| [666] | 1 | /*! | 
|---|
 | 2 |  | 
|---|
 | 3 | \page graphs How to use graphs | 
|---|
 | 4 |  | 
|---|
| [756] | 5 | The primary data structures of HugoLib are the graph classes. They all | 
|---|
 | 6 | provide a node list - edge list interface, i.e. they have | 
|---|
 | 7 | functionalities to list the nodes and the edges of the graph as well | 
|---|
 | 8 | as in incoming and outgoing edges of a given node.  | 
|---|
 | 9 |  | 
|---|
 | 10 |  | 
|---|
 | 11 | Each graph should meet the \ref ConstGraph concept. This concept does | 
|---|
 | 12 | makes it possible to change the graph (i.e. it is not possible to add | 
|---|
 | 13 | or delete edges or nodes). Most of the graph algorithms will run on | 
|---|
 | 14 | these graphs. | 
|---|
 | 15 |  | 
|---|
 | 16 | The graphs meeting the \ref ExtendableGraph concept allow node and | 
|---|
 | 17 | edge addition. You can also "clear" (i.e. erase all edges and nodes) | 
|---|
 | 18 | such a graph. | 
|---|
 | 19 |  | 
|---|
 | 20 | In case of graphs meeting the full feature \ref ErasableGraph concept | 
|---|
 | 21 | you can also erase individual edges and node in arbitrary order. | 
|---|
 | 22 |  | 
|---|
 | 23 | The implemented graph structures are the following. | 
|---|
 | 24 | \li \ref hugo::ListGraph "ListGraph" is the most versatile graph class. It meets | 
|---|
 | 25 | the ErasableGraph concept and it also have some convenience features. | 
|---|
 | 26 | \li \ref hugo::SmartGraph "SmartGraph" is a more memory | 
|---|
 | 27 | efficient version of \ref hugo::ListGraph "ListGraph". The | 
|---|
 | 28 | price of it is that it only meets the \ref ExtendableGraph concept, | 
|---|
 | 29 | so you cannot delete individual edges or nodes. | 
|---|
 | 30 | \li \ref hugo::SymListGraph "SymListGraph" and | 
|---|
 | 31 | \ref hugo::SymSmartGraph "SymSmartGraph" classes are very similar to | 
|---|
 | 32 | \ref hugo::ListGraph "ListGraph" and \ref hugo::SmartGraph "SmartGraph". | 
|---|
 | 33 | The difference is that whenever you add a | 
|---|
 | 34 | new edge to the graph, it actually adds a pair of oppositely directed edges. | 
|---|
 | 35 | They are linked together so it is possible to access the counterpart of an | 
|---|
 | 36 | edge. An even more important feature is that using these classes you can also | 
|---|
 | 37 | attach data to the edges in such a way that the stored data | 
|---|
 | 38 | are shared by the edge pairs.  | 
|---|
 | 39 | \li \ref hugo::FullGraph "FullGraph" | 
|---|
 | 40 | implements a full graph. It is a \ref ConstGraph, so you cannot | 
|---|
 | 41 | change the number of nodes once it is constructed. It is extremely memory | 
|---|
 | 42 | efficient: it uses constant amount of memory independently from the number of | 
|---|
 | 43 | the nodes of the graph. Of course, the size of the \ref maps "NodeMap"'s and | 
|---|
 | 44 | \ref maps "EdgeMap"'s will depend on the number of nodes. | 
|---|
 | 45 |  | 
|---|
 | 46 | \li \ref hugo::NodeSet "NodeSet" implements a graph with no edges. This class | 
|---|
 | 47 | can be used as a base class of \ref hugo::EdgeSet "EdgeSet". | 
|---|
 | 48 | \li \ref hugo::EdgeSet "EdgeSet" can be used to create a new graph on | 
|---|
 | 49 | the edge set of another graph. The base graph can be an arbitrary graph and it | 
|---|
 | 50 | is possible to attach several \ref hugo::EdgeSet "EdgeSet"'s to a base graph. | 
|---|
 | 51 |  | 
|---|
 | 52 | \todo Don't we need SmartNodeSet and SmartEdgeSet? | 
|---|
