| [666] | 1 | /*! | 
|---|
 | 2 |  | 
|---|
 | 3 | \page graphs How to use graphs | 
|---|
 | 4 |  | 
|---|
| [921] | 5 | The primary data structures of LEMON are the graph classes. They all | 
|---|
| [756] | 6 | provide a node list - edge list interface, i.e. they have | 
|---|
 | 7 | functionalities to list the nodes and the edges of the graph as well | 
|---|
 | 8 | as in incoming and outgoing edges of a given node.  | 
|---|
 | 9 |  | 
|---|
 | 10 |  | 
|---|
| [873] | 11 | Each graph should meet the | 
|---|
| [959] | 12 | \ref lemon::concept::StaticGraph "StaticGraph" concept. | 
|---|
| [873] | 13 | This concept does not | 
|---|
| [756] | 14 | makes it possible to change the graph (i.e. it is not possible to add | 
|---|
 | 15 | or delete edges or nodes). Most of the graph algorithms will run on | 
|---|
 | 16 | these graphs. | 
|---|
 | 17 |  | 
|---|
| [873] | 18 | The graphs meeting the | 
|---|
| [959] | 19 | \ref lemon::concept::ExtendableGraph "ExtendableGraph" | 
|---|
| [873] | 20 | concept allow node and | 
|---|
| [756] | 21 | edge addition. You can also "clear" (i.e. erase all edges and nodes) | 
|---|
 | 22 | such a graph. | 
|---|
 | 23 |  | 
|---|
| [873] | 24 | In case of graphs meeting the full feature | 
|---|
| [959] | 25 | \ref lemon::concept::ErasableGraph "ErasableGraph" | 
|---|
| [873] | 26 | concept | 
|---|
| [756] | 27 | you can also erase individual edges and node in arbitrary order. | 
|---|
 | 28 |  | 
|---|
 | 29 | The implemented graph structures are the following. | 
|---|
| [921] | 30 | \li \ref lemon::ListGraph "ListGraph" is the most versatile graph class. It meets | 
|---|
| [959] | 31 | the \ref lemon::concept::ErasableGraph "ErasableGraph" concept | 
|---|
| [873] | 32 | and it also have some convenience features. | 
|---|
| [921] | 33 | \li \ref lemon::SmartGraph "SmartGraph" is a more memory | 
|---|
 | 34 | efficient version of \ref lemon::ListGraph "ListGraph". The | 
|---|
| [873] | 35 | price of it is that it only meets the | 
|---|
| [959] | 36 | \ref lemon::concept::ExtendableGraph "ExtendableGraph" concept, | 
|---|
| [756] | 37 | so you cannot delete individual edges or nodes. | 
|---|
| [921] | 38 | \li \ref lemon::SymListGraph "SymListGraph" and | 
|---|
 | 39 | \ref lemon::SymSmartGraph "SymSmartGraph" classes are very similar to | 
|---|
 | 40 | \ref lemon::ListGraph "ListGraph" and \ref lemon::SmartGraph "SmartGraph". | 
|---|
| [756] | 41 | The difference is that whenever you add a | 
|---|
 | 42 | new edge to the graph, it actually adds a pair of oppositely directed edges. | 
|---|
 | 43 | They are linked together so it is possible to access the counterpart of an | 
|---|
 | 44 | edge. An even more important feature is that using these classes you can also | 
|---|
 | 45 | attach data to the edges in such a way that the stored data | 
|---|
 | 46 | are shared by the edge pairs.  | 
|---|
| [921] | 47 | \li \ref lemon::FullGraph "FullGraph" | 
|---|
| [959] | 48 | implements a full graph. It is a \ref lemon::concept::StaticGraph, so you cannot | 
|---|
| [756] | 49 | change the number of nodes once it is constructed. It is extremely memory | 
|---|
 | 50 | efficient: it uses constant amount of memory independently from the number of | 
|---|
| [1043] | 51 | the nodes of the graph. Of course, the size of the \ref maps-page "NodeMap"'s and | 
|---|
 | 52 | \ref maps-page "EdgeMap"'s will depend on the number of nodes. | 
|---|
| [756] | 53 |  | 
|---|
