl_get_row_c0 _glp_mpl_get_row_c0 double mpl_get_row_c0(MPL *mpl, int i); /* obtain constant term of free row */ #define mpl_get_col_name _glp_mpl_get_col_name char *mpl_get_col_name(MPL *mpl, int j); /* obtain column name */ #define mpl_get_col_kind _glp_mpl_get_col_kind int mpl_get_col_kind(MPL *mpl, int j); /* determine column kind */ #define mpl_get_col_bnds _glp_mpl_get_col_bnds int mpl_get_col_bnds(MPL *mpl, int j, double *lb, double *ub); /* obtain column bounds */ #define mpl_has_solve_stmt _glp_mpl_has_solve_stmt int mpl_has_solve_stmt(MPL *mpl); /* check if model has solve statement */ #if 1 /* 15/V-2010 */ #define mpl_put_row_soln _glp_mpl_put_row_soln void mpl_put_row_soln(MPL *mpl, int i, int stat, double prim, double dual); /* store row (constraint/objective) solution components */ #endif #if 1 /* 15/V-2010 */ #define mpl_put_col_soln _glp_mpl_put_col_soln void mpl_put_col_soln(MPL *mpl, int j, int stat, double prim, double dual); /* store column (variable) solution components */ #endif #if 0 /* 15/V-2010 */ #define mpl_put_col_value _glp_mpl_put_col_value void mpl_put_col_value(MPL *mpl, int j, double val); /* store column value */ #endif #define mpl_postsolve _glp_mpl_postsolve int mpl_postsolve(MPL *mpl); /* postsolve model */ #define mpl_terminate _glp_mpl_terminate void mpl_terminate(MPL *mpl); /* free all resources used by translator */ #endif /* eof */