 | 53 | \todo Some cross-refs are wrong. | 
|---|
 | 54 |  | 
|---|
| [808] | 55 | \bug This file must be updated accordig to the new stile iterators. | 
|---|
| [756] | 56 |  | 
|---|
 | 57 | The graph structures itself can not store data attached | 
|---|
 | 58 | to the edges and nodes. However they all provide | 
|---|
 | 59 | \ref maps "map classes" | 
|---|
 | 60 | to dynamically attach data the to graph components. | 
|---|
 | 61 |  | 
|---|
 | 62 |  | 
|---|
 | 63 |  | 
|---|
 | 64 |  | 
|---|
| [666] | 65 | The following program demonstrates the basic features of HugoLib's graph | 
|---|
 | 66 | structures. | 
|---|
 | 67 |  | 
|---|
 | 68 | \code | 
|---|
 | 69 | #include <iostream> | 
|---|
 | 70 | #include <hugo/list_graph.h> | 
|---|
 | 71 |  | 
|---|
 | 72 | using namespace hugo; | 
|---|
 | 73 |  | 
|---|
 | 74 | int main() | 
|---|
 | 75 | { | 
|---|
 | 76 |   typedef ListGraph Graph; | 
|---|
 | 77 | \endcode | 
|---|
 | 78 |  | 
|---|
 | 79 | ListGraph is one of HugoLib's graph classes. It is based on linked lists, | 
|---|
 | 80 | therefore iterating throuh its edges and nodes is fast. | 
|---|
 | 81 |  | 
|---|
 | 82 | \code | 
|---|
 | 83 |   typedef Graph::Edge Edge; | 
|---|
 | 84 |   typedef Graph::InEdgeIt InEdgeIt; | 
|---|
 | 85 |   typedef Graph::OutEdgeIt OutEdgeIt; | 
|---|
 | 86 |   typedef Graph::EdgeIt EdgeIt; | 
|---|
 | 87 |   typedef Graph::Node Node; | 
|---|
 | 88 |   typedef Graph::NodeIt NodeIt; | 
|---|
 | 89 |  | 
|---|
 | 90 |   Graph g; | 
|---|
 | 91 |    | 
|---|
 | 92 |   for (int i = 0; i < 3; i++) | 
|---|
 | 93 |     g.addNode(); | 
|---|
 | 94 |    | 
|---|
 | 95 |   for (NodeIt i(g); g.valid(i); g.next(i)) | 
|---|
 | 96 |     for (NodeIt j(g); g.valid(j); g.next(j)) | 
|---|
 | 97 |       if (i != j) g.addEdge(i, j); | 
|---|
 | 98 | \endcode | 
|---|
 | 99 |  | 
|---|
 | 100 | After some convenience typedefs we create a graph and add three nodes to it. | 
|---|
 | 101 | Then we add edges to it to form a full graph. | 
|---|
 | 102 |  | 
|---|
 | 103 | \code | 
|---|
 | 104 |   std::cout << "Nodes:"; | 
|---|
 | 105 |   for (NodeIt i(g); g.valid(i); g.next(i)) | 
|---|
 | 106 |     std::cout << " " << g.id(i); | 
|---|
 | 107 |   std::cout << std::endl; | 
|---|
 | 108 | \endcode | 
|---|
 | 109 |  | 
|---|
 | 110 | Here we iterate through all nodes of the graph. We use a constructor of the | 
|---|
 | 111 | node iterator to initialize it to the first node. The next member function is | 
|---|
 | 112 | used to step to the next node, and valid is used to check if we have passed the | 
|---|
 | 113 | last one. | 
|---|
 | 114 |  | 
|---|
 | 115 | \code | 
|---|
 | 116 |   std::cout << "Nodes:"; | 
|---|
 | 117 |   NodeIt n; | 
|---|
 | 118 |   for (g.first(n); n != INVALID; g.next(n)) | 
|---|
 | 119 |     std::cout << " " << g.id(n); | 
|---|
 | 120 |   std::cout << std::endl; | 
|---|
 | 121 | \endcode | 
|---|
 | 122 |  | 
|---|
 | 123 | Here you can see an alternative way to iterate through all nodes. Here we use a | 
|---|
 | 124 | member function of the graph to initialize the node iterator to the first node | 
|---|
 | 125 | of the graph. Using next on the iterator pointing to the last node invalidates | 
|---|
 | 126 | the iterator i.e. sets its value to INVALID. Checking for this value is | 
|---|
 | 127 | equivalent to using the valid member function. | 
|---|
 | 128 |  | 
|---|
 | 129 | Both of the previous code fragments print out the same: | 
|---|
 | 130 |  | 
|---|
 | 131 | \code | 