| [921] | 54 | \li \ref lemon::NodeSet "NodeSet" implements a graph with no edges. This class | 
|---|
 | 55 | can be used as a base class of \ref lemon::EdgeSet "EdgeSet". | 
|---|
 | 56 | \li \ref lemon::EdgeSet "EdgeSet" can be used to create a new graph on | 
|---|
| [873] | 57 | the node set of another graph. The base graph can be an arbitrary graph and it | 
|---|
| [921] | 58 | is possible to attach several \ref lemon::EdgeSet "EdgeSet"'s to a base graph. | 
|---|
| [756] | 59 |  | 
|---|
 | 60 | \todo Don't we need SmartNodeSet and SmartEdgeSet? | 
|---|
 | 61 | \todo Some cross-refs are wrong. | 
|---|
 | 62 |  | 
|---|
 | 63 | The graph structures itself can not store data attached | 
|---|
 | 64 | to the edges and nodes. However they all provide | 
|---|
| [1043] | 65 | \ref maps-page "map classes" | 
|---|
| [756] | 66 | to dynamically attach data the to graph components. | 
|---|
 | 67 |  | 
|---|
| [921] | 68 | The following program demonstrates the basic features of LEMON's graph | 
|---|
| [666] | 69 | structures. | 
|---|
 | 70 |  | 
|---|
 | 71 | \code | 
|---|
 | 72 | #include <iostream> | 
|---|
| [921] | 73 | #include <lemon/list_graph.h> | 
|---|
| [666] | 74 |  | 
|---|
| [921] | 75 | using namespace lemon; | 
|---|
| [666] | 76 |  | 
|---|
 | 77 | int main() | 
|---|
 | 78 | { | 
|---|
 | 79 |   typedef ListGraph Graph; | 
|---|
 | 80 | \endcode | 
|---|
 | 81 |  | 
|---|
| [921] | 82 | ListGraph is one of LEMON's graph classes. It is based on linked lists, | 
|---|
| [666] | 83 | therefore iterating throuh its edges and nodes is fast. | 
|---|
 | 84 |  | 
|---|
 | 85 | \code | 
|---|
 | 86 |   typedef Graph::Edge Edge; | 
|---|
 | 87 |   typedef Graph::InEdgeIt InEdgeIt; | 
|---|
 | 88 |   typedef Graph::OutEdgeIt OutEdgeIt; | 
|---|
 | 89 |   typedef Graph::EdgeIt EdgeIt; | 
|---|
 | 90 |   typedef Graph::Node Node; | 
|---|
 | 91 |   typedef Graph::NodeIt NodeIt; | 
|---|
 | 92 |  | 
|---|
 | 93 |   Graph g; | 
|---|
 | 94 |    | 
|---|
 | 95 |   for (int i = 0; i < 3; i++) | 
|---|
 | 96 |     g.addNode(); | 
|---|
 | 97 |    | 
|---|
| [875] | 98 |   for (NodeIt i(g); i!=INVALID; ++i) | 
|---|
 | 99 |     for (NodeIt j(g); j!=INVALID; ++j) | 
|---|
| [666] | 100 |       if (i != j) g.addEdge(i, j); | 
|---|
 | 101 | \endcode | 
|---|
 | 102 |  | 
|---|
 | 103 | After some convenience typedefs we create a graph and add three nodes to it. | 
|---|
 | 104 | Then we add edges to it to form a full graph. | 
|---|
 | 105 |  | 
|---|
 | 106 | \code | 
|---|
 | 107 |   std::cout << "Nodes:"; | 
|---|
| [875] | 108 |   for (NodeIt i(g); i!=INVALID; ++i) | 
|---|
| [666] | 109 |     std::cout << " " << g.id(i); | 
|---|
 | 110 |   std::cout << std::endl; | 
|---|
 | 111 | \endcode | 
|---|
 | 112 |  | 
|---|
 | 113 | Here we iterate through all nodes of the graph. We use a constructor of the | 
|---|
| [875] | 114 | node iterator to initialize it to the first node. The operator++ is used to | 
|---|
 | 115 | step to the next node. Using operator++ on the iterator pointing to the last | 
|---|
 | 116 | node invalidates the iterator i.e. sets its value to | 
|---|
| [921] | 117 | \ref lemon::INVALID "INVALID". This is what we exploit in the stop condition. | 
|---|
| [666] | 118 |  | 
|---|
| [875] | 119 | The previous code fragment prints out the following: | 
|---|
| [666] | 120 |  | 
|---|
 | 121 | \code | 
|---|
 | 122 | Nodes: 2 1 0 | 
|---|
 | 123 | \endcode | 
|---|
 | 124 |  | 
|---|
 | 125 | \code | 
|---|
