/* glpnet08.c */ /*********************************************************************** * This code is part of GLPK (GNU Linear Programming Kit). * * Two subroutines sub() and wclique() below are intended to find a * maximum weight clique in a given undirected graph. These subroutines * are slightly modified version of the program WCLIQUE developed by * Patric Ostergard and based * on ideas from the article "P. R. J. Ostergard, A new algorithm for * the maximum-weight clique problem, submitted for publication", which * in turn is a generalization of the algorithm for unweighted graphs * presented in "P. R. J. Ostergard, A fast algorithm for the maximum * clique problem, submitted for publication". * * USED WITH PERMISSION OF THE AUTHOR OF THE ORIGINAL CODE. * * Changes were made by Andrew Makhorin . * * GLPK is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GLPK is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with GLPK. If not, see . ***********************************************************************/ #include "glpenv.h" #include "glpnet.h" /*********************************************************************** * NAME * * wclique - find maximum weight clique with Ostergard's algorithm * * SYNOPSIS * * int wclique(int n, const int w[], const unsigned char a[], * int ind[]); * * DESCRIPTION * * The routine wclique finds a maximum weight clique in an undirected * graph with Ostergard's algorithm. * * INPUT PARAMETERS * * n is the number of vertices, n > 0. * * w[i], i = 1,...,n, is a weight of vertex i. * * a[*] is the strict (without main diagonal) lower triangle of the * graph adjacency matrix in packed format. * * OUTPUT PARAMETER * * ind[k], k = 1,...,size, is the number of a vertex included in the * clique found, 1 <= ind[k] <= n, where size is the number of vertices * in the clique returned on exit. * * RETURNS * * The routine returns the clique size, i.e. the number of vertices in * the clique. */ struct csa { /* common storage area */ int n; /* number of vertices */ const int *wt; /* int wt[0:n-1]; */ /* weights */ const unsigned char *a; /* adjacency matrix (packed lower triangle without main diag.) */ int record; /* weight of best clique */ int rec_level; /* number of vertices in best clique */ int *rec; /* int rec[0:n-1]; */ /* best clique so far */ int *clique; /* int clique[0:n-1]; */ /* table for pruning */ int *set; /* int set[0:n-1]; */ /* current clique */ }; #define n (csa->n) #define wt (csa->wt) #define a (csa->a) #define record (csa->record) #define rec_level (csa->rec_level) #define rec (csa->rec) #define clique (csa->clique) #define set (csa->set) #if 0 static int is_edge(struct csa *csa, int i, int j) { /* if there is arc (i,j), the routine returns true; otherwise false; 0 <= i, j < n */ int k; xassert(0 <= i && i < n); xassert(0 <= j && j < n); if (i == j) return 0; if (i < j) k = i, i = j, j = k; k = (i * (i - 1)) / 2 + j; return a[k / CHAR_BIT] & (unsigned char)(1 << ((CHAR_BIT - 1) - k % CHAR_BIT)); } #else #define is_edge(csa, i, j) ((i) == (j) ? 0 : \ (i) > (j) ? is_edge1(i, j) : is_edge1(j, i)) #define is_edge1(i, j) is_edge2(((i) * ((i) - 1)) / 2 + (j)) #define is_edge2(k) (a[(k) / CHAR_BIT] & \ (unsigned char)(1 << ((CHAR_BIT - 1) - (k) % CHAR_BIT))) #endif static void sub(struct csa *csa, int ct, int table[], int level, int weight, int l_weight) { int i, j, k, curr_weight, left_weight, *p1, *p2, *newtable; newtable = xcalloc(n, sizeof(int)); if (ct <= 0) { /* 0 or 1 elements left; include these */ if (ct == 0) { set[level++] = table[0]; weight += l_weight; } if (weight > record) { record = weight; rec_level = level; for (i = 0; i < level; i++) rec[i] = set[i]; } goto done; } for (i = ct; i >= 0; i--) { if ((level == 0) && (i < ct)) goto done; k = table[i]; if ((level > 0) && (clique[k] <= (record - weight))) goto done; /* prune */ set[level] = k; curr_weight = weight + wt[k]; l_weight -= wt[k]; if (l_weight <= (record - curr_weight)) goto done; /* prune */ p1 = newtable; p2 = table; left_weight = 0; while (p2 < table + i) { j = *p2++; if (is_edge(csa, j, k)) { *p1++ = j; left_weight += wt[j]; } } if (left_weight <= (record - curr_weight)) continue; sub(csa, p1 - newtable - 1, newtable, level + 1, curr_weight, left_weight); } done: xfree(newtable); return; } int wclique(int _n, const int w[], const unsigned char _a[], int ind[]) { struct csa _csa, *csa = &_csa; int i, j, p, max_wt, max_nwt, wth, *used, *nwt, *pos; glp_long timer; n = _n; xassert(n > 0); wt = &w[1]; a = _a; record = 0; rec_level = 0; rec = &ind[1]; clique = xcalloc(n, sizeof(int)); set = xcalloc(n, sizeof(int)); used = xcalloc(n, sizeof(int)); nwt = xcalloc(n, sizeof(int)); pos = xcalloc(n, sizeof(int)); /* start timer */ timer = xtime(); /* order vertices */ for (i = 0; i < n; i++) { nwt[i] = 0; for (j = 0; j < n; j++) if (is_edge(csa, i, j)) nwt[i] += wt[j]; } for (i = 0; i < n; i++) used[i] = 0; for (i = n-1; i >= 0; i--) { max_wt = -1; max_nwt = -1; for (j = 0; j < n; j++) { if ((!used[j]) && ((wt[j] > max_wt) || (wt[j] == max_wt && nwt[j] > max_nwt))) { max_wt = wt[j]; max_nwt = nwt[j]; p = j; } } pos[i] = p; used[p] = 1; for (j = 0; j < n; j++) if ((!used[j]) && (j != p) && (is_edge(csa, p, j))) nwt[j] -= wt[p]; } /* main routine */ wth = 0; for (i = 0; i < n; i++) { wth += wt[pos[i]]; sub(csa, i, pos, 0, 0, wth); clique[pos[i]] = record; if (xdifftime(xtime(), timer) >= 5.0 - 0.001) { /* print current record and reset timer */ xprintf("level = %d (%d); best = %d\n", i+1, n, record); timer = xtime(); } } xfree(clique); xfree(set); xfree(used); xfree(nwt); xfree(pos); /* return the solution found */ for (i = 1; i <= rec_level; i++) ind[i]++; return rec_level; } #undef n #undef wt #undef a #undef record #undef rec_level #undef rec #undef clique #undef set /* eof */