|---|
 | 132 | Nodes: 2 1 0 | 
|---|
 | 133 | \endcode | 
|---|
 | 134 |  | 
|---|
 | 135 | \code | 
|---|
 | 136 |   std::cout << "Edges:"; | 
|---|
 | 137 |   for (EdgeIt i(g); g.valid(i); g.next(i)) | 
|---|
 | 138 |     std::cout << " (" << g.id(g.tail(i)) << "," << g.id(g.head(i)) << ")"; | 
|---|
 | 139 |   std::cout << std::endl; | 
|---|
 | 140 | \endcode | 
|---|
 | 141 |  | 
|---|
 | 142 | \code | 
|---|
 | 143 | Edges: (0,2) (1,2) (0,1) (2,1) (1,0) (2,0) | 
|---|
 | 144 | \endcode | 
|---|
 | 145 |  | 
|---|
 | 146 | We can also iterate through all edges of the graph very similarly. The head and | 
|---|
 | 147 | tail member functions can be used to access the endpoints of an edge. | 
|---|
 | 148 |  | 
|---|
 | 149 | \code | 
|---|
 | 150 |   NodeIt first_node(g); | 
|---|
 | 151 |  | 
|---|
 | 152 |   std::cout << "Out-edges of node " << g.id(first_node) << ":"; | 
|---|
 | 153 |   for (OutEdgeIt i(g, first_node); g.valid(i); g.next(i)) | 
|---|
 | 154 |     std::cout << " (" << g.id(g.tail(i)) << "," << g.id(g.head(i)) << ")";  | 
|---|
 | 155 |   std::cout << std::endl; | 
|---|
 | 156 |  | 
|---|
 | 157 |   std::cout << "In-edges of node " << g.id(first_node) << ":"; | 
|---|
 | 158 |   for (InEdgeIt i(g, first_node); g.valid(i); g.next(i)) | 
|---|
 | 159 |     std::cout << " (" << g.id(g.tail(i)) << "," << g.id(g.head(i)) << ")";  | 
|---|
 | 160 |   std::cout << std::endl; | 
|---|
 | 161 | \endcode | 
|---|
 | 162 |  | 
|---|
 | 163 | \code | 
|---|
 | 164 | Out-edges of node 2: (2,0) (2,1) | 
|---|
 | 165 | In-edges of node 2: (0,2) (1,2) | 
|---|
 | 166 | \endcode | 
|---|
 | 167 |  | 
|---|
 | 168 | We can also iterate through the in and out-edges of a node. In the above | 
|---|
 | 169 | example we print out the in and out-edges of the first node of the graph. | 
|---|
 | 170 |  | 
|---|
 | 171 | \code | 
|---|
 | 172 |   Graph::EdgeMap<int> m(g); | 
|---|
 | 173 |  | 
|---|
 | 174 |   for (EdgeIt e(g); g.valid(e); g.next(e)) | 
|---|
 | 175 |     m.set(e, 10 - g.id(e)); | 
|---|
 | 176 |    | 
|---|
 | 177 |   std::cout << "Id Edge  Value" << std::endl; | 
|---|
 | 178 |   for (EdgeIt e(g); g.valid(e); g.next(e)) | 
|---|
 | 179 |     std::cout << g.id(e) << "  (" << g.id(g.tail(e)) << "," << g.id(g.head(e)) | 
|---|
 | 180 |       << ") " << m[e] << std::endl; | 
|---|
 | 181 | \endcode | 
|---|
 | 182 |  | 
|---|
 | 183 | \code | 
|---|
 | 184 | Id Edge  Value | 
|---|
 | 185 | 4  (0,2) 6 | 
|---|
 | 186 | 2  (1,2) 8 | 
|---|
 | 187 | 5  (0,1) 5 | 
|---|
 | 188 | 0  (2,1) 10 | 
|---|
 | 189 | 3  (1,0) 7 | 
|---|
 | 190 | 1  (2,0) 9 | 
|---|
 | 191 | \endcode | 
|---|
 | 192 |  | 
|---|
 | 193 | In generic graph optimization programming graphs are not containers rather | 
|---|
 | 194 | incidence structures which are iterable in many ways. HugoLib introduces | 
|---|
 | 195 | concepts that allow us to attach containers to graphs. These containers are | 
|---|
 | 196 | called maps. | 
|---|
 | 197 |  | 
|---|
 | 198 | In the example above we create an EdgeMap which assigns an int value to all | 
|---|
 | 199 | edges of the graph. We use the set member function of the map to write values | 
|---|
 | 200 | into the map and the operator[] to retrieve them. | 
|---|
 | 201 |  | 
|---|
 | 202 | Here we used the maps provided by the ListGraph class, but you can also write | 
|---|
 | 203 | your own maps. You can read more about using maps \ref maps "here". | 
|---|
 | 204 |  | 
|---|
 | 205 | */ | 
|---|