 | 126 |   std::cout << "Edges:"; | 
|---|
| [875] | 127 |   for (EdgeIt i(g); i!=INVALID; ++i) | 
|---|
| [986] | 128 |     std::cout << " (" << g.id(g.source(i)) << "," << g.id(g.target(i)) << ")"; | 
|---|
| [666] | 129 |   std::cout << std::endl; | 
|---|
 | 130 | \endcode | 
|---|
 | 131 |  | 
|---|
 | 132 | \code | 
|---|
 | 133 | Edges: (0,2) (1,2) (0,1) (2,1) (1,0) (2,0) | 
|---|
 | 134 | \endcode | 
|---|
 | 135 |  | 
|---|
| [986] | 136 | We can also iterate through all edges of the graph very similarly. The target and | 
|---|
 | 137 | source member functions can be used to access the endpoints of an edge. | 
|---|
| [666] | 138 |  | 
|---|
 | 139 | \code | 
|---|
 | 140 |   NodeIt first_node(g); | 
|---|
 | 141 |  | 
|---|
 | 142 |   std::cout << "Out-edges of node " << g.id(first_node) << ":"; | 
|---|
| [875] | 143 |   for (OutEdgeIt i(g, first_node); i!=INVALID; ++i) | 
|---|
| [986] | 144 |     std::cout << " (" << g.id(g.source(i)) << "," << g.id(g.target(i)) << ")";  | 
|---|
| [666] | 145 |   std::cout << std::endl; | 
|---|
 | 146 |  | 
|---|
 | 147 |   std::cout << "In-edges of node " << g.id(first_node) << ":"; | 
|---|
| [875] | 148 |   for (InEdgeIt i(g, first_node); i!=INVALID; ++i) | 
|---|
| [986] | 149 |     std::cout << " (" << g.id(g.source(i)) << "," << g.id(g.target(i)) << ")";  | 
|---|
| [666] | 150 |   std::cout << std::endl; | 
|---|
 | 151 | \endcode | 
|---|
 | 152 |  | 
|---|
 | 153 | \code | 
|---|
 | 154 | Out-edges of node 2: (2,0) (2,1) | 
|---|
 | 155 | In-edges of node 2: (0,2) (1,2) | 
|---|
 | 156 | \endcode | 
|---|
 | 157 |  | 
|---|
 | 158 | We can also iterate through the in and out-edges of a node. In the above | 
|---|
 | 159 | example we print out the in and out-edges of the first node of the graph. | 
|---|
 | 160 |  | 
|---|
 | 161 | \code | 
|---|
 | 162 |   Graph::EdgeMap<int> m(g); | 
|---|
 | 163 |  | 
|---|
| [875] | 164 |   for (EdgeIt e(g); e!=INVALID; ++e) | 
|---|
| [666] | 165 |     m.set(e, 10 - g.id(e)); | 
|---|
 | 166 |    | 
|---|
 | 167 |   std::cout << "Id Edge  Value" << std::endl; | 
|---|
| [875] | 168 |   for (EdgeIt e(g); e!=INVALID; ++e) | 
|---|
| [986] | 169 |     std::cout << g.id(e) << "  (" << g.id(g.source(e)) << "," << g.id(g.target(e)) | 
|---|
| [666] | 170 |       << ") " << m[e] << std::endl; | 
|---|
 | 171 | \endcode | 
|---|
 | 172 |  | 
|---|
 | 173 | \code | 
|---|
 | 174 | Id Edge  Value | 
|---|
 | 175 | 4  (0,2) 6 | 
|---|
 | 176 | 2  (1,2) 8 | 
|---|
 | 177 | 5  (0,1) 5 | 
|---|
 | 178 | 0  (2,1) 10 | 
|---|
 | 179 | 3  (1,0) 7 | 
|---|
 | 180 | 1  (2,0) 9 | 
|---|
 | 181 | \endcode | 
|---|
 | 182 |  | 
|---|
| [873] | 183 | As we mentioned above, graphs are not containers rather | 
|---|
| [921] | 184 | incidence structures which are iterable in many ways. LEMON introduces | 
|---|
| [666] | 185 | concepts that allow us to attach containers to graphs. These containers are | 
|---|
 | 186 | called maps. | 
|---|
 | 187 |  | 
|---|
 | 188 | In the example above we create an EdgeMap which assigns an int value to all | 
|---|
 | 189 | edges of the graph. We use the set member function of the map to write values | 
|---|
 | 190 | into the map and the operator[] to retrieve them. | 
|---|
 | 191 |  | 
|---|
 | 192 | Here we used the maps provided by the ListGraph class, but you can also write | 
|---|
| [1043] | 193 | your own maps. You can read more about using maps \ref maps-page "here". | 
|---|
| [666] | 194 |  | 
|---|
 | 195 | */ | 
|---|